JP5548971B2 - Thermoplastic organic-inorganic hybrid material - Google Patents

Thermoplastic organic-inorganic hybrid material Download PDF

Info

Publication number
JP5548971B2
JP5548971B2 JP2008530856A JP2008530856A JP5548971B2 JP 5548971 B2 JP5548971 B2 JP 5548971B2 JP 2008530856 A JP2008530856 A JP 2008530856A JP 2008530856 A JP2008530856 A JP 2008530856A JP 5548971 B2 JP5548971 B2 JP 5548971B2
Authority
JP
Japan
Prior art keywords
acrylate
meth
hybrid material
group
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008530856A
Other languages
Japanese (ja)
Other versions
JPWO2008023581A1 (en
Inventor
保治 山田
賢一 長良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidek Co Ltd
Original Assignee
Nidek Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidek Co Ltd filed Critical Nidek Co Ltd
Priority to JP2008530856A priority Critical patent/JP5548971B2/en
Publication of JPWO2008023581A1 publication Critical patent/JPWO2008023581A1/en
Application granted granted Critical
Publication of JP5548971B2 publication Critical patent/JP5548971B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F292/00Macromolecular compounds obtained by polymerising monomers on to inorganic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3072Treatment with macro-molecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/10Treatment with macromolecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)

Description

本発明は耐熱性、耐熱性、透明性、表面特性(表面硬度)及び機械的強度に優れているのみならず、有機溶媒に可溶で、溶融流動性を有しており、成形性に優れた有機−無機ハイブリッド材料に関する。   The present invention is not only excellent in heat resistance, heat resistance, transparency, surface characteristics (surface hardness) and mechanical strength, but also soluble in organic solvents, has melt flowability, and excellent moldability. And an organic-inorganic hybrid material.

従来から、有機相と無機相とを微細かつ均質に分散させた有機−無機ハイブリッド材料が注目されている。こうした有機−無機ハイブリッド材料は機械的強度が大きく、分散粒子が小さいため光が分散されず透明性を確保できる等、優れた特性をもたせることができる。   Conventionally, an organic-inorganic hybrid material in which an organic phase and an inorganic phase are finely and uniformly dispersed has attracted attention. Such an organic-inorganic hybrid material has excellent mechanical properties such as high mechanical strength and small dispersion particles, so that light is not dispersed and transparency can be secured.

こうした有機−無機ハイブリッド材料の製造方法として、有機高分子共存下において金属アルコキシドを加水分解する方法(以下「ゾル−ゲル法」という)がよく用いられている(例えば非特許文献1)。ゾル−ゲル法で製造された有機−無機ハイブリッド材料は、均質な溶液から析出されるものであるため、有機相と無機相とが分子レベルまで細かく分散されており、極めて均質な材料とすることができる。また、ゾル−ゲル法は高い温度を必要としないため、有機相が熱で変質するおそれも少ない。   As a method for producing such an organic-inorganic hybrid material, a method of hydrolyzing a metal alkoxide in the presence of an organic polymer (hereinafter referred to as “sol-gel method”) is often used (for example, Non-Patent Document 1). Since organic-inorganic hybrid materials produced by the sol-gel method are precipitated from a homogeneous solution, the organic and inorganic phases are finely dispersed to the molecular level, and the material must be extremely homogeneous. Can do. In addition, since the sol-gel method does not require a high temperature, the organic phase is less likely to be altered by heat.

しかし、ゾル−ゲル法によって製造された有機−無機ハイブリッド材料は、ゾル−ゲル反応における脱水縮合によって水が生じ、この水を除去する際に亀裂が生じやすい。このため、無機相の割合を多くして、高弾性率の有機−無機ハイブリッド材料を製造することは困難である。また、金属アルコキシドは高価であるため、製造コストが高騰化するという問題もあった。   However, in the organic-inorganic hybrid material produced by the sol-gel method, water is generated by dehydration condensation in the sol-gel reaction, and cracks are likely to occur when this water is removed. For this reason, it is difficult to produce an organic-inorganic hybrid material having a high elastic modulus by increasing the proportion of the inorganic phase. Moreover, since metal alkoxide is expensive, there also existed a problem that manufacturing cost raised.

このため、アクリル系官能基を有する修飾基がシリカなど表面の水酸基に共有結合した官能基修飾無機粒子と、アクリル系モノマーとが共重合されてなる有機−無機ハイブリッド材料も提案されている(特許文献1)。この有機−無機ハイブリッド材料は、無機物質源としてポリケイ酸を用いるため、無機物質源としての原料コストが極めて安価となり、大量に供給することも可能となる。また、ゾル−ゲル反応を利用していないため、無機相の割合を多くしてもひび割れ等が生じ難く、均質なバルク材を製造することが容易である。さらには、共重合の比率を適亘選択することにより、有機−無機ハイブリッド材料における有機相と無機相との割合をコントロールすることが可能となる。   For this reason, an organic-inorganic hybrid material obtained by copolymerizing a functional group-modified inorganic particle in which a modifying group having an acrylic functional group is covalently bonded to a hydroxyl group on the surface such as silica and an acrylic monomer has been proposed (patent) Reference 1). Since this organic-inorganic hybrid material uses polysilicic acid as the inorganic substance source, the raw material cost as the inorganic substance source is extremely low, and it can be supplied in large quantities. In addition, since the sol-gel reaction is not used, cracks or the like hardly occur even if the proportion of the inorganic phase is increased, and it is easy to produce a homogeneous bulk material. Furthermore, the ratio of the organic phase and the inorganic phase in the organic-inorganic hybrid material can be controlled by appropriately selecting the copolymerization ratio.

一方、無機粒子と有機高分子との間に共有結合を持たない有機−無機ハイブリッド材料(ナノコンポジット)も提案されているが、無機粒子と有機高分子との間に相互作用がないため、無機粒子を高い含有量で有機高分子中に均一に分散させて透明で機械的強度に優れた材料を合成することが困難である(特許文献2)。
J.Phys.Chem.,93,6270(1989) 特開2004-331790号公報 特開2004-131702号公報
On the other hand, an organic-inorganic hybrid material (nanocomposite) that does not have a covalent bond between inorganic particles and organic polymer has also been proposed, but there is no interaction between inorganic particles and organic polymer. It is difficult to synthesize particles having a high content and uniformly dispersed in an organic polymer to synthesize a transparent material having excellent mechanical strength (Patent Document 2).
J. Phys. Chem., 93, 6270 (1989) JP 2004-331790 A JP 2004-131702 A

上記特許文献1に記載の有機−無機ハイブリッド材料は、透明性や機械的強度において優れたものを提供することはできるが、有機溶媒に溶け難く、溶融流動性を有しないため、溶液のキャスティング法や射出成型の手法を用いて成形することができないという問題を生じていた。このため、成形のためには型内で重合させたり、削り出しによって成形したりしなければならず、成形にコストがかかり、その用途も限られたものとなっていた。   The organic-inorganic hybrid material described in Patent Document 1 can provide a material excellent in transparency and mechanical strength, but is difficult to dissolve in an organic solvent and does not have melt fluidity. And the problem that it cannot be molded using the injection molding technique. For this reason, in order to form, it has to be polymerized in the mold or formed by shaving, and it takes a high cost for forming and its use is limited.

本発明は、上記従来の実情に鑑みてなされたものであり、耐熱性、透明性、表面特性(表面硬度)及び機械的強度に優れているのみならず、有機溶媒に可溶で、溶融流動性を有しており、成形性に優れた有機−無機ハイブリッド材料及びその製造方法を提供することを解決すべき課題とする。   The present invention has been made in view of the above-described conventional circumstances, and is excellent not only in heat resistance, transparency, surface characteristics (surface hardness) and mechanical strength, but also soluble in organic solvents, melt flow It is an object to be solved to provide an organic-inorganic hybrid material having excellent properties and excellent moldability and a method for producing the same.

発明者らは、上記特許文献1に記載の発明の問題点である成形性の問題について解決するために鋭意研究を行った。その結果、無機粒子に存在する水酸基の全てを重合性の官能基を有する修飾基で修飾するのではなく、水酸基の一部についてのみ修飾した無機粒子を用い、これとモノマーとを共重合させることにより、有機溶媒に可溶で、溶融流動性を有し、成形性に優れた熱可塑性有機−無機ハイブリッド材料となることを見出し、本発明をなすに至った。   The inventors have intensively studied to solve the problem of formability, which is a problem of the invention described in Patent Document 1. As a result, instead of modifying all the hydroxyl groups present in the inorganic particles with a modifying group having a polymerizable functional group, use inorganic particles modified only for a part of the hydroxyl groups and copolymerize them with monomers. As a result, the present inventors have found that a thermoplastic organic-inorganic hybrid material that is soluble in an organic solvent, has melt flowability, and has excellent moldability is achieved.

すなわち、本発明の熱可塑性有機−無機ハイブリッド材料は、重合性の官能基を有する修飾基が無機粒子表面の水酸基に共有結合した重合性官能基修飾無機粒子と、重合により熱可塑性ポリマーとなる重合性モノマーとが共重合されてなる熱可塑性有機−無機ハイブリッド材料において、前記重合性官能基修飾無機粒子は、前記無機粒子表面の水酸基の一部にのみ前記重合性の官能基を有する修飾基が共有結合していることを特徴とする。   That is, the thermoplastic organic-inorganic hybrid material of the present invention comprises a polymerizable functional group-modified inorganic particle in which a modifying group having a polymerizable functional group is covalently bonded to a hydroxyl group on the surface of the inorganic particle, and polymerization that becomes a thermoplastic polymer by polymerization. In the thermoplastic organic-inorganic hybrid material obtained by copolymerizing a polymerizable monomer, the polymerizable functional group-modified inorganic particles have a modified group having the polymerizable functional group only on a part of the hydroxyl groups on the surface of the inorganic particles. It is characterized by covalent bonds.

