JP5550205B2 - Flat membrane filtration device and flat membrane filtration method - Google Patents

Flat membrane filtration device and flat membrane filtration method Download PDF

Info

Publication number
JP5550205B2
JP5550205B2 JP2006145941A JP2006145941A JP5550205B2 JP 5550205 B2 JP5550205 B2 JP 5550205B2 JP 2006145941 A JP2006145941 A JP 2006145941A JP 2006145941 A JP2006145941 A JP 2006145941A JP 5550205 B2 JP5550205 B2 JP 5550205B2
Authority
JP
Japan
Prior art keywords
membrane
flat membrane
pressure
pump
circulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006145941A
Other languages
Japanese (ja)
Other versions
JP2007313430A (en
Inventor
政廣 石川
忠 大類
茂 今村
順一 田辺
弘明 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Zosen Environment Engineering Corp
Original Assignee
Mitsui Zosen Environment Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Zosen Environment Engineering Corp filed Critical Mitsui Zosen Environment Engineering Corp
Priority to JP2006145941A priority Critical patent/JP5550205B2/en
Publication of JP2007313430A publication Critical patent/JP2007313430A/en
Application granted granted Critical
Publication of JP5550205B2 publication Critical patent/JP5550205B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は平膜ろ過装置及び平膜ろ過方法に関し、詳しくは、限外ろ過膜や精密ろ過膜を用いて膜処理の操作圧力を上昇できる平膜ろ過装置及び平膜ろ過方法に関する。   The present invention relates to a flat membrane filtration device and a flat membrane filtration method, and more particularly to a flat membrane filtration device and a flat membrane filtration method that can increase the operating pressure of membrane treatment using an ultrafiltration membrane or a microfiltration membrane.

海洋や河川等の汚染の原因となる有機物、窒素、リン等を含有する廃水を生物処理する際の固液分離手段としては、最近では設置スペースの減少、メンテナンスの容易性等から膜分離技術が用いられるようになってきた。   Recently, membrane separation technology has been used as a solid-liquid separation method for biological treatment of wastewater containing organic matter, nitrogen, phosphorus, etc., which causes pollution in the ocean and rivers, due to reduced installation space and ease of maintenance. It has come to be used.

従来、一般的な膜処理に用いられる膜としては、逆浸透膜(RO膜)、限外ろ過膜(UF膜)、精密ろ過膜(MF膜)が知られている。分離対象となる固形分の径に応じてそれぞれの膜が選択されている。   Conventionally, reverse osmosis membranes (RO membranes), ultrafiltration membranes (UF membranes), and microfiltration membranes (MF membranes) are known as membranes used for general membrane treatment. Each membrane is selected according to the diameter of the solid content to be separated.

しかるに生物処理する際の固液分離手段として用いられる膜としては、限外ろ過膜や精密ろ過膜が使用されている。逆浸透膜ではろ過圧力として10kg/cm以上の高圧が必要であり、エネルギーコストがかかりすぎて選択使用されている例はない。 However, ultrafiltration membranes and microfiltration membranes are used as membranes used as solid-liquid separation means for biological treatment. A reverse osmosis membrane requires a high pressure of 10 kg / cm 2 or more as a filtration pressure, and there is no example of selective use because of excessive energy costs.

限外ろ過膜や精密ろ過膜には、平膜、管型膜、スパイラル膜、中空糸膜などがあり、これらの膜を汚泥中に浸漬して使用する液中膜も知られている。   Examples of ultrafiltration membranes and microfiltration membranes include flat membranes, tubular membranes, spiral membranes, and hollow fiber membranes, and submerged membranes that are used by immersing these membranes in sludge are also known.

本発明は、平膜タイプの限外ろ過膜や精密ろ過膜を用いた膜処理技術に関するものであり、平膜特有の技術的課題を解決するものである。   The present invention relates to a membrane treatment technique using a flat membrane type ultrafiltration membrane or a microfiltration membrane, and solves a technical problem peculiar to the flat membrane.

本発明で対象とする平膜のモジュール構造は、特許文献1、2、3等に記載のように、膜プレートの両側に平膜を張り、膜とプレートとの間に空隙(溝部)を設け、当該膜付プレートのモジュール単位を同軸上に並設して、平膜間に原液を通液する構造と成したものである。   As described in Patent Documents 1, 2, 3, etc., the flat membrane module structure that is the subject of the present invention has flat membranes stretched on both sides of the membrane plate, and a gap (groove) is provided between the membrane and the plate. The module units of the membrane-attached plate are arranged side by side on the same axis so that the stock solution is passed between the flat membranes.

平膜処理の従来技術としては、基本的な技術として、特許文献4に記載の膜装置が知られており、その文献では、平膜処理での閉塞を、(1)膜内部での閉塞、(2)膜表面ゲル層での閉塞及び(3)膜間流路の閉塞の3つに分類し、いわゆる閉塞と言っても、全く異なったタイプの閉塞があり、各々異なった対策が必要であることを述べている。   As a conventional technique of flat membrane treatment, as a basic technique, a membrane device described in Patent Document 4 is known. In that literature, obstruction by flat membrane treatment is (1) occlusion inside the membrane, There are three types of clogging: (2) clogging at the membrane surface gel layer and (3) clogging of the intermembrane flow path. So-called clogging has completely different types of clogging, and each requires different measures. There is something to say.

特許文献4では、上記の3つのタイプの閉塞に対して解決手段を開示しており、(1)の膜内部での閉塞は膜自体の構造によって解決できると記載し、(2)の膜表面ゲル層での閉塞は膜取付用支持体の形を波形(特許文献5参照)にする等により解決されると記載し、(3)の膜間流路の閉塞に関しては、開枠洗浄によって対応していたが、開枠洗浄の回数を減らすために、隣接する膜の間隔を広げることで解決する技術を開示している。   Patent Document 4 discloses solving means for the above three types of blockage, and describes that the blockage inside the membrane of (1) can be solved by the structure of the membrane itself, and the membrane surface of (2) It is described that the blockage in the gel layer can be solved by making the shape of the support for membrane attachment corrugated (see Patent Document 5), etc., and the blockage of the intermembrane flow path in (3) is dealt with by open frame cleaning. However, in order to reduce the number of times of open-frame cleaning, a technique for solving the problem by widening the interval between adjacent films is disclosed.

ここで開枠洗浄というのは、膜モジュール内のパッキンや枠体(フレーム)等を分解し、膜表面を露出させ、スポンジ等で洗浄することをいう。   Here, the open frame cleaning refers to disassembling the packing or frame (frame) in the membrane module, exposing the membrane surface, and cleaning with a sponge or the like.

膜表面に発生するゲル(層)は、膜原水に溶解している高分子物質が、膜表面にて濃縮され、析出することにより発生する。ゲル(層)は、原水に溶解している物質の分子量が、膜の分画分子量(限外ろ過膜の場合)より大きければ必ず発生する。従って、ゲル(層)による閉塞は、膜表面上での膜孔の目詰まりを意味している。一方、膜間流路の閉塞は、膜原水に含まれている微粒子(不溶解物質)やスラリー等が、膜間流路を閉塞させ、膜表面に原水が接触しない事を意味している。つまり、膜表面ゲル層での閉塞は、膜表面での膜孔に対する目詰まりであり、膜間流路の閉塞は膜と膜との間(隙間)を微粒子やスラリー等により機械的に閉塞させる状態であり、根本的に異なっている。   The gel (layer) generated on the membrane surface is generated when the polymer substance dissolved in the membrane raw water is concentrated and precipitated on the membrane surface. The gel (layer) is generated whenever the molecular weight of the substance dissolved in the raw water is larger than the fractional molecular weight of the membrane (in the case of an ultrafiltration membrane). Therefore, occlusion by the gel (layer) means clogging of the membrane pores on the membrane surface. On the other hand, the clogging of the intermembrane flow path means that fine particles (insoluble substances), slurry and the like contained in the raw membrane water block the intermembrane flow path and the raw water does not contact the membrane surface. In other words, the clogging at the membrane surface gel layer is clogging of the membrane pores at the membrane surface, and the clogging of the intermembrane flow path mechanically clogs the gap between the membranes with fine particles or slurry. The state is fundamentally different.

しかしながら、膜表面ゲル層での閉塞と膜間流路の閉塞は相互作用があることから、これらの両者の閉塞を解決する技術としては、従来、特許文献6には、膜間流路の下端部に微細気泡の吐出部を有する膜装置が開示されている。吐出部から放出された微細気泡によって原液の流れが生じるのみならず、微細気泡が単独でまたは原液と共に膜表面に当接又は擦接するため、膜表面のゲル層の成長を防止でき、高い透過ろ過量を維持しつつ膜間流路の閉塞を防止するものである。   However, since the clogging at the membrane surface gel layer and the clogging of the intermembrane flow path have an interaction, conventionally, as a technique for solving the clogging of both, Patent Document 6 discloses the lower end of the intermembrane flow path. A film device having a fine bubble discharge part in the part is disclosed. Not only does the flow of the stock solution occur due to the fine bubbles released from the discharge part, but also the fine bubbles come into contact with or rub against the membrane surface alone or together with the stock solution, preventing the growth of the gel layer on the membrane surface and high permeation filtration. The blockage of the intermembrane flow path is prevented while maintaining the amount.

本出願人は、平膜を実用的な装置として確立させるために、鋭意検討を重ね、特許文献7、特許文献8において、改良された平膜ろ過装置を提案している。特許文献7は、循環ラインに循環タンクと循環ポンプを設け、ろ液を取り出す動力として循環ポンプによらず、吸引ポンプによる技術であり、特許文献8は循環ラインに循環タンクと循環ポンプを設け、ろ液を取り出す動力としてヘッドタンクのヘッド圧を利用する技術であり、特許文献7と8はいずれも膜間流路内の原液の流速が0.5〜1.9m/secと低流速に規定している。これらの技術は、開枠洗浄回数を削減でき分解洗浄のわずらわしさを解消でき、運転動力費を低減できる効果がある。   In order to establish the flat membrane as a practical device, the present applicant has made extensive studies and proposed improved flat membrane filtration devices in Patent Document 7 and Patent Document 8. Patent Document 7 is a technique using a suction pump, not a circulation pump, as a power for taking out filtrate by providing a circulation tank and a circulation pump in the circulation line. Patent Document 8 provides a circulation tank and a circulation pump in the circulation line, This is a technology that uses the head pressure of the head tank as the power for taking out the filtrate. Both Patent Documents 7 and 8 specify a low flow rate of 0.5 to 1.9 m / sec for the stock solution in the intermembrane flow path. doing. These techniques have the effect of reducing the number of open frame cleanings, eliminating the hassle of disassembly cleaning, and reducing operating power costs.

更に本出願人は、特許文献9において、循環洗浄タンクからのオーバーフロー液量を絞り込むためのバルブによって循環洗浄タンクのヘッド圧に加えて、前記ろ液の取り出しエネルギーに加算しようとした技術を提案している。
特公昭52−10113号 特公昭53−3756号 特公昭57−7524号 特許第2538789号 特開昭55−86510号 特許第3160609号 特開平11−300168号 特開2000−5574号 特開2001−179056号
In addition, in the patent document 9, the present applicant proposed a technique for adding to the take-out energy of the filtrate in addition to the head pressure of the circulating cleaning tank by a valve for narrowing the overflow liquid amount from the circulating cleaning tank. ing.
Japanese Patent Publication No.52-10113 Japanese Patent Publication No.53-3756 Japanese Patent Publication No.57-7524 Japanese Patent No. 2538789 JP 55-86510 A Japanese Patent No. 3160609 JP-A-11-300188 JP 2000-5574 JP 2001-179056 A

特許文献9に記載の技術の特徴は、循環洗浄タンクを循環ポンプによる循環ラインの中に配置し、循環洗浄タンク内に循環液のオーバーフロー面の上部に空気相がある構成である。このような構成にしたのは、それ自体意味があることで、オーバーフロー面の上部を空気相(以下、単に「気相」ともいう)にして、一旦動的な圧力を開放して静圧にすることにより、循環洗浄タンクの液柱のヘッド圧を膜洗浄に利用する必要があったからであり、また所定の膜間流速を確保する必要があったからである。   The feature of the technique described in Patent Document 9 is a configuration in which a circulation washing tank is disposed in a circulation line by a circulation pump, and an air phase is present in the circulation washing tank above the overflow surface of the circulation liquid. The reason for this configuration is that it is meaningful in itself, and the upper part of the overflow surface is made into an air phase (hereinafter also simply referred to as “gas phase”), and the dynamic pressure is once released to static pressure. This is because it is necessary to use the head pressure of the liquid column of the circulating cleaning tank for the membrane cleaning, and it is necessary to secure a predetermined transmembrane flow rate.

しかし、オーバーフロー液の排出管の排出量を絞り込んで、上記のヘッド圧に加えて、圧力上昇させても、膜洗浄圧力は上昇しないという課題があった。   However, there has been a problem that even if the discharge amount of the overflow liquid discharge pipe is narrowed down and the pressure is increased in addition to the head pressure, the film cleaning pressure does not increase.

この原因を究明すべく鋭意検討の結果、以下のことが判明した。   As a result of intensive studies to investigate the cause, the following was found.

第1に、気相が存在すると、絞込みバルブで絞り込んだ圧縮力が空気圧縮のためにほとんど費やされ、膜洗浄に必要な圧力の上昇には寄与せず、十分な膜間流速が得られないことが判明した。また原液ポンプによる圧力もこの気相圧縮に費やされてしまい、動力コストがかかる欠点があることが判明した。   First, in the presence of the gas phase, the compression force squeezed by the squeezing valve is almost consumed for air compression, and does not contribute to the increase in pressure required for membrane cleaning, and a sufficient intermembrane flow velocity is obtained. Not found out. Further, it has been found that the pressure by the stock solution pump is also consumed for the gas phase compression, and there is a disadvantage that the power cost is high.

第2に、気相が存在すると、絞込みバルブで絞り込むと、循環液中に微細気泡が多量に発生し、その気泡が循環ポンプのキャビテーションを引き起こす問題があることが判明した。   Secondly, it has been found that when a gas phase is present, a large amount of fine bubbles are generated in the circulating liquid and the bubbles cause cavitation of the circulation pump when the gas is narrowed by a narrowing valve.

そこで、本発明の第1の課題は、透過水量の増加を図ると共にランニングコストを低下でき、開枠洗浄頻度を低下できる平膜ろ過装置及び平膜ろ過方法を提供することにある。   Then, the 1st subject of this invention is providing the flat membrane filtration apparatus and flat membrane filtration method which can aim at the increase in permeated water amount, can reduce running cost, and can reduce the frequency of open-frame washing | cleaning.

また本発明の第2の課題は、上記特許文献9の問題点を解決することを課題とし、絞込みバルブで絞り込む必要がなく、循環ラインに原液を供給する原液ポンプの圧力をそのまま効率的に膜洗浄の圧力として利用できる平膜ろ過装置及び平膜ろ過方法を提供することにある。   The second problem of the present invention is to solve the problem of the above-mentioned Patent Document 9, and it is not necessary to narrow down with a narrowing valve, and the pressure of the raw liquid pump that supplies the raw liquid to the circulation line can be efficiently reduced as it is. An object of the present invention is to provide a flat membrane filtration apparatus and a flat membrane filtration method that can be used as washing pressure.

更に本発明の他の課題は、以下の記載によって明らかとなる。   Furthermore, the other subject of this invention becomes clear by the following description.

上記課題は、以下の各発明によって解決される。   The above problems are solved by the following inventions.

(請求項1)
膜支持部材の両側面に平膜状の限外ろ過膜又は精密ろ過膜からなるろ過膜を固定した膜付き板を縦方向に並設してなり、且つ開枠洗浄可能な平膜装置と、
該平膜装置の原液入口と原液出口を結ぶ液封された循環配管と、
該循環配管の途中に設けられる循環ポンプと、
前記循環配管とは別に設けられ、前記ろ過膜を洗浄するための洗浄液を貯留する洗浄タンクと、
前記洗浄タンクから前記洗浄液を前記循環配管に供給して、前記ろ過膜の洗浄を可能にする洗浄配管と、
前記循環配管に原液を供給する原液ポンプとを有し、前記平膜装置の原液出口である膜出口に、前記循環ポンプの圧力に依存せずに、前記原液ポンプの圧力を加えて該平膜装置の操作圧力を増加する構成を有することを特徴とする平膜ろ過装置。
(Claim 1)
A flat membrane device in which membrane-attached plates are arranged in parallel in the vertical direction and fixed with a membrane filter made of a flat membrane-like ultrafiltration membrane or a microfiltration membrane on both sides of the membrane support member;
A liquid-sealed circulation pipe connecting the stock solution inlet and the stock solution outlet of the flat membrane device;
A circulation pump provided in the middle of the circulation pipe;
A cleaning tank that is provided separately from the circulation pipe and stores a cleaning liquid for cleaning the filtration membrane;
A cleaning pipe for supplying the cleaning liquid from the cleaning tank to the circulation pipe to enable cleaning of the filtration membrane;
A raw liquid pump for supplying the raw liquid to the circulation pipe, and applying the pressure of the raw liquid pump to the film outlet which is the raw liquid outlet of the flat membrane device without depending on the pressure of the circulating pump. A flat membrane filtration device characterized by having a configuration for increasing the operating pressure of the device.

(請求項2)
請求項1記載の平膜ろ過装置を用いてろ過する平膜ろ過方法であって、平膜装置の出口圧力を増加させる際に、前記循環ポンプの圧力に依存せずに、前記原液ポンプの圧力を加えて増加させることを特徴とする平膜ろ過方法。
(Claim 2)
It is a flat membrane filtration method filtered using the flat membrane filtration apparatus of Claim 1, Comprising: When increasing the outlet pressure of a flat membrane apparatus, it does not depend on the pressure of the said circulation pump, The pressure of the said undiluted | stock solution pump A flat membrane filtration method characterized by adding the amount to increase .

(請求項3)
請求項1記載の平膜ろ過装置を用いてろ過する平膜ろ過方法であって、平膜装置の出口圧力を増加させる際に、前記循環ポンプの圧力に依存せずに、前記原液ポンプの圧力を加えて増加させると共に、水洗浄を一定時間毎に行うことを特徴とする平膜ろ過方法。
(Claim 3)
It is a flat membrane filtration method filtered using the flat membrane filtration apparatus of Claim 1, Comprising: When increasing the outlet pressure of a flat membrane apparatus, it does not depend on the pressure of the said circulation pump, The pressure of the said undiluted | stock solution pump A flat membrane filtration method characterized by adding water and increasing water and performing water washing at regular intervals.

(請求項4)
請求項1記載の平膜ろ過装置を用いてろ過する平膜ろ過方法であって、平膜装置の出口圧力を増加させると共に、水洗浄を一定時間毎に行うことを特徴とする請求項2又は3記載の平膜ろ過方法。
(Claim 4)
A flat membrane filtration method for filtering using the flat membrane filtration device according to claim 1, wherein the outlet pressure of the flat membrane device is increased and water washing is performed at regular intervals. 3. The flat membrane filtration method according to 3.

本発明によると、透過水量の増加を図ることができる。単位面積当たりの透過水量は、従来の加圧式(後述する)に比べて約15%程度、循環式(後述する加圧循環式も含む)に比べて約30〜40%増加する。単位面積当たりの透過水量が増加することにより、必要膜面積が減少するので、大容量の透過水量必要時にも、膜モジュール数の低減も可能となる。即ち、設置面積の減少に繋がる。   According to the present invention, the amount of permeated water can be increased. The amount of permeated water per unit area is increased by about 15% compared to the conventional pressurization type (described later) and about 30-40% compared with the circulation type (including the pressurization circulation type described later). Since the required membrane area is reduced by increasing the amount of permeated water per unit area, the number of membrane modules can be reduced even when a large amount of permeated water is required. That is, the installation area is reduced.

また本発明によると、ランニングコストを低下できる。単位透過水量当たりのランニングコストが、従来の加圧式に比べて約50%、循環式に比べて約20〜30%低下できる。   Further, according to the present invention, the running cost can be reduced. The running cost per unit permeated water amount can be reduced by about 50% compared to the conventional pressure type, and about 20-30% compared with the circulation type.

更に本発明によると、循環配管(ライン)が全て液封された(気相部を無くす)ことにより、開枠洗浄頻度が循環式と比べ1回/1.5ヶ月から1回/3.5ヶ月と低下する。   Furthermore, according to the present invention, all the circulation pipes (lines) are liquid-sealed (the gas phase portion is eliminated), so that the open frame cleaning frequency is once / 1.5 months to once / 3.5 compared with the circulation type. Decreases with months.

更に水洗浄を一定時間毎に行なう回分式水洗浄システム導入と循環ラインが全て液封されたことにより更にこの効果は向上する。又、膜循環ラインに、従来別置きであった薬液タンクをモジュール内に組み込む事により、薬液タンクから膜モジュールに移送するポンプの削減、過剰な洗浄薬液の調合(薬液タンクが大きいため、過剰な洗浄薬品を調合していた)削減になる。   Furthermore, this effect is further improved by introducing a batch-type water washing system in which water washing is performed at regular intervals and all circulation lines are liquid-sealed. In addition, by incorporating a separate chemical tank in the module into the membrane circulation line, the number of pumps to be transferred from the chemical tank to the membrane module can be reduced, and excessive cleaning chemical liquid can be prepared (because the chemical tank is large. It was reduced)

以下、本発明の実施の形態について図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本発明に用いられる平膜装置の好ましい態様を図1に基づいて説明する。   A preferred embodiment of the flat membrane device used in the present invention will be described with reference to FIG.

平膜装置1は、所定間隔をおいて立設されたフレーム板101、102により開枠可能な側枠を構成し、このフレーム板101、102の間に複数の仕切り板103を並列的に設け、該フレーム板101、102の間を複数(図示例は7つ)のブロックS1、…S7に区画している。   The flat membrane device 1 constitutes a side frame that can be opened by frame plates 101 and 102 erected at predetermined intervals, and a plurality of partition plates 103 are provided in parallel between the frame plates 101 and 102. The frame plates 101 and 102 are divided into a plurality (seven in the illustrated example) of blocks S1,... S7.

この仕切り板103には上部又は下部に液の流通口104が形成され、この流通口104によって隣接するブロック同士が連絡されている。この仕切り板103は、隣接する仕切り板103で流通口104が上下交互に配置されるようにして、隣接するブロック内の液の流れが上向きと下向きとに交互に形成されるようにすることが好ましい。この仕切り板103によって区画される平膜装置1の各ブロックS内には、それぞれ膜付き板105が複数並設されている。   The partition plate 103 is formed with a liquid circulation port 104 in the upper part or the lower part, and adjacent blocks are connected to each other by the circulation port 104. The partition plate 103 may be configured such that the flow ports 104 are alternately arranged on the upper and lower sides of the adjacent partition plates 103 so that the liquid flow in the adjacent blocks is alternately formed upward and downward. preferable. In each block S of the flat membrane device 1 partitioned by the partition plate 103, a plurality of membrane-attached plates 105 are arranged in parallel.

上記膜付き板105は、上下端部近傍に開口106、107を形成した膜支持部材108と、その両側面に固定された平膜(ろ過膜)109とからなっており、該平膜109は上下の開口106、107にそれぞれ嵌着されたシールリング110、111によって膜支持部材108に固定されている。   The membrane-attached plate 105 includes a membrane support member 108 having openings 106 and 107 formed in the vicinity of upper and lower ends, and flat membranes (filtration membranes) 109 fixed on both side surfaces thereof. It is fixed to the membrane support member 108 by seal rings 110 and 111 fitted in the upper and lower openings 106 and 107, respectively.

上記膜支持部材108は板材によって形成され、その表面は断面波形の凹凸状に形成されている。平膜109は、この膜支持部材108の両側面において該膜支持部材108との間に若干の間隙を確保して平膜109を透過したろ液の排出部112を形成している。   The membrane support member 108 is formed of a plate material, and the surface thereof is formed in an uneven shape having a corrugated cross section. The flat membrane 109 forms a drainage portion 112 for the filtrate that has permeated through the flat membrane 109 while securing a slight gap between the flat membrane 109 and the membrane supporting member 108 on both side surfaces of the membrane supporting member 108.

113は膜支持部材108の下端に設けられたろ液の排出溝であり、それぞれヘッダー管6(図2参照)と連結し、ヘッダー管を介して外部に取り出し可能に構成されている。   Reference numeral 113 denotes a filtrate discharge groove provided at the lower end of the membrane support member 108, which is connected to the header pipe 6 (see FIG. 2) and can be taken out through the header pipe.

複数並設された膜付き板105同士の間、膜付き板105とフレーム板101,102の間及び膜付き板105と仕切り板103との間には、膜付き板105の外縁に沿ってパッキン114が設けられ、液の外部漏れを防止している。従って、平膜装置1は、側枠を構成するフレーム板101,102とパッキン114とによって水密状に形成されている。また同時に、パッキン114は隣接する膜付き板105同士、膜付き板105とフレーム板101,102との間及び膜付き板105と仕切り板103との間にそれぞれ原液或いは濃縮液が流れる膜間流路115を形成している。従って、この膜間流路115の間隔はパッキン114によって規制され、このパッキン114の厚みを調整することによって膜間流路115の間隔を調整することができる。この膜間流路115の間隔は、該流路の閉塞を防止する観点から1.5mm以上が好ましく、より好ましくは3.0mm以上である。上限は平膜装置1の体積効率のために8.0mm以下が好ましく、より好ましくは6.0mm以下である。更に、パッキン114は膜付き板105において膜支持部材108の両側面に平膜109の外縁を固定する機能も果たしている。   Packing is performed along the outer edge of the film-coated plate 105 between the multiple film-coated plates 105, between the film-coated plate 105 and the frame plates 101, 102, and between the film-coated plate 105 and the partition plate 103. 114 is provided to prevent external leakage of the liquid. Accordingly, the flat membrane device 1 is formed in a watertight manner by the frame plates 101 and 102 and the packing 114 constituting the side frame. At the same time, the packing 114 has an intermembrane flow in which an undiluted solution or a concentrated solution flows between adjacent plates 105 with membranes, between the plate with membranes 105 and the frame plates 101 and 102, and between the plate with membranes 105 and the partition plate 103. A path 115 is formed. Therefore, the distance between the intermembrane flow paths 115 is regulated by the packing 114, and the distance between the intermembrane flow paths 115 can be adjusted by adjusting the thickness of the packing 114. The distance between the intermembrane flow paths 115 is preferably 1.5 mm or more, and more preferably 3.0 mm or more from the viewpoint of preventing the blockage of the flow paths. The upper limit is preferably 8.0 mm or less, and more preferably 6.0 mm or less, for the volume efficiency of the flat membrane device 1. Further, the packing 114 also functions to fix the outer edge of the flat membrane 109 on both side surfaces of the membrane support member 108 in the membrane-equipped plate 105.

なお、平膜装置1におけるブロックSの区画数(仕切り板103の枚数+1)及び各ブロックS内に設けられる膜付き板105の枚数は、フラックスや処理量、後述する循環ポンプ3の容量等の諸条件を勘案して適宜決められる。   It should be noted that the number of blocks S in the flat membrane device 1 (number of partition plates 103 + 1) and the number of membrane-attached plates 105 provided in each block S are such as flux, throughput, capacity of the circulation pump 3 described later, and the like. It is decided as appropriate considering various conditions.

かかる平膜装置1には、一方のフレーム板102に原液を導入するための原液入口117が形成され、他方のフレーム板101に原液(濃縮液)を流出するための原液出口116が形成されている。   In the flat membrane device 1, a stock solution inlet 117 for introducing a stock solution into one frame plate 102 is formed, and a stock solution outlet 116 for flowing out the stock solution (concentrated solution) is formed in the other frame plate 101. Yes.

図1に示す平膜装置1は開枠洗浄が可能な構造を有している点に特徴があり、膜モジュール内のパッキンや枠体(フレーム)等を分解し、平膜109の表面を露出させ、スポンジ等で洗浄(開枠洗浄)することが可能である。   The flat membrane device 1 shown in FIG. 1 is characterized in that it has a structure that allows open-frame cleaning, and disassembles the packing and frame (frame) in the membrane module to expose the surface of the flat membrane 109. And cleaning with a sponge or the like (open frame cleaning).

次に、図2に基づいて、本発明の平膜ろ過装置について説明する。   Next, based on FIG. 2, the flat membrane filtration apparatus of this invention is demonstrated.

図2において、2は循環配管であり、その一端は原液入口117に連結され、他端は原液出口116に連結されている。   In FIG. 2, reference numeral 2 denotes a circulation pipe, one end of which is connected to the stock solution inlet 117, and the other end is connected to the stock solution outlet 116.

循環配管2は平膜装置1の内部から原液出口116を経由して外部に排出された原液(循環液)を、平膜装置1の外部を経由して原液入口117に送液して再度平膜装置1の内部に戻すように構成されている。   The circulation pipe 2 sends the stock solution (circulation fluid) discharged from the inside of the flat membrane device 1 to the outside via the stock solution outlet 116 to the stock solution inlet 117 via the outside of the flat membrane device 1 and then flattened again. It is configured to return to the inside of the membrane device 1.

循環配管2は、液封されており、内部に空気相は存在しない構成である。ここで液封というのは、特許文献9に示すような空気相が存在せず、循環配管2に掛かった圧力は配管内部のいずれの部位でも同じ圧力が掛かる(いわゆるパスカルの原理が作用する)ような構成を意味している。   The circulation pipe 2 is liquid-sealed and has a configuration in which no air phase is present inside. Here, the liquid seal means that there is no air phase as shown in Patent Document 9, and the pressure applied to the circulation pipe 2 is the same at any part inside the pipe (the so-called Pascal principle works). It means such a configuration.

循環配管2の途中には循環ポンプ3が設けられている。この循環ポンプ3は膜モジュールに必要な流量と楊程のみを確保すればよいので、低動力、低コスト化に寄与することができる。ポンプの形式は任意であるが、ラインポンプを用いることにより省スペース化が図れる。かかる循環ポンプ3は、循環配管2の途中に特許文献9のような空気相がなく、液封されているので、キャビテーションを起こすことはない。   A circulation pump 3 is provided in the middle of the circulation pipe 2. Since the circulation pump 3 only needs to secure a flow rate and a stroke required for the membrane module, it can contribute to low power and cost reduction. The form of the pump is arbitrary, but space can be saved by using a line pump. Since the circulation pump 3 does not have an air phase as in Patent Document 9 and is liquid-sealed in the middle of the circulation pipe 2, it does not cause cavitation.

4は前記循環配管2とは別に設けた洗浄タンクである。本発明では、特許文献9のように循環配管に洗浄タンクを設ける構成とは明らかに相違する。循環配管2とは別に設けた洗浄タンク4には、洗浄配管40が接続され、該洗浄配管40にはバルブ41が設けられている。洗浄液は、コスト低減の観点からは、処理水を用いることが好ましいが、水道水や工業用水などを用いてもよいし、また界面活性剤や洗剤などを含む洗浄液であってもよい。   A cleaning tank 4 is provided separately from the circulation pipe 2. In this invention, it differs clearly from the structure which provides a washing tank in circulation piping like patent document 9. FIG. A cleaning pipe 40 is connected to a cleaning tank 4 provided separately from the circulation pipe 2, and a valve 41 is provided in the cleaning pipe 40. As the cleaning liquid, it is preferable to use treated water from the viewpoint of cost reduction, but tap water, industrial water, or the like may be used, or a cleaning liquid containing a surfactant or a detergent may be used.

洗浄タンク4を循環配管2とは別に設けることにより、循環配管2の液封を完全に実現できる効果がある。   By providing the cleaning tank 4 separately from the circulation pipe 2, there is an effect that the liquid sealing of the circulation pipe 2 can be realized completely.

5は前記循環配管2に原液を供給する原液ポンプであり、膜間の洗浄に必要な圧力を原液ポンプ5の圧力により容易に補充できる。特許文献9のような空気相を有する循環洗浄タンク方式では、原液ポンプで加圧しようとしても空気の圧縮に供給圧力が取られてしまい、平膜装置を含む循環配管内を低動力で加圧することは不可能であった。これに対して本発明は、液封された循環配管2でクローズ化を実現しているので、循環配管2に限らず循環系のどこであっても原液ポンプ5の吐出部を接続して加圧することができる。このため原液ポンプ5の設置位置が自由になり、装置設計も容易になる効果がある。従来の加圧式の膜処理方式では循環ポンプを用いず、原液ポンプのみを用い、その原液ポンプの圧力を高くして処理圧力を高くしているが、この方式ではあくまでも膜装置の入口圧力を高くする以外になく、出口圧力を増加させて処理することは不可能である。ポンプの流量と圧力はポンプ自身の性能曲線上のワンポイントでの操作条件のため、ポンプを交換する以外に膜吐出圧力を変更することは不可能だからである。   Reference numeral 5 denotes a stock pump for supplying the stock solution to the circulation pipe 2, and the pressure required for cleaning between the membranes can be easily replenished by the pressure of the stock solution pump 5. In the circulating cleaning tank system having an air phase as in Patent Document 9, even if an attempt is made to pressurize with a stock solution pump, the supply pressure is taken to compress the air, and the inside of the circulating pipe including the flat membrane device is pressurized with low power. It was impossible. On the other hand, since the present invention realizes the closing with the liquid-sealed circulation pipe 2, not only the circulation pipe 2 but also anywhere in the circulation system connects and pressurizes the discharge part of the stock solution pump 5. be able to. For this reason, the installation position of the stock solution pump 5 becomes free, and there is an effect that the apparatus design becomes easy. In the conventional pressurization type membrane treatment method, only the stock solution pump is used without using the circulation pump, and the treatment pressure is increased by increasing the pressure of the stock solution pump. However, in this method, the inlet pressure of the membrane device is only increased. In addition, it is impossible to increase the outlet pressure for processing. This is because the flow rate and pressure of the pump are operating conditions at one point on the performance curve of the pump itself, and it is impossible to change the membrane discharge pressure other than replacing the pump.

更に、本発明ではパスカルの原理が適用できるクローズ化を実現しているので、循環系の一部を加圧するだけで、装置全体の操作圧力を上昇できる効果がある。   Further, the present invention realizes the closing that can apply the principle of Pascal, so that the operation pressure of the entire apparatus can be increased only by pressurizing a part of the circulation system.

なお、図2において、6は処理液を取り出すヘッダー管、60は処理液配管である。   In FIG. 2, 6 is a header pipe for taking out the processing liquid, and 60 is a processing liquid pipe.

本発明に用いられる平膜は、限外ろ過膜、精密ろ過膜等のいずれでもよい。   The flat membrane used in the present invention may be either an ultrafiltration membrane or a microfiltration membrane.

本発明において、原液としては、例えば生物処理の反応槽内の汚泥、反応槽から移送されてきた汚泥又はそれらの濃縮汚泥、生物処理前のし尿廃水、凝集剤添加による凝集反応液又はその反応液を沈殿槽で分離した濃縮汚泥及びその上澄み液等が挙げられる。また、本発明は、廃水の再利用、有価物の回収、雨水の利用、各種分離濃縮、各種分離濃縮精製等にも適用できる。従って、かかる目的を達成する範囲で、本発明の原液には各種原液が含まれる。   In the present invention, as the raw solution, for example, sludge in a biological treatment tank, sludge transferred from the reaction tank or concentrated sludge thereof, human waste before biological treatment, agglutination reaction liquid by adding a flocculant or reaction liquid thereof Concentrated sludge separated by a sedimentation tank and its supernatant. The present invention can also be applied to reuse of wastewater, recovery of valuable materials, use of rainwater, various separation and concentration, various separation and concentration purification, and the like. Therefore, various stock solutions are included in the stock solution of the present invention as long as the object is achieved.

上記実施の形態では、膜支持部材108として表面に凹凸を有する板材を用いた場合について説明したが、これに限定されず、膜支持部材がポーラス構造の板材であってもよいし、膜支持部材が合成繊維製の板材であってもよい。   In the above-described embodiment, the case where a plate material having irregularities on the surface is used as the membrane support member 108 is not limited to this, and the membrane support member may be a porous plate material, or the membrane support member May be a plate made of synthetic fiber.

次に、本発明に係るクローズ式の平膜ろ過装置の特徴を更に説明する。   Next, the features of the closed flat membrane filtration device according to the present invention will be further described.

平膜式の膜ろ過装置においては、(1)単位面積当たりの透過水量の増加、(2)ランニングコスト低減、(3)回分式水洗浄システム導入による開枠洗浄頻度の減少が重要な課題である。   In the flat membrane type membrane filtration device, (1) increase of permeated water per unit area, (2) reduction of running cost, and (3) reduction of open frame cleaning frequency by introduction of batch type water cleaning system are important issues. is there.

先ず、単位面積当たりの透過水量の増加について見ると、出願人の実験及び運転データより、平膜ろ過装置の操作影響因子は、a.操作圧力、b.膜間隔、c.処理液の密度、粘度、温度、d.膜表面流速であることが判明している。以上のことを、透過水量と上記因子及び次元解析のπ定理から解析を行うと以下の関係が得られる。下記式は、化学装置(1987年8月号)に記載されている「膜型バイオリアクタの水処理への応用」(金山喜彦著)を引用した。   First, looking at the increase in the amount of permeate per unit area, from the applicant's experiment and operation data, the operation influencing factors of the flat membrane filtration device are: a. Operating pressure, b. Membrane spacing, c. Processing solution density, viscosity, temperature, d. It has been found that the membrane surface flow rate. When the above is analyzed from the permeated water amount, the above factors, and the π theorem of dimensional analysis, the following relationship is obtained. The following formula quoted “Application of membrane bioreactor to water treatment” (by Yoshihiko Kanayama) described in Chemical Equipment (August 1987).

F/u = K ×(d×u×ρ/μ)(x)×(P/(u2×ρ))(y) ----------KANAYAMAの式 F / u = K × (d × u × ρ / μ) (x) × (P / (u 2 × ρ)) (y) ---------- KANAYAMA formula

ここで、F:透過流束、K:定数、u:膜表面流速、d:管径(又は相当管径)、ρ:流体密度、μ:流体粘度、P:平均操作圧力である。   Here, F: permeation flux, K: constant, u: membrane surface flow velocity, d: pipe diameter (or equivalent pipe diameter), ρ: fluid density, μ: fluid viscosity, P: average operating pressure.

上式の内、定数K、右辺の乗数xとyが、平膜ろ過装置及び運転条件により決定される数値である。定数Kは、流体の物性が一定であれば、平膜ろ過装置固有の数値であり、乗数xとyは、操作条件と流体の物性により算出されるもので、本出願人は、運転・実験データよりK値、x値、y値は、K値:1×10−8〜1×10−6、x値:0.2〜0.8(中間値:0.5)、y値:0.1〜0.7(中間値:0.4)である場合に好ましいことを見出している。従って、上記値は制御因子として使用可能である。 Among the above equations, the constant K and the multipliers x and y on the right side are numerical values determined by the flat membrane filtration device and the operating conditions. The constant K is a numerical value unique to a flat membrane filter if the physical properties of the fluid are constant. The multipliers x and y are calculated based on the operating conditions and the physical properties of the fluid. From the data, K value, x value, y value are K value: 1 × 10 −8 to 1 × 10 −6 , x value: 0.2 to 0.8 (intermediate value: 0.5), y value: 0 .1 to 0.7 (intermediate value: 0.4). Therefore, the above value can be used as a control factor.

次に、透過流束確保の操作因子について見ると、上記KANAYAMAの式から、本発明に係る平膜ろ過装置における透過流束は、流速に対して(1+x−2y)の乗数に比例し、圧力はyの乗数に比例する。   Next, regarding the operation factor for securing the permeation flux, the permeation flux in the flat membrane filtration apparatus according to the present invention is proportional to the multiplier of (1 + x-2y) with respect to the flow velocity, and the pressure is determined from the above KANAYAMA equation. Is proportional to the multiplier of y.

即ち、流速の乗数範囲は、−0.2〜1.6であり、圧力の乗数範囲は、0.1〜0.7の範囲となる。   That is, the multiplier range of the flow velocity is −0.2 to 1.6, and the multiplier range of the pressure is 0.1 to 0.7.

従来、透過流束水確保のために、膜表面に発生するゲル物質の除去や発生抑制及び膜の目詰まり防止を第一としたため、膜表面流速に留意してきている。しかし、上式と乗数範囲からわかるように、流速の乗数がマイナスになることもあるため、流速を増加させることは、必ずしも透過流束を増加させることにはならない。透過流束を増加させるために、もう一つの制御因子である操作圧力を増加させることに着目することが重要であることを見出した。   Conventionally, in order to secure permeate flux water, the removal of gel material generated on the membrane surface, suppression of generation, and prevention of clogging of the membrane have been made first, so attention has been paid to the membrane surface flow velocity. However, as can be seen from the above equation and the multiplier range, the multiplier of the flow velocity may be negative, so increasing the flow velocity does not necessarily increase the permeation flux. In order to increase the permeation flux, it was found important to focus on increasing the operating pressure, which is another control factor.

次に、透過流束と操作圧力について図3に基づいて説明する。図3は、横軸に圧力、縦軸に透過流束の関係をグラフ化したものである。   Next, the permeation flux and the operating pressure will be described with reference to FIG. FIG. 3 is a graph showing the relationship between pressure on the horizontal axis and permeation flux on the vertical axis.

透過流束は、上記で述べたように、圧力の0.1〜0.7乗に比例する。膜装置としての透過水量は、図3のグラフにおける曲線の下部面積の合計(積算)となる。   As described above, the permeation flux is proportional to the power of 0.1 to 0.7. The amount of permeated water as the membrane device is the total (integrated) of the area under the curve in the graph of FIG.

図3のグラフでは、圧力損失が一定のΔPを有する斜線部Aと、斜線部Bが示され、透過水量を増加させるには、斜線部A側で操作する、つまり高圧側で操作する方が、透過水量の増加になる。言い替えれば、膜面積が同じであれば、操作圧力が大きいほど透過水量は増加する。   In the graph of FIG. 3, a hatched portion A and a hatched portion B having a constant pressure loss ΔP are shown, and in order to increase the amount of permeated water, it is better to operate on the shaded portion A side, that is, operate on the high pressure side. The amount of permeate will increase. In other words, if the membrane area is the same, the amount of permeate increases as the operating pressure increases.

従来の図4(A)に示す加圧式では、この操作圧力の増加は不可能である。この加圧式システムは原液タンク10から原液ポンプ11で原液を平膜装置1に送り、ろ過し、ろ液は外部に取り出し、ろ過されない原液は濃縮液として再度原液タンク10に戻される。   In the conventional pressurization type shown in FIG. 4A, this increase in operating pressure is impossible. In this pressurization type system, the stock solution is sent from the stock solution tank 10 to the flat membrane device 1 by the stock solution pump 11 and filtered, the filtrate is taken out to the outside, and the unfiltered stock solution is returned to the stock solution tank 10 again as a concentrated solution.

この加圧式のろ過システムでは、本発明の平膜装置1(膜面積は約38m2)を用いた場合、原液ポンプ11の動力は37kwのものが使用され、ろ液として60L/m・hrが得られる。 In this pressurization type filtration system, when the flat membrane device 1 of the present invention (membrane area is about 38 m 2 ) is used, the power of the stock pump 11 is 37 kw, and the filtrate is 60 L / m 2 · hr. Is obtained.

このシステムでは平膜装置1の出口は開放されているので、操作圧力の増加はできない。原液ポンプ11の能力(圧力と流量)を増加させようとしても、流量しか増加しないからである。   In this system, since the outlet of the flat membrane device 1 is open, the operating pressure cannot be increased. This is because even if the capacity (pressure and flow rate) of the stock solution pump 11 is increased, only the flow rate is increased.

したがって、操作圧力を上げるには、平膜装置出口側の圧力を増加せることが考えられ、従来、平膜装置出口圧力を上昇させる方法としては、膜出口に絞り込み機構を有した機器(例:弁)を設置する加圧循環式(特許文献9、図4(B))が本出願人によって提案されている。   Therefore, to increase the operating pressure, it is conceivable to increase the pressure on the flat membrane device outlet side. Conventionally, as a method of increasing the flat membrane device outlet pressure, a device having a narrowing mechanism at the membrane outlet (example: A pressure circulation type (Patent Document 9, FIG. 4B) in which a valve is installed has been proposed by the present applicant.

図4(B)のように、原液タンク10から原液ポンプ12で原液を循環タンク13に送る。原液は循環タンク13から平膜装置1に送られろ過される。ろ過されない原液は濃縮液として再度循環タンク13に戻される。循環タンク13は大気開放になっており、オーバーフロー液は原液タンク10に戻される。14は絞り弁である。   As shown in FIG. 4B, the stock solution is sent from the stock solution tank 10 to the circulation tank 13 by the stock solution pump 12. The stock solution is sent from the circulation tank 13 to the flat membrane device 1 and filtered. The unfiltered stock solution is returned again to the circulation tank 13 as a concentrate. The circulation tank 13 is open to the atmosphere, and the overflow liquid is returned to the stock solution tank 10. 14 is a throttle valve.

この循環式のろ過システムでは、本発明の平膜装置1(膜面積は約38m2)を用いた場合、原液ポンプ12の動力は3.7kw、循環ポンプの動力は15kwであり、ろ液として55L/m2・hrが得られる。 In this circulation type filtration system, when the flat membrane device 1 of the present invention (membrane area is about 38 m 2 ) is used, the power of the stock solution pump 12 is 3.7 kw and the power of the circulation pump is 15 kw. 55 L / m 2 · hr is obtained.

しかし、このシステムでは前述のように、空気相15の存在により操作圧力の調整が難しい欠点がある。   However, as described above, this system has a drawback that it is difficult to adjust the operation pressure due to the presence of the air phase 15.

これに対して、図4(C)に示すような本発明では、パスカルの原理が適用可能なクローズ化を実現して膜出口を加圧することが容易になった。   On the other hand, in the present invention as shown in FIG. 4C, it has become easy to pressurize the membrane outlet by realizing the closing to which the Pascal principle can be applied.

膜出口圧力を増加させるために、本発明では、原液ポンプ5の圧力(吐出圧)を加圧装置として利用することにより、平膜ろ過装置の操作圧力増加を図ることができる。即ち、原液ポンプ5の圧力(吐出圧)を絶えず、膜出口に加えることにより、平膜ろ過装置操作圧力の増加を図る。   In order to increase the membrane outlet pressure, in the present invention, the operating pressure of the flat membrane filtration device can be increased by using the pressure (discharge pressure) of the stock solution pump 5 as a pressurizing device. That is, by constantly applying the pressure (discharge pressure) of the stock solution pump 5 to the membrane outlet, the operation pressure of the flat membrane filtration device is increased.

次に、ランニングコスト低減について言及する。運転費用の中で、大きなウエイトを占める電気代は、膜廻りのポンプの動力代である。従来、膜装置廻りポンプの役割は、原液タンクから膜装置への供給、膜表面に発生するゲル物質の除去や発生抑制及び膜の目詰まり防止を行うための循環用の2つがある。それぞれの役割毎にポンプを設置することにより動力の低減を行うことができる。   Next, the running cost reduction will be mentioned. The electricity cost that occupies a large part of the operating cost is the power cost of the pump around the membrane. Conventionally, there are two roles of the pumps around the membrane device: supply from the stock solution tank to the membrane device, removal and suppression of gel substances generated on the membrane surface, and circulation for preventing clogging of the membrane. Power can be reduced by installing a pump for each role.

即ち、原液ポンプは必要透過水量の数倍の液量を移送し、循環用ポンプは必要透過水量の数十倍の液量を循環している。   That is, the stock solution pump transfers a liquid amount several times the required permeated water amount, and the circulation pump circulates a liquid amount several tens of times the required permeated water amount.

膜出口圧力を増加させるために、増加分の圧力を循環ポンプに依存する場合と、原液ポンプに依存する場合の動力を比較すると、本発明のように原液ポンプに依存する場合の方が約10倍程度動力費が低減する。増加分の動力kwは流量Qと圧力Pの積から算出される(kw∝Q×P)。従って、原液ポンプと循環ポンプの加算圧力は同じなので、動力の差はその流量の差によって決定されることになる。上述のように、循環ポンプの流量を10とすれば、原液ポンプの流量は1程度であるので、増加する動力の差は約10倍程となる。   In order to increase the membrane outlet pressure, the power when the increased pressure depends on the circulation pump and the power when the pressure depends on the stock pump is compared, and the case where the pressure depends on the stock pump as in the present invention is about 10%. The power cost is reduced by about twice. The increased power kw is calculated from the product of the flow rate Q and the pressure P (kw∝Q × P). Accordingly, since the added pressure of the stock solution pump and the circulation pump is the same, the difference in power is determined by the difference in flow rate. As described above, if the flow rate of the circulation pump is 10, the flow rate of the stock solution pump is about 1, so the difference in power that increases is about 10 times.

即ち、循環ポンプに、必要膜出口圧力分を加算した圧力を加える場合と、原液ポンプにて必要膜出口圧力分を加算した圧力を加える場合は、その動力費は移送液量分の差が生じることになる(約10倍の差)ので、本発明の方法は大幅な動力低減を可能にしている。   That is, when applying a pressure that adds the required membrane outlet pressure to the circulation pump, and when adding a pressure that adds the required membrane outlet pressure to the stock pump, the power cost differs by the amount of the transferred liquid. As such (the difference of about 10 times), the method of the present invention allows a significant power reduction.

原液ポンプの圧力を効率よく膜出口に伝達するために、循環配管2に気相部(空気ゾーン)を無くすことが重要である。気相部が存在すれば、気相(空気)が緩衝材と同じ役割を果たすため、原液ポンプの圧力が全て伝達することが困難となることは前述した。   In order to efficiently transmit the pressure of the stock solution pump to the membrane outlet, it is important to eliminate the gas phase portion (air zone) in the circulation pipe 2. As described above, if the gas phase portion exists, the gas phase (air) plays the same role as the buffer material, so that it is difficult to transmit all the pressure of the stock solution pump.

次に、回分式水洗浄システム導入による開枠洗浄頻度の減少について言及する。従来、膜装置の洗浄は、水洗浄、薬液洗浄、開枠洗浄の3方法で対応してきた。膜装置の洗浄は、膜表面のゲル物質、濃縮物、膜間の固形物除去を行うために、まず水洗浄で対応し、それでも満足しなければ、薬液洗浄、開枠洗浄の順で行っている。水洗浄と薬液洗浄については、別途洗浄装置(又は薬液洗浄装置)を設置して対応してきた。洗浄を行う目安は、膜装置の圧力損失や透過水量の減少を確認して行ってきたが、その時には、既に、膜表面に濃縮物や膜間の固形物が堆積し、水洗浄や薬品洗浄では対応困難であった。従って、その都度、開枠洗浄を行う必要があった。   Next, mention will be made of the reduction in the frequency of open frame cleaning due to the introduction of a batch water cleaning system. Conventionally, the membrane apparatus has been cleaned by three methods: water cleaning, chemical cleaning, and open frame cleaning. In order to remove the gel material, concentrate, and solid matter between the membranes, the membrane device should be washed with water first, and if that is not satisfactory, the chemical solution cleaning and the open frame cleaning are performed in this order. Yes. Water cleaning and chemical cleaning have been handled by installing a separate cleaning device (or chemical cleaning device). The guideline for cleaning has been to confirm the pressure loss of the membrane device and the decrease in the amount of permeated water. At that time, concentrate and solid matter between the membranes have already accumulated on the membrane surface, and water cleaning and chemical cleaning It was difficult to deal with. Therefore, it was necessary to perform open frame cleaning each time.

本発明では、循環配管(ライン)の液封を行っているので、膜循環ラインが全て液封された(気相部を無くす)ことにより、水洗浄時の空気混入による水洗浄の不徹底の改善(空気混入により、見かけの洗浄水量の減少)が図られた。   In the present invention, since the circulation piping (line) is liquid-sealed, all the membrane circulation lines are liquid-sealed (the gas phase portion is eliminated), so that water washing due to air mixing during water washing is incomplete. Improvement (decrease in apparent washing water volume due to aeration) was achieved.

また本発明では、開枠洗浄頻度を少なくするために、水洗浄を一定時間毎に行う回分式水洗浄が好ましい。膜目詰まり初期である、濃縮によるゲル物質発生を抑制することができるので、膜表面での濃縮物や膜間の固形物が堆積するのに費やす時間が長くなり、この事により、膜装置の圧力損失の増加や透過水量の減少する時間が長くなる。従って、開枠洗浄頻度が循環式と比べ1回/1.5ヶ月から1回/3.5ヶ月と低下する。   In the present invention, in order to reduce the frequency of open frame cleaning, batch-type water cleaning in which water cleaning is performed at regular intervals is preferable. Since the generation of gel material due to concentration, which is the initial stage of film clogging, can be suppressed, the time spent for the accumulation of the concentrate on the film surface and the solid matter between the films becomes longer. Increase in pressure loss and decrease in the amount of permeated water are prolonged. Therefore, the open frame cleaning frequency is reduced from once / 1.5 months to once / 3.5 months compared with the circulation type.

以下、実施例により本発明を更に詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

実施例1
図2に示す平膜ろ過装置(図4(C)のクローズ式)を用い、生物処理(高負荷脱窒処理)汚泥を用いて平膜処理試験を行った。
Example 1
Using the flat membrane filtration apparatus shown in FIG. 2 (closed type in FIG. 4C), a flat membrane treatment test was conducted using biological treatment (high load denitrification treatment) sludge.

また比較のために以下の各タイプの試験も行なった。   For comparison, the following types of tests were also conducted.

比較1:図4(A)に示す加圧式
比較2:特許文献6(特許第3160609号)に記載の散気式
比較3:図4(B)において、絞り弁15を設けない循環式
比較4:図4(B)に示す加圧循環式
Comparison 1: Pressurization method shown in FIG. 4 (A) Comparison 2: Air diffusion method described in Patent Document 6 (Patent No. 3160609) Comparison 3: Circulation method without throttle valve 15 in FIG. 4 (B) Comparison 4 : Pressurized circulation system shown in FIG.

各膜ろ過装置の膜装置仕様(膜面積、膜枚数、膜構成)、ポンプ動力(原液ポンプ、循環ポンプ、吸引ポンプ)、散気用ブロアの動力、設備動力合計、運転動力、透過水量、フラックス、処理量当りの動力、最短開枠洗浄頻度、積算透過水量、設計フラックス×開枠洗浄期間、運転データフラックス×開枠洗浄期間、フラックスの比較、処理量当りの動力比較を各々表1に示す。   Membrane device specifications (membrane area, number of membranes, membrane configuration) of each membrane filtration device, pump power (raw liquid pump, circulation pump, suction pump), power of air blower, total equipment power, operating power, permeated water, flux Table 1 shows the power per processing amount, the shortest open frame cleaning frequency, the integrated permeate flow rate, the design flux x open frame cleaning period, the operation data flux x the open frame cleaning period, the flux comparison, and the power comparison per processing amount. .

Figure 0005550205
Figure 0005550205

表1より、本発明のクローズ式平膜ろ過装置は、単位面積当たりの透過水量は、従来の加圧式(比較1)に比べて約15%程度増加し、循環式(後述する加圧循環式も含む、比較3,4)に比べて約30〜40%増加していることがわかる。   From Table 1, the closed flat membrane filtration device of the present invention has a permeated water amount per unit area increased by about 15% compared to the conventional pressurization type (Comparative 1), and the circulation type (pressurization circulation type described later) It can be seen that there is an increase of about 30 to 40% in comparison with Comparative Examples 3 and 4).

また本発明のクローズ式平膜ろ過装置は、処理量(単位透過水量)当たりの動力(ランニングコスト)が、従来の加圧式に比べて約50%、循環式に比べて約20〜30%低下していることがわかる。   In addition, the closed flat membrane filtration device of the present invention has a power (running cost) per throughput (unit permeate amount) that is about 50% lower than the conventional pressure type and about 20-30% lower than the circulation type. You can see that

更に本発明によると、循環配管(ライン)が全て液封された(気相部を無くす)ことにより、運転データフラックス×開枠洗浄期間が352800と非常に高く、比較1〜4と比べ、開枠洗浄を長い間せずに高いフラックスを維持できていることがわかる。   Furthermore, according to the present invention, all the circulation pipes (lines) are liquid-sealed (the gas phase portion is eliminated), so that the operation data flux × the open frame cleaning period is very high at 352800, which is higher than that of comparisons 1 to 4. It can be seen that a high flux can be maintained without performing frame cleaning for a long time.

実施例2
実施例1において、本発明のクローズ式平膜ろ過装置が開枠洗浄回数を減少できることを実証するために、各方式において、運転日数と運転フラックスの関係を調べた。開枠洗浄は所定の運転フラックスを維持できない時点を行った。その結果を図5に示す。なお、図5において、開枠洗浄時期は○印で示した。
Example 2
In Example 1, in order to demonstrate that the closed flat membrane filtration apparatus of the present invention can reduce the number of open frame cleanings, the relationship between the number of operating days and the operating flux was examined in each method. The open frame cleaning was performed at a time when the predetermined operation flux could not be maintained. The result is shown in FIG. In FIG. 5, the open frame cleaning time is indicated by a circle.

図5に示す結果から明らかなように、本発明によると、開枠洗浄頻度が循環式と比べ1回/1.5ヶ月から1回/3.5ヶ月と低下することがわかる。   As is apparent from the results shown in FIG. 5, according to the present invention, it is understood that the open frame cleaning frequency is reduced from once / 1.5 months to once / 3.5 months as compared with the circulation type.

平膜装置を示す基本構成図Basic configuration diagram showing a flat membrane device 本発明の平膜ろ過装置を示す説明図Explanatory drawing which shows the flat membrane filtration apparatus of this invention 透過流束と操作圧力の関係を示すグラフGraph showing the relationship between permeation flux and operating pressure 従来装置と本発明装置を対比説明する図Diagram for comparing the conventional apparatus and the present invention apparatus 運転日数と運転フラックスの関係を示すグラフGraph showing the relationship between operating days and operating flux

符号の説明Explanation of symbols

1:平膜装置
101、102:フレーム板
103:仕切り板
104:流通口
105:膜付き板
106,107:開口
108:膜支持部材
109:平膜(ろ過膜)
110、111:シールリング
112:ろ液の排出部
113:ろ液の排出溝
114:パッキン
115:膜間流路
116:原液出口
117:原液入口
2:循環配管
3:循環ポンプ
4:洗浄タンク
40:配管
41:バルブ
5:原液ポンプ
6:ヘッダー管
60:処理液配管
1: Flat membrane device 101, 102: Frame plate 103: Partition plate 104: Distribution port 105: Plate with membrane 106, 107: Opening 108: Membrane support member 109: Flat membrane (filtration membrane)
110, 111: Seal ring 112: Filtrate discharge part 113: Filtrate discharge groove 114: Packing 115: Intermembrane flow path 116: Stock solution outlet
117: Stock solution inlet 2: Circulation piping 3: Circulation pump 4: Cleaning tank 40: Piping 41: Valve 5: Stock solution pump 6: Header tube 60: Treatment solution piping

Claims (3)

膜支持部材の両側面に平膜状の限外ろ過膜又は精密ろ過膜からなるろ過膜を固定した膜付き板を縦方向に並設してなり、且つ開枠洗浄可能な平膜装置と、
該平膜装置の原液入口と原液出口を結ぶ液封された循環配管と、
該循環配管の途中に設けられる循環ポンプと、
前記循環配管とは別に設けられ、前記ろ過膜を洗浄するための洗浄液を貯留する洗浄タンクと、
前記洗浄タンクから前記洗浄液を前記循環配管に供給して、前記ろ過膜の洗浄を可能にする洗浄配管と、
前記循環配管に原液を供給する原液ポンプとを有し、前記平膜装置の原液出口である膜出口に、前記循環ポンプの圧力に依存せずに、前記原液ポンプの圧力を加えて該平膜装置の操作圧力を増加する構成を有することを特徴とする平膜ろ過装置。
A flat membrane device in which membrane-attached plates are arranged in parallel in the vertical direction and fixed with a membrane filter made of a flat membrane-like ultrafiltration membrane or a microfiltration membrane on both sides of the membrane support member;
A liquid-sealed circulation pipe connecting the stock solution inlet and the stock solution outlet of the flat membrane device;
A circulation pump provided in the middle of the circulation pipe;
A cleaning tank that is provided separately from the circulation pipe and stores a cleaning liquid for cleaning the filtration membrane;
A cleaning pipe for supplying the cleaning liquid from the cleaning tank to the circulation pipe and allowing the filtration membrane to be cleaned;
A raw liquid pump for supplying the raw liquid to the circulation pipe, and applying the pressure of the raw liquid pump to the film outlet which is the raw liquid outlet of the flat membrane device without depending on the pressure of the circulating pump. A flat membrane filtration device characterized by having a configuration for increasing the operating pressure of the device.
請求項1記載の平膜ろ過装置を用いてろ過する平膜ろ過方法であって、平膜装置の出口圧力を増加させる際に、前記循環ポンプの圧力に依存せずに、前記原液ポンプの圧力を加えて増加させることを特徴とする平膜ろ過方法。 It is a flat membrane filtration method filtered using the flat membrane filtration apparatus of Claim 1, Comprising: When increasing the outlet pressure of a flat membrane apparatus, it does not depend on the pressure of the said circulation pump, The pressure of the said undiluted | stock solution pump A flat membrane filtration method characterized by adding the amount to increase . 請求項1記載の平膜ろ過装置を用いてろ過する平膜ろ過方法であって、平膜装置の出口圧力を増加させる際に、前記循環ポンプの圧力に依存せずに、前記原液ポンプの圧力を加えて増加させると共に、水洗浄を一定時間毎に行うことを特徴とする平膜ろ過方法。 It is a flat membrane filtration method filtered using the flat membrane filtration apparatus of Claim 1, Comprising: When increasing the outlet pressure of a flat membrane apparatus, it does not depend on the pressure of the said circulation pump, The pressure of the said undiluted | stock solution pump A flat membrane filtration method characterized by adding water and increasing water and performing water washing at regular intervals.
JP2006145941A 2006-05-25 2006-05-25 Flat membrane filtration device and flat membrane filtration method Active JP5550205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006145941A JP5550205B2 (en) 2006-05-25 2006-05-25 Flat membrane filtration device and flat membrane filtration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006145941A JP5550205B2 (en) 2006-05-25 2006-05-25 Flat membrane filtration device and flat membrane filtration method

Publications (2)

Publication Number Publication Date
JP2007313430A JP2007313430A (en) 2007-12-06
JP5550205B2 true JP5550205B2 (en) 2014-07-16

Family

ID=38847775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006145941A Active JP5550205B2 (en) 2006-05-25 2006-05-25 Flat membrane filtration device and flat membrane filtration method

Country Status (1)

Country Link
JP (1) JP5550205B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108525522B (en) * 2018-06-20 2023-11-10 邢传宏 Support element for flat membrane element and flat membrane element

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55152504A (en) * 1979-05-16 1980-11-27 Ishikawajima Harima Heavy Ind Co Ltd Concentrator for liquid by inverse permeable membrane
JPS6186903A (en) * 1984-10-03 1986-05-02 Asahi Chem Ind Co Ltd Ultrafiltration apparatus
JP2827877B2 (en) * 1994-01-13 1998-11-25 電源開発株式会社 Membrane separation device and cleaning method thereof
JP4235330B2 (en) * 1999-12-22 2009-03-11 三井造船環境エンジニアリング株式会社 Membrane treatment method
RU2338433C2 (en) * 2004-02-18 2008-11-20 Бухер Гиер АГ Method of product diafiltration and device for implementation of method

Also Published As

Publication number Publication date
JP2007313430A (en) 2007-12-06

Similar Documents

Publication Publication Date Title
Bilad et al. Low-pressure submerged membrane filtration for potential reuse of detergent and water from laundry wastewater
JP3446399B2 (en) Immersion type membrane separation device and membrane separation method using the same
JPH03154620A (en) Membrane separating device
JP5803293B2 (en) Air diffuser
JP7175636B2 (en) Scrubber wastewater purification device and method, and salinity concentration difference power generation system
US5651889A (en) Sludge treatment membrane apparatus
US20110192794A1 (en) Advanced filtration device for water and wastewater treatment
RU2314864C2 (en) Filtering device made in the form of the hollow fiber diaphragm and the filtering device application at purification of the sewage waters and also in the diaphragm bioreactor
JPS61129094A (en) Apparatus for treating membrane
WO2011052525A1 (en) Membrane module, membrane unit, and membrane separation device
US6224766B1 (en) Membrane treatment method and membrane treatment apparatus
US20110263009A1 (en) Method for the filtration of a bioreactor liquid from a bioreactor; cross-flow membrane module, and bioreactor membrane system
JP5550205B2 (en) Flat membrane filtration device and flat membrane filtration method
KR101031673B1 (en) Stacked membrane filtration system and stacking method thereof
JP3659833B2 (en) Operation method of multi-stage submerged membrane separator
AU2005311248B2 (en) Filtering system for water and waste water
JP2010046561A (en) Sludge dehydrating and concentrating method and apparatus thereof
KR20220034869A (en) Systems and methods for transporting submerged membrane units
JP2016172238A (en) Desalination method, cleaning method of desalination apparatus, and desalination apparatus
JP2922059B2 (en) Operating method of hollow fiber membrane filter
JP2007185660A (en) Method and apparatus for treating organic waste water
JP2005046762A (en) Water treatment method and water treatment apparatus
JPH11300168A (en) Membrane treatment and membrane treating apparatus
JP2013252478A (en) Treatment method and treatment device of oil component-containing drainage
JP4235330B2 (en) Membrane treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140520

R150 Certificate of patent or registration of utility model

Ref document number: 5550205

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350