JP5551014B2 - Immersion coating method - Google Patents

Immersion coating method Download PDF

Info

Publication number
JP5551014B2
JP5551014B2 JP2010172814A JP2010172814A JP5551014B2 JP 5551014 B2 JP5551014 B2 JP 5551014B2 JP 2010172814 A JP2010172814 A JP 2010172814A JP 2010172814 A JP2010172814 A JP 2010172814A JP 5551014 B2 JP5551014 B2 JP 5551014B2
Authority
JP
Japan
Prior art keywords
film
coating
coated
temperature
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010172814A
Other languages
Japanese (ja)
Other versions
JP2012030185A (en
Inventor
守人 浅沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Itoh Optical Industrial Co Ltd
Original Assignee
Itoh Optical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Itoh Optical Industrial Co Ltd filed Critical Itoh Optical Industrial Co Ltd
Priority to JP2010172814A priority Critical patent/JP5551014B2/en
Publication of JP2012030185A publication Critical patent/JP2012030185A/en
Application granted granted Critical
Publication of JP5551014B2 publication Critical patent/JP5551014B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Description

本発明は、浸漬塗装方法に関し、特に、プラスチックレンズにプライマー膜やハード膜等の塗膜(コーティング)を浸漬処理により形成するのに好適な浸漬塗装方法に関する。   The present invention relates to a dip coating method, and more particularly to a dip coating method suitable for forming a coating film (coating) such as a primer film or a hard film on a plastic lens by a dip treatment.

ここでは、レンズとしてプラスチックレンズにハード膜やプライマー膜を浸漬塗装(ディッピング)する場合を例に採り説明するが、これに限られるものではない。   Here, a case where a hard film or a primer film is dip-coated (dipped) on a plastic lens as a lens will be described as an example, but the present invention is not limited to this.

本発明の浸漬塗装方法は、上記レンズ等の光学部品、更には、プリント基板、液晶基板、ウェハー等の電気・電子部品にも適用できる。   The dip coating method of the present invention can be applied to optical parts such as the above-described lens, and further to electric / electronic parts such as a printed board, a liquid crystal substrate, and a wafer.

上記光学部品としては、眼鏡レンズ・カメラ用レンズなどの光学レンズ、さらには、各種ディスプレイの前面ガラスないし前面フィルター、反射鏡、光学プリズム等も含まれる。   Examples of the optical components include optical lenses such as eyeglass lenses and camera lenses, and front glass or front filters of various displays, reflecting mirrors, optical prisms, and the like.

近年、眼鏡用レンズとしては、無機ガラスレンズに比して、軽くかつ割れにくい有機ガラスレンズ(プラスチックレンズ)が普及してきている。しかし、一般的にプラスチックレンズは、無機ガラスレンズに比して耐擦傷性が格段に低い。そこで、通常、有機ガラスレンズ基材の表面に、ハード膜が形成されている。そして、ハード膜は、通常、プラスチックレンズ基体との密着性が良好でないため耐衝撃性の向上も兼ねて、レンズ基体11とハード膜13との間に、熱可塑性エラストマー(TPE)等をベースとするプライマー膜15が形成されていることが多い(図2(B)参照)。   In recent years, organic glass lenses (plastic lenses) that are lighter and harder to break than inorganic glass lenses have become popular as spectacle lenses. However, in general, a plastic lens has much lower scratch resistance than an inorganic glass lens. Therefore, normally, a hard film is formed on the surface of the organic glass lens substrate. Since the hard film usually has poor adhesion to the plastic lens base, it also serves to improve impact resistance, and a thermoplastic elastomer (TPE) or the like is used as a base between the lens base 11 and the hard film 13. In many cases, a primer film 15 is formed (see FIG. 2B).

上記ハード膜13やプライマー膜15等のコート膜(塗膜)は、それらを形成する塗料液(処理液)を用いて浸漬塗装(浸漬処理:デップコート)をして形成する。両面への機能付与および量産性の見地からである。   The coating films (coating films) such as the hard film 13 and the primer film 15 are formed by dip coating (dip coating: dip coating) using a coating liquid (processing liquid) that forms them. This is from the viewpoint of functionalization and mass productivity on both sides.

しかし、浸漬塗装はその未硬化塗膜のダレに起因して膜厚ムラの発生を避け得ないとするのが当業者常識であった。更には、光学レンズ(特に眼鏡レンズ)のような周辺部と中心部との肉厚が大きく異なる基材の場合、膜厚ムラは更に発生し易かった。この膜厚ムラにより耐久性品質の面におけるバラツキが、発生し易くなる。特に、この傾向は、強い度数のレンズやハイカーブのレンズ程、顕著となる。   However, it was common knowledge to those skilled in the art that dip coating cannot avoid the occurrence of film thickness unevenness due to sagging of the uncured coating film. Further, in the case of a substrate such as an optical lens (especially a spectacle lens) having a significantly different thickness between the peripheral part and the central part, film thickness unevenness is more likely to occur. Due to this unevenness in film thickness, variations in durability quality are likely to occur. In particular, this tendency becomes more prominent for lenses with a high power and high-curve lenses.

したがって、光学レンズにおける塗膜の膜厚ムラが可及的に発生し難い技術の出現が希求されていた。   Accordingly, there has been a demand for the emergence of a technique that hardly causes film thickness unevenness of an optical lens as much as possible.

しかし、光学レンズの分野において、浸漬塗装による塗膜に膜厚ムラが発生し難い技術について、本発明者らは、寡聞にして知らない。   However, in the field of optical lenses, the present inventors do not know in detail about a technique that hardly causes film thickness unevenness in a coating film by dip coating.

なお、電子複写器における感光体用のドラム基体(円筒体)の表面に感光体層を浸漬塗装により形成する方法において、塗膜ダレに基づく膜厚ムラの発生を低減する見地から、引き上げの速度を初めと終りとの間で変化させる(初めを早く終わりを遅くする)発明(技術的思想)が特許文献1〜3において提案されている。   In the method of forming a photoreceptor layer on the surface of a drum substrate (cylindrical body) for a photoreceptor in an electronic copying machine, the speed of pulling up from the viewpoint of reducing the occurrence of film thickness unevenness due to coating sagging. Patent Documents 1 to 3 propose an invention (technical idea) in which the value is changed between the beginning and the end (the beginning is made early and the end is made late).

しかし、感光ドラムにおける当該技術的思想をそのまま光学レンズに適用しても、膜厚ムラの発生を低減させるには不十分であることが分かった。   However, it has been found that even if the technical idea of the photosensitive drum is applied to an optical lens as it is, it is insufficient to reduce the occurrence of film thickness unevenness.

また、本発明の特許性に影響を与えるものではないが、光学レンズの分野において、下記構成の非球面体の製造方法が特許文献4において提案されている。   Further, although not affecting the patentability of the present invention, Patent Document 4 proposes a method for manufacturing an aspherical body having the following configuration in the field of optical lenses.

「光学レンズ等の非球面(球面を含む。)を有する部材において、該部材にオルガノポリシロキサン系樹脂、或いは、紫外線硬化樹脂等のコート層(塗膜)を、引上げ速度を制御した浸漬塗りで設けることにより、該部材の非球面形状を制御することを特徴とする。」   “In a member having an aspheric surface (including a spherical surface) such as an optical lens, a coating layer (coating film) such as an organopolysiloxane resin or an ultraviolet curable resin is applied to the member by dip coating with a controlled pulling speed. By providing, the aspherical shape of the member is controlled. ”

特開昭57−5058号公報(特許請求の範囲等)JP-A-57-5058 (Claims etc.) 特開昭59−46171号公報(特許請求の範囲等)JP 59-46171 (Claims) 特開2008−62131号公報(特許請求の範囲等)JP 2008-62131 A (Claims etc.) 特開昭61−33267号公報(特許請求の範囲等)JP-A-61-33267 (Claims etc.)

本発明者らは、上記光学レンズ等において、上記特許文献1〜3により、膜厚ムラの発生を低減させるには不十分である理由は、光学レンズと感光ドラムとの形態の違いにあることに着目して、考察した結果、下記知見に到達した。   In the optical lens or the like, the reason why the above-mentioned Patent Documents 1 to 3 are insufficient to reduce the occurrence of film thickness unevenness is the difference in form between the optical lens and the photosensitive drum. As a result of considering and paying attention to the following, the following knowledge was reached.

「光学レンズ(例えば凹レンズ)の場合、屈折面を塗料液面に対し水平に引き上げた場合、レンズ凹面側に空気又は塗料液を溜め込んでしまうこととなる。一般的には直角に近い状態、いわば光学レンズを縦置きの状態で引き上げる手法がとられている。   “In the case of an optical lens (for example, a concave lens), when the refracting surface is pulled up horizontally with respect to the paint liquid surface, air or paint liquid is accumulated on the lens concave surface side. A technique is employed in which the optical lens is pulled up in a vertical state.

前述の感光ドラムにおける従来技術によって光学レンズを浸漬塗装した場合は、光学レンズのような塗料液の液面と平行する被塗装物の断面が円形状ではない物体に対して水平面(左右方向)の膜厚ムラを少なくすることができない。   When the optical lens is dip-coated by the conventional technology in the photosensitive drum described above, the cross section of the object to be coated parallel to the liquid surface of the coating liquid, such as an optical lens, is horizontal with respect to an object that is not circular. Unevenness in film thickness cannot be reduced.

他方、浸漬塗装方法を光学レンズに施して塗膜を形成しようとする場合には、塗膜へ異物が混入しないようにするために、被塗装物を浸漬塗装の前工程において、洗浄(例えば、超純水・超音波洗浄)し、その後、加熱乾燥工程(例えば80℃×15min)を経る(図3参照)。このため、被塗装物は室温よりも遥かに高い温度となっている(例えば、60〜80℃)。 On the other hand, in the case of applying a dip coating method to an optical lens to form a coating film, in order to prevent foreign matter from being mixed into the coating film, the object to be coated is washed (e.g., ultrapure water, ultrasonic cleaning), and then undergoes a heating and drying step (e.g., 80 ° C. × 15min) (see Fig. 3). For this reason, the object to be coated has a temperature much higher than room temperature (for example, 60 to 80 ° C.).

また、連続的に複合塗膜を積層する場合には第1層の乾燥工程により、2層目以降の塗膜を塗装する直前では被塗装物は室温よりも遥かに高い温度となっている(例えば、60〜80℃)。   In the case of continuously laminating the composite coating film, the object to be coated has a temperature much higher than room temperature immediately before the coating of the second and subsequent layers is applied by the drying process of the first layer ( For example, 60-80 degreeC).

更に、塗料液(塗液)は、通常、溶媒の揮発や反応速度を抑制するために、室温よりも低い温度で管理されている(例えば、10℃)。   Furthermore, the coating liquid (coating liquid) is usually controlled at a temperature lower than room temperature (for example, 10 ° C.) in order to suppress solvent volatilization and reaction rate.

上記の理由により、被塗装物と塗料液との間に大きな温度差(例えば50℃以上)があった場合、外周や薄い部分は局所的に早く塗料液の温度との差が小さくなり、内側や厚い部分は温度差が大きくなる、すなわち、一時的に温度ムラが発生する。特に、この温度ムラは、有機ガラスレンズの場合、熱伝導率が低いため維持され易くなる。そして、一般的な液体では温度が高いほど粘度は低くなるため、温度の高い部分では液だれの流速が速くなり、膜厚が薄くなる。」   For the above reason, when there is a large temperature difference (for example, 50 ° C. or more) between the object to be coated and the coating liquid, the difference between the outer periphery and the thin part is locally faster and the temperature of the coating liquid becomes smaller. The thicker portion has a large temperature difference, that is, temperature unevenness occurs temporarily. In particular, in the case of an organic glass lens, this temperature unevenness is easily maintained because of low thermal conductivity. In general liquids, the higher the temperature, the lower the viscosity. Therefore, the higher the temperature, the higher the flow rate of the dripping, and the thinner the film. "

上記知見に基づき、本発明者らは、光学レンズ等の非円筒状の被塗装物であっても、膜厚ムラの発生を低減できることを知見して、下記構成の浸漬塗装方法に想到した。   Based on the above knowledge, the present inventors have found that even when a non-cylindrical object such as an optical lens is to be coated, it is possible to reduce the occurrence of film thickness unevenness, and have come up with a dip coating method having the following configuration.

光学レンズを被塗装物とする浸漬塗装方法であって、
洗浄後、加熱乾燥工程を経た被塗装物を室温よりも低い温度で管理されている塗装液に浸漬後、前記被塗装物を前記塗装液から相対的に引き上げて被塗装物の表面に塗膜を形成する浸漬塗装方法において、
前記被塗装物を、該被塗装物と前記塗装液との温度差が可及的に小さくなるように、前記液温と同一乃至−10℃以内の冷却媒体で温調処理後、前記塗装液に浸漬して引き上げるに際して、該引き上げの速度を初めと終りとの間で変化させて、塗膜ダレによる膜厚ムラの発生を低減化することを特徴とする。
An immersion coating method using an optical lens as an object to be coated,
After washing, the object to be coated that has been subjected to the heating and drying process is immersed in a coating liquid that is controlled at a temperature lower than room temperature, and then the object to be coated is relatively lifted from the coating liquid and applied to the surface of the object to be coated. In the dip coating method to form
The temperature of the object to be coated is adjusted with a cooling medium equal to or less than −10 ° C. of the liquid temperature so that the temperature difference between the object to be coated and the coating liquid is as small as possible. When the film is soaked in and pulled up, the speed of the pulling is changed between the beginning and the end to reduce the occurrence of film thickness unevenness due to sagging of the coating film.

本発明の浸漬塗装方法に使用する機構の一例を示すモデル図である。It is a model figure which shows an example of the mechanism used for the dip coating method of this invention. 光学レンズの膜厚位置を示す平面図(A)および同断面図(B)である。It is the top view (A) and the same sectional view (B) which show the film thickness position of an optical lens. 実施例群又は比較例群の光学レンズを浸漬処理する際における流れ図である。It is a flowchart in the case of immersing the optical lens of an Example group or a comparative example group. 実施例1・3および比較例1−2、3−2における引き上げ速度/経過時間の関係図である。It is a relationship diagram of pulling speed / elapsed time in Examples 1 and 3 and Comparative Examples 1-2 and 3-2. 比較例1−1、1−3、3−1、3−3における引き上げ速度/経過時間の関係図である。It is a relationship diagram of the raising speed / elapsed time in Comparative Examples 1-1, 1-3, 3-1, 3-3. 実施例2・4および比較例2−2、4−2における引き上げ速度/経過時間の関係図である。It is a relationship diagram of pulling speed / elapsed time in Examples 2 and 4 and Comparative Examples 2-2 and 4-2. 比較例2−1、2−3、4−1、4−3における引き上げ速度/経過時間の関係図である。It is a relationship diagram of the raising speed / elapsed time in Comparative Examples 2-1, 2-3, 4-1, and 4-3. 実施例1における上下方向膜厚および左右方向膜厚の状態を示す各グラフ図(A)、(B)である。It is each graph figure (A) and (B) which shows the state of the up-down direction film thickness in Example 1, and the left-right direction film thickness. 比較例1−1における同様な各グラフ図(A)、(B)である。It is each similar graph figure (A) in comparative example 1-1, and (B). 比較例1−2における同様な各グラフ図(A)、(B)である。It is each similar graph figure (A) in comparative example 1-2, and (B). 比較例1−3における同様な各グラフ図(A)、(B)である。It is each similar graph figure (A) and (B) in comparative example 1-3. 実施例2における同様な各グラフ図(A)、(B)である。It is each graph figure (A) and (B) similar in Example 2. FIG. 比較例2−1における同様な各グラフ図(A)、(B)である。It is each similar graph figure (A) and (B) in comparative example 2-1. 比較例2−2における同様な各グラフ図(A)、(B)である。It is each similar graph figure (A) in comparative example 2-2, and (B). 比較例2−3における同様な各グラフ図(A)、(B)である。It is each similar graph figure (A) and (B) in comparative example 2-3. 実施例3における同様な各グラフ図(A)、(B)である。It is each similar graph figure (A) in Example 3 (B). 比較例3−1における同様な各グラフ図(A)、(B)である。It is each similar graph figure (A) and (B) in comparative example 3-1. 比較例3−2における同様な各グラフ図(A)、(B)である。It is each similar graph figure (A) in comparative example 3-2, and (B). 比較例3−3における同様な各グラフ図(A)、(B)である。It is each similar graph figure (A) and (B) in comparative example 3-3. 実施例4における同様な各グラフ図(A)、(B)である。It is each similar graph figure (A) in Example 4, (B). 比較例4−1における同様な各グラフ図(A)、(B)である。It is each similar graph figure (A) in comparative example 4-1, and (B). 比較例4−2における同様な各グラフ図(A)、(B)である。It is each similar graph figure (A) and (B) in comparative example 4-2. 比較例4−3における同様な各グラフ図(A)、(B)である。It is each similar graph figure (A) in comparative example 4-3, and (B).

以下、本発明の一実施形態について詳細に説明する。ここでは、図1に示すような引き上げ機構を用いて、図2に示す如く、光学レンズ(眼鏡用凹レンズ)の基材(被塗装物)11にプライマー膜15乃至ハード膜13を形成する場合を例に採り説明する。   Hereinafter, an embodiment of the present invention will be described in detail. Here, the case where the primer film 15 to the hard film 13 are formed on the base material (object to be coated) 11 of the optical lens (concave lens for spectacles) using the pulling mechanism as shown in FIG. 1 as shown in FIG. Take an example and explain.

即ち、光学レンズ基材11を、演算装置17により制御される引き上げ駆動部19に連結された引き上げ手段(昇降手段)21にセットし、光学レンズ基材11を、塗料液23が充填された塗料液槽25に浸漬後・引上げる。このとき、浸漬時間は、5〜40秒とする。   That is, the optical lens substrate 11 is set on a lifting means (elevating means) 21 connected to a lifting drive unit 19 controlled by the arithmetic unit 17, and the optical lens substrate 11 is coated with a paint liquid 23. After being immersed in the liquid tank 25, it is pulled up. At this time, the immersion time is 5 to 40 seconds.

図3に浸漬塗装する際の流れ図の一例を示す。   FIG. 3 shows an example of a flowchart for immersion coating.

ここで、有機ガラス基材としては、ポリメチルメタクリレート(PMMA)、ポリカーボネート(PC)、ポリスチレン、ポリ塩化ビニル、ポリエチレンテレフタレート、ポリウレタン、脂肪族アリルカーボネート、芳香族アリルカーボネート、ポリチオウレタン等からなるものを挙げることができる。   Here, the organic glass substrate is composed of polymethyl methacrylate (PMMA), polycarbonate (PC), polystyrene, polyvinyl chloride, polyethylene terephthalate, polyurethane, aliphatic allyl carbonate, aromatic allyl carbonate, polythiourethane, etc. Can be mentioned.

無機ガラス基材としては、クラウンガラス(nd=1.52〜1.72)、フリントガラス(nd=1.53〜1.88)等が挙げられる。 Examples of the inorganic glass substrate include crown glass (n d = 1.52 to 1.72), flint glass (n d = 1.53 to 1.88), and the like.

そして、レンズ基材(被塗装物)を、前記塗料液との温度差が可及的に小さくなるように温調処理後、前記相対的な引き上げを行う。即ち、レンズ基材を昇降させずに、塗料液槽25を昇降させてもよい。   Then, the lens substrate (object to be coated) is subjected to the temperature adjustment process so that the temperature difference from the coating liquid is as small as possible, and then the relative lifting is performed. That is, the coating liquid tank 25 may be raised and lowered without raising and lowering the lens substrate.

本発明は、後述の実施例の如く、レンズ基材の浸漬・引き上げ工程の前に、レンズ基材(被塗装物)の温度を、塗料液(浸漬液)の温度に可及的に近づける温調処理をすることが最大特徴である。   In the present invention, the temperature of the lens base material (object to be coated) is as close as possible to the temperature of the coating liquid (immersion liquid) before the lens base dipping / pulling process, as in the examples described later. The biggest feature is to adjust the tone.

例えば、レンズ基材が乾燥炉で昇温している場合、レンズ基材を塗料液と同一温度、乃至若干低い温度(−10℃以内、望ましくは−5℃以内)の冷風(冷却媒体)で冷却する。冷却媒体は、液体(水)や蒸気でもよいが、液体(水)として汚染物質が含まれていない純なもの(例えば、純水)を使用しないと水中の汚染物質で、折角洗浄したレンズ基材が汚染されるおそれがあるため望ましくない。また、冷風等の冷却媒体の温度が塗料液より低すぎると、過剰冷却されるとともに、レンズ基材が熱衝撃を受けるおそれがあり望ましくない。なお、被塗装物と塗料液の温度が同じとなるまでの時間は冷風の温度、被塗装物の厚み、被塗装物の熱伝導率などにより、異なり、実験結果から設定する。   For example, when the lens substrate is heated in a drying furnace, the lens substrate is cooled with cold air (cooling medium) at the same temperature as the coating liquid or slightly lower (within −10 ° C., preferably within −5 ° C.). Cooling. The cooling medium may be liquid (water) or vapor, but if the liquid (water) is not pure (eg, pure water) that does not contain any contaminants, it will be contaminated with water, and the lens base that has been cleaned at an angle will be used. This is undesirable because the material can be contaminated. On the other hand, if the temperature of the cooling medium such as cold air is too low than the coating liquid, it is excessively cooled and the lens substrate may be subjected to thermal shock, which is not desirable. Note that the time until the temperature of the object to be coated and the coating liquid becomes the same depends on the temperature of the cold air, the thickness of the object to be coated, the thermal conductivity of the object to be coated, and the like, and is set from the experimental results.

上記ハード膜13を形成する塗料液は、通常、シリコーン系のものを使用する。   The coating liquid for forming the hard film 13 is usually a silicone-based one.

例えば、オルガノアルコキシシランの加水分解物に、触媒、金属酸化物微粒子(複合微粒子を含む)を加え、希釈溶剤にて塗装可能な粘度になるように調節する。さらに、このハード膜塗料液には、適宜界面活性剤、紫外線吸収剤等の添加も可能である。   For example, a catalyst and metal oxide fine particles (including composite fine particles) are added to a hydrolyzate of an organoalkoxysilane, and the viscosity is adjusted to allow coating with a diluting solvent. Furthermore, a surfactant, an ultraviolet absorber, and the like can be appropriately added to the hard film coating liquid.

このハード膜13の膜厚は、0.5〜50μm、望ましくは1〜10μmとする。ここで、薄いと耐擦傷性を得難く、厚いと面精度(レベリング性)を得がたいので、両特性のバランスからハード膜の膜厚を適宜設定する。   The thickness of the hard film 13 is 0.5 to 50 μm, preferably 1 to 10 μm. Here, if it is thin, it is difficult to obtain scratch resistance, and if it is thick, it is difficult to obtain surface accuracy (leveling property). Therefore, the film thickness of the hard film is appropriately set from the balance of both characteristics.

上記プライマー膜15を形成する塗料液は、例えば、TPE系塗料液を使用することが望ましい。   As the coating liquid for forming the primer film 15, for example, it is desirable to use a TPE coating liquid.

例えば、TPEとしては、TPEE、TPU等を挙げることができる。   For example, TPEE, TPU, etc. can be mentioned as TPE.

該プライマー膜塗料液(プライマー組成物)は、屈折率の調整や強度の向上等を目的として金属酸化物微粒子(複合微粒子を含む。)を含有させることが望ましい。   The primer film coating liquid (primer composition) preferably contains metal oxide fine particles (including composite fine particles) for the purpose of adjusting the refractive index and improving the strength.

このプライマー膜の膜厚は、0.2〜10μm、望ましくは0.5〜5μmとする。薄いと耐衝撃性を得難く、厚いと面精度を得がたいので、両特性のバランスからプライマー膜の膜厚を適宜設定する。   The primer film has a thickness of 0.2 to 10 μm, preferably 0.5 to 5 μm. If it is thin, it is difficult to obtain impact resistance, and if it is thick, it is difficult to obtain surface accuracy. Therefore, the thickness of the primer film is appropriately set from the balance of both characteristics.

こうして、各塗膜(プライマー膜、ハード膜)を形成する前に、温調して基材を可及的に塗料液の温度に近接させておくことにより、レンズの中央部と周縁および薄肉部と厚肉部とで従来のような塗料液に対する温度影響が小さく、乾燥前塗膜の液ダレ性が部位ごとで均一となる。   Thus, before forming each coating film (primer film, hard film), by adjusting the temperature so that the base material is as close as possible to the temperature of the coating liquid, the center part, the peripheral edge and the thin part of the lens In addition, the temperature influence on the coating liquid as in the conventional case is small between the thick-walled portion and the liquid dripping property of the coating film before drying becomes uniform for each part.

したがって、塗料液の液面と平行する被塗装物の形状が円筒状でなくても、乃至、断面が非円形以外であっても温度差による塗膜の膜厚ムラを低減できる。   Therefore, even if the shape of the object to be coated parallel to the liquid surface of the coating liquid is not cylindrical or the cross section is other than non-circular, the film thickness unevenness of the coating film due to the temperature difference can be reduced.

さらには、従来公知手法の引き上げ速度(引上げ開始から引上げ完了までの)を変速させることによって上下方向の膜厚ムラも低減でき、レンズ平面全体における膜厚ムラの低減効果を得ることができる。   Furthermore, by changing the pulling speed (from the start of pulling to the completion of pulling) according to a conventionally known method, the film thickness unevenness in the vertical direction can be reduced, and the effect of reducing the film thickness unevenness in the entire lens plane can be obtained.

このときの相対的引き上げ速度(V)は、通常、下記式で表される直線的に低減するものとする。直線的である方が制御し易いためである。下記式において、V0=1.0〜5mms-1(望ましくは1.5〜3.5mms-1)、a=0.005〜0.02mms-2(望ましくは0.01〜0.015mms-1)とする。 The relative pulling speed (V) at this time is normally reduced linearly represented by the following formula. This is because a straight line is easier to control. In the following formulas, V 0 = 1.0~5mms -1 (preferably 1.5~3.5mms -1), a = 0.005~0.02mms -2 ( preferably 0.01~0.015mms -1) and.

V(mms-1)=V0−at
但し、V0:初速(mms-1)、a:係数(mms-2)、t:経過時間(s)。
V (mms −1 ) = V 0 −at
V 0 : initial speed (mms −1 ), a: coefficient (mms −2 ), t: elapsed time (s).

なお、相対引き上げ速度は、特許文献2に記載の下記式の如くeが底の指数関数的に変化させてもよい。   The relative pulling speed may be changed exponentially with e as the bottom as shown in the following formula described in Patent Document 2.

V(mms-1)=V0exp(-At)
但し、A:係数(s-1)、V0は、上記と同じとし、A=0.001〜0.02s-1(望ましくは0.002〜0.01s-1)とする。
V (mms −1 ) = V 0 exp (−At)
However, A: coefficient (s -1), V 0 is the same city as the, A = 0.001~0.02s -1 (preferably 0.002~0.01s -1) and.

以上、被塗装物として光学レンズ(凹レンズ)を例に採り説明したが、本発明は、他の無機・有機ガラス光学部品、プリント基板、液晶基板、ウェハー等の電気・電子部品にも、円筒状、非円筒状に限定されず適用できる。   As described above, an optical lens (concave lens) has been described as an example of the object to be coated. However, the present invention is also applicable to other inorganic / organic glass optical parts, printed circuit boards, liquid crystal boards, wafers, and other electrical / electronic parts. The present invention can be applied without being limited to a non-cylindrical shape.

ここで、光学部品としては、眼鏡レンズ・カメラ用レンズなどの光学レンズ、さらには、各種ディスプレイの前面ガラスないし前面フィルター、反射鏡、光学プリズム等も含まれる。   Here, the optical components include optical lenses such as eyeglass lenses and camera lenses, as well as front glass or front filters of various displays, reflecting mirrors, optical prisms, and the like.

以下、本発明の効果を確認するために行った実施例を比較例とともに説明する。   Examples carried out to confirm the effects of the present invention will be described below together with comparative examples.

(1)被塗装物であるレンズ基材は、下記仕様のものを使用した。   (1) The lens substrate which is the object to be coated was used with the following specifications.

レンズI・・・直径75mm、外周の厚み8mm、中心の厚み2mmの屈折率1.50のアリル系プラスチックレンズ
レンズII・・・直径75mm、外周の厚み8mm、中心の厚み1mmの屈折率1.74のチオウレタン系プラスチックレンズ
Lens I: Allyl plastic lens with a refractive index of 1.50 with a diameter of 75 mm, outer peripheral thickness of 8 mm, and a central thickness of 2 mm Lens II: Thiourethane with a refractive index of 1.74 with a diameter of 75 mm, an outer peripheral thickness of 8 mm, and a central thickness of 1 mm Plastic lens

(2)浸漬塗装前処理は、図3に示す流れで行なった。
即ち、各実施例・比較例は、超純水で超音波洗浄し、80℃の熱風乾燥炉で15分間乾燥した。その後10℃(又は30℃)の冷風炉にて15分間冷やした。
(2) The dip coating pretreatment was performed according to the flow shown in FIG.
That is, each Example and Comparative Example was ultrasonically cleaned with ultrapure water and dried in a hot air drying furnace at 80 ° C. for 15 minutes. Thereafter, it was cooled in a 10 ° C. (or 30 ° C.) cold air oven for 15 minutes.

(3)塗料液は、液温10℃の下記プライマー膜塗料液又はハード膜塗料液を使用した。   (3) The following primer film coating liquid or hard film coating liquid having a liquid temperature of 10 ° C. was used as the coating liquid.

プライマー膜塗料液:粘度2.2cPs(mPas)、塗膜としたときの屈折率が1.60となるTPEE系塗料。     Primer film paint liquid: TPEE paint having a viscosity of 2.2 cPs (mPas) and a refractive index of 1.60 when used as a coating film.

ハード膜塗料液:粘度3.3cPs(mPas)、塗膜としたときの屈折率が1.60となるオルガノシリコーン系塗料。     Hard film paint solution: An organosilicone paint with a viscosity of 3.3 cPs (mPas) and a refractive index of 1.60.

<実施例1>
図3に示す冷風冷却(10℃)を行なったレンズIに、前記プライマー膜塗料液を浸漬塗装方法にて塗装した。
<Example 1>
The primer film coating liquid was applied to the lens I that had been cooled with cold air (10 ° C.) shown in FIG. 3 by a dip coating method.

レンズ基材を10秒浸漬後、図4に示すように引き上げ速度を初めは速く、徐々に遅くしながら引き上げを行った。その後、100℃の熱風乾燥炉にて30分間乾燥した。   After immersing the lens substrate for 10 seconds, as shown in FIG. Then, it dried for 30 minutes in a 100 degreeC hot-air drying furnace.

こうして調製した塗膜(プライマー膜)の膜厚状態を図8に示す。標準偏差(σ)が上下:0.02であり、左右:0.00であり、非常に均一な膜が得られた。   The film thickness state of the coating film (primer film) thus prepared is shown in FIG. The standard deviation (σ) was 0.02 (upper and lower) and 0.00 (left and right), and a very uniform film was obtained.

<比較例1−1>
実施例1において、冷風冷却の温度を30℃とし、引き上げ速度を図5に示すように一定としながら引き上げを行った。それ以外の条件は同じとした。
<Comparative Example 1-1>
In Example 1, the temperature of cold air cooling was set to 30 ° C., and the pulling rate was kept constant as shown in FIG. The other conditions were the same.

こうして調製した塗膜の膜厚状態を図9に示す。標準偏差が上下:0.07であり、左右:0.04であり、上下・左右共に膜厚ムラが見られた。   The film thickness state of the coating film thus prepared is shown in FIG. The standard deviation was 0.07 up and down: 0.04 right and left: 0.04.

<比較例1−2>
実施例1において、冷風冷却の温度を30℃とした。それ以外の条件は同じとした。
<Comparative Example 1-2>
In Example 1, the temperature of cold air cooling was 30 ° C. The other conditions were the same.

こうして調製した塗膜の膜厚状態を図10に示す。標準偏差が上下:0.06であり、左右:0.05であり、上下・左右共に膜厚ムラが見られた。   The film thickness state of the coating film thus prepared is shown in FIG. The standard deviation was 0.06 up and down: 0.05 and left and right: 0.05.

<比較例1−3>
実施例1において、引き上げ速度を図5に示すように一定としながら引き上げを行った。それ以外の条件は同じとした。
<Comparative Example 1-3>
In Example 1, the pulling-up was performed while keeping the pulling speed constant as shown in FIG. The other conditions were the same.

こうして調製した塗膜の膜厚状態を図11に示す。標準偏差が上下:0.05であり、左右:0.01であり、上下に膜厚ムラが見られた。   The film thickness state of the coating film thus prepared is shown in FIG. The standard deviation was up and down: 0.05, left and right: 0.01, and uneven film thickness was observed in the top and bottom.

<実施例2>
実施例1において、プライマー膜塗料液に代えてハード膜塗料液を用いて、浸漬塗装方法にて塗装した。
<Example 2>
In Example 1, a hard film coating liquid was used instead of the primer film coating liquid, and coating was performed by a dip coating method.

その際、図6に示すように引き上げ速度を初めは速く、徐々に遅くしながら引き上げを行った。それ以外の条件は同じとした。   At that time, as shown in FIG. 6, the pulling-up speed was initially high and gradually slowed. The other conditions were the same.

こうして調製した塗膜の膜厚状態を図12に示す。標準偏差が上下:0.12であり、左右:0.02であり、略均一な膜が得られた。   The film thickness state of the coating film thus prepared is shown in FIG. The standard deviation was 0.12 up and down: 0.02 and left and right: a substantially uniform film was obtained.

<比較例2−1>
実施例2において、冷風冷却の温度を30℃とし、引き上げ速度を図7に示すように一定としながら引き上げを行った。それ以外の条件は同じとした。
<Comparative Example 2-1>
In Example 2, the temperature of cold air cooling was set to 30 ° C., and the pulling rate was kept constant as shown in FIG. The other conditions were the same.

こうして調製した塗膜の膜厚状態を図13に示す。標準偏差が上下:0.33であり、左右:0.20であり、上下・左右共に膜厚ムラが見られた。   The film thickness state of the coating film thus prepared is shown in FIG. The standard deviation was 0.33 up and down: 0.20 left and right.

<比較例2−2>
実施例2において、冷風冷却の温度を30℃とした。それ以外の条件は同じとした。こうして調製した塗膜の膜厚状態を図14に示す。
<Comparative Example 2-2>
In Example 2, the temperature of cold air cooling was 30 ° C. The other conditions were the same. The film thickness state of the coating film thus prepared is shown in FIG.

標準偏差が上下:0.31であり、左右:0.25であり、上下・左右共に膜厚ムラが見られた。   The standard deviation was 0.31: up and down: left and right: 0.25.

<比較例2−3>
実施例2において、引き上げ速度を図7に示すように一定としながら引き上げを行った。それ以外の条件は同じとした。
<Comparative Example 2-3>
In Example 2, the pulling-up was performed while keeping the pulling speed constant as shown in FIG. The other conditions were the same.

こうして調製した塗膜の膜厚状態を図15に示す。標準偏差が上下:0.24であり、左右:0.03であり、上下に膜厚ムラが見られた。   The film thickness state of the coating film thus prepared is shown in FIG. The standard deviation was 0.24 up and down: 0.03 and left and right: 0.03.

<実施例3>
実施例1において、レンズIをレンズIIとした。それ以外の条件は同じとした。
<Example 3>
In Example 1, the lens I is the lens II. The other conditions were the same.

こうして調製した塗膜の膜厚状態を図16に示す。標準偏差が上下:0.03であり、左右:0.00であり、略均一な膜が得られた。   The film thickness state of the coating film thus prepared is shown in FIG. The standard deviation was 0.03 in the vertical direction and 0.00 in the horizontal direction, and a substantially uniform film was obtained.

<比較例3−1>
実施例3において、冷風冷却の温度を30℃とし、引き上げ速度を図5に示すように一定としながら引き上げを行った。それ以外の条件は同じとした。こうして調製した塗膜の膜厚状態を図17に示す。標準偏差が上下:0.08であり、左右:0.05であり、上下・左右共に膜厚ムラが見られた。
<Comparative Example 3-1>
In Example 3, the temperature of cold air cooling was set to 30 ° C., and the pulling rate was kept constant as shown in FIG. The other conditions were the same. The film thickness state of the coating film thus prepared is shown in FIG. The standard deviation was 0.08 up and down: 0.05 and left and right: 0.05.

<比較例3−2>
実施例3において、冷風冷却の温度を30℃とした。それ以外の条件は同じとした。
<Comparative Example 3-2>
In Example 3, the temperature of cold air cooling was 30 ° C. The other conditions were the same.

こうして調製した塗膜の膜厚状態を図18に示す。標準偏差が上下:0.07であり、左右:0.06であり、上下・左右共に膜厚ムラが見られた。   The film thickness state of the coating film thus prepared is shown in FIG. The standard deviation was 0.07 up and down: 0.07 right and left: 0.06.

<比較例3−3>
実施例3において、引き上げ速度を図5に示すように一定としながら引き上げを行った。それ以外の条件は同じとした。
<Comparative Example 3-3>
In Example 3, the lifting was performed while keeping the lifting speed constant as shown in FIG. The other conditions were the same.

こうして調製した塗膜の膜厚状態を図19に示す。標準偏差が上下:0.06であり、左右:0.01であり、上下に膜厚ムラが見られた。   The film thickness state of the coating film thus prepared is shown in FIG. The standard deviation was 0.06 up and down: 0.06 and left and right: 0.01, and film thickness unevenness was observed at the top and bottom.

<実施例4>
実施例2において、レンズIをレンズIIとした。それ以外の条件は同じとした。こうして調製した塗膜の膜厚状態を図20に示す。標準偏差が上下:0.14であり、左右:0.02であり、略均一な膜が得られた。
<Example 4>
In Example 2, the lens I was a lens II. The other conditions were the same. The film thickness state of the coating film thus prepared is shown in FIG. The standard deviation was 0.14 up and down: 0.04 and left and right, and a substantially uniform film was obtained.

<比較例4−1>
実施例4において、冷風冷却の温度を30℃とし、引き上げ速度を図7に示すように一定としながら引き上げを行った。それ以外の条件は同じとした。
<Comparative Example 4-1>
In Example 4, the temperature of cold air cooling was set to 30 ° C., and the pulling rate was kept constant as shown in FIG. The other conditions were the same.

こうして調製した塗膜の膜厚状態を図21に示す。標準偏差が上下:0.39であり、左右:0.23であり、上下・左右共に膜厚ムラが見られた。   The film thickness state of the coating film thus prepared is shown in FIG. The standard deviation was 0.39 up and down: 0.23 left and right, and film thickness unevenness was seen both up and down and left and right.

<比較例4−2>
実施例4において、冷風冷却の温度を30℃とした。それ以外の条件は同じとした。
<Comparative Example 4-2>
In Example 4, the temperature of cold air cooling was 30 ° C. The other conditions were the same.

こうして調製した塗膜の膜厚状態を図22に示す。標準偏差が上下:0.37であり、左右:0.29であり、上下・左右共に膜厚ムラが見られた。   The film thickness state of the coating film thus prepared is shown in FIG. The standard deviation was 0.37 up and down: 0.27 left and right: 0.29.

<比較例4−3>
実施例4において、引き上げ速度を図7に示すように一定としながら引き上げを行った。それ以外の条件は同じとした。
<Comparative Example 4-3>
In Example 4, the lifting was performed while keeping the lifting speed constant as shown in FIG. The other conditions were the same.

こうして調製した塗膜の膜厚状態を図23に示す。標準偏差が上下:0.29であり、左右:0.03であり、上下に膜厚ムラが見られた。   The film thickness state of the coating film thus prepared is shown in FIG. The standard deviation was 0.29 up and down: 0.03 and left and right: 0.03.

上記各実施例・比較例群の処理条件および結果を表1にまとめる。   Table 1 summarizes the processing conditions and results of each of the above examples and comparative examples.

Figure 0005551014
Figure 0005551014

本発明の浸漬塗装方法の技術的思想は、塗装方法に限られず、化成処理等の浸漬処理方法にも適用できる。その場合の構成は、下記構成となる。   The technical idea of the dip coating method of the present invention is not limited to the coating method, and can also be applied to a dip treatment method such as chemical conversion treatment. The configuration in that case is as follows.

被処理物を処理液に浸漬後、前記被処理物を前記処理液から垂直方向に相対的に引き上げて行なう浸漬表面処理方法において、
前記被処理物と前記処理液との温度差を可及的に小さくしてから、前記相対的な引き上げを行うことを特徴とする。
In the immersion surface treatment method in which the object to be treated is immersed in a treatment liquid, and then the object to be treated is lifted relatively vertically from the treatment liquid.
The relative pulling is performed after the temperature difference between the object to be processed and the processing liquid is made as small as possible.

11 有機ガラス基材
14 ハード膜
15 プライマー膜
11 Organic Glass Base Material 14 Hard Film 15 Primer Film

Claims (3)

光学レンズを被塗装物とする浸漬塗装方法であって、
洗浄後、加熱乾燥工程を経た被塗装物を室温よりも低い温度で管理されている塗装液に浸漬後、前記被塗装物を前記塗装液から相対的に引き上げて被塗装物の表面に塗膜を形成する浸漬塗装方法において、
前記被塗装物を、該被塗装物と前記塗装液との温度差が可及的に小さくなるように、前記液温と同一乃至−10℃以内の冷却媒体で温調処理後、前記塗装液に浸漬して引き上げるに際して、該引き上げの速度を初めと終りとの間で変化させて、塗膜ダレによる膜厚ムラの発生を低減化する、
ことを特徴とする浸漬塗装方法。
An immersion coating method using an optical lens as an object to be coated,
After washing, the object to be coated that has been subjected to the heating and drying process is immersed in a coating liquid that is controlled at a temperature lower than room temperature, and then the object to be coated is relatively lifted from the coating liquid and applied to the surface of the object to be coated. In the dip coating method to form
The temperature of the object to be coated is adjusted with a cooling medium equal to or less than −10 ° C. of the liquid temperature so that the temperature difference between the object to be coated and the coating liquid is as small as possible. When dipping in and pulling up, the speed of the pulling is changed between the beginning and the end, reducing the occurrence of film thickness unevenness due to coating sagging,
A dip coating method characterized by that.
前記被塗装物の形態が非円筒状であることを特徴とする請求項1記載の浸漬塗装方法。   2. The immersion coating method according to claim 1, wherein the object to be coated is non-cylindrical. 前記塗膜の膜厚が0.1〜50μmであることを特徴とする請求項2記載の浸漬塗装方法。 The dip coating method according to claim 2, wherein the coating film has a thickness of 0.1 to 50 μm.
JP2010172814A 2010-07-30 2010-07-30 Immersion coating method Active JP5551014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010172814A JP5551014B2 (en) 2010-07-30 2010-07-30 Immersion coating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010172814A JP5551014B2 (en) 2010-07-30 2010-07-30 Immersion coating method

Publications (2)

Publication Number Publication Date
JP2012030185A JP2012030185A (en) 2012-02-16
JP5551014B2 true JP5551014B2 (en) 2014-07-16

Family

ID=45844265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010172814A Active JP5551014B2 (en) 2010-07-30 2010-07-30 Immersion coating method

Country Status (1)

Country Link
JP (1) JP5551014B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7366673B2 (en) * 2019-09-25 2023-10-23 ホヤ レンズ タイランド リミテッド Optical property evaluation method and spectacle lens manufacturing method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5817874A (en) * 1981-07-27 1983-02-02 Mitsubishi Rayon Co Ltd Dip coating method for synthetic resin
JPS6066252A (en) * 1983-09-22 1985-04-16 Canon Inc Production of electrophotographic sensitive body
JPH03255451A (en) * 1990-03-06 1991-11-14 Toshiba Corp Production of electrophotographic sensitive body
JPH10177258A (en) * 1996-12-17 1998-06-30 Fuji Xerox Co Ltd Production of electrophotographic photoreceptor
JPH11202508A (en) * 1998-01-13 1999-07-30 Fuji Xerox Co Ltd Production of electrophotographic photoreceptor
JP2000112159A (en) * 1998-10-08 2000-04-21 Fuji Xerox Co Ltd Production of electrophotographic photoreceptor and dip coating device
JP2001305302A (en) * 2000-04-20 2001-10-31 Asahi Optical Co Ltd Coating method capable of increasing film thickness and plastic lens
JP2004202463A (en) * 2002-12-26 2004-07-22 Seiko Epson Corp Coating method and coating apparatus
JP2005034685A (en) * 2003-07-15 2005-02-10 Proceed:Kk Coating method for silver/titanium oxide and article coated with silver type titanium oxide

Also Published As

Publication number Publication date
JP2012030185A (en) 2012-02-16

Similar Documents

Publication Publication Date Title
JP6957456B2 (en) Laminated glass articles with determined stress profiles and methods for forming them
US8703296B2 (en) Functioning optical lens and production method thereof
KR101616606B1 (en) Annealing of glass to alter chemical strengthening behavior
JP6061477B2 (en) Optical member and optical member manufacturing method
WO2015152342A1 (en) Glass, cover glass produced using same, and method for producing glass
JP2007078780A (en) Optical article and its manufacturing method
JP5551014B2 (en) Immersion coating method
JP2009258633A (en) Process for producing optical article
JP5938238B2 (en) Manufacturing method of optical member
US6929822B2 (en) Method for manufacturing optical member having water-repellent thin film
JP5148844B2 (en) Spectacle lens manufacturing method and spectacle lens
JP2009113353A (en) Manufacturing method of semi-finish lens, semi-finish lens and manufacturing method of plastic lens
US7025457B2 (en) Dip coating process for optical elements
JP2007052210A (en) Polarizing lens and manufacturing method thereof
CN207586562U (en) A kind of 3D sunglasses lenses and 3D sunglasses
JP4063161B2 (en) Optical component having antireflection layer
JP2008116348A (en) Suitability determination method for organic antireflection film of plastic lens, and manufacturing method of the plastic lens
JP2008268618A (en) Manufacturing method and annealing method of plastic lens
JPH0511101A (en) Optical member having antireflection film
JP2004202463A (en) Coating method and coating apparatus
JP2008107435A (en) Optical article and its manufacturing method
CN109975896A (en) Antireflection eyeglass and preparation method thereof
CN115770711A (en) Environment-friendly coating process for surface of spectacle lens
JP5759748B2 (en) Plastic lens
TWI668267B (en) Floating eye lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130419

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140321

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140521

R150 Certificate of patent or registration of utility model

Ref document number: 5551014

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250