本発明の熱可塑性有機−無機ハイブリッド材料では、無機微粒子ゾルやポリケイ酸等の水酸基を有する無機粒子を無機物質源として用いているため、原料コストが極めて安価となる。また、有機相は無機粒子表面の水酸基に共有結合しているため、有機−無機界面での剥離現象などが生じ難く、耐熱性、透明性、表面特性(表面硬度)
及び機械的強度に優れたものとなる。さらに、ゾル−ゲル反応のような脱水縮合は起こらないため、無機相の割合を多くしてもひび割れ等が生じ難く、均質なバルク材を製造することが容易である。
In the thermoplastic organic-inorganic hybrid material of the present invention, since inorganic particles having hydroxyl groups such as inorganic fine particle sol and polysilicic acid are used as the inorganic substance source, the raw material cost is extremely low. In addition, since the organic phase is covalently bonded to the hydroxyl group on the surface of the inorganic particles, the peeling phenomenon at the organic-inorganic interface is unlikely to occur, and heat resistance, transparency, surface characteristics (surface hardness)
In addition, the mechanical strength is excellent. Further, since dehydration condensation as in the sol-gel reaction does not occur, even if the proportion of the inorganic phase is increased, cracks and the like hardly occur, and it is easy to produce a homogeneous bulk material.

さらには、こうした特性に加え、本発明の熱可塑性有機−無機ハイブリッド材料は、有機溶媒に可溶で、溶融流動性を有し、成形性に優れるという特性をも備えている。この理由は次のとおりである。すなわち、本発明の熱可塑性有機−無機ハイブリッド材料は、重合性官能基修飾無機粒子と重合性モノマーとが共重合されてなるが、重合性官能基修飾無機粒子は、無機粒子表面の水酸基の一部にのみ重合性の官能基を有する修飾基が共有結合している(換言すれば、重合性官能基修飾無機粒子には未反応の水酸基が残っている)。このため、無機粒子1つあたりの重合性官能基の数が少なくなり、重合性モノマーと共重合させても3次元網目構造の目が粗くなり、その結果、有機溶媒に可溶で、溶融流動性を有し、射出成型、押出成型等の成形が容易となるのである。   Furthermore, in addition to these characteristics, the thermoplastic organic-inorganic hybrid material of the present invention also has characteristics of being soluble in an organic solvent, having melt flowability, and excellent moldability. The reason for this is as follows. That is, the thermoplastic organic-inorganic hybrid material of the present invention is obtained by copolymerizing a polymerizable functional group-modified inorganic particle and a polymerizable monomer. The polymerizable functional group-modified inorganic particle is a hydroxyl group on the surface of the inorganic particle. A modifying group having a polymerizable functional group is covalently bonded only to the part (in other words, an unreacted hydroxyl group remains in the polymerizable functional group-modified inorganic particle). For this reason, the number of polymerizable functional groups per inorganic particle is reduced, and even when copolymerized with a polymerizable monomer, the three-dimensional network structure becomes rough. As a result, it is soluble in an organic solvent and melt-flowable. Therefore, molding such as injection molding and extrusion molding becomes easy.

重合性官能基修飾無機粒子の、水酸基に対する修飾基の修飾率は1〜99%、さらに好ましくは5〜80%であることが好ましい。1%未満では架橋が不十分となり、機械的な強度が小さくなり、透明性も悪くなる。また、99%を超えた場合には、ゲル化して熱可塑性が不十分なものとなる。   The modification rate of the modifying group with respect to the hydroxyl group of the polymerizable functional group-modified inorganic particles is preferably 1 to 99%, more preferably 5 to 80%. If it is less than 1%, crosslinking is insufficient, the mechanical strength is reduced, and the transparency is also deteriorated. On the other hand, if it exceeds 99%, it gels and the thermoplasticity becomes insufficient.

また、本発明の熱可塑性有機−無機ハイブリッド材料中の重合性官能基修飾無機粒子の含有量は1〜80重量%、さらに好ましくは3〜70重量%であることが好ましい。重合性官能基修飾無機粒子の含有量が1重量%未満では耐熱性や硬さの向上効果が小さく、80重量%を超えると脆くなり、成形性が悪くなる。   The content of the polymerizable functional group-modified inorganic particles in the thermoplastic organic-inorganic hybrid material of the present invention is preferably 1 to 80% by weight, more preferably 3 to 70% by weight. If the content of the polymerizable functional group-modified inorganic particles is less than 1% by weight, the effect of improving heat resistance and hardness is small, and if it exceeds 80% by weight, the material becomes brittle and the moldability deteriorates.

また、熱可塑性に優れた成形性のよい熱可塑性有機−無機ハイブリッド材料とするためには、重合性官能基修飾無機粒子の水酸基に対する修飾基の修飾率と、熱可塑性有機−無機ハイブリッド材料中の重合性官能基修飾無機粒子の含有量との2つ値を考慮することが好ましい。発明者らの試験結果によれば、重合性官能基修飾無機粒子の水酸基に対する修飾基の修飾率が1〜30%のばあいには、重合性官能基修飾無機粒子の含有量は1〜80重量%が好ましく、重合性官能基修飾無機粒子の水酸基に対する修飾基の修飾率が30〜50%の場合には、重合性官能基修飾無機粒子の含有量は1〜30重量%が好ましく、重合性官能基修飾無機粒子の水酸基に対する修飾基の修飾率が50〜80%の場合には、重合性官能基修飾無機粒子の含有量は1〜10重量%が好ましくい範囲となる。   In addition, in order to obtain a thermoplastic organic-inorganic hybrid material having excellent thermoplasticity and good moldability, the modification rate of the modifying group with respect to the hydroxyl group of the polymerizable functional group-modified inorganic particles, and the thermoplastic organic-inorganic hybrid material It is preferable to consider two values with the content of the polymerizable functional group-modified inorganic particles. According to the test results of the inventors, when the modification ratio of the modifying group to the hydroxyl group of the polymerizable functional group-modified inorganic particles is 1 to 30%, the content of the polymerizable functional group-modified inorganic particles is 1 to 80. % By weight, and when the modification rate of the modifying group with respect to the hydroxyl group of the polymerizable functional group-modified inorganic particles is 30 to 50%, the content of the polymerizable functional group-modified inorganic particles is preferably 1 to 30% by weight. When the modification ratio of the modifying group to the hydroxyl group of the functional functional group-modified inorganic particles is 50 to 80%, the content of the polymerizable functional group-modified inorganic particles is preferably in the range of 1 to 10% by weight.

無機粒子としては、表面に水酸基が存在するものであれば特に限定はない。こうであれば、重合性の官能基を有する修飾基を無機粒子表面の水酸基に共有結合を介して結合することができる。例えば、シリカ粒子、アルミナ粒子、チタニア粒子、ジルコニア粒子などが挙げられる。この中でも、シリカ粒子は入手が容易で、微細な粒子が得られ易く好適である。さらに好ましいのは、極めて微細な粒子であるコロイダルシリカ粒子である。このようなコロイダルシリカはアルコキシシランを原料にしたゾルゲル法や水ガラスから容易に合成することができる。この他、ケイ酸ナトリウムや水ガラス等を酸によって加水分解したポリケイ酸を用いることもできる。   The inorganic particles are not particularly limited as long as hydroxyl groups exist on the surface. In this case, the modifying group having a polymerizable functional group can be bonded to the hydroxyl group on the surface of the inorganic particle through a covalent bond. Examples thereof include silica particles, alumina particles, titania particles, zirconia particles, and the like. Among these, silica particles are suitable because they are easily available and fine particles are easily obtained. Further preferred are colloidal silica particles which are extremely fine particles. Such colloidal silica can be easily synthesized from a sol-gel method using alkoxysilane as a raw material or water glass. In addition, polysilicic acid obtained by hydrolyzing sodium silicate or water glass with an acid can also be used.

シリカ粒子の粒子径は1〜100nmであることが好ましく、さらに好ましくは1〜50nmである。シリカ粒子が100nm以下であれば有機相と無機相とが極めて細かく分散されることとなり、極めて均質な材料とすることができる。コロイダルシリカ粒子はこのような粒子径のものが市販されており、容易に入手することができる。   The particle diameter of the silica particles is preferably 1 to 100 nm, more preferably 1 to 50 nm. If the silica particles are 100 nm or less, the organic phase and the inorganic phase are very finely dispersed, and an extremely homogeneous material can be obtained. Colloidal silica particles having such a particle size are commercially available and can be easily obtained.

重合性の官能基を有する修飾基としては、無機粒子表面の水酸基に共有結合が可能な修飾基であれば特に限定はない。このような修飾基を導入できる化合物としては、重合性の官能基を有する酸ハライド類、イソシアネート類、エポキシ類及びチオール類や、重合性の官能基を有する各種のシランカップリング剤等を用いることができる。このような化合物として、例えば、(メタ)アクリル酸ハライド、メタクリロキシプロピルトリメトキシシラン、メタクリロキシプロピルトリエトキシシラン、メタクリロキシプロピルメチルジメトキシシラン、メタクリロキシプロピルジメチルメトキシシラン、メタクリロキシプロピルメチルジエトキシシラン、メタクリロキシプロピルジメチルエトキシシラン、2−メタクリロイルオキシエチルイソシアネート、グリシジルメタクリレート、アリルグリシジルエーテル、ビスフェノールーAのジグリシジルエーテル、2−アクリロイルオキシエチルイソシアネート、3−メルカプトプロピルメタクリレート、3−メルカプトプロピルアクリレート等が挙げられる。重合性の修飾基はシラノール結合、エステル結合、エーテル結合、ウレタン結合などにより無機粒子表面と共有結合しているとすることができる。このような重合性官能基修飾無機粒子は、無機粒子と重合性の官能基を有する上記化合物とを反応させることによって、容易に得ることができる。
また、無機酸化物表面水酸基の一部を修飾することによって、疎水性を付与することもできる。疎水性を付与する化合物としては、トリメチルシリルメトキシド、トリエチルシリルメトキシド、トリエチルシリルメトキシド、トリエチルシリルエトキシド、トリフェニルシリルメトキシド、トリフェニルシリルエトキシド等のトリアルキルアルコキシドや、トリメチルシリルクロリド、トリエチルシリルクロリド、トリフェニルシリルクロリド等のトリアルキルハライド等が挙げられる。これら疎水性を付与する化合物は、無機粒子と重合性の官能基を有する化合物との反応の前に無機粒子表面の一部の水酸基と反応させても、無機粒子と重合性の官能基を有する化合物との反応後に残った無機粒子表面の水酸基と反応させてもどちらでも良い。
The modifying group having a polymerizable functional group is not particularly limited as long as it is a modifying group capable of covalent bonding to the hydroxyl group on the surface of the inorganic particles. As a compound into which such a modifying group can be introduced, acid halides having a polymerizable functional group, isocyanates, epoxies and thiols, various silane coupling agents having a polymerizable functional group, and the like are used. Can do. Examples of such compounds include (meth) acrylic acid halide, methacryloxypropyltrimethoxysilane, methacryloxypropyltriethoxysilane, methacryloxypropylmethyldimethoxysilane, methacryloxypropyldimethylmethoxysilane, methacryloxypropylmethyldiethoxysilane. , Methacryloxypropyldimethylethoxysilane, 2-methacryloyloxyethyl isocyanate, glycidyl methacrylate, allyl glycidyl ether, diglycidyl ether of bisphenol-A, 2-acryloyloxyethyl isocyanate, 3-mercaptopropyl methacrylate, 3-mercaptopropyl acrylate, etc. Can be mentioned. The polymerizable modifying group can be assumed to be covalently bonded to the surface of the inorganic particles by a silanol bond, an ester bond, an ether bond, a urethane bond, or the like. Such polymerizable functional group-modified inorganic particles can be easily obtained by reacting inorganic particles with the above-mentioned compound having a polymerizable functional group.
Moreover, hydrophobicity can also be imparted by modifying a part of the hydroxyl group on the surface of the inorganic oxide. Examples of compounds that impart hydrophobicity include trialkyl alkoxides such as trimethylsilyl methoxide, triethylsilyl methoxide, triethylsilyl methoxide, triethylsilyl ethoxide, triphenylsilyl methoxide, triphenylsilyl ethoxide, trimethylsilyl chloride, triethyl And trialkyl halides such as silyl chloride and triphenylsilyl chloride. These hydrophobicity-providing compounds have a polymerizable functional group with inorganic particles even if they are reacted with a part of hydroxyl groups on the surface of the inorganic particles before the reaction between the inorganic particles and the compound having a polymerizable functional group. Either of them may be reacted with the hydroxyl group on the surface of the inorganic particles remaining after the reaction with the compound.

重合性の修飾基は(メタ)アクリル基又はビニル基のいずれかを有しており、重合性モノマーは(メタ)アクリル基又はビニル基のいずれかを有していることとすることができる。ここで、(メタ)アクリル基とはアクリル基及びメタクリル基の両方を合わせた概念である。こうであれば、重合開始剤を用いることにより、容易に共重合させることができる。   The polymerizable modifying group may have either a (meth) acryl group or a vinyl group, and the polymerizable monomer may have either a (meth) acryl group or a vinyl group. Here, the (meth) acryl group is a concept that combines both an acrylic group and a methacryl group. If it is like this, it can copolymerize easily by using a polymerization initiator.

こうした重合性モノマーの具体例としては、イソボルニル(メタ)アクリレート、ボルニル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート等の脂環式構造含有(メタ)アクリレート、ベンジル(メタ)アクリレート、4−ブチルシクロヘキシル(メタ)アクリレート、アクリロイルモルホリン等が挙げられる。さらに、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、アミル(メタ)アクリレート、イソブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、イソアミル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ドデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、メトキシエチレングリコール(メタ)アクリレート、エトキシエチル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシ−3−フェノキシプロピル(メタ)アクリレート、グリシジル(メタ)アクリレート、ポリエステル(メタ)アクリレート、2,2,2−トリフルオロエチル(メタ)アクリレート、2,2,3,3−テトラフルオロプロピル(メタ)アクリレート、1H,1H,5H−オクタフルオロペンチル(メタ)アクリレート、2−(パーフルオロブチル)エチル(メタ)アクリレート、2−(パーフルオロヘキシル)エチル(メタ)アクリレート、2,2,3,3,3−ペンタフルオロプロピル(メタ)アクリレート、3−(パーフルオロブチル)−2−ヒドロキシエチル(メタ)アクリレート、3−(パーフルオロブチル)−2−ヒドロキシプロピル(メタ)アクリレート、ジアセトン(メタ)アクリルアミド、イソブトキシメチル(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、t−オクチル(メタ)アクリルアミド、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、7−アミノ−3,7−ジメチルオクチル(メタ)アクリレート、N,N−ジエチル(メタ)アクリルアミド、N,N−ジメチルアミノプロピル(メタ)アクリルアミド、ヒドロキシブチルビニルエーテル、ラウリルビニルエーテル、セチルビニルエーテル、2−エチルヘキシルビニルエーテル等を挙げることができる。   Specific examples of such polymerizable monomers include alicyclic structure-containing (meth) acrylates such as isobornyl (meth) acrylate, bornyl (meth) acrylate, tricyclodecanyl (meth) acrylate, and dicyclopentanyl (meth) acrylate. , Benzyl (meth) acrylate, 4-butylcyclohexyl (meth) acrylate, acryloylmorpholine, and the like. Further, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, amyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) Acrylate, pentyl (meth) acrylate, isoamyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) Acrylate, decyl (meth) acrylate, isodecyl (meth) acrylate, undecyl (meth) acrylate, dodecyl (meth) acrylate, lauryl (meth) acrylate, stearyl ( ) Acrylate, isostearyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, butoxyethyl (meth) acrylate, ethoxydiethylene glycol (meth) acrylate, benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, polyethylene glycol mono ( (Meth) acrylate, polypropylene glycol mono (meth) acrylate, methoxyethylene glycol (meth) acrylate, ethoxyethyl (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, methoxypolypropylene glycol (meth) acrylate, 2-hydroxyethyl (meth) Acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (Meth) acrylate, glycidyl (meth) acrylate, polyester (meth) acrylate, 2,2,2-trifluoroethyl (meth) acrylate, 2,2,3,3-tetrafluoropropyl (meth) acrylate, 1H, 1H, 5H-octafluoropentyl (meth) acrylate, 2- (perfluorobutyl) ethyl (meth) acrylate, 2- (perfluorohexyl) ethyl (meth) acrylate, 2,2,3,3,3-pentafluoropropyl ( (Meth) acrylate, 3- (perfluorobutyl) -2-hydroxyethyl (meth) acrylate, 3- (perfluorobutyl) -2-hydroxypropyl (meth) acrylate, diacetone (meth) acrylamide, isobutoxymethyl (meth) Acrylamide, N, N-dimethyl (Meth) acrylamide, t-octyl (meth) acrylamide, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, 7-amino-3,7-dimethyloctyl (meth) acrylate, N, N-diethyl (meth) Examples include acrylamide, N, N-dimethylaminopropyl (meth) acrylamide, hydroxybutyl vinyl ether, lauryl vinyl ether, cetyl vinyl ether, and 2-ethylhexyl vinyl ether.

また、重合性の修飾基としてのビニル基を有するものとしては、スチレン基、アルキルスチレン基等が挙げられ、ビニル基を有する重合性モノマーとしては、スチレン、p−メチルスチレン、p−ヒドロキシスチレン、(メタ)クリロニトリル、アクリルアミド、塩化ビニル、酢酸ビニル、無水マレイン酸等が挙げられる。   Examples of those having a vinyl group as a polymerizable modifying group include a styrene group and an alkylstyrene group. Examples of the polymerizable monomer having a vinyl group include styrene, p-methylstyrene, p-hydroxystyrene, (Meth) acrylonitrile, acrylamide, vinyl chloride, vinyl acetate, maleic anhydride and the like.

さらには、重合性モノマーは複数種類の重合性モノマーからなり、それら重合性モノマーが共重合されていてもよい。複数種類の重合性モノマーを共重合させることによって、共重合部分の性質を種々に変化させることが可能となり、多種多様な熱可塑性有機−無機ハイブリッド材料とすることができる。また、複数種類の重合性モノマーの共重合としては、ランダム共重合であってもよいし、ブロック共重合であってもよい。いずれの共重合体においても、無機粒子が核(コア)となり、ポリマー層が無機粒子を取り巻くように成長した樹脂層からなるコア−シェル構造をとることができる。   Furthermore, the polymerizable monomer is composed of a plurality of types of polymerizable monomers, and these polymerizable monomers may be copolymerized. By copolymerizing a plurality of types of polymerizable monomers, the properties of the copolymerized moiety can be variously changed, and a wide variety of thermoplastic organic-inorganic hybrid materials can be obtained. The copolymerization of a plurality of types of polymerizable monomers may be random copolymerization or block copolymerization. In any copolymer, a core-shell structure comprising a resin layer grown so that the inorganic particles become nuclei (core) and the polymer layer surrounds the inorganic particles can be taken.

