JP5548531B2 - Dual physical quantity sensor - Google Patents

Dual physical quantity sensor Download PDF

Info

Publication number
JP5548531B2
JP5548531B2 JP2010138333A JP2010138333A JP5548531B2 JP 5548531 B2 JP5548531 B2 JP 5548531B2 JP 2010138333 A JP2010138333 A JP 2010138333A JP 2010138333 A JP2010138333 A JP 2010138333A JP 5548531 B2 JP5548531 B2 JP 5548531B2
Authority
JP
Japan
Prior art keywords
physical quantity
temperature
detection element
pressure
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010138333A
Other languages
Japanese (ja)
Other versions
JP2012002688A (en
Inventor
彰男 葛西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2010138333A priority Critical patent/JP5548531B2/en
Priority to US13/154,925 priority patent/US8443675B2/en
Priority to CN201110165743.0A priority patent/CN102288357B/en
Priority to KR1020110057490A priority patent/KR101257592B1/en
Publication of JP2012002688A publication Critical patent/JP2012002688A/en
Application granted granted Critical
Publication of JP5548531B2 publication Critical patent/JP5548531B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/04Means for compensating for effects of changes of temperature, i.e. other than electric compensation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L15/00Devices or apparatus for measuring two or more fluid pressure values simultaneously
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/02Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning
    • G01L9/06Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning of piezo-resistive devices
    • G01L9/065Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning of piezo-resistive devices with temperature compensating means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Measuring Fluid Pressure (AREA)
  • Measuring Volume Flow (AREA)

Description

本発明はデュアル物理量センサに関する。   The present invention relates to a dual physical quantity sensor.

下記特許文献1には、被測定対象の圧力を2つの圧力センサでそれぞれ検出するデュアル圧力センサが開示されている。この特許文献1のデュアル圧力センサは、例えば、下記特許文献2に記載されている流量制御弁の弁本体に取り付け、差圧センサとして使用することができる。この場合に、デュアル圧力センサは、弁体より上流側の流体圧力と弁体より下流側の流体圧力とをそれぞれ検出し、流量制御弁を制御する流量測定装置に出力する。流量測定装置は、上流側の流体圧力と下流側の流体圧力との差圧に基づいて流量制御弁の流路内を流れる流体の流量を算出する。   Patent Document 1 below discloses a dual pressure sensor that detects the pressure of an object to be measured by two pressure sensors, respectively. The dual pressure sensor of Patent Document 1 can be attached to a valve body of a flow control valve described in Patent Document 2 below and used as a differential pressure sensor, for example. In this case, the dual pressure sensor detects the fluid pressure upstream of the valve body and the fluid pressure downstream of the valve body, and outputs the detected fluid pressure to the flow rate measuring device that controls the flow control valve. The flow rate measuring device calculates the flow rate of the fluid flowing in the flow path of the flow rate control valve based on the differential pressure between the upstream fluid pressure and the downstream fluid pressure.

ところで、圧力センサには、出力値が使用時の温度に応じて変動する温度特性を有するものがある。このような温度特性を有する圧力センサを用いて流体の流量を精度良く算出するためには、圧力センサの出力値を的確に温度補正し、出力値から温度変化による変動分を除外する必要がある。このため、特許文献1では、2つの圧力センサにそれぞれ温度センサを搭載し、この温度センサの検出温度を用いて各圧力センサの検出値を補正している。   By the way, some pressure sensors have a temperature characteristic in which an output value varies according to a temperature during use. In order to accurately calculate the fluid flow rate using a pressure sensor having such a temperature characteristic, it is necessary to accurately correct the temperature of the output value of the pressure sensor and to exclude the fluctuation due to temperature change from the output value. . For this reason, in Patent Document 1, temperature sensors are mounted on the two pressure sensors, and the detection values of the pressure sensors are corrected using the detected temperatures of the temperature sensors.

特開2009−31003号公報JP 2009-31003 A 特開2009−115302号公報JP 2009-115302 A

上述したように特許文献1のデュアル圧力センサは、1つのデュアル圧力センサに対して2つの温度センサを備える必要があるため、部品点数やコストの削減に対する要求に応えることが難しかった。   As described above, since the dual pressure sensor of Patent Document 1 needs to include two temperature sensors for one dual pressure sensor, it is difficult to meet the demands for reducing the number of parts and cost.

そこで本発明は、部品点数やコストを削減することができるデュアル物理量センサを提供することを目的の一つとする。   Therefore, an object of the present invention is to provide a dual physical quantity sensor that can reduce the number of parts and cost.

本発明にかかるデュアル物理量センサは、第1被測定対象の物理量を検出する第1物理量検出素子と、第2被測定対象の物理量を検出する第2物理量検出素子と、第1物理量検出素子および第2物理量検出素子の温度を検出する温度検出素子と、第1物理量検出素子の検出信号から温度変化による変動分を除外する補正を実行し、当該補正後の信号を第1被測定対象の測定信号として出力する第1補正部と、第2物理量検出素子の検出信号から温度変化による変動分を除外する補正を実行し、当該補正後の信号を第2被測定対象の測定信号として出力する第2補正部と、を備え、温度検出素子は、第1物理量検出素子および第2物理量検出素子と相互に接触した状態で一体化されている。   A dual physical quantity sensor according to the present invention includes a first physical quantity detection element that detects a physical quantity of a first measurement target, a second physical quantity detection element that detects a physical quantity of a second measurement target, a first physical quantity detection element, and a first physical quantity detection element, The temperature detection element for detecting the temperature of the two physical quantity detection elements and the correction for excluding the fluctuation due to the temperature change from the detection signal of the first physical quantity detection element are executed, and the corrected signal is used as the measurement signal for the first measurement target. And a first correction unit that outputs the correction signal, and a correction that excludes the fluctuation due to the temperature change from the detection signal of the second physical quantity detection element, and outputs the corrected signal as the measurement signal of the second measurement target. And a temperature detecting element integrated with the first physical quantity detecting element and the second physical quantity detecting element in contact with each other.

かかる構成により、一つの温度検出素子を、第1物理量検出素子および第2物理量検出素子と相互に接触した状態で一体化することができるため、第1物理量検出素子および第2物理量検出素子の温度を一つの温度検出素子で検出することが可能となる。   With this configuration, one temperature detection element can be integrated in a state of being in contact with the first physical quantity detection element and the second physical quantity detection element. Therefore, the temperature of the first physical quantity detection element and the second physical quantity detection element Can be detected by one temperature detection element.

上記デュアル物理量センサにおいて、第1物理量検出素子および第2物理量検出素子の温度を同等にする発熱器を、さらに備えることとしてもよい。   The dual physical quantity sensor may further include a heat generator that equalizes the temperatures of the first physical quantity detection element and the second physical quantity detection element.

これにより、被測定対象またはデュアル物理量センサの周辺温度が変化した場合であっても、発熱器の発熱により、温度変化による影響を排除できるレベルにまで第1物理量検出素子および第2物理量検出素子の温度を上昇させることができるため、物理量の検出精度を向上させることが可能となる。   As a result, even when the ambient temperature of the measurement target or the dual physical quantity sensor changes, the first physical quantity detection element and the second physical quantity detection element are brought to a level at which the influence of the temperature change can be eliminated by the heat generated by the heater. Since the temperature can be increased, the physical quantity detection accuracy can be improved.

上記デュアル物理量センサにおいて、温度検出素子の検出温度が予め定められた所定温度となるように発熱器の発熱量を制御する発熱制御部を、さらに備えることとしてもよい。   The dual physical quantity sensor may further include a heat generation control unit that controls a heat generation amount of the heat generator so that a temperature detected by the temperature detection element becomes a predetermined temperature.

これにより、例えば、第1物理量検出素子および第2物理量検出素子が損傷する温度にまで上昇することがないように、発熱器の発熱量を抑制することが可能となる。   Thereby, for example, it is possible to suppress the amount of heat generated by the heater so that the temperature does not rise to a temperature at which the first physical quantity detection element and the second physical quantity detection element are damaged.

本発明によれば、部品点数やコストを削減することができるデュアル物理量センサを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the dual physical quantity sensor which can reduce a number of parts and cost can be provided.

実施形態におけるデュアル圧力センサの片側断面図である。It is a half sectional view of the dual pressure sensor in an embodiment. 図1に示すII−II線矢視方向断面図である。It is the II-II arrow direction sectional view shown in FIG. 実施形態におけるデュアル圧力センサの機能構成図である。It is a functional lineblock diagram of the dual pressure sensor in an embodiment. 第1変形例におけるデュアル圧力センサの機能構成図である。It is a functional lineblock diagram of the dual pressure sensor in the 1st modification. 第2変形例におけるデュアル圧力センサの機能構成図である。It is a functional lineblock diagram of the dual pressure sensor in the 2nd modification. 第3変形例におけるデュアル圧力センサの機能構成図である。It is a functional block diagram of the dual pressure sensor in a 3rd modification.

本発明の実施形態について説明する。以下の図面の記載では、同一または類似の部分を同一または類似の符号で表す。ただし、図面は模式的なものである。したがって、具体的な寸法等は以下の説明と照らし合わせて判断すべきである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれる。   An embodiment of the present invention will be described. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, the drawings are schematic. Therefore, specific dimensions and the like should be determined in light of the following description. Moreover, the part from which the relationship and ratio of a mutual dimension differ also in between drawings is contained.

本実施形態では、デュアル物理量センサとして、例えば、2つの圧力センサを有するデュアル圧力センサについて説明する。なお、物理量は圧力に限定されず、他の物理量にも同様に適用できる。   In the present embodiment, for example, a dual pressure sensor having two pressure sensors will be described as the dual physical quantity sensor. The physical quantity is not limited to pressure, and can be applied to other physical quantities as well.

図1は、実施形態におけるデュアル圧力センサ1の片側断面図であり、図2は、図1に示すII−II線矢視方向断面図である。デュアル圧力センサ1は、気密容器2と、2つの圧力センサ3A、3Bと、温度センサ4と、ヒータ5と、基板6と、制御回路7とを含んで構成される。   FIG. 1 is a half sectional view of a dual pressure sensor 1 according to the embodiment, and FIG. 2 is a sectional view taken along the line II-II in FIG. The dual pressure sensor 1 includes an airtight container 2, two pressure sensors 3 </ b> A and 3 </ b> B, a temperature sensor 4, a heater 5, a substrate 6, and a control circuit 7.

気密容器2は、合成樹脂等によって形成される容器本体21および蓋体22を有する。以下の記述では、気密容器2のうち、蓋体22のある側を上方とし、容器本体21がある側を下方とする。容器本体21は、上方に開口する有底箱型の容器である。容器本体21の底板には、2つの圧力センサ3A、3Bに対応して挿通孔21hがそれぞれ形成されている。蓋体22は、容器本体21の上面にシール部材(不図示)を介してねじ止め固定されることで、容器本体21の開口部を気密に密封する。   The airtight container 2 has a container body 21 and a lid body 22 formed of synthetic resin or the like. In the following description, in the airtight container 2, the side where the lid body 22 is located is the upper side, and the side where the container body 21 is located is the lower side. The container body 21 is a bottomed box-type container that opens upward. In the bottom plate of the container main body 21, through holes 21h are formed corresponding to the two pressure sensors 3A and 3B, respectively. The lid 22 is screwed and fixed to the upper surface of the container main body 21 via a seal member (not shown), thereby hermetically sealing the opening of the container main body 21.

容器本体21の内部には、2つの圧力センサ3A、3Bが互いに密接して並設され、これら圧力センサ3A、3Bの上面に温度センサ4が設けられている。圧力センサ3A、3Bと温度センサ4とは、相互に接触した状態で一体化されている。このように、2つの圧力センサ3A、3B同士を互いに密接させておくことで、圧力センサ3A、3B間の温度差を生じ難くすることができる。   Inside the container body 21, two pressure sensors 3A and 3B are arranged in close contact with each other, and a temperature sensor 4 is provided on the upper surface of the pressure sensors 3A and 3B. The pressure sensors 3A and 3B and the temperature sensor 4 are integrated in a state where they are in contact with each other. As described above, by keeping the two pressure sensors 3A and 3B in close contact with each other, a temperature difference between the pressure sensors 3A and 3B can be hardly generated.

圧力センサ3A、3Bは、それぞれの導入孔3hから取り込まれる被測定対象の圧力をそれぞれ検出する。被測定対象としては、例えば、水やガス等の流体が該当する。圧力センサ3A、3Bとしては、例えば、ダイヤフラム(薄肉感圧部)が形成された半導体基板(シリコン)と、この半導体基板に不純物またはイオンの打ち込み技術によって形成される拡散型歪みゲージとを有する公知の半導体圧力センサが該当する。拡散型歪みゲージは、ダイヤフラムの被測定圧力による歪みを、ピエゾ抵抗効果を利用して検出し、電気信号に変換する。圧力センサ3A、3Bは、出力のゲインやオフセットが使用温度に応じて変化するという温度特性を有する。   The pressure sensors 3A and 3B detect the pressure of the measurement target taken in from the respective introduction holes 3h. For example, a fluid such as water or gas corresponds to the measurement target. The pressure sensors 3A and 3B include, for example, a semiconductor substrate (silicon) on which a diaphragm (thin pressure sensing portion) is formed and a diffusion type strain gauge formed on the semiconductor substrate by an impurity or ion implantation technique. This corresponds to the semiconductor pressure sensor. The diffusion type strain gauge detects the strain due to the pressure to be measured of the diaphragm using the piezoresistive effect and converts it into an electric signal. Each of the pressure sensors 3A and 3B has a temperature characteristic that an output gain or offset changes according to the operating temperature.

温度センサ4は、圧力センサ3A、3Bの温度を検出する。ヒータ5は、圧力センサ3A、3Bの周囲を予め定めた所定温度でムラなく暖める。所定温度は、被測定対象が取り得る温度範囲の上限よりも少し高い温度に設定することが好ましい。例えば、被測定対象が取り得る温度範囲が7℃〜65℃である場合には、その上限である65℃よりも少し高い70℃〜75℃位に設定する。これにより、外気温の変化等によって被測定対象やデュアル圧力センサの周辺温度が変化した場合であっても、ヒータ5の発熱により、温度変化による影響を排除できるレベルにまで圧力センサ3A、3Bの温度を上昇させることができるため、圧力センサ3A、3B間に温度差が生ずる事態を抑止することができる。それゆえに、圧力値の検出精度を向上させることが可能となる。   The temperature sensor 4 detects the temperature of the pressure sensors 3A and 3B. The heater 5 warms the surroundings of the pressure sensors 3A and 3B uniformly at a predetermined temperature. The predetermined temperature is preferably set to a temperature slightly higher than the upper limit of the temperature range that can be taken by the object to be measured. For example, when the temperature range that can be taken by the object to be measured is 7 ° C. to 65 ° C., the temperature is set to about 70 ° C. to 75 ° C. that is slightly higher than the upper limit of 65 ° C. Thereby, even when the ambient temperature of the object to be measured or the dual pressure sensor is changed due to a change in the outside air temperature or the like, the pressure sensor 3A, 3B can reach a level at which the influence of the temperature change can be eliminated by the heat generation of the heater 5. Since temperature can be raised, the situation where a temperature difference arises between pressure sensor 3A, 3B can be suppressed. Therefore, the pressure value detection accuracy can be improved.

制御回路7は、基板6上に設けられ、デュアル圧力センサ1の各部の動作を制御する。制御回路7は、以下に記述するデュアル圧力センサ1の各機能を実現する。図3を参照して、実施形態におけるデュアル圧力センサ1の機能構成について説明する。   The control circuit 7 is provided on the substrate 6 and controls the operation of each part of the dual pressure sensor 1. The control circuit 7 realizes each function of the dual pressure sensor 1 described below. With reference to FIG. 3, the functional configuration of the dual pressure sensor 1 in the embodiment will be described.

図3に示すように、デュアル圧力センサ1は、ヒータ部71と、第1圧力検出部72Aと、第2圧力検出部72Bと、温度検出部73と、第1補正部74Aと、第2補正部74Bと、を有する。なお、図3は、デュアル圧力センサ1の後段に、流体の流量を測定する流量測定装置100を設けた場合の構成例を示している。   As shown in FIG. 3, the dual pressure sensor 1 includes a heater unit 71, a first pressure detection unit 72A, a second pressure detection unit 72B, a temperature detection unit 73, a first correction unit 74A, and a second correction. Part 74B. FIG. 3 shows a configuration example in the case where a flow rate measuring device 100 that measures the flow rate of the fluid is provided in the subsequent stage of the dual pressure sensor 1.

ヒータ部71は、ヒータ5を駆動させ、圧力センサ3A、3Bを予め定めた所定温度に暖める。   The heater unit 71 drives the heater 5 to warm the pressure sensors 3A and 3B to a predetermined temperature.

第1圧力検出部72Aは、圧力センサ3Aから検出信号を取得し、取得した検出信号を第1補正部74Aに出力する。第2圧力検出部72Bは、圧力センサ3Bから検出信号を取得し、取得した検出信号を第2補正部74Bに出力する。   The first pressure detection unit 72A acquires a detection signal from the pressure sensor 3A, and outputs the acquired detection signal to the first correction unit 74A. The second pressure detection unit 72B acquires the detection signal from the pressure sensor 3B, and outputs the acquired detection signal to the second correction unit 74B.

温度検出部73は、温度センサ4から検出温度を取得し、取得した検出温度を第1補正部74Aおよび第2補正部74Bに出力する。   The temperature detection unit 73 acquires the detection temperature from the temperature sensor 4 and outputs the acquired detection temperature to the first correction unit 74A and the second correction unit 74B.

第1補正部74Aは、温度検出部73から取得した検出温度に基づいて、第1圧力検出部72Aから取得した検出信号を補正し、補正後の信号を第1測定信号として流量測定装置100に出力する。第2補正部74Bは、温度検出部73から取得した検出温度に基づいて、第2圧力検出部72Bから取得した検出信号を補正し、補正後の信号を第2測定信号として流量測定装置100に出力する。   The first correction unit 74A corrects the detection signal acquired from the first pressure detection unit 72A based on the detected temperature acquired from the temperature detection unit 73, and uses the corrected signal as the first measurement signal in the flow measurement device 100. Output. The second correction unit 74B corrects the detection signal acquired from the second pressure detection unit 72B based on the detected temperature acquired from the temperature detection unit 73, and uses the corrected signal as the second measurement signal in the flow measurement device 100. Output.

第1補正部74Aおよび第2補正部74Bは、それぞれ、セレクタ部A1、B1、A/D変換部A2、B2、補正演算部A3、B3および補正式記憶部A4、B4を有する。セレクタ部A1、B1は、例えば、マルチプレクサであり、第1圧力検出部72Aまたは第2圧力検出部72Bと温度検出部73とからそれぞれ信号を受信し、いずれかの信号を選択してA/D変換部A2、B2に出力する。   The first correction unit 74A and the second correction unit 74B include selector units A1 and B1, A / D conversion units A2 and B2, correction calculation units A3 and B3, and correction formula storage units A4 and B4, respectively. The selector units A1 and B1 are, for example, multiplexers, which receive signals from the first pressure detection unit 72A or the second pressure detection unit 72B and the temperature detection unit 73, respectively, and select one of the signals to perform A / D It outputs to conversion part A2, B2.

A/D変換部A2、B2は、セレクタ部A1、B1から受信したアナログ信号をデジタル信号に変換して補正演算部A3、B3に出力する。補正演算部A3、B3は、A/D変換部A2、B2から受信したデジタル信号に対応する圧力値を、補正式記憶部A4、B4に記憶されている補正式を用いて補正処理を実行し、補正処理後の圧力値に対応する信号を測定信号として流量測定装置100に出力する。補正式としては、例えば、温度を変数とする一次式や二次式等を用いることができる。補正式は、例えば、予め実験等を行って温度ごとに基準温度からの温度変化による圧力値の変動を求め、この変動分を検出信号から除外できるような式を準備する。つまり、補正処理は、第1圧力検出部72Aまたは第2圧力検出部72Bの検出信号から温度変化による変動分を除外する補正を行う処理となる。   The A / D conversion units A2 and B2 convert the analog signals received from the selector units A1 and B1 into digital signals and output the digital signals to the correction calculation units A3 and B3. The correction calculation units A3 and B3 execute a correction process on the pressure values corresponding to the digital signals received from the A / D conversion units A2 and B2 using the correction formulas stored in the correction formula storage units A4 and B4. Then, a signal corresponding to the pressure value after the correction processing is output to the flow measuring device 100 as a measurement signal. As the correction formula, for example, a primary formula or a quadratic formula using temperature as a variable can be used. As the correction formula, for example, an experiment or the like is performed in advance to obtain a pressure value variation due to a temperature change from the reference temperature for each temperature, and a formula is prepared so that this variation can be excluded from the detection signal. That is, the correction process is a process for performing correction to exclude the variation due to the temperature change from the detection signal of the first pressure detection unit 72A or the second pressure detection unit 72B.

流量測定装置100は、第1補正部74Aから出力された第1測定信号と、第2補正部74Bから出力された第2測定信号との差分を求めることで、圧力センサ3A、3B間の差圧を算出する。この差圧は、例えばデュアル圧力センサ1を流量制御弁の弁本体に取り付けた場合を例にすると、以下のように用いることができる。なお、この場合には、圧力センサ3Aおよび圧力センサ3Bを、弁体の上流側の流体圧力および下流側の流体圧力をそれぞれ測定できるように配置する。   The flow measurement device 100 obtains a difference between the first measurement signal output from the first correction unit 74A and the second measurement signal output from the second correction unit 74B, thereby obtaining a difference between the pressure sensors 3A and 3B. Calculate the pressure. This differential pressure can be used as follows, for example, when the dual pressure sensor 1 is attached to the valve body of the flow control valve. In this case, the pressure sensor 3A and the pressure sensor 3B are arranged so that the fluid pressure on the upstream side and the fluid pressure on the downstream side of the valve body can be measured, respectively.

流量制御弁の流路内を流れる流体の流量Qは、弁体の上流側流路と下流側流路との間の流体の圧力差ΔPと、弁体の開度で定まる流量係数(Cv値)とを用い、下記式(1)によって算出することができる。なお、下記式(1)のAは定数である。   The flow rate Q of the fluid flowing in the flow path of the flow control valve is a flow coefficient (Cv value) determined by the pressure difference ΔP of the fluid between the upstream flow path and the downstream flow path of the valve body and the opening of the valve body. ) And the following equation (1). In the following formula (1), A is a constant.

Q=A*Cv*√ΔP ・・・・(1)   Q = A * Cv * √ΔP (1)

つまり、流量測定装置100で算出した差圧を上記式(1)のΔPに代入することで、流体の流量Qを算出することができ、この流量Qに応じて弁体の開度を制御することができる。   That is, the flow rate Q of the fluid can be calculated by substituting the differential pressure calculated by the flow rate measuring device 100 into ΔP in the above equation (1), and the opening degree of the valve body is controlled according to the flow rate Q. be able to.

デュアル圧力センサ1を流量制御弁に取り付けた場合、デュアル圧力センサ1および流量測定装置100は、例えば、以下のように動作する。   When the dual pressure sensor 1 is attached to the flow control valve, the dual pressure sensor 1 and the flow measuring device 100 operate as follows, for example.

最初に、弁体より上流側の被測定圧力が圧力センサ3Aのダイヤフラムに印加され、弁体より下流側の被測定圧力が圧力センサ3Bのダイヤフラムに印加されると、各圧力センサ3A、3Bのダイヤフラムは、印加された圧力に応じて歪み、この歪みにより拡散型歪みゲージの出力電圧が変化する。   First, when the pressure to be measured upstream of the valve body is applied to the diaphragm of the pressure sensor 3A and the pressure to be measured downstream of the valve body is applied to the diaphragm of the pressure sensor 3B, each pressure sensor 3A, 3B The diaphragm is distorted according to the applied pressure, and the output voltage of the diffusion strain gauge changes due to this distortion.

続いて、第1圧力検出部72Aおよび第2圧力検出部72Aは、出力電圧の変化に基づいてそれぞれの圧力を測定し、測定結果を検出信号として第1補正部74Aまたは第2補正部74Bに出力する。この場合、ダイヤフラムには気密容器2内の圧力が基準圧力として印加されているため、各圧力センサ3A、3Bの出力電圧は、それぞれの被測定圧力に相当する絶対圧の出力電圧となる。   Subsequently, the first pressure detection unit 72A and the second pressure detection unit 72A measure the respective pressures based on changes in the output voltage, and use the measurement results as detection signals for the first correction unit 74A or the second correction unit 74B. Output. In this case, since the pressure in the hermetic container 2 is applied as a reference pressure to the diaphragm, the output voltage of each pressure sensor 3A, 3B becomes an output voltage of an absolute pressure corresponding to each measured pressure.

続いて、第1補正部74Aおよび第2補正部74Bは、温度検出部73から取得した検出温度を用いて、検出信号に対応する圧力値の補正処理をそれぞれ実行し、その実行結果を測定信号として流量測定装置100にそれぞれ出力する。   Subsequently, the first correction unit 74A and the second correction unit 74B each execute the correction process of the pressure value corresponding to the detection signal using the detected temperature acquired from the temperature detection unit 73, and the execution result is measured signal. Are respectively output to the flow rate measuring device 100.

続いて、流量測定装置100は、デュアル圧力センサ1から受信した各測定信号に対応する圧力値を用いて差圧ΔPを算出し、算出した差圧ΔPを上記式(1)に代入して演算することで、流量制御弁を流れる流体の流量Qを算出する。   Subsequently, the flow measuring device 100 calculates a differential pressure ΔP using a pressure value corresponding to each measurement signal received from the dual pressure sensor 1, and calculates the differential pressure ΔP by substituting the calculated differential pressure ΔP into the above equation (1). By doing so, the flow rate Q of the fluid flowing through the flow rate control valve is calculated.

上述したように、本実施形態におけるデュアル圧力センサによれば、温度センサ4を、圧力センサ3A、3Bと相互に接触した状態で一体化することができるため、圧力センサ3A、3Bの温度を一つの温度センサ4で検出することが可能となる。   As described above, according to the dual pressure sensor of the present embodiment, the temperature sensor 4 can be integrated with the pressure sensors 3A and 3B in contact with each other. It is possible to detect with one temperature sensor 4.

[変形例]
本発明を、上述した実施形態によって説明したが、この開示の一部をなす記述および図面は、この発明を限定するものではない。この開示から当業者には様々な代替の実施形態や運用技術等が明らかになるはずである。
[Modification]
Although the present invention has been described by using the above-described embodiments, the description and drawings constituting a part of this disclosure do not limit the present invention. From this disclosure, various alternative embodiments and operational techniques should be apparent to those skilled in the art.

例えば、上述した実施形態では、ヒータ5を設けているが、ヒータ5を省略してもよい。この第1変形例におけるデュアル圧力センサ1の機能構成を、図4に示す。図4に示すように、第1変形例におけるデュアル圧力センサ1は、図3に示す実施形態におけるヒータ部71を含まない点で上記実施形態におけるデュアル圧力センサ1と異なる。   For example, in the embodiment described above, the heater 5 is provided, but the heater 5 may be omitted. FIG. 4 shows a functional configuration of the dual pressure sensor 1 in the first modification. As shown in FIG. 4, the dual pressure sensor 1 in the first modification is different from the dual pressure sensor 1 in the above embodiment in that the heater unit 71 in the embodiment shown in FIG. 3 is not included.

また、上述した実施形態ではヒータ5の発熱量を制御していないが、圧力センサ3A、3Bの温度が予め設定した所定温度を維持するように、温度検出部73の検出温度を用いてヒータ5の発熱量をフィードバック制御することとしてもよい。この第2変形例におけるデュアル圧力センサ1の機能構成を、図5に示す。図5に示すように、第2変形例におけるデュアル圧力センサ1は、図3に示す実施形態における各部に加え、ヒータ制御部75をさらに含む点で上記実施形態におけるデュアル圧力センサ1と異なる。ヒータ制御部75は、温度検出部73の検出温度が、予め設定した所定温度になるように、ヒータ5の発熱量を制御する。これにより、例えば、圧力センサ3A、3Bが損傷する温度にまで上昇することがないように、ヒータ5の発熱量を抑制することが可能となる。   In the embodiment described above, the amount of heat generated by the heater 5 is not controlled, but the heater 5 is detected using the temperature detected by the temperature detection unit 73 so that the temperature of the pressure sensors 3A and 3B is maintained at a predetermined temperature. It is good also as carrying out feedback control of the emitted-heat amount. FIG. 5 shows a functional configuration of the dual pressure sensor 1 in the second modification. As shown in FIG. 5, the dual pressure sensor 1 in the second modified example is different from the dual pressure sensor 1 in the above embodiment in that it further includes a heater control unit 75 in addition to each part in the embodiment shown in FIG. 3. The heater control unit 75 controls the amount of heat generated by the heater 5 so that the temperature detected by the temperature detection unit 73 becomes a predetermined temperature set in advance. Thereby, for example, the amount of heat generated by the heater 5 can be suppressed so that the pressure sensors 3A and 3B do not rise to a temperature at which they are damaged.

上記第2変形例においてヒータ5の発熱量をフィードバック制御すると、圧力センサ3A、3Bの温度は所定温度に維持され、その結果、圧力センサ3A、3Bの圧力値を補正する際に用いる補正式の変数も所定温度に維持されることになる。したがって、この場合には、変数を所定温度で固定した補正式を用いて圧力値を補正することとしてもよい。この第3変形例におけるデュアル圧力センサ1の機能構成を、図6に示す。図6に示すように、第3変形例におけるデュアル圧力センサ1は、図3に示す実施形態における各部に加え、ヒータ制御部75をさらに含み、温度検出部73の検出温度を第1補正部74Aおよび第2補正部74Bに入力しない点で上記実施形態におけるデュアル圧力センサ1と異なる。ヒータ制御部75は、上記第2変形例と同様に、温度検出部73の検出温度が予め設定した所定温度になるように、ヒータ5の発熱量を制御する。また、補正式記憶部A4、B4に記憶する補正式の変数には所定温度を予め設定しておく。これにより、補正式を簡素化することができるため、補正式の記憶領域を削減することが可能となる。   When feedback control is performed on the amount of heat generated by the heater 5 in the second modification, the temperature of the pressure sensors 3A and 3B is maintained at a predetermined temperature. As a result, the correction equation used when correcting the pressure values of the pressure sensors 3A and 3B The variable will also be maintained at a predetermined temperature. Therefore, in this case, the pressure value may be corrected using a correction formula in which the variable is fixed at a predetermined temperature. FIG. 6 shows a functional configuration of the dual pressure sensor 1 in the third modification. As shown in FIG. 6, the dual pressure sensor 1 in the third modified example further includes a heater control unit 75 in addition to each unit in the embodiment shown in FIG. 3, and detects the temperature detected by the temperature detection unit 73 as the first correction unit 74 </ b> A. And the point which does not input into the 2nd correction | amendment part 74B differs from the dual pressure sensor 1 in the said embodiment. The heater control unit 75 controls the amount of heat generated by the heater 5 so that the temperature detected by the temperature detection unit 73 becomes a predetermined temperature set in advance as in the second modification. In addition, a predetermined temperature is set in advance as a variable of the correction formula stored in the correction formula storage units A4 and B4. Thereby, since the correction formula can be simplified, the storage area of the correction formula can be reduced.

1…デュアル圧力センサ、2…気密容器、3A、3B…圧力センサ、3h…導入孔、4…温度センサ、5…ヒータ、6…基板、7…制御回路、21…容器本体、21h…挿通孔、22…蓋体、71…ヒータ部、72A…第1圧力検出部、72B…第2圧力検出部、73…温度検出部、74A…第1補正部、74B…第2補正部、75…ヒータ制御部、100…流量測定装置、A1、B1…セレクタ部、A2、B2…A/D変換部、A3、B3…補正演算部、A4、B4…補正式記憶部。   DESCRIPTION OF SYMBOLS 1 ... Dual pressure sensor, 2 ... Airtight container, 3A, 3B ... Pressure sensor, 3h ... Introduction hole, 4 ... Temperature sensor, 5 ... Heater, 6 ... Substrate, 7 ... Control circuit, 21 ... Container body, 21h ... Insertion hole 22 ... Lid, 71 ... Heater, 72A ... First pressure detector, 72B ... Second pressure detector, 73 ... Temperature detector, 74A ... First corrector, 74B ... Second corrector, 75 ... Heater Control unit, 100 ... flow rate measuring device, A1, B1 ... selector unit, A2, B2 ... A / D conversion unit, A3, B3 ... correction calculation unit, A4, B4 ... correction formula storage unit.

Claims (4)

第1被測定対象の物理量を検出する第1物理量検出素子と、
第2被測定対象の物理量を検出する第2物理量検出素子と、
前記第1物理量検出素子および前記第2物理量検出素子の温度を検出する温度検出素子と、
前記第1物理量検出素子の検出信号から温度変化による変動分を除外する補正を実行し、当該補正後の信号を前記第1被測定対象の測定信号として出力する第1補正部と、
前記第2物理量検出素子の検出信号から温度変化による変動分を除外する補正を実行し、当該補正後の信号を前記第2被測定対象の測定信号として出力する第2補正部と、
前記第1物理量検出素子および前記第2物理量検出素子の一部の周りを途切れることなく囲み、前記第1物理量検出素子および前記第2物理量検出素子の温度を同等にする発熱器と、を備え、
前記第1物理量検出素子と前記第2物理量検出素子とは、相互に密接して設けられ、
前記温度検出素子は、前記第1物理量検出素子および前記第2物理量検出素子の双方と相互に接触した状態で一体化されていることを特徴とするデュアル物理量センサ。
A first physical quantity detection element for detecting a physical quantity of the first measurement target;
A second physical quantity detection element for detecting a physical quantity of the second object to be measured;
A temperature detection element for detecting temperatures of the first physical quantity detection element and the second physical quantity detection element;
A first correction unit that performs a correction that excludes a variation due to a temperature change from the detection signal of the first physical quantity detection element, and outputs the corrected signal as a measurement signal of the first measurement target;
A second correction unit that performs correction to exclude a variation due to temperature change from the detection signal of the second physical quantity detection element, and outputs the corrected signal as a measurement signal of the second measurement target;
A heater that surrounds a part of the first physical quantity detection element and the second physical quantity detection element without interruption, and equalizes the temperatures of the first physical quantity detection element and the second physical quantity detection element ,
The first physical quantity detection element and the second physical quantity detection element are provided in close contact with each other,
The dual physical quantity sensor, wherein the temperature detection element is integrated with both the first physical quantity detection element and the second physical quantity detection element in contact with each other.
前記温度検出素子の検出温度が予め定められた所定温度となるように前記発熱器の発熱量を制御する発熱制御部を、さらに備えることを特徴とする請求項記載のデュアル物理量センサ。 Dual physical quantity sensor according to claim 1, wherein the heat generation control section for controlling the heating value of the heat generator so that the detected temperature becomes a predetermined temperature predetermined by the temperature detection element further comprises. 前記第1補正部および前記第2補正部は、前記温度検出素子の検出温度を用いて前記補正を実行することを特徴とする請求項1または2記載のデュアル物理量センサ。 3. The dual physical quantity sensor according to claim 1, wherein the first correction unit and the second correction unit perform the correction using a temperature detected by the temperature detection element. 前記第1補正部および前記第2補正部は、前記所定温度を用いて前記補正を実行することを特徴とする請求項記載のデュアル物理量センサ。 The dual physical quantity sensor according to claim 2, wherein the first correction unit and the second correction unit perform the correction using the predetermined temperature.
JP2010138333A 2010-06-17 2010-06-17 Dual physical quantity sensor Expired - Fee Related JP5548531B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010138333A JP5548531B2 (en) 2010-06-17 2010-06-17 Dual physical quantity sensor
US13/154,925 US8443675B2 (en) 2010-06-17 2011-06-07 Dual physical quantity sensor
CN201110165743.0A CN102288357B (en) 2010-06-17 2011-06-14 Dual physical quantity sensor
KR1020110057490A KR101257592B1 (en) 2010-06-17 2011-06-14 Dual physical quantity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010138333A JP5548531B2 (en) 2010-06-17 2010-06-17 Dual physical quantity sensor

Publications (2)

Publication Number Publication Date
JP2012002688A JP2012002688A (en) 2012-01-05
JP5548531B2 true JP5548531B2 (en) 2014-07-16

Family

ID=45327471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010138333A Expired - Fee Related JP5548531B2 (en) 2010-06-17 2010-06-17 Dual physical quantity sensor

Country Status (4)

Country Link
US (1) US8443675B2 (en)
JP (1) JP5548531B2 (en)
KR (1) KR101257592B1 (en)
CN (1) CN102288357B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017015591A (en) * 2015-07-02 2017-01-19 旭サナック株式会社 Pressure detector

