JP2001048515A - Active carbon made from plastic waste - Google Patents

Active carbon made from plastic waste

Info

Publication number
JP2001048515A
JP2001048515A JP22427799A JP22427799A JP2001048515A JP 2001048515 A JP2001048515 A JP 2001048515A JP 22427799 A JP22427799 A JP 22427799A JP 22427799 A JP22427799 A JP 22427799A JP 2001048515 A JP2001048515 A JP 2001048515A
Authority
JP
Japan
Prior art keywords
activated carbon
nitric acid
comparative example
waste
waste material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22427799A
Other languages
Japanese (ja)
Inventor
Tomohito Nagano
智史 永野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Priority to JP22427799A priority Critical patent/JP2001048515A/en
Publication of JP2001048515A publication Critical patent/JP2001048515A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Abstract

PROBLEM TO BE SOLVED: To produce an active carbon suitable for adsorbing and removing dioxins, i.e. the active carbon in which mesopores are developed from an unsaturated polyester resin waste material or a PET resin waste material. SOLUTION: This active carbon is obtained by adding calcium hydroxide to an unsaturated polyester resin waste material, carrying out the thermal decomposition thereof, treating the resultant carbonized product obtained by the thermal decomposition with nitric acid and then activating the carbonized product with steam in the case of the unsaturated polyester resin waste material or adding calcium nitrate to a PET resin waste material and performing the similar method in the case of the PET resin waste material. The increase in mesopore volume is promoted by adding the calcium compound and the size of pores is decreased by the acid treatment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、廃棄プラスチッ
クから製造された活性炭に関するものであり、さらに詳
しくは、ダイオキシン類等の比較的分子構造の大きな化
学物質を吸着するのに適した活性炭に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to activated carbon produced from waste plastics, and more particularly to activated carbon suitable for adsorbing chemical substances having a relatively large molecular structure such as dioxins. is there.

【0002】[0002]

【従来の技術】活性炭は、鉱物系や植物系の炭素質物質
を原料としており、鉱物系は、石炭、石油コークス、石
油ピッチなどが用いられ、植物系では木材、鋸屑、ヤシ
殻、ピートモスなどが用いられている。また、廃棄物の
有効利用の観点から、プラスチック等の廃棄物を原料と
しているものもある。
2. Description of the Related Art Activated carbon is made from mineral or plant-based carbonaceous materials. Coal, petroleum coke, petroleum pitch, etc. are used as minerals, and wood, sawdust, coconut shell, peat moss and the like are used in plant-based materials. Is used. In addition, from the viewpoint of effective use of waste, there is also a case where waste such as plastic is used as a raw material.

【0003】また、活性炭は、原料を不活性ガス雰囲気
下または低酸素濃度下で炭化し、次いで炭化物を水蒸気
などで賦活することにより製造される。この様なものと
して、特開平3−16908号公報(公報1)及び特開
平11−106211号公報(公報2)がある。
[0003] Activated carbon is produced by carbonizing a raw material under an inert gas atmosphere or a low oxygen concentration, and then activating the carbide with steam or the like. Japanese Patent Laid-Open Publication No. Hei 3-16908 (Japanese Laid-Open Publication No. 1) and Japanese Patent Laid-Open Publication No. Hei 11-106211 (Japanese Laid-Open Publication No. 2) are known as such.

【0004】公報1記載技術では、炭素質原料に、カル
シウム化合物を混合した後、炭化・賦活を行い、大きな
細孔径が発達した、浄水用の活性炭を得ている。そし
て、その大きな細孔径を発達させることにより、分子構
造の大きい有機物質(フミン質)の吸着力を増大させて
いる。なお、炭素質原料として瀝青炭などの石炭系原料
や椰子殻炭が、カルシウム化合物として水酸化カルシウ
ム、炭酸カルシウム、硝酸カルシウム等が挙げられてい
る。
[0004] In the technique described in Publication 1, after a calcium compound is mixed with a carbonaceous raw material, carbonization and activation are performed to obtain activated carbon for water purification having a large pore diameter developed. By developing the large pore diameter, the adsorptivity of organic substances (humic substances) having a large molecular structure is increased. In addition, coal-based raw materials such as bituminous coal and coconut shell charcoal are listed as carbonaceous raw materials, and calcium hydroxide, calcium carbonate, calcium nitrate and the like are listed as calcium compounds.

【0005】公報2記載技術では、廃棄物固形燃料(R
DF)を炭化し、硝酸処理を行った後、賦活して、活性
炭を得ている。そして、その賦活前に、硝酸による酸処
理を行うことにより、廃棄物を原料としていても、通常
の原料からの活性炭と同様の吸着力を付与できるとして
いる。
[0005] In the technology described in Japanese Patent Laid-Open Publication No. H06-209, solid waste fuel (R
DF) is carbonized, treated with nitric acid, and then activated to obtain activated carbon. And, by performing an acid treatment with nitric acid before the activation, even if waste is used as a raw material, the same adsorptive power as activated carbon from a normal raw material can be imparted.

【0006】[0006]

【発明が解決しようとする課題】ところで、焼却炉の排
ガス等に含まれるダイオキシン類を吸着除去する場合、
活性炭の原料として、安価な廃棄プラスチックを用いる
ことが考えられる。ダイオキシン類は、比較的大きな分
子構造をもつ化学物質であるため、公報1記載技術を応
用して、廃棄プラスチックとカルシウム化合物を混合し
た後、炭化・賦活を行えば、比較的大きな細孔であるメ
ソ孔が発達して、ダイオキシン類の吸着に適した活性炭
を得ることができると思われる。
However, when dioxins contained in exhaust gas from an incinerator are adsorbed and removed,
It is conceivable to use inexpensive waste plastic as a raw material for activated carbon. Since dioxins are chemical substances having a relatively large molecular structure, relatively large pores can be obtained by mixing waste plastic with a calcium compound by applying the technology described in Publication 1 and then carbonizing and activating. It seems that the mesopores are developed and activated carbon suitable for the adsorption of dioxins can be obtained.

【0007】しかしながら、廃棄プラスチックにカルシ
ウム化合物を添加しても、ダイオキシン類の吸着に適し
たメソ孔容積は、最大でも47%しか増加しなかった。
また、プラスチックの種類により、カルシウム化合物を
添加することで、メソ孔容積が減少するものもあった。
[0007] However, even when a calcium compound is added to waste plastic, the mesopore volume suitable for adsorbing dioxins has increased by only 47% at the maximum.
Also, depending on the type of plastic, there was a case where the mesopore volume was reduced by adding a calcium compound.

【0008】また、公報2記載技術を応用して、廃棄プ
ラスチックを炭化した後に硝酸処理を行い、賦活させれ
ば、ミクロ孔、メソ孔、マクロ孔の各細孔が発達して、
ダイオキシン類の吸着に適したメソ孔も発達した活性炭
を得ることができると思われる。しかしながら、この様
にして得られた活性炭のメソ孔容積は、期待に反して減
少してしまった。
Further, if the waste plastic is carbonized by applying the technique described in Publication 2 and then subjected to nitric acid treatment and activated, micropores, mesopores and macropores are developed,
It seems that activated carbon with well-developed mesopores suitable for adsorption of dioxins can be obtained. However, the mesopore volume of the activated carbon thus obtained has been reduced, contrary to expectations.

【0009】以上のことより、どちらの従来技術を応用
しても、廃棄プラスチックから、ダイオキシン類の吸着
に適したメソ孔の発達した活性炭を得ることができな
い。
From the above, it is impossible to obtain activated carbon having mesopores suitable for adsorption of dioxins from waste plastics by applying either of the conventional techniques.

【0010】この発明は、廃棄プラスチックからメソ孔
の発達した活性炭を得ることを課題とする。
An object of the present invention is to obtain activated carbon having mesopores developed from waste plastic.

【0011】[0011]

【課題を解決するための手段】上記の課題を解決するた
めに、この発明は、上記両公報1、2に記載の技術を組
み合わせることとしたのである。すなわち、廃棄プラス
チック材にカルシウム化合材を添加して、熱分解するこ
とにより、メソ孔容積の増加を促し、さらに、その熱分
解により得た炭化物を酸処理して細孔化を図ったのであ
る。このようにすることにより、各公報1、2の記載技
術を単独で実施するのに比べて、後述のように顕著な効
果を得た。カルシウム化合物としては、水酸化カルシウ
ム、炭酸カルシウム、硝酸カルシウム等が考えられ、ま
た、酸処理に用いる酸としては、硝酸、硫酸及び塩酸な
どが考えられる。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention combines the techniques described in the above publications 1 and 2. That is, the calcium compound was added to the waste plastic material and pyrolyzed, thereby increasing the mesopore volume, and the carbide obtained by the pyrolysis was acid-treated to form pores. . By doing so, a remarkable effect is obtained as described later, as compared with the case where the techniques described in the publications 1 and 2 are implemented alone. Examples of the calcium compound include calcium hydroxide, calcium carbonate, calcium nitrate, and the like, and examples of the acid used for the acid treatment include nitric acid, sulfuric acid, and hydrochloric acid.

【0012】[0012]

【発明の実施の形態】具体的な実施形態としては、上記
廃棄プラスチック材が不飽和ポリエステル樹脂廃材であ
れば、上記カルシウム化合物を水酸化カルシウム、上記
酸処理を硝酸処理とし、廃棄プラスチック材がポリエチ
レンテレフタレート(PET)樹脂廃材であれば、カル
シウム化合物を硝酸カルシウム、上記酸処理を硝酸処理
とする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As a specific embodiment, if the waste plastic material is an unsaturated polyester resin waste material, the calcium compound is calcium hydroxide, the acid treatment is nitric acid treatment, and the waste plastic material is polyethylene. In the case of terephthalate (PET) resin waste material, the calcium compound is calcium nitrate, and the acid treatment is nitric acid treatment.

【0013】[0013]

【実施例】以下、この発明の実施例を説明する。図1
は、一実施装置の概要図で、1は石英管、2は電気炉で
ある。石英管1は、その両端をシリコン栓3,4で塞が
れており、該シリコン栓3,4には、気体を流通させる
ガラス管5,6が取り付けられている。一方のガラス管
5は、3方コック7と接続され、この3方コックを介し
て、窒素ガスと水蒸気を石英管1内に供給できる。ま
た、他方のガラス管6は排気用である。なお、Tは電気
炉の温度計である。
Embodiments of the present invention will be described below. FIG.
Is a schematic view of one embodiment of the apparatus, 1 is a quartz tube, and 2 is an electric furnace. The quartz tube 1 is closed at both ends with silicon stoppers 3 and 4, and glass tubes 5 and 6 through which gas flows are attached to the silicon stoppers 3 and 4. One glass tube 5 is connected to a three-way cock 7, through which nitrogen gas and water vapor can be supplied into the quartz tube 1. The other glass tube 6 is for exhaust. In addition, T is a thermometer of an electric furnace.

【0014】廃棄プラスチックとしては、ボタン廃材と
PET樹脂廃材を用いた。ボタン廃材とは、不飽和ポリ
エステル樹脂製の板材から、ボタンを打ち抜く時に生じ
た廃材で、この板材には、無機顔料(酸化チタン)や充
填材(炭酸塩)などが0.1〜5重量%含まれている。
そして、このボタン廃材を、0.3ミリ角程度に粉砕し
たものを原料とした。PET樹脂廃材は、PET樹脂再
生メーカから、数ミリ程度のビーズ状再生樹脂を入手
し、これを、そのまま原料とした。
As waste plastic, button waste and PET resin waste were used. Button waste material is waste material generated when punching a button from a sheet material made of unsaturated polyester resin. This sheet material contains 0.1 to 5% by weight of an inorganic pigment (titanium oxide) or a filler (carbonate). include.
The button waste was pulverized to about 0.3 mm square to obtain a raw material. As the PET resin waste material, a bead-like recycled resin of about several millimeters was obtained from a PET resin recycling maker, and this was used as a raw material as it was.

【0015】添加物としてのカルシウム化合物は、水酸
化カルシウム、炭酸カルシウムおよび硝酸カルシウム
で、何れも粉末状のものを用いた。炭化に用いた試料
は、原料だけの場合と、原料にカルシウム化合物を添加
した場合とがある。何れの場合も、原料の量は20gと
した。また、カルシウム化合物を添加した場合は、原料
に対して2重量%を添加した。
The calcium compound used as the additive was calcium hydroxide, calcium carbonate, or calcium nitrate, all of which were powdered. The sample used for carbonization may be a raw material alone or a case where a calcium compound is added to the raw material. In each case, the amount of the raw material was 20 g. When a calcium compound was added, 2% by weight of the raw material was added.

【0016】試料の炭化は、石英管1内に試料を入れ
て、ガラス管5より、窒素ガスを80cm3/分の割合で供
給し、電気炉2により500℃に加温し、その温度を1
時間保持することで行った。なお、その後は、加温を中
止して自然冷却した。また、電気炉2の昇温速度は、原
料がボタン廃材の場合は、0.2℃/分、PET樹脂廃
材の場合は0.4℃/分となるように昇温速度の制御を
行った。
For carbonization of the sample, the sample is placed in a quartz tube 1, nitrogen gas is supplied from a glass tube 5 at a rate of 80 cm 3 / min, and heated to 500 ° C. by an electric furnace 2, and the temperature is reduced. 1
Performed by holding for a time. After that, the heating was stopped and the product was naturally cooled. The heating rate of the electric furnace 2 was controlled to be 0.2 ° C./min when the raw material was button waste and 0.4 ° C./min when the PET resin waste was used. .

【0017】試料の炭化により得られた炭化物を、硝酸
で酸処理する場合は、以下の手順で行った。すなわち、
炭化物約0.5gを、50ccの硝酸溶液が入ったビーカ
に入れ、ガスバーナで加熱することにより沸点処理を1
時間行った。沸点処理後、ただちに純水で薄め、濾過後
80℃で乾燥させた。なお、酸処理を沸点状態で行った
のは、処理時間を短縮させるためであり、硝酸溶液に浸
漬することで、酸処理を行うこともできる。処理時間
は、硝酸溶液が常温であれば12〜24時間、加温状態
であれば6〜12時間が目安となる。
In the case where the carbide obtained by carbonizing the sample was subjected to acid treatment with nitric acid, the following procedure was carried out. That is,
About 0.5 g of the carbide is placed in a beaker containing 50 cc of a nitric acid solution, and heated to a boiling point by a gas burner.
Time went. After the boiling point treatment, the mixture was immediately diluted with pure water, filtered and dried at 80 ° C. The reason why the acid treatment was performed at the boiling point is to shorten the treatment time, and the acid treatment can also be performed by immersion in a nitric acid solution. The treatment time is about 12 to 24 hours when the nitric acid solution is at room temperature, and 6 to 12 hours when it is in a heated state.

【0018】炭化物の水蒸気による賦活は、炭化物0.
4gを石英管1内に入れて、ガラス管5より窒素ガスと
水蒸気を供給し、電気炉2により800℃まで加温し、
その温度を5時間保持することで行った。なお、窒素ガ
スは200cm3/分、水蒸気は33g/時間の割合で供給
した。
The activation of the carbide by steam is carried out by using a carbide of 0.1%.
4 g was put in the quartz tube 1, nitrogen gas and water vapor were supplied from the glass tube 5, and heated to 800 ° C. by the electric furnace 2.
The temperature was maintained for 5 hours. The nitrogen gas was supplied at a rate of 200 cm 3 / minute, and the steam was supplied at a rate of 33 g / hour.

【0019】賦活により得られた活性炭は、窒素吸着法
により、細孔特性を測定した。細孔表面積はBET法に
より算出し、メソ領域細孔はドリモア−ヒール法、ミク
ロ領域細孔はt−プロット法を用いた。なお、測定装置
は日本ベル社製Belsorp28 を用いた。
The activated carbon obtained by the activation was measured for pore characteristics by a nitrogen adsorption method. The pore surface area was calculated by the BET method, and the pores in the meso region were determined by the Drillmore-Heal method, and the pores in the micro region were determined by the t-plot method. The measuring apparatus used was Bellsorp28 manufactured by Japan Bell Co., Ltd.

【0020】以下に、実施例1、2及び比較例1〜17
の製造内容を示す。 比較例1:ボタン廃材の原料を、そのまま試料として用
い、炭化物を得た。この炭化物を水蒸気賦活して活性炭
を得た。 比較例2:ボタン廃材の原料を、そのまま試料として炭
化を行い、炭化物を得た。この炭化物を硝酸処理した後
水蒸気賦活して活性炭を得た。なお、硝酸濃度は0.6
6規定であった。 比較例3:比較例2と同じ方法で活性炭を得た。但し、
硝酸濃度は1.2規定であった。 比較例4:比較例2と同じ方法で活性炭を得た。但し、
硝酸濃度は2.2規定であった。 比較例5:ボタン廃材の原料に炭酸カルシウムを添加し
て試料として用い、炭化を行い炭化物を得た。この炭化
物を水蒸気賦活して活性炭を得た。 比較例6:ボタン廃材の原料に水酸化カルシウムを添加
して試料とし、炭化を行い炭化物を得た。この炭化物を
水蒸気賦活して活性炭を得た。 比較例7:比較例5の炭化物を、0.66規定の硝酸で
酸処理した後、水蒸気賦活して活性炭を得た。 実施例1:比較例6の炭化物を、0.66規定の硝酸で
酸処理した後、水蒸気賦活して活性炭を得た。
Hereinafter, Examples 1 and 2 and Comparative Examples 1 to 17 will be described.
The production contents of Comparative Example 1: A raw material of button waste material was used as a sample as it was to obtain a carbide. This carbide was activated with steam to obtain activated carbon. Comparative Example 2: The raw material of the button waste material was carbonized as a sample as it was to obtain a carbide. The char was treated with nitric acid and activated with steam to obtain activated carbon. The nitric acid concentration was 0.6
There were six regulations. Comparative Example 3: Activated carbon was obtained in the same manner as in Comparative Example 2. However,
The nitric acid concentration was 1.2 normal. Comparative Example 4: Activated carbon was obtained in the same manner as in Comparative Example 2. However,
The nitric acid concentration was 2.2 normal. Comparative Example 5: Calcium carbonate was added to the raw material of button waste material and used as a sample, and carbonized to obtain a carbide. This carbide was activated with steam to obtain activated carbon. Comparative Example 6: Calcium hydroxide was added to the raw material of button waste material to prepare a sample, and carbonized to obtain a carbide. This carbide was activated with steam to obtain activated carbon. Comparative Example 7: The carbide of Comparative Example 5 was acid-treated with 0.66 N nitric acid, and then activated with steam to obtain activated carbon. Example 1: The carbide of Comparative Example 6 was acid-treated with 0.66 N nitric acid, and then activated with steam to obtain activated carbon.

【0021】比較例8:PET樹脂廃材の原料を、その
まま試料とし、炭化を行って炭化物を得た。この炭化物
を水蒸気賦活して活性炭を得た。 比較例9:PET樹脂廃材の原料を、そのまま試料と
し、炭化を行い炭化物を得た。この炭化物を硝酸処理し
た後水蒸気賦活して活性炭を得た。なお、硝酸濃度は
0.66規定であった。 比較例10:比較例9と同じ方法で活性炭を得た。但し、
硝酸濃度は1.2規定であった。 比較例11:比較例9と同じ方法で活性炭を得た。但し、
硝酸濃度は2.2規定であった。 比較例12:比較例9と同じ方法で活性炭を得た。但し、
硝酸濃度は3.3規定であった。 比較例13:PETの原料に炭酸カルシウムを添加して試
料とし、炭化を行い炭化物を得た。この炭化物を水蒸気
賦活して活性炭を得た。 比較例14:PET樹脂廃材の原料に水酸化カルシウムを
添加して試料とし、炭化を行い炭化物を得た。この炭化
物を水蒸気賦活して活性炭を得た。 比較例15:PET樹脂廃材の原料に硝酸カルシウムを添
加して試料とし、炭化を行い炭化物を得た。この炭化物
を水蒸気賦活して活性炭を得た。 比較例16:比較例13の炭化物を、2.2規定の硝酸で酸
処理した後、水蒸気賦活して活性炭を得た。 比較例17:比較例14の炭化物を、2.2規定の硝酸で酸
処理した後、水蒸気賦活して活性炭を得た。 実施例2:比較例15の炭化物を、2.2規定の硝酸で酸
処理した後、水蒸気賦活して活性炭を得た。
Comparative Example 8 A raw material of PET resin waste material was used as a sample as it was, and carbonized to obtain a carbide. This carbide was activated with steam to obtain activated carbon. Comparative Example 9: The raw material of the PET resin waste material was directly used as a sample, and carbonized to obtain a carbide. The char was treated with nitric acid and activated with steam to obtain activated carbon. The nitric acid concentration was 0.66 norm. Comparative Example 10: Activated carbon was obtained in the same manner as in Comparative Example 9. However,
The nitric acid concentration was 1.2 normal. Comparative Example 11: Activated carbon was obtained in the same manner as in Comparative Example 9. However,
The nitric acid concentration was 2.2 normal. Comparative Example 12: Activated carbon was obtained in the same manner as in Comparative Example 9. However,
The nitric acid concentration was 3.3 normal. Comparative Example 13: Calcium carbonate was added to a PET raw material to prepare a sample, which was carbonized to obtain a carbide. This carbide was activated with steam to obtain activated carbon. Comparative Example 14: A sample was prepared by adding calcium hydroxide to a raw material of PET resin waste material, and carbonized to obtain a carbide. This carbide was activated with steam to obtain activated carbon. Comparative Example 15: A sample was prepared by adding calcium nitrate to a raw material of PET resin waste material, and carbonized to obtain a carbide. This carbide was activated with steam to obtain activated carbon. Comparative Example 16: The carbide of Comparative Example 13 was acid-treated with 2.2 N nitric acid, and activated with steam to obtain activated carbon. Comparative Example 17: The carbide of Comparative Example 14 was acid-treated with 2.2 N nitric acid, and then activated with steam to obtain activated carbon. Example 2 The carbide of Comparative Example 15 was acid-treated with 2.2 N nitric acid, and then activated with steam to obtain activated carbon.

【0022】原料としてボタン廃材を用いたもの、すな
わち、比較例1〜7および実施例1の実験結果を表1に
示す。また、原料としてPETを用いたもの、すなわ
ち、比較例8〜17および実施例2の実験結果を表2に
示す。なお、参考として、ダイオキシン類の吸着用に作
られた市販活性炭(ノリット社製)の物性を、表3に示
す。
Table 1 shows the results of experiments using waste button materials as raw materials, that is, Comparative Examples 1 to 7 and Example 1. Table 2 shows the results of experiments using PET as a raw material, that is, Comparative Examples 8 to 17 and Example 2. For reference, Table 3 shows the physical properties of commercially available activated carbon (manufactured by Norit) made for adsorption of dioxins.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】[0025]

【表3】 [Table 3]

【0026】ボタン廃材を用いて製造された活性炭は、
カルシウム化合物が無添加で、しかも、硝酸処理を行わ
なくても、得られた活性炭(比較例1)は、市販活性炭
に近い物性を有していた。
Activated carbon produced using button wastes is
The obtained activated carbon (Comparative Example 1) had no physical properties similar to those of a commercially available activated carbon without addition of a calcium compound and without nitric acid treatment.

【0027】ボタン廃材を含め、不飽和ポリエステル樹
脂製品には、無機顔料や充填材が添加されていることが
多く、これらが活性炭の物性に好結果を与えたものと推
定される。ちなみに、粉砕されたボタン廃材を希硫酸で
洗浄することにより、無機顔料や充填剤を除去し、その
後、炭化・賦活して得られた活性炭の物性は悪いもので
あった。
Unsaturated polyester resin products, including button waste, are often added with inorganic pigments and fillers, which are presumed to have given good results to the properties of activated carbon. By the way, the physical properties of the activated carbon obtained by removing the inorganic pigment and the filler by washing the pulverized button waste with dilute sulfuric acid and thereafter carbonizing and activating the button waste were poor.

【0028】比較例2〜4の、炭化後に硝酸処理を行っ
て得られた活性炭の物性は、比較例1と大きな違いはな
く、メソ孔容積に限れば、その値が低下した。比較例
5,6のカルシウム化合物を添加して炭化を行ったが、
炭化後の硝酸処理を行わなかった活性炭の物性は、比較
例1より悪かった。
The physical properties of the activated carbons obtained by performing nitric acid treatment after carbonization in Comparative Examples 2 to 4 were not significantly different from those in Comparative Example 1, and the values were reduced as far as the mesopore volume was limited. Carbonization was performed by adding the calcium compounds of Comparative Examples 5 and 6,
Physical properties of activated carbon not subjected to nitric acid treatment after carbonization were worse than Comparative Example 1.

【0029】比較例5,6では、メソ孔容積の値に大き
な差が認められた。これは、カルシウム化合物の種類に
より、炭化時の炭素構造内への取り込まれ易さが異なる
か、あるいは、賦活時の触媒としての作用が異なるため
と推定される。また、比較例7の、炭酸カルシウムを添
加して炭化を行い、その後硝酸処理を行って得られた活
性炭の物性も比較例1より悪かった。
In Comparative Examples 5 and 6, a large difference was observed in the value of the mesopore volume. This is presumably because, depending on the type of the calcium compound, the easiness of incorporation into the carbon structure during carbonization differs, or the action as a catalyst during activation differs. In addition, the physical properties of the activated carbon obtained by performing carbonization by adding calcium carbonate and then performing nitric acid treatment in Comparative Example 7 were also worse than Comparative Example 1.

【0030】実施例1の、水酸化カルシウムを添加して
炭化を行い、その後硝酸処理を行って得られた活性炭
は、メソ孔容積が飛躍的に増大し、市販活性炭と較べて
も、その値は2倍以上の好結果であった。なお、実施例
1のBET表面積の値は悪いが、これは、ミクロ孔が発
達せず、メソ孔が発達したためである。
The activated carbon obtained in Example 1 by adding calcium hydroxide to carry out carbonization and then performing nitric acid treatment has a remarkably increased mesopore volume. Was more than twice as good. The value of the BET surface area in Example 1 was poor, but this was because micropores did not develop and mesopores developed.

【0031】比較例5,6の結果から、カルシウム化合
物として、水酸化カルシウムを添加すれば、メソ孔の発
達に好影響を与えることがわかる。さらに、炭化物を硝
酸処理することで、炭化物中の水酸化カルシウムと硝酸
が反応し、新たな活性サイトが生成し、実施例1の活性
炭のメソ孔容積が飛躍的に増大したものと考えられる。
なお、参考として、この活性炭のメソ孔分布を図2に示
す。
The results of Comparative Examples 5 and 6 show that the addition of calcium hydroxide as a calcium compound has a favorable effect on the development of mesopores. Further, it is considered that by performing nitric acid treatment on the carbide, calcium hydroxide and nitric acid in the carbide react with each other to generate a new active site, and the mesopore volume of the activated carbon of Example 1 is dramatically increased.
For reference, FIG. 2 shows the mesopore distribution of this activated carbon.

【0032】また、実施例1で、硝酸濃度を0.66規
定としたのは、比較例2〜4より、この程度の濃度でも
活性炭の物性に影響を与えていることが確認されている
ためである。
In Example 1, the reason why the nitric acid concentration was set to 0.66 norm was that Comparative Examples 2 to 4 confirmed that even such a concentration affected the physical properties of activated carbon. It is.

【0033】次に、PET樹脂廃材を原料とした活性炭
の検討を行う。PETを用いて製造された活性炭は、カ
ルシウム化合物が無添加で、しかも、硝酸処理を行わな
ければ、得られた活性炭(比較例8)のメソ孔容積の値
は、かなり低く、市販活性炭の半分以下である。
Next, a study will be made on activated carbon made from waste PET resin. The activated carbon produced using PET has a very low mesopore volume value of the obtained activated carbon (Comparative Example 8) without addition of a calcium compound and without nitric acid treatment, and is half that of commercial activated carbon. It is as follows.

【0034】比較例9〜12の、炭化後に硝酸処理を行
って得られた活性炭の物性は、比較例8より悪い結果で
あった。
The physical properties of the activated carbons obtained by performing nitric acid treatment after carbonization in Comparative Examples 9 to 12 were worse than Comparative Example 8.

【0035】比較例13〜15のカルシウム化合物を添
加して炭化を行ったが、炭化後の硝酸処理を行わなかっ
た活性炭の物性は、カルシウム化合物が水酸化カルシウ
ムである比較例14を除き、比較例8より悪い結果であ
った。水酸化カルシウムを用いた比較例14の活性炭
は、比較例8に較べ、メソ孔容積が増加したが、その割
合は47%に留まった。
The physical properties of the activated carbons obtained by adding the calcium compounds of Comparative Examples 13 to 15 and carbonizing but not performing nitric acid treatment after carbonization were the same as those of Comparative Example 14 in which the calcium compound was calcium hydroxide. The result was worse than in Example 8. The activated carbon of Comparative Example 14 using calcium hydroxide increased the mesopore volume as compared with Comparative Example 8, but the ratio was only 47%.

【0036】比較例16の炭酸カルシウムを添加して炭
化を行い、その後硝酸処理を行って得られた活性炭は、
比較例8に較べ、メソ孔容積が58%増であるが、それ
でも、市販活性炭の56%の容積しかなかった。このた
め、この活性炭は、比較的大きな分子構造を有する化学
物質等の吸着用には不向きである。しかし、この比較例
16の活性炭は、ミクロ孔容積やBET表面積の値が優
れており、臭気ガスの脱臭用等に優れたものである。
The activated carbon obtained by adding the calcium carbonate of Comparative Example 16 for carbonization and then performing nitric acid treatment was as follows:
Compared to Comparative Example 8, the mesopore volume was increased by 58%, but still only 56% of the volume of commercial activated carbon. Therefore, this activated carbon is not suitable for adsorbing a chemical substance having a relatively large molecular structure. However, the activated carbon of Comparative Example 16 has excellent micropore volume and BET surface area, and is excellent for deodorizing odorous gas.

【0037】比較例17の水酸化カルシウムを添加して
炭化を行い、その後硝酸処理を行って得られた活性炭
は、硝酸処理を行ったことで、その物性が低下してしま
った。
Activated carbon obtained by adding calcium hydroxide of Comparative Example 17 to carry out carbonization and then performing nitric acid treatment had its physical properties deteriorated due to nitric acid treatment.

【0038】実施例2の、硝酸カルシウムを添加して炭
化を行い、その後硝酸処理を行って得られた活性炭は、
メソ孔容積が飛躍的に増大し、比較例8の3倍以上とな
り、市販活性炭と較べても、2割増の値となった。しか
も、ミクロ孔容積やBET表面積の値が優れており、臭
気ガスの脱臭用等としても優れたものである。この実施
例2で、メソ孔容積が飛躍的に増加したメカニズムは不
明であるが、炭化物中に硝酸カルシウムが取り込まれ、
この炭化物が硝酸処理により、賦活時に活性となるサイ
トが生成されたのではないかと推察される。なお、参考
として、この活性炭のメソ孔分布を図3に示す。
The activated carbon obtained in Example 2 by adding calcium nitrate and carbonizing and then performing nitric acid treatment is as follows:
The mesopore volume increased remarkably and became three times or more that of Comparative Example 8, and was 20% larger than that of commercial activated carbon. In addition, the micropore volume and the BET surface area are excellent, and they are also excellent for deodorizing odorous gas. In this Example 2, the mechanism by which the mesopore volume is dramatically increased is unknown, but calcium nitrate is incorporated into the carbide,
It is presumed that sites activated by the nitric acid treatment of this carbide were generated at the time of activation. For reference, the mesopore distribution of this activated carbon is shown in FIG.

【0039】なお、この発明は、廃棄プラスチック材か
ら、活性炭を作ることとしているが、新品のプラスチッ
ク材、すなわちこの活性炭のために作ったプラスチック
材でも、同様にして所望の活性炭を得ることはできる。
In the present invention, activated carbon is produced from waste plastic material. However, a desired activated carbon can be similarly obtained with a new plastic material, that is, a plastic material produced for this activated carbon. .

【0040】[0040]

【発明の効果】以上、詳述したように、この発明は、不
飽和ポリエステル樹脂廃材やPET樹脂廃材等のプラス
チック廃材から、メソ孔の非常に発達した活性炭を得る
ことができる。従って、この発明の活性炭は、ダイオキ
シン類の吸着除去用として極めて有用である。また、不
飽和ポリエステル樹脂廃材やPET樹脂廃材等を、有用
な資源として再利用することができる。
As described above, according to the present invention, activated carbon having highly developed mesopores can be obtained from waste plastics such as unsaturated polyester resin waste and PET resin waste. Therefore, the activated carbon of the present invention is extremely useful for adsorbing and removing dioxins. In addition, unsaturated polyester resin waste, PET resin waste, and the like can be reused as useful resources.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の活性炭を製造するために用いた実験
装置の概要図
FIG. 1 is a schematic diagram of an experimental apparatus used for producing the activated carbon of the present invention.

【図2】一実施例の活性炭のメソ孔分布図FIG. 2 is a distribution diagram of mesopores of activated carbon according to one embodiment.

【図3】他の実施例の活性炭のメソ孔分布図FIG. 3 is a distribution diagram of mesopores of activated carbon according to another embodiment.

【符号の説明】[Explanation of symbols]

1 石英管 2 電気炉 3、4 シリコン栓 5、6 ガラス管 7 3方コック T 温度計 DESCRIPTION OF SYMBOLS 1 Quartz tube 2 Electric furnace 3, 4 Silicon stopper 5, 6 Glass tube 7 Three-way cock T Thermometer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 廃棄プラスチック材にカルシウム化合物
を添加して熱分解を行い、その熱分解により得られた炭
化物を酸処理した後、水蒸気賦活して得ることを特徴と
する廃棄プラスチック製活性炭。
1. A waste plastic activated carbon obtained by adding a calcium compound to a waste plastic material, performing pyrolysis, treating the carbide obtained by the pyrolysis with an acid, and activating steam.
【請求項2】 上記廃棄プラスチック材が不飽和ポリエ
ステル樹脂廃材であって、上記カルシウム化合物を水酸
化カルシウム、上記酸処理を硝酸処理としたことを特徴
とする請求項1に記載の廃棄プラスチック製活性炭。
2. The waste plastic activated carbon according to claim 1, wherein the waste plastic material is an unsaturated polyester resin waste material, the calcium compound is calcium hydroxide, and the acid treatment is nitric acid treatment. .
【請求項3】 上記廃棄プラスチック材がポリエチレン
テレフタレート樹脂廃材であって、上記カルシウム化合
物を硝酸カルシウム、上記酸処理を硝酸処理としたこと
を特徴とする請求項1に記載の廃棄プラスチック製活性
炭。
3. The activated carbon made of waste plastic according to claim 1, wherein the waste plastic material is polyethylene terephthalate resin waste material, the calcium compound is calcium nitrate, and the acid treatment is nitric acid treatment.
JP22427799A 1999-08-06 1999-08-06 Active carbon made from plastic waste Pending JP2001048515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22427799A JP2001048515A (en) 1999-08-06 1999-08-06 Active carbon made from plastic waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22427799A JP2001048515A (en) 1999-08-06 1999-08-06 Active carbon made from plastic waste

Publications (1)

Publication Number Publication Date
JP2001048515A true JP2001048515A (en) 2001-02-20

Family

ID=16811263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22427799A Pending JP2001048515A (en) 1999-08-06 1999-08-06 Active carbon made from plastic waste

Country Status (1)

Country Link
JP (1) JP2001048515A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007054833A (en) * 2006-11-17 2007-03-08 Japan Enviro Chemicals Ltd Granular activated carbon for removing pcb
JP2008050193A (en) * 2006-08-23 2008-03-06 Haruo Matsumoto Method for manufacturing high purity carbon, textile including obtained high purity carbon and body fixture using it
JP2012082134A (en) * 2004-07-30 2012-04-26 Toyo Tanso Kk Activated carbon and method of producing the same
JP2013111549A (en) * 2011-11-30 2013-06-10 Taiheiyo Cement Corp Adsorbent for adsorbing organic chlorine compound in exhaust gas, and method for producing the same and method for using the same
US20160325266A1 (en) * 2010-10-08 2016-11-10 Evoqua Water Technologies Llc Mesoporous activated carbon and methods of producing same
US9914110B2 (en) 2013-03-15 2018-03-13 Evoqua Water Technologies Llc Mesoporous activated carbon

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012082134A (en) * 2004-07-30 2012-04-26 Toyo Tanso Kk Activated carbon and method of producing the same
JP2014122158A (en) * 2004-07-30 2014-07-03 Toyo Tanso Kk Activated carbon
JP2008050193A (en) * 2006-08-23 2008-03-06 Haruo Matsumoto Method for manufacturing high purity carbon, textile including obtained high purity carbon and body fixture using it
JP2007054833A (en) * 2006-11-17 2007-03-08 Japan Enviro Chemicals Ltd Granular activated carbon for removing pcb
US20160325266A1 (en) * 2010-10-08 2016-11-10 Evoqua Water Technologies Llc Mesoporous activated carbon and methods of producing same
US10449512B2 (en) 2010-10-08 2019-10-22 Evoqua Water Technologies Llc Mesoporous activated carbon and methods of producing same
JP2013111549A (en) * 2011-11-30 2013-06-10 Taiheiyo Cement Corp Adsorbent for adsorbing organic chlorine compound in exhaust gas, and method for producing the same and method for using the same
US9914110B2 (en) 2013-03-15 2018-03-13 Evoqua Water Technologies Llc Mesoporous activated carbon
US10252244B2 (en) 2013-03-15 2019-04-09 Evoqua Water Technologies Llc Mesoporous activated carbon

Similar Documents

Publication Publication Date Title
Egbosiuba et al. Ultrasonic enhanced adsorption of methylene blue onto the optimized surface area of activated carbon: Adsorption isotherm, kinetics and thermodynamics
Lu et al. Characterisation of sewage sludge-derived adsorbents for H2S removal. Part 2: Surface and pore structural evolution in chemical activation
Yang et al. Preparation and properties of phenolic resin-based activated carbon spheres with controlled pore size distribution
Wang et al. Preparation of sludge-based activated carbon and its application in dye wastewater treatment
CN107108232B (en) Activated carbon, hydrothermal carbon and preparation method thereof
Rodríguez-Mirasol et al. Preparation and characterization of activated carbons from eucalyptus kraft lignin
Gergova et al. A comparison of adsorption characteristics of various activated carbons
CA2728570C (en) Method for preparation of activated carbon
US5614459A (en) Process for making activated charcoal
Kopac et al. Preparation of activated carbons from Zonguldak region coals by physical and chemical activations for hydrogen sorption
JP2003502263A (en) Method for producing shaped activated carbon
RU2436625C1 (en) Method to produce carbon adsorbent
RU2311227C1 (en) Method of production of the nanostructure carbonic material with the high specific surface and microporosity
CN107876005A (en) A kind of adsorbent for removing chlorinated contaminants and its preparation method and application
JP2001048515A (en) Active carbon made from plastic waste
JP2006247527A (en) Adsorbent
Sierra et al. Preparation of carbon-based adsorbents from the pyrolysis of sewage sludge with CO2. Investigation of the acid washing procedure
US6962616B1 (en) Preparation of adsorbents from organic fertilizer and mineral oil and their application for removal of acidic gases from sulfur containing wet gas streams
JPH0624725A (en) Manufacturing process of activated carbon
Arjmand et al. Chemical production of activated carbon from nutshells and date stones
Saetea et al. Characterization of adsorbent from hydrothermally carbonized and steam activated sewage sludge
Choudhary et al. From wild thornbush to high-performance activated carbon using a novel integrated furnace–microwave activation
Anjum et al. Impact of surface modification of activated carbon on BTEX removal from aqueous solutions: a review
RU2206394C1 (en) Method of preparing nanostructured carbon material
JP2005263521A (en) Zeolite combined carbonized material and method for manufacturing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041130