本発明の熱可塑性有機−無機ハイブリッド材料は次のようにして製造することができる。すなわち、本発明の熱可塑性有機−無機ハイブリッド材料の製造方法は、無機粒子表面の水酸基の一部に重合性の官能基を有する修飾基を共有結合させて重合性官能基修飾無機粒子とする表面修飾工程と、該重合性官能基修飾無機粒子と、重合により熱可塑性ポリマーとなる重合性モノマーとを共重合する共重合工程とを備えることを特徴とする。   The thermoplastic organic-inorganic hybrid material of the present invention can be produced as follows. That is, the method for producing a thermoplastic organic-inorganic hybrid material of the present invention is a method in which a modifying group having a polymerizable functional group is covalently bonded to a part of hydroxyl groups on the surface of inorganic particles to form polymerizable functional group-modified inorganic particles. It comprises a modification step, a copolymerization step of copolymerizing the polymerizable functional group-modified inorganic particles and a polymerizable monomer that becomes a thermoplastic polymer by polymerization.

共重合工程における重合方法は特に限定はなく、溶液重合の他、懸濁重合、バルク重合等の手法を用いることができる。また、複数種共重合工程において、複数種類の重合性モノマーを一度に混合してランダム共重合体としたり、複数種類の重合性モノマーを一種類づつ逐次添加してブロック共重合体としたりすることができる。   The polymerization method in the copolymerization step is not particularly limited, and methods such as suspension polymerization and bulk polymerization can be used in addition to solution polymerization. Also, in the multiple-type copolymerization process, multiple types of polymerizable monomers are mixed at once to form a random copolymer, or multiple types of polymerizable monomers are added sequentially one by one to form a block copolymer. Can do.

共重合工程において、複数種類の重合性モノマーを一度に混合してランダム共重合体とする方法や複数種類の重合性モノマーを一種類づつ逐次添加してブロック共重合体とする方法は、諸物性を制御しつつ所望の特性を有する熱可塑性有機−無機ハイブリッド材料とすることが容易であり、好ましい方法である。   In the copolymerization process, multiple types of polymerizable monomers are mixed at once to make a random copolymer, and multiple types of polymerizable monomers are added sequentially one by one to make a block copolymer. It is easy to obtain a thermoplastic organic-inorganic hybrid material having desired characteristics while controlling the temperature, and this is a preferred method.

特に、複数種類の重合性モノマーを一種類づつ逐次添加してブロック共重合体とする方法は、無機粒子が核(コア)となり、種々の特性の異なった樹脂層が無機粒子を取り巻くように成長した複数の樹脂層からなる傾斜型コア−シェル構造をとることが出来、各重合性モノマーから得られる重合物の多種多様な特性を併せ持った機能性有機−無機ハイブリッド材料を合成することが出来る、好ましい方法である。具体的には、例えばアクリルモノマーなどゴム的特性を有する重合性モノマーをブロック共重合させることによって弾性率を制御したり、撥水性や親水性を有する重合性モノマーを表面層近くにブロック共重合させることによって、熱可塑性有機−無機ハイブリッド材料に撥水性や親水性を効果的に付与したりすることができる。このため、複数種類の重合性モノマーをブロック共重合体とすれば、所望の特性を有する多種多様な高機能材料を設計することができる。 In particular, the method of sequentially adding multiple types of polymerizable monomers one by one to make a block copolymer grows so that the inorganic particles become the core (core) and the resin layers with different properties surround the inorganic particles. It is possible to synthesize a functional organic-inorganic hybrid material having a wide variety of characteristics of the polymer obtained from each polymerizable monomer. This is the preferred method. Specifically, for example, the elastic modulus is controlled by block copolymerization of a polymerizable monomer having rubber-like properties such as an acrylic monomer, or a block polymerization of a polymerizable monomer having water repellency and hydrophilicity is made near the surface layer. Thus, water repellency and hydrophilicity can be effectively imparted to the thermoplastic organic-inorganic hybrid material. For this reason, if a plurality of types of polymerizable monomers are used as block copolymers, a wide variety of highly functional materials having desired characteristics can be designed.

以下、本発明を具体化した実施例について、詳細に説明する。
PMMA−シリカハイブリッド材料
<表面修飾工程>
3つ口フラスコにメチルエチルケトン分散コロイダルシリカ(日産化学工業(株)製MEK-ST粒子径10〜15nm、シリカ含有量30wt%、)と2-(メタクロイルオキシ)エチルイソシアネート(以下「MOI」という)とを種々の割合で加え、触媒としてジラウリル酸ジ-n-ブチルスズ(以下「DBTDL」という)をコロイダルシリカの重量に対して約650ppm添加し、室温で一日撹拌することにより、MOI修飾コロイダルシリカを得た。
Hereinafter, examples embodying the present invention will be described in detail.
PMMA-silica hybrid material <surface modification process>
Methyl ethyl ketone-dispersed colloidal silica (MEK-ST particle size 10-15 nm, silica content 30 wt%, manufactured by Nissan Chemical Industries, Ltd.) and 2- (methacryloyloxy) ethyl isocyanate (hereinafter referred to as “MOI”) in a three-necked flask MOI modified colloidal silica by adding about 650 ppm of dilaurate di-n-butyltin (hereinafter referred to as “DBTDL”) as a catalyst with respect to the weight of the colloidal silica and stirring at room temperature for one day. Got.

<共重合工程>
4つ口フラスコに温度計、冷却管及び撹拌羽を取り付け、フラスコ内を窒素置換した後、メチルエチルケトンと過酸化ベンゾイルとMOI修飾コロイダルシリカとを加えた後、油浴中でフラスコを80℃まで加熱した後、約120rpmの速度で撹拌しながら、メタクリル酸メチルを15分かけて滴下し、滴下終了後、さらに6時間撹拌を行った。仕込量はメタクリル酸メチル:メチルエチルケトン=1:1.25(重量比)とし、過酸化ベンゾイルはメタクリル酸メチルに対して0.4mol%とした。撹拌終了後、反応溶液を20倍量のメタノール中に滴下し、再沈殿法により白色固体を採取した後、常温で24時間真空乾燥を行い、PMMA−シリカハイブリッド材料を得た。
<Copolymerization process>
A four-necked flask was equipped with a thermometer, condenser, and stirring blade, and the atmosphere in the flask was replaced with nitrogen. After adding methyl ethyl ketone, benzoyl peroxide, and MOI-modified colloidal silica, the flask was heated to 80 ° C in an oil bath. After that, methyl methacrylate was added dropwise over 15 minutes while stirring at a speed of about 120 rpm. After completion of the addition, the mixture was further stirred for 6 hours. The amount charged was methyl methacrylate: methyl ethyl ketone = 1: 1.25 (weight ratio), and benzoyl peroxide was 0.4 mol% with respect to methyl methacrylate. After completion of the stirring, the reaction solution was dropped into 20 times the amount of methanol, and a white solid was collected by a reprecipitation method, followed by vacuum drying at room temperature for 24 hours to obtain a PMMA-silica hybrid material.

<評 価>
上記のようにして得られたPMMA−シリカハイブリッド材料について、有機溶剤への溶解性試験を行った。溶解性試験はPMMA-シリカハイブリッド材料1.0gをサンプル瓶に計り取り、有機溶剤(メチルエチルケトン(MEK)、テトラヒドロフラン(THF)、アセトン、N’N−ジメチルアセトアミド(DMAc)、ジクロロメタン)

9.0gを加えて室温で撹拌し、有機溶剤への溶解性を観察することにより行った。
<Evaluation>
The PMMA-silica hybrid material obtained as described above was subjected to a solubility test in an organic solvent. For the solubility test, 1.0 g of PMMA-silica hybrid material was weighed into a sample bottle, and an organic solvent (methyl ethyl ketone (MEK), tetrahydrofuran (THF), acetone, N'N-dimethylacetamide (DMAc), dichloromethane).

9.0 g was added and stirred at room temperature, and the solubility in an organic solvent was observed.

さらに、成形性(熱可塑性)の評価は、熱プレス装置を用い、PMMA-シリカハイブリッド材料を120−130℃で10分予熱融解させ、190℃、10MPaの圧力でプレスしフィルムを作成することによって行った。 Furthermore, evaluation of formability (thermoplasticity) is performed by preheating and melting PMMA-silica hybrid material at 120-130 ° C. for 10 minutes using a hot press device, and then pressing at 190 ° C. and a pressure of 10 MPa to create a film. went.

また、測定試料(フィルム)はメチルエチルケトンに溶解した後、キャスティング法によって製膜し、耐熱性、成形性、伸び率、引っ張り強度、ヤング率、透過率、表面硬度など諸物性を測定した。測定試料は以下のようにして作製した。すなわち、上記のようにして合成したPMMA−シリカハイブリッド材料をメチルエチルケトンに10wt%となるように加え、超音波洗浄機(SHARP(株)製UT-105HS)を用いて水浴温度約60℃、溶解時間90分の条件下で溶解させた。この溶液をPETシート上にキャスティングし、加熱オーブン中で40℃、4時間乾燥させた。その後、80℃で20時間真空乾燥させることによりPMMA−シリカハイブリッド膜を得た。こうして得られたPMMA−シリカハイブリッド膜について、耐熱性、成形性、伸び率、引っ張り強度、ヤング率、表面硬度及び光透過率を測定した。   A measurement sample (film) was dissolved in methyl ethyl ketone and then formed into a film by a casting method, and various physical properties such as heat resistance, moldability, elongation, tensile strength, Young's modulus, transmittance, and surface hardness were measured. The measurement sample was produced as follows. That is, the PMMA-silica hybrid material synthesized as described above was added to methyl ethyl ketone so that the concentration was 10 wt%, and the water bath temperature was about 60 ° C. and the dissolution time using an ultrasonic cleaner (SHARP UT-105HS). It was dissolved under the condition of 90 minutes. This solution was cast on a PET sheet and dried in a heating oven at 40 ° C. for 4 hours. Thereafter, the PMMA-silica hybrid membrane was obtained by vacuum drying at 80 ° C. for 20 hours. The PMMA-silica hybrid film thus obtained was measured for heat resistance, moldability, elongation rate, tensile strength, Young's modulus, surface hardness and light transmittance.

耐熱性(熱分解温度:Td)は、セイコーインスツル(株)製TG/DTA 6300を用いて熱重量(TG-DTA)測定を行った。アルミ製試料皿にサンプルを約10mg入れ、窒素気流下(流速200ml/min)で、昇温速度10℃/min、温度範囲25℃〜500℃で測定した。得られたTG曲線から熱分解温度を外挿法により算出した。   Heat resistance (thermal decomposition temperature: Td) was measured by thermogravimetry (TG-DTA) using TG / DTA 6300 manufactured by Seiko Instruments Inc. About 10 mg of the sample was placed in an aluminum sample dish, and measured under a nitrogen stream (flow rate 200 ml / min) at a temperature rising rate of 10 ° C./min and a temperature range of 25 ° C. to 500 ° C. The thermal decomposition temperature was calculated from the obtained TG curve by extrapolation.

引張強度は、JTトーシ(株)製卓上型引張試験機リトルセンスター LSC-05/30を用いて行った。測定用サンプルは幅約1cm、長さ約3cmの短冊状に切り出したPMMA−シリカハイブリッドフィルムを、引張強度測定用の台紙に挟むことにより作製した。測定条件はチャック間距離20mm、引張速度5mm/minで行った。各試料の破断時の引張強度、伸び、及び応力−歪曲線の初期勾配からヤング率を求めた。各値とも6〜10回の測定値を平均して決定した。なお、この際、5%以上の誤差を含む試料及び破断位置が不適切な試料は平均値より除外した。また、引張強度の算出に必要なフィルム厚とフィルム幅については、フィルム厚はミツトヨ(株)製膜厚計を用いて0.1μmまで、フィルム幅はミツトヨ(株)製ノギスを用いて0.05mmまでそれぞれ読み取った。また、フィルム表面の表面硬度(鉛筆硬度)を、井本製作所製の鉛筆硬度試験機を用いてJIS-K-5400に準じて測定した。   Tensile strength was measured using a bench type tensile tester Little Senster LSC-05 / 30 manufactured by JT Toshi Co., Ltd. A sample for measurement was prepared by sandwiching a PMMA-silica hybrid film cut into a strip shape having a width of about 1 cm and a length of about 3 cm between mounts for measuring tensile strength. The measurement conditions were a chuck-to-chuck distance of 20 mm and a tensile speed of 5 mm / min. The Young's modulus was determined from the tensile strength at break of each sample, the elongation, and the initial slope of the stress-strain curve. Each value was determined by averaging 6-10 measurements. At this time, samples containing an error of 5% or more and samples with an inappropriate fracture position were excluded from the average value. The film thickness and film width required to calculate the tensile strength can be up to 0.1 μm using a thickness gauge manufactured by Mitutoyo Corp., and the film width can be up to 0.05 mm using calipers manufactured by Mitutoyo Corp. I read each one. The surface hardness (pencil hardness) of the film surface was measured according to JIS-K-5400 using a pencil hardness tester manufactured by Imoto Seisakusho.

光透過率は、JASCO(株)製V-530分光光度計を用いた。測定領域は、紫外−可視光の波長領域(200〜800nm)とした。30mm×10mmに切り出した厚さ約80〜120μmのフィルムを分光光度計用のサンプルホルダーにはさみ、1nmごとの光透過率を測定した。
(結 果)
<有機溶剤への溶解性及び成形性(熱可塑性)>
結果を表1に示す。この表から、シリカ表面水酸基のMOIによる修飾率が高いほどゲル化し易く、有機溶剤に対する溶解性および成形性(熱可塑性)が低下するということが分かる。また、MOI修飾シリカの含有量が高いほど、ゲル化し易く、有機溶剤に対する溶解性および成形性(熱可塑性)が低下する、ということが分かる。
For light transmittance, JASCO Corporation V-530 spectrophotometer was used. The measurement region was an ultraviolet-visible light wavelength region (200 to 800 nm). A film having a thickness of about 80 to 120 μm cut into 30 mm × 10 mm was sandwiched between sample holders for a spectrophotometer, and the light transmittance was measured every 1 nm.
(Result)
<Solubility in organic solvents and moldability (thermoplastic)>
The results are shown in Table 1. From this table, it can be seen that the higher the MOI modification rate of the hydroxyl group on the silica surface, the easier the gelation and the lower the solubility in organic solvents and the moldability (thermoplasticity). Moreover, it turns out that it is easy to gelatinize and the solubility with respect to an organic solvent, and a moldability (thermoplasticity) fall, so that content of MOI modification silica is high.

熱可塑性と溶解性とは相関関係があり、溶解性に優れているほど熱可塑性に優れることが知られている。このため、熱可塑性を備えたPMMA−シリカハイブリッド材料とするためには、シリカ表面水酸基のMOIによる修飾率を99%よりも低くすることが必要となる。ただし、シリカ表面水酸基のMOIによる修飾率が1%未満となると、溶解性(すなわち熱可塑性)は優れたものとなるものの、架橋度が小さくなり機械的強度や透明性の低下などハイブリッド化の効果が十分に現れない。このため、重合性官能基修飾無機粒子の、水酸基に対する修飾基の修飾率は1〜99%が好ましく、さらに好ましい範囲は5〜80%である。   There is a correlation between thermoplasticity and solubility, and it is known that the better the solubility, the better the thermoplasticity. For this reason, in order to obtain a PMMA-silica hybrid material having thermoplasticity, it is necessary that the modification rate of the silica surface hydroxyl group by MOI is lower than 99%. However, if the modification rate of MOI on the silica surface hydroxyl group is less than 1%, the solubility (that is, thermoplasticity) will be excellent, but the degree of crosslinking will be reduced and the effect of hybridization such as mechanical strength and transparency will be reduced. Does not appear sufficiently. For this reason, the modification rate of the modifying group with respect to the hydroxyl group of the polymerizable functional group-modified inorganic particles is preferably 1 to 99%, and more preferably 5 to 80%.

また、表1の結果から、溶解性とMOI修飾シリカ含有量についても相関関係があり、MOI修飾シリカ含有量が多いほど、溶解性が悪いことが分かる。ただし、MOI修飾シリカ含有量があまり少ないと、耐熱性や表面硬度の向上効果が小さくなる。   Further, from the results of Table 1, it is understood that there is a correlation between the solubility and the MOI-modified silica content, and that the solubility is worse as the MOI-modified silica content is higher. However, if the MOI-modified silica content is too low, the effect of improving heat resistance and surface hardness is reduced.

以上の結果から、成形性が良好で耐熱性や硬さにも優れた熱可塑性有機−無機ハイブリッド材料とするためには、シリカ表面水酸基のMOIによる修飾率と、MOI修飾シリカ含有量との2つ値を考慮することが重要であり、表1の結果をふまえ、MOIによる修飾率が1〜5%の場合にはMOI修飾シリカ含有量が1〜80重量%、MOIによる修飾率が5〜15%の場合にはMOI修飾シリカ含有量が1〜60重量%、MOIによる修飾率が15〜30%の場合にはMOI修飾シリカ含有量が1〜25重量%、MOIによる修飾率が30〜45%の場合にはMOI修飾シリカ含有量が1〜15重量%、MOIによる修飾率が45〜80%の場合にはMOI修飾シリカ含有量が1〜5重量%の範囲が好適であるということが分かる。   From the above results, in order to obtain a thermoplastic organic-inorganic hybrid material having good moldability and excellent heat resistance and hardness, the MOI modification rate of the silica surface hydroxyl group and the MOI modified silica content are 2 It is important to take into account the values shown in Table 1. Based on the results shown in Table 1, when the MOI modification rate is 1 to 5%, the MOI-modified silica content is 1 to 80% by weight, and the MOI modification rate is 5 to 5%. When the content is 15%, the MOI-modified silica content is 1 to 60% by weight. When the MOI modification rate is 15 to 30%, the MOI-modified silica content is 1 to 25% by weight and the MOI modification rate is 30 to 30%. In the case of 45%, the MOI-modified silica content is preferably 1 to 15% by weight, and in the case where the MOI modification rate is 45 to 80%, the MOI-modified silica content is preferably in the range of 1 to 5% by weight. I understand.

Figure 0005548971
Figure 0005548971

<耐熱性、成形性、伸び率、引っ張り強度、ヤング率、表面硬度及び光透過率の測定結果>
表2に示すように、様々なMOI修飾率及びMOI修飾シリカ含量のPMMA−シリカハイブリッド材料を調製し(実施例1〜12、試験例1〜4及び比較例1)、耐熱性、成形性、伸び率、引っ張り強度、ヤング率、透過率、表面硬度など諸物性を測定した。PMMAについても同様の測定を行った。
<Measurement results of heat resistance, moldability, elongation, tensile strength, Young's modulus, surface hardness and light transmittance>
As shown in Table 2, PMMA-silica hybrid materials having various MOI modification rates and MOI modified silica contents were prepared (Examples 1 to 12, Test Examples 1 to 4 and Comparative Example 1), heat resistance, moldability, Various physical properties such as elongation, tensile strength, Young's modulus, transmittance, and surface hardness were measured. The same measurement was performed for PMMA.

Figure 0005548971
Figure 0005548971

(成形性)
表2から、成形性については、(1)シリカ表面水酸基のMOIによる修飾率が低いほど成形性に優れており、(2)MOI修飾シリカの含有量が少ないほど成形性に優れている、ということが分かる。この結果は、上記表1に示した、有機溶剤への溶解性試験から導かれた結果と整合するものである。
(耐熱性)
熱分解温度(Td値)は、(1)シリカ表面水酸基のMOIによる修飾率が高いほどTd値が高く、(2)ハイブリッド中のシリカ含有量が高いほどTd値が高い、ということが分かり、PMMAとMOI修飾シリカとの共重合により、耐熱性を高められることが分かった。これはMOI修飾シリカによってシリカを介した強固な分子間架橋が形成され、またMOI部位に起因する水素結合の形成により、高分子鎖の運動性が強く抑制され
たためと考えられる。
(透過率)
透過率については、いずれもPMMAとほぼ同等の透過率であり、シリカ粒子がポリマー中で良好に分散し、PMMA特有の高い透明性が維持されることが確認できた。
(ヤング率)
1)シリカ含有量との関係
MOI修飾シリカ含有量の増加に伴いヤング率は上昇した。PMMA−シリカ間が共有結合されているために、ポリマー鎖の運動性が強く束縛されることによってヤング率が大幅に上昇したと考えられる。
2)MOI修飾率との関係
MOI修飾率の増加に伴い、著しく上昇することがわかった。これは、MOI修飾率が増加するほど、PMMA−シリカ間の架橋が増し、ポリマーの運動性がより束縛されたためであると考えられる。
(Formability)
From Table 2, as for moldability, (1) the lower the MOI modification rate of the hydroxyl group on the silica surface, the better the moldability, and (2) the lower the MOI-modified silica content, the better the moldability. I understand that. This result is consistent with the result derived from the solubility test in organic solvents shown in Table 1 above.
(Heat-resistant)
It can be seen that the thermal decomposition temperature (Td value) is (1) the higher the modification ratio of the silica surface hydroxyl group by MOI, the higher the Td value, and (2) the higher the silica content in the hybrid, the higher the Td value. It was found that heat resistance can be improved by copolymerization of PMMA and MOI-modified silica. This is presumably because the MOI-modified silica formed strong intermolecular bridges via silica, and the formation of hydrogen bonds due to the MOI sites strongly suppressed the polymer chain mobility.
(Transmittance)
As for the transmittance, it was confirmed that the transmittance was almost the same as that of PMMA, the silica particles were well dispersed in the polymer, and the high transparency peculiar to PMMA was maintained.
(Young's modulus)
1) Relationship with silica content The Young's modulus increased with increasing MOI-modified silica content. Since the PMMA-silica bond is covalently bonded, it is thought that the Young's modulus is significantly increased by strongly constraining the mobility of the polymer chain.
2) Relationship with MOI modification rate It was found that the MOI modification rate significantly increased as the MOI modification rate increased. This is considered to be because as the MOI modification rate increases, the cross-linking between PMMA and silica increases, and the mobility of the polymer is more restricted.

以上の結果から、MOI修飾率については、低いほど成形性に優れ、高いほどTd値が高くて耐熱性に優れ、ヤング率も大きくなることが分かった。このため、優れた成形性と、優れた耐熱性及びヤング率とを兼ね備えたPMMA−シリカハイブリッド材料とするためには、MOI修飾率が大きすぎても、小さすぎてもだめであり、1〜99%、さらに好ましくは5〜80%とすることが好ましいことが分かる。また、MOI修飾シリカ含有量も成形性や耐熱性やヤング率に影響を与えることが分かる。すなわち、成形性が良好で耐熱性や表面硬度にも優れた熱可塑性有機−無機ハイブリッド材料とするためには、シリカ表面水酸基のMOIによる修飾率と、MOI修飾シリカ含有量との2つ値を考慮することが重要であり、MOIによる修飾率が1〜5%の場合にはMOI修飾シリカ含有量が1〜80重量%、MOIによる修飾率が5〜15%の場合にはMOI修飾シリカ含有量が1〜60重量%、MOIによる修飾率が15〜30%の場合にはMOI修飾シリカ含有量が1〜25重量%、MOIによる修飾率が30〜45%の場合にはMOI修飾シリカ含有量が1〜15重量%、MOIによる修飾率が45〜80%の場合にはMOI修飾シリカ含有量が1〜5重量%の範囲が好適であるということが分かる。   From the above results, it was found that the lower the MOI modification rate, the better the moldability, and the higher the MOI modification rate, the higher the Td value, the better the heat resistance, and the higher the Young's modulus. For this reason, in order to obtain a PMMA-silica hybrid material having both excellent moldability, excellent heat resistance and Young's modulus, the MOI modification rate is too large or too small. It can be seen that it is preferably 99%, more preferably 5 to 80%. It can also be seen that the MOI-modified silica content also affects the moldability, heat resistance and Young's modulus. That is, in order to obtain a thermoplastic organic-inorganic hybrid material having good moldability and excellent heat resistance and surface hardness, two values of the MOI modification rate of the silica surface hydroxyl group and the MOI modified silica content are set. It is important to consider, when the MOI modification rate is 1 to 5%, the MOI modified silica content is 1 to 80% by weight, and when the MOI modification rate is 5 to 15%, the MOI modified silica content is included. When the amount is 1 to 60% by weight and the MOI modification rate is 15 to 30%, the MOI modified silica content is 1 to 25% by weight. When the MOI modification rate is 30 to 45%, the MOI modified silica content is contained. It can be seen that when the amount is 1 to 15% by weight and the MOI modification rate is 45 to 80%, the MOI-modified silica content is preferably in the range of 1 to 5% by weight.

(MMA−メチルアクリレート)ランダム共重合体−シリカハイブリッド材料
重合性モノマーとして、MMAとメチルアクリレートの2種類の化合物を用い、(MMA-MA)ランダム共重合体−シリカハイブリッド材料を合成した。合成法の詳細を以下に示す。
(MMA-methyl acrylate) random copolymer-silica hybrid material (MMA-MA) random copolymer-silica hybrid material was synthesized using two types of compounds, MMA and methyl acrylate, as polymerizable monomers. Details of the synthesis method are shown below.

<表面修飾工程>
上述したPMMA−シリカハイブリッド材料の場合と同様の方法により、MOI修飾コロイダルシリカを得た。
<ランダム共重合工程>
4つ口フラスコに温度計、冷却管及び攪拌羽を取り付け、フラスコ内を窒素置換した後、後述するモノマー混合物の1.25倍量(重量比)のメチルエチルケトンと、モノマー混合物に対して0.4mol%の過酸化ベンゾイルと、所定量のMOI修飾コロイダルシリカとを加えた。そして、油浴中で80℃まで加熱した後、約120rpmの速度で攪拌しながら、所定の混合比のメタクリル酸メチルとアクリル酸メチルとの混合物(モノマー混合物)を15分かけて滴下し、滴下終了後6時間反応させた。反応終了後、反応溶液を20倍量のメタノール中に滴下し、再沈殿法により重合物を採取した後、常温で24時間真空乾燥を行い、実施例13〜実施例18の(MMA−MA)ランダム共重合体−シリカハイブリッド材料を60〜80%の収率で得た。
<Surface modification process>
MOI-modified colloidal silica was obtained by the same method as in the case of the PMMA-silica hybrid material described above.
<Random copolymerization process>
A four-necked flask was equipped with a thermometer, a condenser and a stirring blade, and after the atmosphere in the flask was replaced with nitrogen, 1.25 times (weight ratio) methyl ethyl ketone and 0.4 mol% excess of the monomer mixture described later were added. Benzoyl oxide and a predetermined amount of MOI modified colloidal silica were added. Then, after heating to 80 ° C. in an oil bath, a mixture (monomer mixture) of methyl methacrylate and methyl acrylate having a predetermined mixing ratio was dropped over 15 minutes while stirring at a speed of about 120 rpm. It was made to react for 6 hours after completion | finish. After completion of the reaction, the reaction solution was dropped into 20 times the amount of methanol, and a polymer was collected by a reprecipitation method, followed by vacuum drying at room temperature for 24 hours. (MMA-MA) of Examples 13 to 18 Random copolymer-silica hybrid materials were obtained in 60-80% yield.

(評 価)
こうして得られた(MMA−MA)ランダム共重合体−シリカハイブリッド材料について、上述したPMMA−シリカハイブリッド材料の評価方法と同様の方法により、耐熱性、成形性、伸び率、引っ張り強度、ヤング率、透過率、表面硬度など諸物性を測定した。結果を表3に示す。この表から分かるように、重合性モノマーとしてMMAとメチルアクリレートとを混合してランダム共重合を行っても、優れた成形性と、優れた耐熱性及びヤング率とを兼ね備えたハイブリッド材料となることが分かる。

Figure 0005548971
(Evaluation)
About the (MMA-MA) random copolymer-silica hybrid material thus obtained, the heat resistance, moldability, elongation, tensile strength, Young's modulus, Various physical properties such as transmittance and surface hardness were measured. The results are shown in Table 3. As can be seen from this table, even if MMA and methyl acrylate are mixed as a polymerizable monomer and random copolymerization is performed, a hybrid material having excellent moldability, excellent heat resistance and Young's modulus can be obtained. I understand.
Figure 0005548971

(MMA−エチルアクリレート)ランダム共重合体−シリカハイブリッド材料
重合性モノマーとして、MMAとエチルアクリレートの2種類の化合物を用い、実施例19〜実施例21の(MMA−EA)ランダム共重合体−シリカハイブリッド材料を合成した。合成方法は、メチルアクリレートの代わりにエチルアクリレートを用いたこと以外は、上述した(MMA−MA)ランダム共重合体−シリカハイブリッド材料の場合と同様であり、説明を省略する。
(MMA-Ethyl Acrylate) Random Copolymer-Silica Hybrid Material As the polymerizable monomer, two compounds of MMA and ethyl acrylate were used, and (MMA-EA) random copolymer-silica of Examples 19 to 21. A hybrid material was synthesized. The synthesis method is the same as that of the (MMA-MA) random copolymer-silica hybrid material described above except that ethyl acrylate is used instead of methyl acrylate, and the description thereof is omitted.

(評 価)
こうして得られた(MMA−エチルアクリレート)ランダム共重合体−シリカハイブリッド材料について、上述したPMMA−シリカハイブリッド材料の評価方法と同様の方法により、耐熱性、成形性、伸び率、引っ張り強度、ヤング率、透過率、表面硬度など諸物性を測定した。結果を表4に示す。この表から分かるように、重合性モノマーとしてMMAとエチルアクリレートとを混合してランダム共重合を行っても、優れた成形性と、優れた耐熱性及びヤング率とを兼ね備えたハイブリッド材料となることが分かる。

Figure 0005548971
(Evaluation)
The (MMA-ethyl acrylate) random copolymer-silica hybrid material thus obtained was subjected to the same heat resistance, moldability, elongation, tensile strength, Young's modulus as in the above-described evaluation method for the PMMA-silica hybrid material. Various physical properties such as transmittance and surface hardness were measured. The results are shown in Table 4. As can be seen from this table, even if MMA and ethyl acrylate are mixed as a polymerizable monomer and random copolymerization is performed, a hybrid material having excellent moldability, excellent heat resistance and Young's modulus can be obtained. I understand.
Figure 0005548971

(MMA−ブチルアクリレート)ランダム共重合体−シリカハイブリッド材料
重合性モノマーとして、MMAとブチルアクリレートの2種類の化合物を用い、実施例22〜実施例24の(MMA−BA)ランダム共重合体−シリカハイブリッド材料を合成した。合成方法は、メチルアクリレートの代わりにブチルアクリレートを用いたこと以外は、上述した(MMA−メチルアクリレート)ランダム共重合体−シリカハイブリッド材料の場合と同様であり、説明を省略する。
(MMA-butyl acrylate) random copolymer-silica hybrid material (MMA-BA) random copolymer-silica of Examples 22 to 24 using two types of compounds of MMA and butyl acrylate as polymerizable monomers. A hybrid material was synthesized. The synthesis method is the same as that of the (MMA-methyl acrylate) random copolymer-silica hybrid material described above except that butyl acrylate is used instead of methyl acrylate, and the description thereof is omitted.

(評 価)
こうして得られた(MMA−ブチルアクリレート)ランダム共重合体−シリカハイブリッド材料について、上述したPMMA−シリカハイブリッド材料の評価方法と同様の方法により、耐熱性、成形性、伸び率、引っ張り強度、ヤング率、透過率、表面硬度など諸物性を測定した。結果を表5に示す。この表から分かるように、重合性モノマーとしてMMAとブチルアクリレートとを混合してランダム共重合を行っても、優れた成形性と、優れた耐熱性及びヤング率とを兼ね備えたハイブリッド材料となることが分かる。

Figure 0005548971
(Evaluation)
With respect to the (MMA-butyl acrylate) random copolymer-silica hybrid material thus obtained, the heat resistance, moldability, elongation rate, tensile strength, Young's modulus were determined in the same manner as the evaluation method for the PMMA-silica hybrid material described above. Various physical properties such as transmittance and surface hardness were measured. The results are shown in Table 5. As can be seen from this table, even if random copolymerization is performed by mixing MMA and butyl acrylate as a polymerizable monomer, it becomes a hybrid material having both excellent moldability, excellent heat resistance and Young's modulus. I understand.
Figure 0005548971

(MMA−メチルアクリレート)ブロック共重合体−シリカハイブリッド材料
重合性モノマーとして、MMAとメチルアクリレートとの混合物を用い、(MMA−MA)ブロック共重合体−シリカハイブリッド材料を合成した。合成法の詳細を以下に示す。
(MMA-methyl acrylate) block copolymer-silica hybrid material As a polymerizable monomer, a mixture of MMA and methyl acrylate was used to synthesize a (MMA-MA) block copolymer-silica hybrid material. Details of the synthesis method are shown below.

<表面修飾工程>
上述したPMMA−シリカハイブリッド材料の場合と同様の方法により、MOI修飾コロイダルシリカを得た。
<Surface modification process>
MOI-modified colloidal silica was obtained by the same method as in the case of the PMMA-silica hybrid material described above.

<ブロック共重合工程>
4つ口フラスコに温度計、冷却管及び攪拌羽を取り付け、フラスコ内を窒素置換した後、重合性モノマーの1.25倍量(重量比)のメチルエチルケトンと、重合性モノマーに対して0.4mol%の過酸化ベンゾイルと、所定量のMOI修飾コロイダルシリカとを加えた。そして、油浴中で80℃まで加熱した後、約120rpmの速度で攪拌しながら、所定量のメチルアクリレートを15分かけて滴下し、滴下終了後1時間反応させた。反応終了後、さらにMMAモノマーを15分かけて滴下し、、滴下終了後6時間反応させた。反応溶液を20倍量のメタノール中に滴下し、再沈殿法により重合物を採取した後、常温で24時間真空乾燥を行い、実施例25〜実施例29の(MMA−MA)ブロック共重合体−シリカハイブリッド材料を60〜80%の収率で得た。
<Block copolymerization process>
A four-necked flask was equipped with a thermometer, a condenser, and a stirring blade. After the atmosphere in the flask was replaced with nitrogen, 1.25 times (weight ratio) methyl ethyl ketone and 0.4 mol% excess of the polymerizable monomer were added to the polymerizable monomer. Benzoyl oxide and a predetermined amount of MOI modified colloidal silica were added. And after heating to 80 degreeC in an oil bath, predetermined amount methyl acrylate was dripped over 15 minutes, stirring at the speed | rate of about 120 rpm, and it was made to react for 1 hour after completion | finish of dripping. After completion of the reaction, MMA monomer was further added dropwise over 15 minutes, and reacted for 6 hours after completion of the addition. The reaction solution was dropped into 20 times the amount of methanol, and a polymer was collected by a reprecipitation method, followed by vacuum drying at room temperature for 24 hours, and the (MMA-MA) block copolymer of Example 25 to Example 29. -Silica hybrid material was obtained in 60-80% yield.

(評 価)
こうして得られた(MMA−MA)ブロック共重合体−シリカハイブリッド材料について、上述したPMMA−シリカハイブリッド材料の評価方法と同様の方法により、耐熱性、成形性、伸び率、引っ張り強度、ヤング率、透過率、表面硬度など諸物性を測定した。結果を表6に示す。この表から分かるように、重合性モノマーとしてMMAとメチルアクリレートとを混合してブロック共重合を行っても、優れた成形性と、優れた耐熱性及びヤン

Figure 0005548971
(Evaluation)
About the (MMA-MA) block copolymer-silica hybrid material thus obtained, the heat resistance, moldability, elongation, tensile strength, Young's modulus, Various physical properties such as transmittance and surface hardness were measured. The results are shown in Table 6. As can be seen from this table, even when MMA and methyl acrylate are mixed as a polymerizable monomer and block copolymerization is performed, excellent moldability, excellent heat resistance and
Figure 0005548971

(MMA−エチルアクリレート)ブロック共重合体−シリカハイブリッド材料
重合性モノマーとして、MMAとエチルアクリレートの2種類の化合物を用い、実施例30〜実施例32の(MMA−EA)ブロック共重合体−シリカハイブリッド材料を合成した。合成方法は、メチルアクリレートの代わりにエチルアクリレートを用いたこと以外は、上述した(MMA−メチルアクリレート)ブロック共重合体−シリカハイブリッド材料の場合と同様であり、説明を省略する。
(MMA-ethyl acrylate) block copolymer-silica hybrid material As the polymerizable monomer, two compounds of MMA and ethyl acrylate were used, and (MMA-EA) block copolymer-silica of Examples 30 to 32. A hybrid material was synthesized. The synthesis method is the same as that of the above-described (MMA-methyl acrylate) block copolymer-silica hybrid material except that ethyl acrylate is used instead of methyl acrylate, and the description thereof is omitted.

(評 価)
こうして得られた(MMA−EA)ブロック共重合体−シリカハイブリッド材料について、上述したPMMA−シリカハイブリッド材料の評価方法と同様の方法により、耐熱性、成形性、伸び率、引っ張り強度、ヤング率、透過率、表面硬度など諸物性を測定した。結果を表4に示す。この表から分かるように、重合性モノマーとしてMMAとエチルアクリレートとを混合してブロック共重合を行っても、優れた成形性と、優れた耐熱性及びヤング率とを兼ね備えたハイブリッド材料となることが分かる。

Figure 0005548971
(Evaluation)
With respect to the (MMA-EA) block copolymer-silica hybrid material thus obtained, the heat resistance, moldability, elongation, tensile strength, Young's modulus, Various physical properties such as transmittance and surface hardness were measured. The results are shown in Table 4. As can be seen from this table, even if block copolymerization is performed by mixing MMA and ethyl acrylate as a polymerizable monomer, a hybrid material having both excellent moldability, excellent heat resistance and Young's modulus can be obtained. I understand.
Figure 0005548971

この発明は、上記発明の実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。 The present invention is not limited to the description of the embodiments of the invention. Various modifications may be included in the present invention as long as those skilled in the art can easily conceive without departing from the description of the scope of claims.

本発明の熱可塑性有機−無機ハイブリッド材料は、耐熱性や透明性に優れ、さらには成形性に優れた機能性材料として、様々な産業分野において利用可能である。   The thermoplastic organic-inorganic hybrid material of the present invention can be used in various industrial fields as a functional material excellent in heat resistance and transparency and further excellent in moldability.

Claims (1)

重合性の官能基を有する修飾基として(メタ)アクリル基又はビニル基の何れかを有する修飾基が無機微粒子表面の水酸基に結合した重合性官能基修飾無機粒子と、重合により熱可塑性ポリマーとなる重合性モノマーとして(メタ)アクリル基又はビニル基の何れかを有した重合性モノマーとが有機溶媒を用いた重合によって共重合されてなる熱可塑性有機−無機ハイブリッド材料であって、
前記重合性官能基修飾無機微粒子は、前記無機粒子としてコロイダルシリカが用いられ、該コロイダルシリカが有する表面の水酸基の一部のみに前記重合性の官能基を有する修飾基が共有結合し、
前記重合性官能基修飾無機微粒子の前記水酸基に対する修飾基の修飾率は1%以上80%以下であって、前記修飾率と、前記熱可塑性有機−無機ハイブリッド材料中の前記重合性官能基修飾無機微粒子の含有量との関係は、前記修飾率が1%以上5%以下の場合には前記含有量は1重量%以上80重量%以下、前記修飾率が5%より上で15%以下の場合には前記含有量は1重量%以上60重量%以下、前記修飾率が15%より上で30%以下の場合には前記含有量は1重量%以上25重量%以下、前記修飾率が30%より上で45%以下の場合には前記含有量は1重量%以上15重量%以下、前記修飾率が45%より上で80%以下の場合には前記含有量は1重量%以上5重量%以下、であり、
有機溶媒に可溶であることを特徴とする熱可塑性有機−無機ハイブリッド材料。
Polymerizable functional group-modified inorganic particles in which a modifying group having either a (meth) acrylic group or a vinyl group as a modifying group having a polymerizable functional group is bonded to a hydroxyl group on the surface of the inorganic fine particle, and becomes a thermoplastic polymer by polymerization. A thermoplastic organic-inorganic hybrid material obtained by copolymerizing a polymerizable monomer having either a (meth) acrylic group or a vinyl group as a polymerizable monomer by polymerization using an organic solvent ,
In the polymerizable functional group-modified inorganic fine particles, colloidal silica is used as the inorganic particle, and the modifying group having the polymerizable functional group is covalently bonded only to a part of the surface hydroxyl groups of the colloidal silica,
The modification rate of the modification group with respect to the hydroxyl group of the polymerizable functional group-modified inorganic fine particles is 1% or more and 80% or less, and the modification rate and the polymerizable functional group-modified inorganic in the thermoplastic organic-inorganic hybrid material When the modification rate is 1% or more and 5% or less, the content is 1% by weight or more and 80% by weight or less, and the modification rate is 5% or more and 15% or less. In the case where the content is 1% by weight or more and 60% by weight or less, and when the modification rate is higher than 15% and 30% or less, the content is 1% by weight or more and 25% by weight or less and the modification rate is 30% When the content is 45% or less above, the content is 1% by weight or more and 15% by weight or less, and when the modification rate is above 45% and 80% or less, the content is 1% by weight or more and 5% by weight or less. And
A thermoplastic organic-inorganic hybrid material which is soluble in an organic solvent.
JP2008530856A 2006-08-24 2007-08-10 Thermoplastic organic-inorganic hybrid material Expired - Fee Related JP5548971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008530856A JP5548971B2 (en) 2006-08-24 2007-08-10 Thermoplastic organic-inorganic hybrid material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006228489 2006-08-24
JP2006228489 2006-08-24
JP2008530856A JP5548971B2 (en) 2006-08-24 2007-08-10 Thermoplastic organic-inorganic hybrid material
PCT/JP2007/065696 WO2008023581A1 (en) 2006-08-24 2007-08-10 Thermoplastic organic-inorganic hybrid material and process for production of the same

Publications (2)

Publication Number Publication Date
JPWO2008023581A1 JPWO2008023581A1 (en) 2010-01-07
JP5548971B2 true JP5548971B2 (en) 2014-07-16

Family

ID=39106667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008530856A Expired - Fee Related JP5548971B2 (en) 2006-08-24 2007-08-10 Thermoplastic organic-inorganic hybrid material

Country Status (4)

Country Link
JP (1) JP5548971B2 (en)
KR (1) KR101456288B1 (en)
CN (1) CN101506258B (en)
WO (1) WO2008023581A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102449010B (en) * 2009-04-10 2014-06-18 伦斯勒理工学院 Diblock copolymer modified nanoparticle-polymer nanocomposites for electrical insulation
JP5780622B2 (en) * 2009-12-22 2015-09-16 国立大学法人 新潟大学 Antibacterial agent and method for producing the same
JP5607407B2 (en) * 2010-03-31 2014-10-15 株式会社アドマテックス Organic-inorganic composite particles, coating composition, and production method thereof
US20150218406A1 (en) 2012-08-10 2015-08-06 Tohoku University Organic-inorganic composite particles, dispersion and resin composition comprising the same, and method for producing organic-inorganic composite particles
KR101659124B1 (en) * 2013-09-05 2016-09-22 주식회사 엘지화학 Method for preparing resin cotaining inorganic particle
JP6360764B2 (en) * 2014-09-30 2018-07-18 富士フイルム株式会社 Antireflection film, manufacturing method of antireflection film, kit including antireflection film and cleaning cloth
JP7287626B2 (en) * 2019-08-21 2023-06-06 株式会社レゾナック Expandable particles, method for producing expandable particles, expandable resin composition, and method for producing foam

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004143201A (en) * 2002-10-22 2004-05-20 Toyo Ink Mfg Co Ltd Active energy ray curing composition, method for forming cured film using the same and cured product thereof and antireflection body
JP2004256753A (en) * 2003-02-27 2004-09-16 Eiji Nakanishi Monomer containing colloidal silica, hardenable resin composition and resin hardened product of the composition
JP2004331790A (en) * 2003-05-07 2004-11-25 Nagoya Industrial Science Research Inst Organic-inorganic hybrid material and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004143201A (en) * 2002-10-22 2004-05-20 Toyo Ink Mfg Co Ltd Active energy ray curing composition, method for forming cured film using the same and cured product thereof and antireflection body
JP2004256753A (en) * 2003-02-27 2004-09-16 Eiji Nakanishi Monomer containing colloidal silica, hardenable resin composition and resin hardened product of the composition
JP2004331790A (en) * 2003-05-07 2004-11-25 Nagoya Industrial Science Research Inst Organic-inorganic hybrid material and method for producing the same

Also Published As

Publication number Publication date
JPWO2008023581A1 (en) 2010-01-07
CN101506258B (en) 2011-06-08
WO2008023581A1 (en) 2008-02-28
KR101456288B1 (en) 2014-11-03
CN101506258A (en) 2009-08-12
KR20090046810A (en) 2009-05-11

Similar Documents

Publication Publication Date Title
JP5548971B2 (en) Thermoplastic organic-inorganic hybrid material
Canché-Escamilla et al. Synthesis and characterization of hybrid silica/PMMA nanoparticles and their use as filler in dental composites
CN101617006B (en) Aqueous coating resin composition
CN103068884B (en) Photosensitive silicone resin composition
Xu et al. Bio-based core–shell casein-based silica nano-composite latex by double-in situ polymerization: Synthesis, characterization and mechanism
JPWO2007119627A1 (en) Curable composition, cured product of silsesquioxane, and production method thereof
US20170240676A1 (en) Moisture-curable, semi-crystalline (meth) acrylic oligomers, and construction materials including the same
US8765889B2 (en) Method for producing hybrid particles
Huang et al. Synthesis and characterization of polyacrylate modified by polysiloxane latexes and films
CN102753618B (en) The hybrid particulates be made up of polymkeric substance and nano particle
JP5465525B2 (en) Organic-inorganic composite composition and method for producing the same
CN105694652B (en) Film used for solar batteries
Wanke et al. Effects of POSS vertex group on structure, thermal and mechanical properties of PMMA/POSS hybrid materials
Naghash et al. Synthesis and properties of styrene–butylacrylate emulsion copolymers modified by silane compounds
CN102007153B (en) Polymerisable substance with connected nanoparticles
CN109517312B (en) Dual POSS polyether hybrid PMMA resin and preparation and forming methods thereof
Guo et al. Facile synthesis of silica nanoparticles grafted with quaternized linear, comblike and toothbrushlike copolymers
Zhai et al. Facile fabrication and modification of polyacrylate/silica nanocomposite latexes prepared by silica sol and silane coupling agent
JP2004277512A (en) Acrylic hybrid polymer
CN111217968A (en) Polyolefin triblock copolymer responding to multiple effects on environment and preparation method thereof
Han et al. Fabrication and properties of chemically bonded polysilsesquioxane‐polyacrylate/silica hybrid latex films with high silicon content
JP7512152B2 (en) Rubber composition containing polymer particles
Zhong et al. Fabrication and characterization of chemically bonded polysilsesquioxane-polyacrylate hybrid latex particles
JP2009126972A (en) Silicone coating composition
KR100868881B1 (en) Thermoplastic Resin Having Improved Scratch Resistance and Method for Preparing Same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100619

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100621

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130805

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140311

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140430

R150 Certificate of patent or registration of utility model

Ref document number: 5548971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees