JP5551144B2 - Activated carbon and its manufacturing method - Google Patents

Activated carbon and its manufacturing method Download PDF

Info

Publication number
JP5551144B2
JP5551144B2 JP2011277678A JP2011277678A JP5551144B2 JP 5551144 B2 JP5551144 B2 JP 5551144B2 JP 2011277678 A JP2011277678 A JP 2011277678A JP 2011277678 A JP2011277678 A JP 2011277678A JP 5551144 B2 JP5551144 B2 JP 5551144B2
Authority
JP
Japan
Prior art keywords
activated carbon
alkaline earth
earth metal
organic resin
activator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011277678A
Other languages
Japanese (ja)
Other versions
JP2012082134A (en
Inventor
道夫 稲垣
隆広 森下
朋樹 津村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co Ltd filed Critical Toyo Tanso Co Ltd
Priority to JP2011277678A priority Critical patent/JP5551144B2/en
Publication of JP2012082134A publication Critical patent/JP2012082134A/en
Application granted granted Critical
Publication of JP5551144B2 publication Critical patent/JP5551144B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)

Description

本発明は活性炭と、その新規な製法に関し、より詳細には、比表面積が大きく脱臭材、吸着材、触媒担体などとして卓越した性能を有する活性炭の新規な製法に関するものである。   The present invention relates to activated carbon and a novel production method thereof, and more particularly to a novel production method of activated carbon having a large specific surface area and excellent performance as a deodorizing material, an adsorbing material, a catalyst carrier and the like.

活性炭の製法としては、木材パルプ、のこ屑、ヤシ殻、綿実殻、もみ殻などのセルロース質や粟、稗、とうもろこし等の澱粉質、リグニン、などの植物性原料;石炭やタール、石油ピッチなどの鉱物性原料;更にはフェノール樹脂やポリアクリロニトリルなどの合成樹脂などを原料とし、これを非酸化性雰囲気下で加熱して炭素化する方法が周知であり、また、またこれらの炭素化物を薬剤で処理して賦活化する方法もよく知られている。   Activated charcoal can be made from cellulose such as wood pulp, sawdust, coconut husk, cottonseed husk and rice husk, starchy materials such as straw, straw and corn, and vegetable raw materials such as lignin; coal, tar, petroleum Mineral raw materials such as pitch; furthermore, a method of carbonizing by using a synthetic resin such as phenol resin or polyacrylonitrile as a raw material and heating it in a non-oxidizing atmosphere is well known, and these carbonized products A method of activating by activating with a drug is also well known.

該薬剤賦活に用いる代表的な薬剤としては、塩化亜鉛、燐酸、塩化カルシウム、硫化カリウム、水酸化カリウム、水酸化ナトリウム、炭酸カリウム、炭酸ナトリウムなどが挙げられ、これらの薬剤をカーボンや炭素質材料と混合し、窒素やアルゴンなどの非酸化性雰囲気ガス中で500〜700℃で処理すれば、比表面積の大きい活性炭が得られることも確認されている(特許文献1など)。   Representative agents used for the activation of the agent include zinc chloride, phosphoric acid, calcium chloride, potassium sulfide, potassium hydroxide, sodium hydroxide, potassium carbonate, sodium carbonate and the like. It has also been confirmed that activated carbon having a large specific surface area can be obtained by mixing with a non-oxidizing atmosphere gas such as nitrogen or argon at 500 to 700 ° C. (Patent Document 1, etc.).

また最近では、賦活用の薬剤として水酸化カリウムを使用し、これを有機質樹脂と混合して非酸化性雰囲気下で加熱すれば、3000m2/gにも達する高い比表面積の活性炭が得られることが確認され、注目を集めている(特許文献2)。 Recently, potassium hydroxide is used as an effective drug, and if this is mixed with an organic resin and heated in a non-oxidizing atmosphere, activated carbon having a high specific surface area of up to 3000 m 2 / g can be obtained. Has been confirmed and attracting attention (Patent Document 2).

ところがこの方法には、有機質樹脂に対して4倍量以上の賦活剤を必要とすること、そのためカリウムの回収再利用が試みられているものの回収率が低いためコスト高につくこと、しかも賦活のための加熱工程でアルカリ金属が揮発して加熱炉を汚染乃至損傷し、且つ各種工業材料として使用する際にも浸食を起こす原因になること、更にはアルカリ金属化合物で処理した活性炭は可燃性が高く発火し易いこと、など等、工業的規模での実用化には多くの問題を残している。   However, this method requires an activator more than 4 times the amount of the organic resin. Therefore, although recovery and reuse of potassium have been attempted, the recovery rate is low and the cost is high. In the heating process, the alkali metal volatilizes and damages or damages the heating furnace, and also causes erosion when used as various industrial materials. Furthermore, activated carbon treated with an alkali metal compound is flammable. Many problems remain in practical use on an industrial scale, such as being highly flammable.

この他、賦活剤として塩化亜鉛や塩化カルシウムなどの塩化物を使用する方法では、焼成時に発生する塩素や塩酸などの有害ガスが問題になることもある。   In addition, in the method using a chloride such as zinc chloride or calcium chloride as an activator, harmful gases such as chlorine and hydrochloric acid generated during firing may be a problem.

特開平9−118510号公報JP-A-9-118510 特開平9−86914号公報JP-A-9-86914

本発明は上記の様な事情に着目してなされたものであって、その目的は、有機質樹脂を原料として使用し、これと共に特定の薬剤を賦活剤として使用することにより、優れた生産性と安全性、操業安定性の下で比表面積が大きく高性能の活性炭を製造することのできる方法、および比表面積が大きく高性能の活性炭を提供することにある。   The present invention has been made paying attention to the circumstances as described above, and the purpose thereof is to use an organic resin as a raw material and to use a specific drug as an activator together with the excellent productivity and An object of the present invention is to provide a method capable of producing a high-performance activated carbon having a large specific surface area under safety and operational stability, and a high-performance activated carbon having a large specific surface area.

上記課題を解決することのできた本発明の活性炭は、比表面積が400〜2000m2/gであることを特徴とする。本発明の活性炭は、メソポア体積が0.16mL/g以上であることが好ましい。 The activated carbon of the present invention that has solved the above problems is characterized by a specific surface area of 400 to 2000 m 2 / g. The activated carbon of the present invention preferably has a mesopore volume of 0.16 mL / g or more.

本発明はまた、本発明の活性炭の製法であって、有機質樹脂を、アルカリ土類金属の酸化物、水酸化物、炭酸塩、有機酸塩よりなる群から選択されるアルカリ土類金属化合物の少なくとも1種と混合し、非酸化性雰囲気で加熱焼成する工程を含む活性炭の製法を提供する。   The present invention is also a method for producing activated carbon according to the present invention, wherein the organic resin is an alkaline earth metal compound selected from the group consisting of an alkaline earth metal oxide, hydroxide, carbonate, and organic acid salt. Provided is a method for producing activated carbon including a step of mixing with at least one kind and heating and firing in a non-oxidizing atmosphere.

上記本発明を実施するに当たっては、有機質樹脂100質量部に対し、上記アルカリ土類金属化合物の少なくとも1種を40〜700質量部混合し、非酸化性雰囲気で加熱焼成を行うのがよく、また加熱焼成のための好ましい温度は500℃以上である。   In practicing the present invention, 40 to 700 parts by mass of at least one alkaline earth metal compound is mixed with 100 parts by mass of the organic resin, followed by heating and baking in a non-oxidizing atmosphere. A preferred temperature for heating and baking is 500 ° C. or higher.

上記方法で加熱焼成を行うと、多孔質の活性炭がアルカリ土類金属酸化物との混合状態で得ることができ、該混合物を酸性水溶液で処理すると、アルカリ土類金属酸化物が可溶性の塩として水に溶解するので、これを濾過・水洗してから乾燥すると活性炭を得ることができる。   When heated and calcined by the above method, porous activated carbon can be obtained in a mixed state with an alkaline earth metal oxide, and when the mixture is treated with an acidic aqueous solution, the alkaline earth metal oxide is converted into a soluble salt. Since it dissolves in water, it can be filtered, washed with water and dried to obtain activated carbon.

また本発明によれば、使用するアルカリ土類金属化合物を有機質樹脂と混合し、焼成して炭素化した後に生成するアルカリ土類金属酸化物の結晶子サイズによって、得られる活性炭の細孔サイズを調整することができるし、用いる有機質樹脂の種類によって、得られる活性炭の細孔分布を調整することができる。   Further, according to the present invention, the pore size of the obtained activated carbon is determined according to the crystallite size of the alkaline earth metal oxide formed after mixing the alkaline earth metal compound to be used with the organic resin, firing and carbonizing. The pore distribution of the obtained activated carbon can be adjusted depending on the type of organic resin used.

本発明の活性炭は、比表面積が大きく高性能なものとなる。また、本発明によれば、有機質樹脂を原料として使用し、賦活剤としてアルカリ土類金属の酸化物、水酸化物、炭酸塩、有機酸塩よりなる群から選択されるアルカリ土類金属化合物の少なくとも1種を使用することにより、優れた生産性と操業安定性、安全性の下で比表面積の大きい高性能の活性炭を効率よく製造することができる。   The activated carbon of the present invention has a large specific surface area and high performance. According to the invention, an organic resin is used as a raw material, and an alkaline earth metal compound selected from the group consisting of an alkaline earth metal oxide, hydroxide, carbonate, and organic acid salt as an activator is used. By using at least one kind, high-performance activated carbon having a large specific surface area can be efficiently produced under excellent productivity, operational stability and safety.

実施例9で得た活性炭のミクロポア分布を示す図である。It is a figure which shows the micropore distribution of the activated carbon obtained in Example 9. 実施例9で得た活性炭のメソポア分布を示す図である。It is a figure which shows the mesopore distribution of the activated carbon obtained in Example 9.

本発明者らは前述した様な従来技術の下で、特に各種ポリマーや熱可塑性樹脂、熱硬化性樹脂などを包含する有機質樹脂を原料として使用し、これを非酸化性雰囲気下で加熱することにより炭素化して活性炭を製造する方法の改善を企画し、特に賦活剤として用いる無機化合物を選択することによって、上記従来技術で指摘した様な問題を生じることなく、比表面積の大きい高性能の活性炭を製造することのできる技術を開発すべく鋭意研究を重ねてきた。その結果、有機質樹脂を特定のマグネシウム化合物と混合し、非酸化性雰囲気で加熱焼成する方法を採用すれば、多孔質で極めて比表面積の大きな活性炭が効率よく得られることをつきとめた。   Under the prior art as described above, the present inventors use organic resins including various polymers, thermoplastic resins, thermosetting resins, etc. as raw materials and heat them in a non-oxidizing atmosphere. By planning the improvement of the method for producing activated carbon by carbonization, especially by selecting the inorganic compound to be used as the activator, high-performance activated carbon with a large specific surface area without causing the problems as pointed out in the above prior art We have made extensive research to develop technologies that can manufacture As a result, it has been found that if an organic resin is mixed with a specific magnesium compound and heated and baked in a non-oxidizing atmosphere, porous activated carbon having an extremely large specific surface area can be obtained efficiently.

すなわち本発明では、上記の様に有機質樹脂を原料と使用し、これを特定のアルカリ土類金属化合物と混合してから非酸化性雰囲気中で加熱し熱分解させる。   That is, in the present invention, as described above, an organic resin is used as a raw material, which is mixed with a specific alkaline earth metal compound and then heated in a non-oxidizing atmosphere to be thermally decomposed.

原料として用いる有機質樹脂としては、各種の有機ポリマー、熱可塑性樹脂、熱硬化性樹脂を使用することができ、具体的には、ポリビニルアルコール、脂肪族系もしくは芳香族系のポリエステル系樹脂、ポリオレフィン系樹脂、アクリル系樹脂、スチレン系樹脂、ポリアミド系樹脂、ポリアクリロニトリル系樹脂、ポリブタジエンやポリイソプレン等を主体とするエラストマーなどの各種合成樹脂やポリマー、更には天然ゴムや石油樹脂などの熱可塑性樹脂乃至ポリマー、或いはフェノール系樹脂、フラン系樹脂、エポキシ系樹脂、アルキド系樹脂などの熱硬化性樹脂などが使用される。これらの中でも特に好ましいのは、ポリマーもしくは樹脂が実質的に炭素、水素、酸素のみからなるポリビニルアルコールやポリエステル系樹脂、スチレン系樹脂、石油樹脂などである。   As the organic resin used as a raw material, various organic polymers, thermoplastic resins, and thermosetting resins can be used. Specifically, polyvinyl alcohol, aliphatic or aromatic polyester resins, polyolefin resins Resins, acrylic resins, styrene resins, polyamide resins, polyacrylonitrile resins, various synthetic resins such as elastomers mainly composed of polybutadiene and polyisoprene, and thermoplastic resins such as natural rubber and petroleum resin Polymers or thermosetting resins such as phenol resins, furan resins, epoxy resins and alkyd resins are used. Among these, polyvinyl alcohol, a polyester resin, a styrene resin, a petroleum resin, or the like in which the polymer or resin is substantially composed only of carbon, hydrogen, and oxygen is particularly preferable.

これらの有機質樹脂は、粉末状、ペレット状、塊状など任意の形状のものを使用することができ、場合によっては有機溶剤に溶解乃至分散させた溶液もしくは分散液として使用することも可能である。   These organic resins can be used in any shape such as powder, pellets, and lumps, and in some cases, can be used as a solution or dispersion dissolved or dispersed in an organic solvent.

これらの有機質樹脂に対し、賦活剤として使用されるアルカリ土類金属化合物は、加熱焼成工程で熱処理炉を劣化させたり汚染性ガスを発生したりすることなく、且つ炭化物の多孔質化を増進し得るものとして、アルカリ土類金属の酸化物が選択される。また、熱分解により酸化物となるアルカリ土類金属の水酸化物、炭酸塩、更には酢酸塩、シュウ酸塩、クエン酸塩、アクリル酸塩、メタクリル酸塩などの有機酸塩も同様に使用することができ、必要によってはこれらの2種以上を任意の組合せで併用してもよい。   In contrast to these organic resins, alkaline earth metal compounds used as activators do not degrade the heat treatment furnace or generate pollutant gases in the heating and baking process, and promote the porous formation of carbides. As an obtained, an oxide of an alkaline earth metal is selected. In addition, alkaline earth metal hydroxides and carbonates that become oxides by thermal decomposition, and organic acid salts such as acetates, oxalates, citrates, acrylates and methacrylates are used in the same way. If necessary, two or more of these may be used in any combination.

但し、硫酸塩、硝酸塩、塩化物などのアルカリ土類金属塩は除外される。その理由は、硫酸塩、硝酸塩、塩化物などは、加熱焼成時に発生する亜硫酸ガスや硝酸ガス、塩化水素ガスなどが熱処理炉や関連設備を劣化させる原因になる恐れがあるばかりでなく、その理由は明確でないが、熱分解時にマグネシウムなどのアルカリ土類金属メタルが生成し、活性炭を本発明で意図するレベルまで多孔質化できないからである。   However, alkaline earth metal salts such as sulfate, nitrate and chloride are excluded. The reason for this is that sulfate, nitrate, chloride, etc. not only cause sulfite gas, nitric acid gas, hydrogen chloride gas, etc. generated during heating and firing to deteriorate the heat treatment furnace and related equipment, but also the reason. This is because an alkaline earth metal metal such as magnesium is generated during pyrolysis, and the activated carbon cannot be made porous to the level intended by the present invention.

なお、アルカリ土類金属としてはマグネシウム、カルシウム、ストロンチウム、バリウムなどが挙げられるが、これらの中でも好ましいのはマグネシウムとカルシウムであり、とりわけマグネシウムが最適である。   Examples of the alkaline earth metal include magnesium, calcium, strontium, barium, and the like. Among these, magnesium and calcium are preferable, and magnesium is particularly preferable.

アルカリ土類金属の酸化物、水酸化物、炭酸塩、有機酸塩の形態は特に制限されず、粉末状、ペレット状、顆粒状、ペースト状など、任意の形態で使用できるが、特に好ましいのは、前記有機質樹脂と均一混合し易く炭化物の多孔質化に最も有効な粉末状もしくは顆粒状のものである。   The form of the alkaline earth metal oxide, hydroxide, carbonate, organic acid salt is not particularly limited, and can be used in any form such as powder, pellet, granule, paste, etc. Is a powder or granule which is easy to mix uniformly with the organic resin and is most effective for making the carbide porous.

有機質樹脂に対する上記アルカリ土類金属化合物の配合比率は特に制限されないが、得られる活性炭の多孔質化を増進する上で特に好ましいのは、前者100質量部に対し後者40〜700質量部の範囲である。ちなみに、アルカリ土類金属化合物の配合比率が40質量部未満では、活性炭に対する多孔質化増進効果が不足気味となって、本発明で意図するレベルの比表面積の活性炭が得られ難くなる。一方、活性炭の多孔質化作用の観点からすると、アルカリ土類金属化合物の配合比率に上限は存在しないが、その作用は700質量部でほぼ飽和し、それ以上配合してもそれ以上に比表面積は増大せず、アルカリ土類金属化合物の使用量がいたずらに増大するだけでなく、炭化処理後のアルカリ土類金属化合物の除去作業性も低下するので好ましくない。アルカリ土類金属化合物の配合量のより好ましい下限値は100質量部で、より好ましい上限は300質量部である。   The blending ratio of the alkaline earth metal compound with respect to the organic resin is not particularly limited, but is particularly preferably in the range of 40 to 700 parts by mass of the latter with respect to 100 parts by mass of the former in order to enhance the porosity of the obtained activated carbon. is there. Incidentally, if the blending ratio of the alkaline earth metal compound is less than 40 parts by mass, the effect of enhancing the porosity with respect to the activated carbon tends to be insufficient, and it becomes difficult to obtain activated carbon having the specific surface area intended by the present invention. On the other hand, from the viewpoint of the porous action of the activated carbon, there is no upper limit to the blending ratio of the alkaline earth metal compound, but the action is almost saturated at 700 parts by mass, and even if blended more than that, the specific surface area is more than that. This is not preferable because not only the amount of the alkaline earth metal compound used is increased unnecessarily, but also the workability of removing the alkaline earth metal compound after carbonization is lowered. The more preferable lower limit of the blending amount of the alkaline earth metal compound is 100 parts by mass, and the more preferable upper limit is 300 parts by mass.

上記有機質樹脂とアルカリ土類金属化合物の配合形態にも格別の制限はなく、最も一般的な粉末や顆粒状物などの固形物同士の均一混合の他、例えば有機質樹脂を加熱溶融しこれに前記アルカリ土類金属化合物を均一分散させてから球状、ペレット状、塊状など任意の形状に二次成形したもの、更には有機溶剤や水などに溶解した有機質樹脂とアルカリ土類金属化合物の混合溶液やスラリーやその乾燥物など、任意の形態で使用することができる。   There is no particular limitation on the blending form of the organic resin and the alkaline earth metal compound. In addition to uniform mixing of solids such as the most common powders and granules, for example, the organic resin is heated and melted to A material in which an alkaline earth metal compound is uniformly dispersed and then secondary molded into a spherical shape, a pellet shape, a lump shape or the like, or a mixed solution of an organic resin and an alkaline earth metal compound dissolved in an organic solvent or water, It can be used in any form such as a slurry or a dried product thereof.

原料配合物の炭化は、非酸化性雰囲気下で加熱することによって行なう。具体的には、上記原料配合物を電気炉など任意の加熱装置へ装入し、内部を非酸化性ガスで置換した後、該装置内へ非酸化性ガスを吹き込みながら加熱する。そうすると、原料配合物中の有機質樹脂は非酸化性雰囲気下での加熱によって熱分解し、熱分解ガスを放出しつつ炭化していく。熱分解ガスは、吹き込みガスと共に逐次加熱炉外へ放出され、加熱炉内に炭化物と共にアルカリ土類金属酸化物が残る。   Carbonization of the raw material mixture is performed by heating in a non-oxidizing atmosphere. Specifically, the raw material mixture is charged into an arbitrary heating apparatus such as an electric furnace, the inside is replaced with a non-oxidizing gas, and then heated while blowing the non-oxidizing gas into the apparatus. Then, the organic resin in the raw material mixture is pyrolyzed by heating in a non-oxidizing atmosphere, and carbonized while releasing the pyrolysis gas. The pyrolysis gas is sequentially discharged out of the heating furnace together with the blowing gas, and the alkaline earth metal oxide remains with the carbide in the heating furnace.

炭化のための加熱条件は特に制限されないが、通常は0.1〜0.5℃/秒程度の速度で昇温し、500℃以上、より好ましくは700℃以上で1〜2時間程度加熱することによって行なう。加熱温度の上限は特に存在しないが、一般的には1500℃程度以下、より一般的には1200℃程度以下である。この加熱工程で、加熱装置内には連続的に非酸化性ガスを導入し、生成する熱分解ガスを逐次系外へ放出させることによって炭化を進める。この熱分解−炭化工程で、その理由は明らかにされていないが、共存するアルカリ土類金属化合物の作用で生成する炭化物の多孔質化が著しく増進され、通常の活性炭に較べて著しく比表面積の大きな活性炭が得られる。   The heating conditions for carbonization are not particularly limited, but the temperature is usually raised at a rate of about 0.1 to 0.5 ° C / second, and heated at 500 ° C or higher, more preferably 700 ° C or higher for about 1 to 2 hours. By doing. The upper limit of the heating temperature is not particularly present, but is generally about 1500 ° C. or lower, and more generally about 1200 ° C. or lower. In this heating process, non-oxidizing gas is continuously introduced into the heating device, and carbonization proceeds by sequentially releasing the generated pyrolysis gas out of the system. The reason for this pyrolysis-carbonization process is not clarified, but the porosity of the carbide produced by the action of the coexisting alkaline earth metal compound is significantly increased, and the specific surface area is significantly higher than that of ordinary activated carbon. Large activated carbon is obtained.

非酸化性ガスの種類は、有機質樹脂の燃焼(酸化)を抑え乾留状態で炭化を進めるため、酸化性ガスを含まない限り格別の制限はないが、一般的なのはアルゴンやヘリウム等の不活性ガス、或いは窒素ガスである。場合によっては水素ガスなどの還元性ガスを適量含有させることも可能である。また必要によっては、賦活化のため水蒸気などの酸化性ガスを微量含有させることもある。しかし酸化性ガスは炭化物を燃焼させて収率を低下させる原因になるので、使用するにしても温度200〜300℃程度でごく短時間の処理に止めるべきである。   The type of non-oxidizing gas suppresses the combustion (oxidation) of the organic resin and proceeds carbonization in the dry distillation state, so there is no particular restriction unless it contains oxidizing gas, but generally inert gases such as argon and helium Or nitrogen gas. In some cases, a reducing gas such as hydrogen gas can be contained in an appropriate amount. If necessary, a small amount of an oxidizing gas such as water vapor may be contained for activation. However, the oxidizing gas causes the carbide to burn and lowers the yield, so even if it is used, it should be stopped at a temperature of about 200 to 300 ° C. for a very short time.

この間、アルカリ土類金属化合物のうち酸化物は熱的に極めて安定であり、また水酸化物や炭酸塩、有機酸塩は、加熱処理の初期段階で熱分解して安定な酸化物に変わるので、その後の熱処理工程で加熱炉の内張り耐火物を劣化させたり環境汚染の原因となる有害ガスを生じたりすることもなく、安全に炭化反応を進めることができる。   During this time, oxides of alkaline earth metal compounds are thermally extremely stable, and hydroxides, carbonates and organic acid salts are thermally decomposed into stable oxides at the initial stage of heat treatment. Then, the carbonization reaction can proceed safely without deteriorating the refractory lining the heating furnace or generating harmful gases that cause environmental pollution in the subsequent heat treatment step.

炭素化を終えた後は、加熱装置を室温まで降温してから炭化物を取り出すが、生成物中には炭化物と共にアルカリ土類金属の酸化物が含まれており、顕微鏡観察の結果では、該酸化物粒子の表面に比表面積の大きなカーボン(炭素)が被覆された状態で生成していることが確認された。こうした存在形態から推察するに、該炭化工程では、酸化物粉末の表面で有機質樹脂の炭素化が進行し、該炭素化工程で酸化物が何らかの作用を及ぼし生成炭の多孔質化を増進しているものと思われる。   After the carbonization is completed, the carbide is taken out after the heating device is cooled to room temperature, but the product contains an oxide of an alkaline earth metal together with the carbide. It was confirmed that the surface of the product particles was generated in a state where carbon having a large specific surface area was coated. Inferring from these existence forms, in the carbonization step, carbonization of the organic resin proceeds on the surface of the oxide powder, and in the carbonization step, the oxide has some effect to increase the porosity of the generated coal. It seems that there is.

かくして得られる活性炭は、上記の様にアルカリ土類金属酸化物との共存状態で生成するが、該生成物を例えば硫酸や塩酸などの鉱酸、或いは酢酸やシュウ酸などの有機酸の水溶液で処理すると、アルカリ土類金属酸化物は硫酸塩、塩酸塩、酢酸塩、シュウ酸塩などとなって水溶液中に溶け出すので、これを濾過・水洗してから乾燥すると、実質的に100%純度の活性炭を得ることができる(直接回収)。   The activated carbon thus obtained is produced in the coexistence state with the alkaline earth metal oxide as described above, and the product is obtained with an aqueous solution of a mineral acid such as sulfuric acid or hydrochloric acid, or an organic acid such as acetic acid or oxalic acid. When treated, alkaline earth metal oxides, such as sulfates, hydrochlorides, acetates, and oxalates, dissolve into the aqueous solution, and are filtered, washed with water, and dried to give a purity of 100%. Of activated carbon can be obtained (direct recovery).

また本発明を実施する際には、使用するアルカリ土類金属化合物や有機質樹脂の種類や混合方法、混合比率などによって、得られる活性炭の細孔径や細孔分布を調整することができる。   Moreover, when implementing this invention, the pore diameter and pore distribution of the activated carbon obtained can be adjusted with the kind, mixing method, mixing ratio, etc. of the alkaline earth metal compound and organic resin to be used.

即ち、後記実施例でも明らかにする如く、例えばMg化合物を使用した場合、有機質樹脂と混合して焼成し炭素化した後に生成する酸化マグネシウムの結晶子サイズによって、活性炭の細孔サイズはほぼ決まる。その理由は、生成した酸化マグネシウムの結晶子は酸によって溶出するため、酸化マグネシウムの結晶子の大きさに対応した細孔が生成するためである。   That is, as will be clarified in the examples described later, for example, when an Mg compound is used, the pore size of the activated carbon is almost determined by the crystallite size of magnesium oxide formed after being mixed with an organic resin, calcined and carbonized. The reason is that the generated magnesium oxide crystallites are eluted by an acid, so that pores corresponding to the size of the magnesium oxide crystallites are generated.

即ち、有機質樹脂が炭素化する際にアルカリ土類金属化合物が存在すると、生成する炭素化物中にアルカリ土類金属酸化物が生成するが、生成したアルカリ土類金属酸化物はその後に酸で溶出されるため、生成したアルカリ土類金属酸化物の大きさ(結晶子の大きさ)に対応した細孔が炭素化物中に生成するのである。尚、アルカリ土類金属酸化物の大きさは、アルカリ土類金属化合物の種類や混合方法、有機質樹脂との混合比率などによって調整すればよい。   That is, if an alkaline earth metal compound is present when the organic resin is carbonized, an alkaline earth metal oxide is produced in the resulting carbonized product, but the produced alkaline earth metal oxide is then eluted with an acid. Therefore, pores corresponding to the size of the generated alkaline earth metal oxide (crystallite size) are generated in the carbonized product. In addition, what is necessary is just to adjust the magnitude | size of an alkaline-earth metal oxide with the kind of alkaline-earth metal compound, a mixing method, a mixing ratio with an organic resin, etc.

また、得られる活性炭の細孔分布については、使用する有機質樹脂の種類に大きく影響され、例えば有機質樹脂としてポリビニルアルコールを使用した場合は、0.8nm前後の微細なミクロポアの多い活性炭が得られ、一方、有機質樹脂としてポリエチレンテレフタレートやヒドロキシプロピレングリコールを使用した場合は、20〜30nm程度の比較的サイズの大きいメソポアの多い活性炭が得られる。   In addition, the pore distribution of the obtained activated carbon is greatly influenced by the type of organic resin to be used. For example, when polyvinyl alcohol is used as the organic resin, activated carbon with many micropores around 0.8 nm is obtained, On the other hand, when polyethylene terephthalate or hydroxypropylene glycol is used as the organic resin, a relatively large mesopore-rich activated carbon of about 20 to 30 nm is obtained.

なお本発明によって得られる活性炭は、後述する如く従来の活性炭と同様に吸着剤や脱臭剤、触媒担体、リチウム電池、燃料電池などの電極やキャパシタ材料などとして使用されるが、これらの用途では、共存する酸化物は不活性物質として存在するだけであるから、用途によっては該酸化物を溶出除去せずに混合状態のままで使用することも可能である。即ち、活性炭としての比表面積自体は、酸化物を溶出除去するか否かによっては殆ど変わらず、酸化物は不活性成分として混在するだけであるから、用途によっては該酸化物を分離除去しないで使用できる。しかし、酸化物の共存によって単位質量当りの吸着量が小さくなり、100%活性炭に較べると当然に低下してくるので、酸化物を分離除去してから使用することが望ましいことは当然である。   The activated carbon obtained by the present invention is used as an adsorbent, deodorant, catalyst carrier, electrode of lithium battery, fuel cell and capacitor material as in the case of conventional activated carbon as described later. Since the coexisting oxide exists only as an inert substance, it can be used in a mixed state without being eluted and removed depending on the application. That is, the specific surface area itself as activated carbon hardly changes depending on whether or not the oxide is eluted and removed, and the oxide is merely mixed as an inert component. Can be used. However, the amount of adsorption per unit mass decreases due to the coexistence of oxides, and naturally decreases as compared with 100% activated carbon. Therefore, it is naturally desirable to use the oxides after separating and removing them.

なお活性炭と分離除去したアルカリ土類金属化合物、たとえば水溶性の硫酸塩や塩化物は、該水溶液をアルカリで中和することによりアルカリ土類金属の不溶性水酸化物や炭酸塩として回収し、再利用することができるので、アルカリ土類金属化合物が無駄に消費されることはない。また、有機酸を使用した場合はアルカリ土類金属の有機酸塩として回収することができ、これは炭素の賦活剤として再利用できる。   Alkaline earth metal compounds separated from activated carbon, such as water-soluble sulfates and chlorides, are recovered as insoluble hydroxides and carbonates of alkaline earth metals by neutralizing the aqueous solution with alkali, Since it can be utilized, the alkaline earth metal compound is not wasted. Moreover, when an organic acid is used, it can be recovered as an organic acid salt of an alkaline earth metal, which can be reused as a carbon activator.

かくして得られる活性炭は、加熱焼成時のアルカリ土類金属化合物の配合比率にもよるが、比表面積が400〜2000m2/g程度の高い値を有する高活性のものとなる。従って該活性炭は、吸着剤、脱臭剤、触媒担体などをはじめとして、従来の活性炭と同様の用途、具体的には廃水処理や空気清浄化用の吸着剤、有機合成用の触媒担体、更にはリチウム電池や燃料電池をはじめとする各種電池用の電極材、キャパシタ用電極材などとして幅広く有効に活用できる。 The activated carbon thus obtained is a highly active one having a high specific surface area of about 400 to 2000 m 2 / g, although it depends on the blending ratio of the alkaline earth metal compound at the time of heating and firing. Therefore, the activated carbon is used for adsorbents, deodorizers, catalyst carriers, etc., as well as conventional activated carbons, specifically, adsorbents for wastewater treatment and air purification, catalyst carriers for organic synthesis, It can be used widely and effectively as electrode materials for various batteries including lithium batteries and fuel cells, and electrode materials for capacitors.

しかも、例えば賦活剤として塩化物やアルカリ金属などを用いて得た従来の活性炭に較べると、有害な塩化物やアルカリ金属が混入する恐れがないので、それらの揮発なども全く懸念することなく安全に使用できる。   Moreover, compared to conventional activated carbon obtained using chlorides or alkali metals as activators, for example, there is no risk of harmful chlorides or alkali metals being mixed, so there is no concern about their volatilization. Can be used for

また塩化物やアルカリ金属塩などを使用する従来の製法では、前述した如く塩素系ガスやアルカリ金属の揮発などで加熱処理炉や付帯設備を劣化させる恐れもあるが、本発明では熱的に極めて安定なアルカリ土類金属酸化物を使用するため、その様な問題を生じることもない。   In addition, in the conventional production method using chloride or alkali metal salt, as mentioned above, there is a risk of deterioration of the heat treatment furnace or incidental equipment due to volatilization of chlorine-based gas or alkali metal. Since a stable alkaline earth metal oxide is used, such a problem does not occur.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.

実施例1
有機質樹脂としてPVA粉末(東京化成工業社製の試薬、ポリビニルアルコール、平均重合度2000)、賦活剤としてMgO粉末(関東化学社製の試薬)を使用し、これらを下記表1に示す比率で均一に混合した後、これをアルミナ製の焼成ボートに入れて電気炉へ装入する。次いで炉内をアルゴンガスで置換し、更にアルゴンガスを50〜100mL/minの速度で吹き込みながら10℃/minの速度で900℃まで昇温し、同温度で1時間加熱を続ける。この加熱処理によりPVC粉末は熱分解して炭化し、粉末状の酸化マグネシウムと炭化物の混合粉末が得られる。
Example 1
PVA powder (reagent manufactured by Tokyo Chemical Industry Co., Ltd., polyvinyl alcohol, average polymerization degree 2000) is used as the organic resin, and MgO powder (reagent manufactured by Kanto Chemical Co., Inc.) is used as the activator. These are uniformly in the ratios shown in Table 1 below. Then, the mixture is placed in an alumina firing boat and charged into an electric furnace. Next, the inside of the furnace is replaced with argon gas, and the temperature is raised to 900 ° C. at a rate of 10 ° C./min while blowing argon gas at a rate of 50 to 100 mL / min, and heating is continued at that temperature for 1 hour. By this heat treatment, the PVC powder is pyrolyzed and carbonized to obtain a powdered mixed powder of magnesium oxide and carbide.

熱分解終了後、降温してから該混合粉末を取り出し顕微鏡観察すると、酸化マグネシウム粉末の表面が多孔質の炭素で被覆された状態で付着していることが確認された。   After the thermal decomposition, the mixed powder was taken out after the temperature was lowered and observed with a microscope. It was confirmed that the surface of the magnesium oxide powder was adhered in a state covered with porous carbon.

この混合粉末を、該粉末に対し質量比で10〜100倍量の1モル硫酸水溶液に投入して室温で撹拌し、酸化マグネシウムをマグネシウム硫酸塩として溶出させてから濾過し、更に十分に水洗してから乾燥すると、活性炭粉末が得られる。この方法で得られた活性炭粉末の質量と、熱分解処理で得た上記混合粉末の質量から、該混合粉末中の活性炭の含有量を計算し、結果を表1に示した。   This mixed powder is poured into a 1 to 100-fold amount of 1 molar sulfuric acid aqueous solution in a mass ratio with respect to the powder and stirred at room temperature, and magnesium oxide is eluted as magnesium sulfate, followed by filtration and further washing with water. After drying, activated carbon powder is obtained. From the mass of the activated carbon powder obtained by this method and the mass of the mixed powder obtained by the thermal decomposition treatment, the content of activated carbon in the mixed powder was calculated, and the results are shown in Table 1.

また、得られた活性炭粉末のBET比表面積を、ユアサアイオニクス社製の比表面積測定装置、商品名「AUTOSORB」を用いて測定し、結果を表1に併記した。   Further, the BET specific surface area of the obtained activated carbon powder was measured using a specific surface area measuring device manufactured by Yuasa Ionics Co., Ltd., trade name “AUTOSORB”, and the results are also shown in Table 1.

Figure 0005551144
Figure 0005551144

表1からも明らかな様に、PVAとMgOの配合比率によって得られる活性炭の比表面積は若干変わってくるが、いずれの場合も800m2/gレベル以上の比表面積の活性炭が得られている。なお上記実験で原料粉末として用いた酸化マグネシウムは熱的に安定であるため、熱分解工程で腐食性ガス等を生じることがなく、熱分解で発生するガスは実質的と水蒸気と炭酸ガスまたは一酸化炭素だけであるため、電気炉の内張り耐火物や坩堝の劣化は殆ど見られなかった。 As is clear from Table 1, the specific surface area of the activated carbon obtained varies depending on the blending ratio of PVA and MgO, but in any case, activated carbon having a specific surface area of 800 m 2 / g level or more is obtained. In addition, since magnesium oxide used as a raw material powder in the above experiment is thermally stable, no corrosive gas or the like is generated in the thermal decomposition process, and the gas generated in the thermal decomposition is substantially water vapor and carbon dioxide or one gas. Since it was only carbon oxide, there was almost no deterioration of the refractory and the crucible of the electric furnace.

実施例2
賦活剤として水酸化マグネシウム(関東化学社製の試薬)を、PVAに対し質量比で1/1の比率で使用した以外は前記実施例1と同様にして活性炭粉末を得た。得られた活性炭粉末の比表面積は650m2/gであった。
Example 2
Activated carbon powder was obtained in the same manner as in Example 1 except that magnesium hydroxide (a reagent manufactured by Kanto Chemical Co., Inc.) was used as an activator at a mass ratio of 1/1 to PVA. The specific surface area of the obtained activated carbon powder was 650 m 2 / g.

実施例3
賦活剤として酢酸マグネシウム四水和物(キシダ化学社製の試薬)を、無水物換算でPVAに対し質量比で1/4,1/1および7/3の比率で使用した以外は前記実施例1と同様にして活性炭粉末を得た。得られた活性炭粉末の比表面積は495m2/g,1085m2/gおよび1749m2/gであった。
Example 3
Except that magnesium acetate tetrahydrate (reagent manufactured by Kishida Chemical Co., Ltd.) was used as an activator at a mass ratio of 1/4, 1/1 and 7/3 in terms of anhydride relative to PVA. In the same manner as in No. 1, activated carbon powder was obtained. The specific surface area of the resulting activated carbon powder was 495m 2 / g, 1085m 2 / g and 1749m 2 / g.

実施例4
賦活剤として塩基性炭酸マグネシウム(和光純薬社製の試薬)を、PVAに対し質量比で1/1の比率で使用した以外は前記実施例1と同様にして活性炭粉末を得た。得られた活性炭粉末の比表面積は1300m2/gであった。
Example 4
Activated carbon powder was obtained in the same manner as in Example 1 except that basic magnesium carbonate (a reagent manufactured by Wako Pure Chemical Industries, Ltd.) was used as an activator at a mass ratio of 1/1 to PVA. The specific surface area of the obtained activated carbon powder was 1300 m 2 / g.

実施例5
賦活剤として酢酸マグネシウム4水和物(キシダ化学社製の試薬)を使用し、炭素源としてヒドロキシプロピルセルロース(HPC)粉末(東京化成工業社製)を水に質量比で3/1、5/1または7/1で溶解、乾燥して得られた混合粉末を使用した以外は前記実施例1と同様にして活性炭粉末を得た。得られた活性炭粉末の比表面積は、夫々1470m2/g、1330m2/gまたは1160m2/gであった。
Example 5
Magnesium acetate tetrahydrate (reagent manufactured by Kishida Chemical Co., Ltd.) is used as an activator, and hydroxypropylcellulose (HPC) powder (manufactured by Tokyo Chemical Industry Co., Ltd.) is used as a carbon source in water at a mass ratio of 3/1, 5 /. Activated carbon powder was obtained in the same manner as in Example 1 except that a mixed powder obtained by dissolving and drying at 1 or 7/1 was used. The specific surface area of the obtained activated carbon powder, respectively 1470m 2 / g, was 1330m 2 / g or 1160m 2 / g.

実施例6
有機質樹脂としてPET粉末(ユニチカ社製、商品名「SA2106」)、賦活剤として関東化学社製のMgO粉末を使用し、これらを質量比で1/1の比率で使用すると共に、加熱条件を、昇温速度10℃/min、900℃、1時間とした以外は前記実施例1と同様にして活性炭粉末を得た。得られた活性炭粉末の比表面積は750m2/gであった。
Example 6
PET powder (product name “SA2106”, manufactured by Unitika Ltd.) is used as the organic resin, and MgO powder manufactured by Kanto Chemical Co. is used as the activator. These are used at a mass ratio of 1/1, and the heating conditions are Activated carbon powder was obtained in the same manner as in Example 1 except that the heating rate was 10 ° C./min, 900 ° C., and 1 hour. The specific surface area of the obtained activated carbon powder was 750 m 2 / g.

実施例7
有機質樹脂としてPVA粉末(同前)、賦活剤として和光純薬社製のCaO粉末を使用し、これらを質量比で1/1の比率で使用すると共に、加熱条件を、昇温速度10℃/min、900℃、1時間とした以外は前記実施例1と同様にして活性炭粉末を得た。得られた活性炭粉末の比表面積は475m2/gであった。
Example 7
PVA powder (same as above) is used as an organic resin, CaO powder manufactured by Wako Pure Chemical Industries, Ltd. is used as an activator, and these are used at a mass ratio of 1/1. Activated carbon powder was obtained in the same manner as in Example 1 except that min, 900 ° C. and 1 hour were used. The specific surface area of the obtained activated carbon powder was 475 m 2 / g.

比較例1〜3
上記実施例1において、マグネシウム化合物を使用せず、若しくは、酸化マグネシウムに代えて塩化ナトリウムを使用し、PVAとの配合比率を1:1、昇温速度および加熱条件を5℃/min、700℃(または900℃)1時間とした以外は前記実施例1と同様の条件で炭化処理を行い、炭化終了後、塩化ナトリウムを水洗除去し乾燥することによって粉末状の活性炭を得た。得られた活性炭の比表面積を、実験条件と共に表2に一括して示す。
Comparative Examples 1-3
In Example 1 above, no magnesium compound was used, or sodium chloride was used instead of magnesium oxide, the mixing ratio with PVA was 1: 1, the heating rate and heating conditions were 5 ° C./min, 700 ° C. (Or 900 ° C.) Carbonization was carried out under the same conditions as in Example 1 except that the time was 1 hour. After carbonization, sodium chloride was washed away and dried to obtain powdered activated carbon. Table 2 shows the specific surface area of the obtained activated carbon together with the experimental conditions.

Figure 0005551144
Figure 0005551144

表2からも明らかな様に、PVA単独使用で賦活剤を全く使用しなかった場合は、100m2/gレベル未満の活性炭しか得られず、また塩化ナトリウムを使用した場合は、得られる活性炭の比表面積は更に低くて20m2/g未満の値しか得られていない。 As is clear from Table 2, when no activator was used with PVA alone, only activated carbon having a level of less than 100 m 2 / g was obtained, and when sodium chloride was used, The specific surface area is even lower and less than 20 m 2 / g.

実施例8
アルカリ土類金属化合物として、MgO粉末(関東化学社製の試薬)、水酸化マグネシウム(関東化学社製の試薬)、酢酸マグネシウム四水和物(キシダ化学社製の試薬)、有機質樹脂としてPVA粉末(東京化成工業社製の試薬、平均重合度2000)を使用し、下記の方法で活性炭の製造を行い、得られた炭素コートMgOの結晶子サイズと活性炭の平均細孔径を調べた。なお、MgOの結晶子サイズは、粉末XRD回折装置(リガク社製の商品名「RINT2500」;CuKα 40kV−100mA)を用いた回折線の半値幅からシェラー(scherrer)の式によって算出し、活性炭の平均細孔径は、窒素ガスによる77Kでの吸着等温線からBJH法(Barrett-Joyner-Halenda法)によって算出した。
Example 8
MgO powder (reagent manufactured by Kanto Chemical Co., Inc.), magnesium hydroxide (reagent manufactured by Kanto Chemical Co., Inc.), magnesium acetate tetrahydrate (reagent manufactured by Kishida Chemical Co., Ltd.), alkaline resin, PVA powder as organic resin (Reagent manufactured by Tokyo Chemical Industry Co., Ltd., average polymerization degree 2000) was used to produce activated carbon by the following method, and the crystallite size of the obtained carbon coat MgO and the average pore diameter of the activated carbon were examined. The crystallite size of MgO is calculated from the half-value width of the diffraction line using a powder XRD diffractometer (trade name “RINT2500” manufactured by Rigaku Corporation; CuKα 40 kV-100 mA) according to Scherrer's formula. The average pore diameter was calculated by the BJH method (Barrett-Joyner-Halenda method) from the adsorption isotherm at 77K with nitrogen gas.

1)上記MgO粉末とPVA粉末を70/30(質量比)の比率で混合し、アルゴンガス雰囲気中900℃で1時間焼成し、得られた炭素コートMgOの粉末XRDパターンを測定することによってMgOの結晶子サイズを求め、また、1モルの硫酸水溶液でMgOを溶出し、水洗・乾燥して得られた活性炭を用いて、窒素ガスの77Kでの吸着等温線からBJH法により活性炭の平均メソポアサイズを求めた。   1) The above MgO powder and PVA powder were mixed at a ratio of 70/30 (mass ratio), fired at 900 ° C. for 1 hour in an argon gas atmosphere, and the powder coated XRD pattern of the obtained carbon-coated MgO was measured to obtain MgO. The average mesopore of the activated carbon was determined by the BJH method from the adsorption isotherm of nitrogen gas at 77K using activated carbon obtained by eluting MgO with 1 mol sulfuric acid aqueous solution, washing with water and drying. The size was determined.

2)上記1)におけるMgO粉末に代えてMg(OH)2粉末を使用した以外は同様にして、MgOの結晶子サイズと活性炭の平均メソポアサイズを求めた。 2) The crystallite size of MgO and the average mesopore size of activated carbon were determined in the same manner except that Mg (OH) 2 powder was used instead of MgO powder in 1) above.

3)上記1)におけるMgO粉末に代えて酢酸マグネシウム粉末を使用し、PVA粉末との混合比率を50/50とした以外は同様にして、MgOの結晶子サイズと活性炭の平均メソポアサイズを求めた。   3) The crystallite size of MgO and the average mesopore size of activated carbon were determined in the same manner except that magnesium acetate powder was used instead of MgO powder in 1) above and the mixing ratio with PVA powder was 50/50. .

4)酢酸マグネシウムとPVAを50/50(質量比)の比率で精製水に溶解した後、蒸発乾固してから粉砕する。この粉末を使用し、以下は上記1)と同様にして実験を行った。   4) Magnesium acetate and PVA are dissolved in purified water at a ratio of 50/50 (mass ratio), evaporated to dryness, and then pulverized. Using this powder, the following experiment was conducted in the same manner as in 1) above.

結果を表3に示す。   The results are shown in Table 3.

Figure 0005551144
Figure 0005551144

表3からも明らかな様に、この実験で得た活性炭の平均メソポアサイズは、用いたMg化合物由来のMgO結晶サイズの平均径にほぼ対応していることが分かる。   As is apparent from Table 3, it can be seen that the average mesopore size of the activated carbon obtained in this experiment substantially corresponds to the average diameter of the MgO crystal size derived from the used Mg compound.

実施例9
有機質樹脂としてPVA粉末(同前、平均分子量2000)、HPC粉末(同前)またはPET粉末(同前)を使用し、夫々をMgO粉末(同前)と質量比(50/50)で混合し、アルゴンガス雰囲気下に900℃で1時間焼成した後、1モル濃度の硫酸で洗浄してMgOを溶出し、十分に水洗してから乾燥して活性炭粉末を得た。得られた各活性炭のBET比表面積を前記と同様の方法で測定すると共に、窒素ガスを用いた77Kでの吸着等温線からBJH法(Barrett-Joyner-Halenda法)によってミクロポアとメソポアの分布を調べたところ、表4および図1,2に示す結果が得られた。
Example 9
PVA powder (same as above, average molecular weight 2000), HPC powder (same as above) or PET powder (same as above) is used as the organic resin, and each is mixed with MgO powder (same as above) at a mass ratio (50/50). After calcination at 900 ° C. for 1 hour in an argon gas atmosphere, the resultant was washed with 1 molar sulfuric acid to elute MgO, sufficiently washed with water and dried to obtain activated carbon powder. The BET specific surface area of each obtained activated carbon was measured by the same method as above, and the distribution of micropores and mesopores was examined by the BJH method (Barrett-Joyner-Halenda method) from the adsorption isotherm at 77K using nitrogen gas. As a result, the results shown in Table 4 and FIGS.

Figure 0005551144
Figure 0005551144

表4および図1,2からも明らかな様に、有機質樹脂としてPVA粉末を用いた場合は、0.8nmのミクロポアが多数存在し、メソポアの数は少ないことが分かる。これに対し、有機質樹脂としてHPC粉末を使用した場合、0.55nm,1.1nmのミクロポアが少量存在しているものの、その主体は10〜50nm(最大は20nm)のメソポアであり、また、有機質樹脂としてPET粉末を使用した場合は、0.8nm,1.1nmのミクロポアが少量存在しているものの、その主体は10〜50nm(最大は20nm)のメソポアであることが分かる。尚、これらミクロポアとメソポアの分率は、アルカリ土類金属化合物粉末の種類にはあまり影響を受けず、有機質樹脂の種類によってほぼ決まってくることが確認された。   As is clear from Table 4 and FIGS. 1 and 2, when PVA powder is used as the organic resin, there are many 0.8 nm micropores and the number of mesopores is small. On the other hand, when HPC powder is used as the organic resin, although a small amount of micropores of 0.55 nm and 1.1 nm are present, the main component is mesopores of 10 to 50 nm (maximum is 20 nm). When PET powder is used as the resin, although a small amount of 0.8 nm and 1.1 nm micropores are present, it is understood that the main components are 10 to 50 nm (maximum 20 nm) mesopores. It was confirmed that the fractions of micropores and mesopores were not greatly affected by the type of alkaline earth metal compound powder and were almost determined by the type of organic resin.

Claims (10)

比表面積が400〜2000m2/gである活性炭であり、
有機質樹脂(PET樹脂を除く)を、アルカリ土類金属の酸化物、水酸化物、炭酸塩、有機酸塩よりなる群から選択されるアルカリ土類金属化合物の少なくとも1種からなる賦活剤と混合し、非酸化性雰囲気で加熱焼成することにより賦活化され、前記有機質樹脂を炭化した後、前記賦活剤を除去することで形成されたメソポアを有する活性炭であって、
前記メソポアのメソポアサイズが、前記賦活剤の結晶子サイズの平均径を有することを特徴とする活性炭。
Activated carbon having a specific surface area of 400 to 2000 m 2 / g,
Organic resin (excluding PET resin) is mixed with an activator consisting of at least one alkaline earth metal compound selected from the group consisting of oxides, hydroxides, carbonates and organic acid salts of alkaline earth metals Activated carbon having a mesopore formed by removing the activator after being activated by firing in a non-oxidizing atmosphere and carbonizing the organic resin,
Activated carbon mesopore size of the mesopores, characterized in Rukoto which have a mean diameter of crystallite size of the activator.
メソポア体積が0.16mL/g以上である請求項に記載の活性炭。 The activated carbon according to claim 1 , wherein the mesopore volume is 0.16 mL / g or more. 前記有機質樹脂100質量部に対する前記アルカリ土類金属化合物の配合比率が40〜700質量部である請求項またはに記載の活性炭。 The activated carbon according to claim 1 or 2 , wherein a blending ratio of the alkaline earth metal compound with respect to 100 parts by mass of the organic resin is 40 to 700 parts by mass. 前記加熱焼成の後、酸処理によってアルカリ土類金属酸化物を除去することにより製造されたものである請求項のいずれか一項に記載の活性炭。 The activated carbon according to any one of claims 1 to 3 , wherein the activated carbon is produced by removing an alkaline earth metal oxide by acid treatment after the heating and baking. 前記アルカリ土類金属がマグネシウムである請求項のいずれか一項に記載の活性炭。 The activated carbon according to any one of claims 1 to 4 , wherein the alkaline earth metal is magnesium. 比表面積が400〜2000m2/gである活性炭の製法であって、
有機質樹脂(PET樹脂を除く)を、アルカリ土類金属の酸化物、水酸化物、炭酸塩、有機酸塩よりなる群から選択されるアルカリ土類金属化合物の少なくとも1種からなる賦活剤と混合し、非酸化性雰囲気で加熱焼成して賦活化され、前記有機質樹脂を炭化し、前記賦活剤の表面が多孔質の炭素で被覆された状態とした後、前記賦活剤を除去することでメソポアを形成する工程を有し、
前記メソポアのメソポアサイズが、前記賦活剤の結晶子サイズの平均径を有することを特徴とする活性炭の製法。
A method for producing activated carbon having a specific surface area of 400 to 2000 m 2 / g,
Organic resin (excluding PET resin) is mixed with an activator consisting of at least one alkaline earth metal compound selected from the group consisting of oxides, hydroxides, carbonates and organic acid salts of alkaline earth metals And activated by firing in a non-oxidizing atmosphere, carbonizing the organic resin, and the surface of the activator is coated with porous carbon, and then removing the activator to form a mesopore It has a step of forming a,
Preparation of activated carbon mesopore size of the mesopores, characterized in that it have a mean diameter of crystallite size of the activator.
前記アルカリ土類金属がマグネシウムである請求項に記載の活性炭の製法。 The method for producing activated carbon according to claim 6 , wherein the alkaline earth metal is magnesium. 前記有機質樹脂100質量部に対する前記アルカリ土類金属化合物の配合比率が40〜700質量部である請求項またはに記載の活性炭の製法。 The method for producing activated carbon according to claim 6 or 7 , wherein a blending ratio of the alkaline earth metal compound to 100 parts by mass of the organic resin is 40 to 700 parts by mass. 前記加熱焼成の後、酸処理によってアルカリ土類金属酸化物を除去する請求項のいずれか一項に記載の活性炭の製法。 The method for producing activated carbon according to any one of claims 6 to 8 , wherein the alkaline earth metal oxide is removed by acid treatment after the heating and baking. 前記有機質樹脂として、炭素、水素、酸素のみからなるポリマーまたは樹脂を用いる請求項のいずれか一項に記載の活性炭の製法。 The method for producing activated carbon according to any one of claims 6 to 9 , wherein a polymer or resin consisting only of carbon, hydrogen, and oxygen is used as the organic resin.
JP2011277678A 2004-07-30 2011-12-19 Activated carbon and its manufacturing method Active JP5551144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011277678A JP5551144B2 (en) 2004-07-30 2011-12-19 Activated carbon and its manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004224137 2004-07-30
JP2004224137 2004-07-30
JP2011277678A JP5551144B2 (en) 2004-07-30 2011-12-19 Activated carbon and its manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005217771A Division JP4955952B2 (en) 2004-07-30 2005-07-27 Production method of activated carbon

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014034002A Division JP5781647B2 (en) 2004-07-30 2014-02-25 Activated carbon

Publications (2)

Publication Number Publication Date
JP2012082134A JP2012082134A (en) 2012-04-26
JP5551144B2 true JP5551144B2 (en) 2014-07-16

Family

ID=46241410

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2011277678A Active JP5551144B2 (en) 2004-07-30 2011-12-19 Activated carbon and its manufacturing method
JP2014034002A Active JP5781647B2 (en) 2004-07-30 2014-02-25 Activated carbon

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2014034002A Active JP5781647B2 (en) 2004-07-30 2014-02-25 Activated carbon

Country Status (1)

Country Link
JP (2) JP5551144B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3299337B1 (en) * 2015-05-19 2020-05-27 ENN Graphene Technology Co., Ltd. Method for preparing graphene using coal as raw material
KR101956993B1 (en) * 2016-12-07 2019-03-11 서울과학기술대학교 산학협력단 High performance mesoporous activated carbon and method for preparing the same
JP6964448B2 (en) * 2017-06-29 2021-11-10 日本製鉄株式会社 Mold carbon material for fuel cell catalyst carrier, catalyst layer for fuel cell, and fuel cell
JP7301294B2 (en) * 2018-03-02 2023-07-03 御国色素株式会社 Porous carbon particles, porous carbon particle dispersion and method for producing the same
WO2023054729A1 (en) 2021-10-01 2023-04-06 株式会社レゾナック Composite particles, negative electrode active material and lithium ion secondary battery
KR102639890B1 (en) * 2021-10-08 2024-02-23 연주원 Activated carbon and manufacturing method thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4979397A (en) * 1972-12-06 1974-07-31
JPH061674A (en) * 1992-06-24 1994-01-11 Mitsubishi Kasei Corp Production of porous carbon material
JPH09118510A (en) * 1995-10-27 1997-05-06 Mitsubishi Chem Corp Production of activated carbon
JPH0986914A (en) * 1995-09-28 1997-03-31 Osaka Gas Co Ltd Active carbon, its production and adsorption and removal of acidic component
JPH11157821A (en) * 1997-12-03 1999-06-15 Nippon Chem Ind Co Ltd Activated carbon and its production
JP2001048515A (en) * 1999-08-06 2001-02-20 Kurimoto Ltd Active carbon made from plastic waste
JP3491070B2 (en) * 1999-10-05 2004-01-26 福井県 Method for producing porous carbon material supporting titanium oxide
FR2817387B1 (en) * 2000-11-27 2003-03-21 Ceca Sa ENERGY STORAGE CELLS WITH HIGH ELECTRICAL CHEMICAL DOUBLE LAYER AND HIGH POWER DENSITY
JP2002187711A (en) * 2000-12-14 2002-07-05 Japan Science & Technology Corp Method of synthesizing titanium carbide or titanium diborate
JP2004033892A (en) * 2002-07-02 2004-02-05 Toyobo Co Ltd Carbon carrier for carrying metal catalyst
JP4420381B2 (en) * 2002-11-13 2010-02-24 昭和電工株式会社 Activated carbon, manufacturing method thereof and polarizable electrode
JP2004182511A (en) * 2002-12-02 2004-07-02 Ad'all Co Ltd Activated carbon and method of manufacturing the same

Also Published As

Publication number Publication date
JP2014122158A (en) 2014-07-03
JP2012082134A (en) 2012-04-26
JP5781647B2 (en) 2015-09-24

Similar Documents

Publication Publication Date Title
JP4955952B2 (en) Production method of activated carbon
JP5781647B2 (en) Activated carbon
CN104583120B (en) Activated carbon with high active surface area
KR101609803B1 (en) PROCESS FOR THE COMPREHENSIVE RECOVERY OF METAL COBALT, RUTHENIUM AND ALUMINUM FROM WASTE CATALYST Co-Ru/Al2O3 IN FISCHER-TROPSCH SYNTHESIS
JP5756525B2 (en) Manufacturing method and use of manganese dioxide nanorods
KR100623637B1 (en) Catalyst for production of ethylene oxide, method for production thereof, and method for production of ethylene oxide by the use of the catalyst
RU1806091C (en) Process of manufacturing titanium dioxide-based articles
CN108097210A (en) A kind of preparation method of nano-metal-oxide and porous active carbon composite material
JP6677863B1 (en) Method for producing porous carbon, electrode and catalyst carrier containing porous carbon produced by this method
Rahman et al. Detailed photocatalytic study of alkaline titanates and its application for the degradation of methylene blue (MB) under solar irradiation
JP6517607B2 (en) Method of producing activated carbon, activated carbon and electrode material for electric double layer capacitor
WO2011108195A1 (en) Method for producing hydrotalcite-like compound, hydrotalcite-like compound, complex oxide, anion adsorbent, and solid base catalyst
CN113753959A (en) Lanthanum ferrite perovskite material and preparation method and application thereof
JPH07155589A (en) Production of carbon material having large specific surface area
JP2007084360A5 (en)
CN112691666A (en) Amorphous iron oxyhydroxide-biochar composite material and preparation method thereof
CN109201044B (en) Potassium-doped gamma manganese dioxide catalyst and preparation method and application thereof
CN105983389B (en) The preparation method of activated carbon containing lanthanum
CN109908934A (en) Catalyst and preparation method thereof for catalytic ozonation reaction
CN109908967A (en) A kind of composite carrier and preparation method thereof
KR100599254B1 (en) High porous activated carbon for hydrogen storage and preparation thereof
JPH0248484B2 (en)
KR101704757B1 (en) Manufacturing method of high purity mesoporous inorganic oxides and high purity mesoporous inorganic oxides made by the same
CN114602457B (en) Preparation method and application of magnetic magnesium-manganese bimetallic fungus chaff carbon
CN115626644B (en) Briquetting activated carbon containing nano iron and preparation method and application thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131017

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140225

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140521

R150 Certificate of patent or registration of utility model

Ref document number: 5551144

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250