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9823214B2 (en) * 2011-11-01 2017-11-21 Panasonic Healthcare Holdings Co., Ltd. Biological sample measuring apparatus
JP6522624B2 (en) * 2013-09-06 2019-05-29 イリノイ トゥール ワークス インコーポレイティド Absolute pressure differential pressure transducer
US11137300B2 (en) * 2017-04-25 2021-10-05 Ati Industrial Automation, Inc. Robotic force/torque sensor with improved temperature compensation
JP6964063B2 (en) * 2018-11-28 2021-11-10 長野計器株式会社 Sensor assembly and physical quantity measuring device
FR3092167B1 (en) * 2019-01-29 2021-10-22 Arianegroup Sas Sensor for measuring a first physical quantity whose measurement is influenced by a second physical quantity
WO2022249769A1 (en) * 2021-05-27 2022-12-01 株式会社村田製作所 Pressure sensor

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5915944U (en) * 1982-07-21 1984-01-31 株式会社日立製作所 differential pressure detector
JPS6173382A (en) * 1984-09-18 1986-04-15 Fujikura Ltd Temperature compensating method of semiconductor pressure sensor
JPH064306Y2 (en) * 1986-09-30 1994-02-02 横河電機株式会社 Physical quantity conversion device
DE3932443C1 (en) * 1989-09-28 1990-12-20 Endress U. Hauser Gmbh U. Co, 7864 Maulburg, De
JP3896435B2 (en) 1997-12-17 2007-03-22 アークレイ株式会社 Sensor and sensor assembly
EP1128168A3 (en) * 2000-02-23 2002-07-03 Hitachi, Ltd. Measurement apparatus for measuring physical quantity such as fluid flow
JP3655569B2 (en) * 2001-09-06 2005-06-02 大陽日酸株式会社 Gas component concentration measuring method and apparatus
CN1200254C (en) * 2003-04-20 2005-05-04 胡永成 Built in gas flow meter and temperature pressure compensation transmission method
KR100682941B1 (en) 2004-03-27 2007-02-15 삼성전자주식회사 Apparatus and method for simultaneously measuring bio signals
WO2006129712A1 (en) * 2005-06-01 2006-12-07 Citizen Holdings Co., Ltd. Physical amount sensor
JP2008197001A (en) * 2007-02-14 2008-08-28 Denso Corp Pressure sensor
JP4933972B2 (en) 2007-07-24 2012-05-16 株式会社山武 Dual pressure sensor
JP4927683B2 (en) 2007-11-09 2012-05-09 株式会社山武 Flow control valve
JP4794596B2 (en) * 2008-04-04 2011-10-19 パナソニック株式会社 Physical quantity detection circuit, physical quantity sensor device
JP2009281888A (en) * 2008-05-22 2009-12-03 Panasonic Corp Physical quantity detection circuit, physical quantity sensor apparatus equipped with same, and physical quantity detection method
JP2010151669A (en) * 2008-12-25 2010-07-08 Panasonic Corp Physical quantity detection circuit and physical quantity sensor device
JP2012002741A (en) * 2010-06-18 2012-01-05 Yamatake Corp Physical quantity sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017015591A (en) * 2015-07-02 2017-01-19 旭サナック株式会社 Pressure detector

Also Published As

Publication number Publication date
US20110308321A1 (en) 2011-12-22
US8443675B2 (en) 2013-05-21
KR101257592B1 (en) 2013-04-26
CN102288357A (en) 2011-12-21
KR20110137744A (en) 2011-12-23
CN102288357B (en) 2014-12-24
JP2012002688A (en) 2012-01-05

Similar Documents

Publication Publication Date Title
JP5548531B2 (en) Dual physical quantity sensor
TWI235825B (en) Automatic zero point-correcting device for pressure sensor, pressure controller, and pressure-type flow rate controller
US10451510B2 (en) Pressure change measurement device, altitude measurement device, and pressure change measurement method
JP6748006B2 (en) Pressure sensor
US8701460B2 (en) Method and system to compensate for temperature and pressure in piezo resistive devices
US8874387B2 (en) Air flow measurement device and air flow correction method
US9057739B2 (en) Sensor response calibration for linearization
JP5441845B2 (en) Dual pressure sensor and flow control valve
WO2019150745A1 (en) Sensor device
JP4669193B2 (en) Temperature measuring device for pressure flow control device
KR101206216B1 (en) Physical quantity sensor
US12055452B2 (en) Load-lock gauge
US20170167939A1 (en) Pressure sensor drift detection and correction
JP2013050400A (en) Dual physical quantity sensor
US11422016B2 (en) Thermal flow rate meter
JP5120289B2 (en) Air flow measurement device
JP4852654B2 (en) Pressure flow control device
JP2010096502A (en) Meter
US20240102873A1 (en) Notification Sensor Arrangement for a Differential Pressure Sensor and a Method for Outputting a Sensed Warning Signal
CN219736666U (en) Improved pressure sensor
JP5178263B2 (en) Thermal flow meter and its initial adjustment method and initial adjustment device
JP2022085260A (en) Diaphragm vacuum gauge
KR20170103169A (en) Dual Thermistor Sensing Circuit for high Accuracy Temperature
JPS60205328A (en) Pressure sensor
JP2010261796A (en) Sensor system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140519

R150 Certificate of patent or registration of utility model

Ref document number: 5548531

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees