JP5546206B2 - Power generation system - Google Patents

Power generation system Download PDF

Info

Publication number
JP5546206B2
JP5546206B2 JP2009254117A JP2009254117A JP5546206B2 JP 5546206 B2 JP5546206 B2 JP 5546206B2 JP 2009254117 A JP2009254117 A JP 2009254117A JP 2009254117 A JP2009254117 A JP 2009254117A JP 5546206 B2 JP5546206 B2 JP 5546206B2
Authority
JP
Japan
Prior art keywords
power
power generation
curve
generated
generation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009254117A
Other languages
Japanese (ja)
Other versions
JP2011101492A (en
Inventor
謙二 小河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2009254117A priority Critical patent/JP5546206B2/en
Publication of JP2011101492A publication Critical patent/JP2011101492A/en
Application granted granted Critical
Publication of JP5546206B2 publication Critical patent/JP5546206B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Photovoltaic Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、ごみ焼却施設に設けられる発電システムに関する。   The present invention relates to a power generation system provided in a waste incineration facility.

近年、可燃ごみの焼却によりごみ焼却ボイラにて蒸気を発生させ、当該蒸気を用いて蒸気タービンを回転することにより発電を行う発電システムが、ごみ焼却施設に設けられている。また、発電された電力(以下、「発電電力」という。)をごみ焼却施設内にて利用する以外に、電力会社に売却する(すなわち、売電する)ことも行われている。特許文献1では、ごみ焼却にて発電された電気を、太陽光発電装置によって発電された電気と共に他のプラントに送電する技術が開示されている。なお、非特許文献1では、太陽光発電向けの日照量予測を提供するサービスについて記載されている。   2. Description of the Related Art Recently, a power generation system that generates power by generating steam by using a waste incineration boiler by incineration of combustible waste and rotating a steam turbine using the steam is provided in a waste incineration facility. In addition to using the generated electric power (hereinafter referred to as “generated electric power”) in the waste incineration facility, the electric power company is also sold (that is, sold). Patent Document 1 discloses a technique for transmitting electricity generated by waste incineration to another plant together with electricity generated by a solar power generation device. Note that Non-Patent Document 1 describes a service that provides a prediction of the amount of sunlight for photovoltaic power generation.

特開平5−288012号公報Japanese Patent Laid-Open No. 5-288812

“JWA Information VOL.41”、[online]、財団法人日本気象協会、[平成21年9月29日検索]、インターネット<URL:http://www.jwa.or.jp/var/plain_site/storage/original/application/e1d0b6cef1cd1c409a970e9e22b436bf.pdf>“JWA Information VOL.41”, [online], Japan Weather Association, [searched on September 29, 2009], Internet <URL: http://www.jwa.or.jp/var/plain_site/storage /original/application/e1d0b6cef1cd1c409a970e9e22b436bf.pdf>

ところで、特許文献1ではごみ焼却による発電と、太陽光発電による発電とを組み合わせることにより、ごみ焼却施設において発電電力を増大することが可能となるが、太陽光発電における発電電力は日射強度(すなわち、単位時間当たりに単位面積に照射される太陽からの光の量であり、日射量とも呼ばれる。)に依存するため、ごみ焼却施設における総発電電力を安定させることが困難となる。電力会社に売電する場合には、電力を毎日安定して供給すること(一定の電力を連続して供給することではなく、1日の供給電力の変化が、毎日一定であること)が要求されるが、上記理由により、特許文献1のシステムではこのような要求を満たすことが困難となる。   By the way, in Patent Document 1, it is possible to increase the generated power in the waste incineration facility by combining the power generation by garbage incineration and the power generation by solar power generation. , Which is the amount of light from the sun that is irradiated onto a unit area per unit time and is also referred to as the amount of solar radiation.), It becomes difficult to stabilize the total generated power in the waste incineration facility. When selling power to an electric power company, it is necessary to supply power stably every day (instead of continuously supplying constant power, changes in the daily power supply are constant every day). However, for the above reason, it is difficult for the system of Patent Document 1 to satisfy such a requirement.

本発明は上記課題に鑑みなされたものであり、ごみ焼却施設において太陽光発電を利用しつつ電力を安定して供給することを目的としている。   This invention is made | formed in view of the said subject, and it aims at supplying electric power stably, utilizing solar power generation in a garbage incineration facility.

請求項1に記載の発明は、ごみ焼却施設に設けられる発電システムであって、ごみを焼却することにより得られるエネルギーを利用して発電を行うごみ発電装置と、ごみ焼却施設に設けられる太陽電池パネルを用いて発電を行う太陽光発電装置と、補助発電機と、日射強度の変化の予測に基づいて前記太陽光発電装置における所定期間の発電電力の予測曲線を求め、前記太陽光発電装置における発電電力の目標曲線と前記発電電力の前記予測曲線との差に基づいて、前記ごみ発電装置における発電電力の予定曲線を決定する演算部と、前記発電電力の前記予定曲線に従って前記ごみ発電装置における発電電力を制御するとともに、前記太陽光発電装置の実際の発電電力が前記予測曲線の発電電力よりも所定値以上小さくなる場合に、前記補助発電機を駆動する制御部とを備える。 The invention described in claim 1 is a power generation system provided in a waste incineration facility, wherein the power generation system generates power using energy obtained by incineration of waste, and a solar cell provided in the waste incineration facility. A photovoltaic power generation device that generates power using a panel, an auxiliary generator, and a prediction curve of generated power for a predetermined period in the solar power generation device based on prediction of changes in solar radiation intensity, Based on the difference between the target curve of generated power and the predicted curve of the generated power, a calculation unit that determines a planned curve of generated power in the waste power generator, and in the waste power generator according to the planned curve of the generated power It controls the generated power, when smaller actual generated power of the photovoltaic device is equal to or greater than a predetermined value than the generated power of the prediction curve, the auxiliary And a control unit for driving the electric.

請求項2に記載の発明は、請求項1に記載の発電システムであって、前記太陽光発電装置が蓄電池を備え、前記制御部が、前記所定期間の各時刻における前記太陽光発電装置の実際の発電電力と、前記予測曲線の発電電力との差に基づいて、前記蓄電池の充放電を制御する。   Invention of Claim 2 is the electric power generation system of Claim 1, Comprising: The said solar power generation device is equipped with a storage battery, The said control part is the actual of the said solar power generation device in each time of the said predetermined period. The charge / discharge of the storage battery is controlled based on the difference between the generated power and the generated power of the prediction curve.

請求項に記載の発明は、請求項1に記載の発電システムであって、蓄電池をさらに備え、前記所定期間が1日であり、前記目標曲線のピーク時刻からピーク時刻が遅延している出力電力の需要曲線が予め定められており、前記制御部が、前記需要曲線に従って前記蓄電池の充放電を制御する。 The invention according to claim 3 is the power generation system according to claim 1, further comprising a storage battery, wherein the predetermined period is one day, and the output is delayed from the peak time of the target curve. A power demand curve is predetermined, and the controller controls charging / discharging of the storage battery according to the demand curve.

本発明によれば、ごみ焼却施設において太陽光発電を利用しつつ電力を安定して供給することができる。   ADVANTAGE OF THE INVENTION According to this invention, electric power can be stably supplied, utilizing solar power generation in a garbage incineration facility.

請求項2の発明では、太陽光発電装置からの出力電力の変動を低減することができ、請求項の発明では、需要曲線に合わせて出力電力を調整することができる。 In the invention of claim 2, it is possible to reduce variations in the output power from the photovoltaic device, in the invention Motomeko 3, it is possible to adjust the output power in accordance with the demand curve.

発電システムの構成を示すブロック図である。It is a block diagram which shows the structure of a power generation system. 太陽光発電装置の構成を示す図である。It is a figure which shows the structure of a solar power generation device. 発電システムにおける発電に係る処理の流れを示す図である。It is a figure which shows the flow of the process which concerns on the electric power generation in an electric power generation system. 太陽光発電装置における発電電力の予測曲線を示す図である。It is a figure which shows the prediction curve of the generated electric power in a solar power generation device. 太陽光発電装置における発電電力の予測曲線を示す図である。It is a figure which shows the prediction curve of the generated electric power in a solar power generation device. ごみ発電装置における発電電力の予定曲線を示す図である。It is a figure which shows the scheduled curve of the generated electric power in a refuse power generation device. 比較例の発電システムにおける総発電電力の変化を示す図である。It is a figure which shows the change of the total generated electric power in the electric power generation system of a comparative example. ごみ発電装置および太陽光発電装置による総発電電力の変化を示す図である。It is a figure which shows the change of the total generated electric power by a garbage power generation device and a solar power generation device. 需要曲線を示す図である。It is a figure which shows a demand curve.

図1は、本発明の一の実施の形態に係る発電システム1の構成を示すブロック図である。発電システム1は、ごみ焼却施設に設けられるものであり、発電システム1にて発電される電力(すなわち、発電電力)は送電線を介して、電力会社に供給(売電)される。以下の説明では、ごみ焼却施設は、実際にごみの焼却が行われる建造物以外に、当該建造物の周囲に設けられる他の関連建造物、あるいは、これらの建造物の周囲に設けられる駐車場や車路等、ごみの焼却に関連する区域の全体(いわゆる、ごみ焼却場の全体)を含むものとする。   FIG. 1 is a block diagram showing a configuration of a power generation system 1 according to an embodiment of the present invention. The power generation system 1 is provided in a garbage incineration facility, and the power generated by the power generation system 1 (that is, generated power) is supplied (power sold) to an electric power company via a transmission line. In the following explanation, the waste incineration facility is a building other than a building where garbage is actually incinerated, other related buildings provided around the building, or a parking lot provided around these buildings. The entire area related to incineration of garbage, such as roads and roadways (so-called entire waste incineration plant) shall be included.

図1に示すように、発電システム1は、ごみを焼却することにより得られるエネルギーを利用して発電を行うごみ発電装置2、太陽光発電を行う太陽光発電装置3、および、ごみ焼却施設に設けられる非常用発電機(例えば停電時に用いられる。)である補助発電機4を備える。ごみ発電装置2、太陽光発電装置3および補助発電機4は制御部51に接続されており、制御部51によりごみ発電装置2、太陽光発電装置3および補助発電機4における発電電力が制御(例えば、フィードバック制御)される。また、発電システム1は、制御部51に接続されるとともに記憶部521を有する演算部52をさらに備え、演算部52にて制御部51における制御に利用される情報が求められる。ごみ発電装置2では、例えば、ごみの焼却によりごみ焼却ボイラにて蒸気を発生させ、当該蒸気を用いて蒸気タービンを回転することにより発電が行われる。   As shown in FIG. 1, a power generation system 1 includes a waste power generation device 2 that generates power using energy obtained by incineration of waste, a solar power generation device 3 that performs solar power generation, and a waste incineration facility. The auxiliary generator 4 which is an emergency generator (for example, used at the time of a power failure) is provided. The waste power generation device 2, the solar power generation device 3, and the auxiliary generator 4 are connected to the control unit 51, and the control unit 51 controls the generated power in the waste power generation device 2, the solar power generation device 3, and the auxiliary power generator 4 ( For example, feedback control is performed. The power generation system 1 further includes a calculation unit 52 that is connected to the control unit 51 and has a storage unit 521, and information used for control in the control unit 51 is obtained by the calculation unit 52. In the waste power generation device 2, for example, steam is generated by a waste incineration boiler by incineration of waste, and power is generated by rotating a steam turbine using the steam.

図2は、太陽光発電装置3の構成を示す図である。太陽光発電装置3は、ごみ焼却施設に設けられる太陽電池パネル31、太陽電池パネル31にて発電した直流の電気を交流の電気に変換するパワーコンディショナ32、および、パワーコンディショナ32に接続されるとともに急速充電が可能な蓄電池33を備える。太陽電池パネル31は、ごみの焼却が行われる建造物の屋上や壁面、あるいは、駐車場や車路等、ごみ焼却施設内の屋外における様々なスペースに設けられている。また、蓄電池33では、太陽電池パネル31にて発電した電力の充電および放電が行われる。   FIG. 2 is a diagram illustrating a configuration of the solar power generation device 3. The solar power generation device 3 is connected to a solar battery panel 31 provided in a waste incineration facility, a power conditioner 32 that converts direct current electricity generated by the solar battery panel 31 into alternating current electricity, and a power conditioner 32. And a storage battery 33 capable of rapid charging. The solar cell panel 31 is provided in various spaces outside the garbage incineration facility such as a rooftop or a wall surface of a building where garbage is incinerated, a parking lot or a roadway. Moreover, in the storage battery 33, the electric power generated by the solar battery panel 31 is charged and discharged.

蓄電池33では、定期的に充電電流を確認しながら充電が行われる(Interrupt, Check & Charge)ため、蓄電池にて許容される限りの最大電流で電力を充電することが可能となり、一般的な充電方式に比べて急速な充電が可能となる。また、充電状況を監視しながら充電が行われることにより、蓄電池への過負荷の付与、および、蓄電池におけるメモリ効果の発生が防止され、蓄電池の長寿命化が実現される。本実施の形態では、太陽電池パネル31からの発電電力のみが蓄電池33にて充電可能となっている。   Since the storage battery 33 is charged while periodically checking the charging current (Interrupt, Check & Charge), it is possible to charge the power with the maximum current allowed by the storage battery, so that general charging is possible. Compared to the method, rapid charging is possible. Moreover, by performing charging while monitoring the charging status, it is possible to prevent an overload from being applied to the storage battery and to generate a memory effect in the storage battery, thereby extending the life of the storage battery. In the present embodiment, only the generated power from the solar cell panel 31 can be charged by the storage battery 33.

図3は、発電システム1における発電に係る処理の流れを示す図である。既述のように、図1の補助発電機4は(原則として)ごみ焼却施設における非常時に利用されるものであり、本処理例では、補助発電機4は使用されない。補助発電機4を使用する処理例については、本処理例の後に説明する。   FIG. 3 is a diagram illustrating a flow of processing related to power generation in the power generation system 1. As described above, the auxiliary generator 4 in FIG. 1 is (in principle) used in an emergency in a waste incineration facility, and the auxiliary generator 4 is not used in this processing example. A processing example using the auxiliary generator 4 will be described after this processing example.

発電システム1における発電に係る処理では、まず、ごみ焼却施設における翌日の日射強度の変化の予測が取得され、演算部52に入力される(ステップS11)。日射強度の変化の予測は、例えば、財団法人日本気象協会による太陽光発電向け日照量予測(上記非特許文献1参照)により取得可能である。   In the process related to power generation in the power generation system 1, first, a prediction of a change in solar radiation intensity on the next day in the waste incineration facility is acquired and input to the calculation unit 52 (step S11). The prediction of the change in solar radiation intensity can be obtained, for example, by predicting the amount of sunlight for photovoltaic power generation by the Japan Weather Association (see Non-Patent Document 1 above).

続いて、演算部52では、当該日射強度の変化に基づいて、太陽光発電装置3における発電電力の変化の予測を示す曲線(以下、「予測曲線」という。)が求められる(ステップS12)。図4および図5は、太陽光発電装置3における発電電力の予測曲線を示す図であり、図4および図5の縦軸は発電電力を示し、横軸は時間を示している(後述の図6ないし図9において同様)。また、図4および図5では、符号A1,A2を付す細い実線にて予測曲線を示している。予測曲線は、日射強度の変化を示す曲線に倣った形状となり、図4では翌日の天候の予測が曇りの場合における予測曲線A1が示されており、図5では雨の場合における予測曲線A2が示されている。   Subsequently, the calculation unit 52 obtains a curve (hereinafter referred to as “prediction curve”) indicating prediction of change in generated power in the solar power generation device 3 based on the change in solar radiation intensity (step S12). 4 and 5 are diagrams showing prediction curves of generated power in the solar power generation device 3, in which the vertical axis of FIGS. 4 and 5 indicates the generated power, and the horizontal axis indicates time (the figure described later). 6 to FIG. 9). Moreover, in FIG.4 and FIG.5, the prediction curve is shown with the thin continuous line which attach | subjects code | symbol A1, A2. The prediction curve has a shape that follows the curve indicating the change in solar radiation intensity. FIG. 4 shows a prediction curve A1 when the weather forecast for the next day is cloudy, and FIG. 5 shows a prediction curve A2 for the rainy weather. It is shown.

また、図4および図5中にて符号A0を付す破線にて示すように、天候が理想的な晴天である場合における発電電力の変化を示す曲線(以下、「目標曲線」という。)も演算部52の記憶部521に予め記憶されており、本実施の形態では、発電電力が0となる位置を目標曲線A0と一致させつつ、予測曲線(図4中の予測曲線A1または図5中の予測曲線A2参照)が、例えば二次曲線や正規分布曲線にて近似されて修正され、修正済みの予測曲線が取得される(ステップS13)。図4では、予測曲線A1に対応する修正済みの予測曲線を符号A3を付す太い実線にて示し、図5では、予測曲線A2に対応する修正済みの予測曲線を符号A4を付す太い実線にて示している。修正済みの予測曲線は記憶部521にて記憶される。以下の説明では、修正済みの予測曲線を単に予測曲線とも呼び、目標曲線A0において発電電力が0よりも大きくなる期間を通常日射期間T1という。   Further, as shown by a broken line with a symbol A0 in FIGS. 4 and 5, a curve (hereinafter referred to as “target curve”) indicating a change in generated power when the weather is ideally clear is also calculated. In the present embodiment, the prediction curve (the prediction curve A1 in FIG. 4 or the prediction curve A1 in FIG. 5 is used while the position where the generated power is 0 is matched with the target curve A0. The prediction curve A2) is corrected by being approximated by, for example, a quadratic curve or a normal distribution curve, and a corrected prediction curve is obtained (step S13). In FIG. 4, the corrected prediction curve corresponding to the prediction curve A1 is indicated by a thick solid line denoted by reference symbol A3, and in FIG. 5, the corrected prediction curve corresponding to the prediction curve A2 is indicated by a thick solid line denoted by reference symbol A4. Show. The corrected prediction curve is stored in the storage unit 521. In the following description, the corrected prediction curve is also simply referred to as a prediction curve, and a period in which the generated power is larger than 0 in the target curve A0 is referred to as a normal solar radiation period T1.

翌日の修正済みの予測曲線(図4中の予測曲線A3または図5中の予測曲線A4参照)が取得されると、各時刻における目標曲線A0の発電電力と当該予測曲線の発電電力との差を示す曲線(すなわち、予測曲線に従って発電電力が得られた場合に、目標曲線A0が示す発電電力に対して不足する発電電力を示す曲線であり、以下、「電力不足曲線」という。)が求められる。なお、全ての時刻において予測曲線の発電電力は目標曲線A0の発電電力以下となっている。   When the corrected prediction curve of the next day (see the prediction curve A3 in FIG. 4 or the prediction curve A4 in FIG. 5) is acquired, the difference between the generated power of the target curve A0 and the generated power of the prediction curve at each time (That is, a curve indicating generated power that is insufficient with respect to the generated power indicated by the target curve A0 when the generated power is obtained according to the prediction curve, hereinafter referred to as a “power shortage curve”). It is done. At all times, the generated power of the prediction curve is equal to or lower than the generated power of the target curve A0.

また、ごみ発電装置2では、例えばごみ発電装置2の最大発電能力の75%が定常発電電力として定められており、各時刻において翌日の電力不足曲線に定常発電電力を加算した曲線が、ごみ発電装置2における発電電力の予定曲線として決定され、記憶部521にて記憶される(ステップS14)。   In the waste power generation device 2, for example, 75% of the maximum power generation capacity of the waste power generation device 2 is determined as the steady power generation power, and a curve obtained by adding the steady power generation power to the power shortage curve of the next day at each time is a waste power generation. It is determined as a planned curve of the generated power in the device 2 and stored in the storage unit 521 (step S14).

図6は、ごみ発電装置2における発電電力の予定曲線を示す図である。図6では、符号B1を付す太い実線にて予定曲線を示すとともに、予定曲線B1と横軸との間の領域に間隔が広い平行斜線を付している(後述の図7および図8において同様)。図6の予定曲線B1では、通常日射期間T1において発電電力が定常発電電力P1よりも大きくなっている。なお、図6では、各時刻において修正済みの予測曲線(図4中の予測曲線A3または図5中の予測曲線A4参照)が示す発電電力を、予定曲線B1が示す発電電力に加算した曲線(すなわち、図4および図5中の目標曲線A0が示す発電電力に定常発電電力P1を加算した曲線であり、ごみ発電装置2および太陽光発電装置3における発電電力の和である総発電電力の理想的な変化を示すものであるため、以下、「総目標曲線」という。)B0も破線にて図示している。   FIG. 6 is a diagram illustrating a planned curve of generated power in the garbage power generation device 2. In FIG. 6, the planned curve is indicated by a thick solid line denoted by reference sign B1, and a parallel oblique line with a wide interval is added to the region between the planned curve B1 and the horizontal axis (the same applies to FIGS. 7 and 8 described later). ). In the planned curve B1 in FIG. 6, the generated power is larger than the steady generated power P1 in the normal solar radiation period T1. In FIG. 6, a curve obtained by adding the generated power indicated by the prediction curve corrected at each time (see the prediction curve A3 in FIG. 4 or the prediction curve A4 in FIG. 5) to the generated power indicated by the scheduled curve B1 ( That is, it is a curve obtained by adding the steady generated power P1 to the generated power indicated by the target curve A0 in FIG. 4 and FIG. 5, and is the ideal of the total generated power that is the sum of the generated power in the waste power generator 2 and the solar power generator 3. Therefore, B0 is also indicated by a broken line.

予定曲線B1に対応する当日には、発電システム1では、制御部51によりごみ発電装置2が予定曲線B1に従って制御されることにより、各時刻において、ごみ発電装置2における実際の発電電力が予定曲線B1が示す発電電力に一致する。一方で、太陽電池パネル31を用いて発電を行う太陽光発電装置3における実際の発電電力は、日射強度の変化に依存するため、通常日射期間T1において大幅に変動する。図6では、発電システム1における総発電電力の変化を符号B2を付す細い実線にて示しており(ただし、通常日射期間T1内の一部の時刻、および、通常日射期間T1以外の時刻では、予定曲線B1に一致している。)、各時刻において曲線B2の発電電力とごみ発電装置2における予定曲線B1の発電電力との差が、太陽光発電装置3における実際の発電電力を示す。図6では、当該差に相当する部分に間隔が狭い平行斜線を付している(後述の図7および図8において同様)。なお、間隔が狭い平行斜線および間隔が広い平行斜線を付す領域の全体が、各時刻における発電システム1の総発電電力を示すものとなっている。   On the day corresponding to the planned curve B1, in the power generation system 1, the control unit 51 controls the garbage power generation device 2 according to the planned curve B1, so that the actual generated power in the garbage power generation device 2 is changed to the planned curve at each time. It matches the generated power indicated by B1. On the other hand, the actual generated power in the solar power generation device 3 that generates power using the solar cell panel 31 depends on the change in the solar radiation intensity, and thus varies greatly in the normal solar radiation period T1. In FIG. 6, the change in the total generated power in the power generation system 1 is indicated by a thin solid line denoted by reference sign B2 (however, at some times within the normal solar radiation period T1 and at times other than the normal solar radiation period T1, This corresponds to the planned curve B1.) At each time, the difference between the generated power of the curve B2 and the generated power of the planned curve B1 in the garbage power generation device 2 indicates the actual generated power in the solar power generation device 3. In FIG. 6, parallel diagonal lines with a narrow interval are attached to portions corresponding to the difference (the same applies to FIGS. 7 and 8 described later). In addition, the whole area | region which attached | subjects the parallel oblique line with a narrow space | interval and the parallel oblique line with a wide space | interval shows the total electric power generation of the electric power generation system 1 in each time.

太陽光発電装置3では、各時刻において実際の発電電力が修正済みの予測曲線(図4中の予測曲線A3または図5中の予測曲線A4参照)が示す発電電力(以下、「予測発電電力」という。)よりも大きい場合には、実際の発電電力と予測発電電力との差に相当する電力が図2の蓄電池33にて充電され、実際の発電電力が予測発電電力よりも小さい場合には、予測発電電力と実際の発電電力との差に相当する電力が蓄電池33から放電される。このようにして、1日の各時刻における太陽光発電装置3の実際の発電電力と予測発電電力との差に基づいて蓄電池33の充放電が制御され、各時刻において太陽光発電装置3から出力される電力が、修正済みの予測曲線が示す予測発電電力に近似したものとなる(ステップS15)。ステップS15における補助発電機4の制御については後述する。   In the solar power generation device 3, the generated power indicated by the prediction curve (see the prediction curve A 3 in FIG. 4 or the prediction curve A 4 in FIG. 5) in which the actual power generation is corrected at each time (hereinafter “predicted power generation”). 2), the power corresponding to the difference between the actual generated power and the predicted generated power is charged by the storage battery 33 in FIG. 2, and the actual generated power is smaller than the predicted generated power. The electric power corresponding to the difference between the predicted generated power and the actual generated power is discharged from the storage battery 33. In this way, charging / discharging of the storage battery 33 is controlled based on the difference between the actual generated power and the predicted generated power of the solar power generation device 3 at each time of day, and the output from the solar power generation device 3 at each time. The electric power to be approximated to the predicted generated power indicated by the corrected prediction curve (step S15). The control of the auxiliary generator 4 in step S15 will be described later.

なお、パワーコンディショナ32では、太陽電池パネル31から取り出される電力が最大となるように内部の回路における電圧を制御する最大電力追従(MPPT:Maximum Power Point Tracking)制御が行われており、実際の発電電力が予測発電電力よりも所定値以上大きくなる場合には、この電圧を電力が最大となる値から変更する(すなわち、動作点を移動する)ことにより発電効率を低下させて、過渡的かつ過大な発電電力のピークカットが行われる。このとき、パワーコンディショナ32における電力と電圧との関係は、日射強度および太陽電池パネル31の温度に依存するため、日射強度と太陽電池パネル31の温度との各組合せに対応する電力と電圧との関係を予め取得しておき、発電効率を低下させる際の日射強度および太陽電池パネル31の温度(太陽電池パネル31には日射強度計および温度計が設けられている。)から特定される当該関係に基づいて、動作点の移動方向および移動量が決定される。   The power conditioner 32 performs maximum power tracking (MPPT) control for controlling the voltage in the internal circuit so that the power extracted from the solar panel 31 is maximized. When the generated power is larger than the predicted generated power by a predetermined value or more, this voltage is changed from the value at which the power is maximized (that is, the operating point is moved) to reduce the power generation efficiency, Excessive power generation peak cut is performed. At this time, since the relationship between the power and voltage in the power conditioner 32 depends on the solar radiation intensity and the temperature of the solar battery panel 31, the power and voltage corresponding to each combination of the solar radiation intensity and the temperature of the solar battery panel 31 are as follows. Is obtained in advance, and is specified from the solar radiation intensity when the power generation efficiency is reduced and the temperature of the solar cell panel 31 (the solar cell panel 31 is provided with a solar radiation intensity meter and a thermometer). Based on the relationship, the moving direction and moving amount of the operating point are determined.

実際には、ごみ焼却施設における翌日の日射強度の変化の予測は演算部52にて毎日受け付けられ、太陽光発電装置3における発電電力の変化の予測曲線(修正済みの予測曲線)が取得されて、ごみ発電装置2における発電電力の予定曲線が決定される(ステップS11〜S14)。そして、その翌日に、ごみ発電装置2における発電電力が当該予定曲線に従って制御されるとともに、蓄電池33における充放電が予測曲線に従って制御される(ステップS15)。   Actually, the prediction of the change in the solar radiation intensity of the next day in the waste incineration facility is accepted by the calculation unit 52 every day, and the prediction curve (corrected prediction curve) of the change in the generated power in the solar power generation device 3 is acquired. The planned curve of the generated power in the waste power generation device 2 is determined (steps S11 to S14). On the next day, the generated power in the garbage power generation device 2 is controlled according to the scheduled curve, and the charge / discharge in the storage battery 33 is controlled according to the predicted curve (step S15).

ここで、ごみ発電装置2において一定の定常発電電力P1にて発電を行いつつ、ごみ発電装置2および太陽光発電装置3における総発電電力を電力会社に供給する比較例の発電システムについて述べる。図7は、比較例の発電システムにおける総発電電力の変化を示す図である。図7では、ごみ発電装置2における発電電力の変化(実際には、一定の定常発電電力P1となっている。)を符号R1を付す太い実線にて示し、ごみ発電装置2および太陽光発電装置3の総発電電力の変化を符号R2を付す細い実線にて示している。既述のように、太陽光発電における発電電力は天候により異なる日射強度に依存するため、比較例の発電システムでは、総発電電力の変化を毎日一定にすることが困難となる。   Here, a power generation system of a comparative example will be described in which the waste power generation apparatus 2 generates power with a constant steady power generation P1 and supplies the total power generated in the waste power generation apparatus 2 and the solar power generation apparatus 3 to an electric power company. FIG. 7 is a diagram illustrating a change in total generated power in the power generation system of the comparative example. In FIG. 7, a change in the generated power in the waste power generator 2 (actually, constant steady generated power P1) is indicated by a thick solid line denoted by reference symbol R1, and the waste power generator 2 and the solar power generator. A change in the total generated power of 3 is shown by a thin solid line denoted by reference symbol R2. As described above, the generated power in the photovoltaic power generation depends on the solar radiation intensity that varies depending on the weather. Therefore, in the power generation system of the comparative example, it is difficult to make the change in the total generated power constant every day.

これに対し、発電システム1では、日射強度の変化の予測に基づいて太陽光発電装置3における1日の発電電力の(修正済みの)予測曲線が求められ、太陽光発電装置3における発電電力の目標曲線と当該予測曲線との差に基づいて、ごみ発電装置2における発電電力の予定曲線が決定される。そして、当該予定曲線に従ってごみ発電装置2における発電電力が制御される。これにより、ごみ焼却施設における太陽光発電を利用した発電システム1において、毎日異なる日射強度の変化により、太陽光発電装置3の発電電力が理想的な発電電力に対して不足する場合に、ごみ発電装置2の発電電力により不足する発電電力を補充(バックアップ)して、日射強度の変化の日々の相違の影響を低減することができ、その結果、総目標曲線B0に従って電力を毎日安定して供給することができる。なお、ごみ焼却施設において、1日の総ごみ焼却量を一定にする必要がある場合には、発電電力の低下が許容される夜間におけるごみ焼却量を低減する(すなわち、夜間における発電電力を定常発電電力よりも低くする)ことも可能である。   On the other hand, in the power generation system 1, a (corrected) prediction curve of the daily generated power in the solar power generation device 3 is obtained based on the prediction of the change in solar radiation intensity, and the generated power in the solar power generation device 3 is calculated. Based on the difference between the target curve and the prediction curve, a planned curve of the generated power in the garbage power generation device 2 is determined. Then, the generated power in the garbage power generation device 2 is controlled according to the scheduled curve. As a result, in the power generation system 1 using solar power generation in a garbage incineration facility, when the generated power of the solar power generation device 3 is insufficient with respect to the ideal generated power due to changes in the solar radiation intensity that differ every day, The power generated by the device 2 can be supplemented (backed up) by the generated power to reduce the effects of daily differences in the intensity of solar radiation. As a result, the power can be stably supplied every day according to the total target curve B0. can do. In addition, when it is necessary to keep the total amount of waste incinerated in a day at a waste incineration facility, the amount of waste incineration at night when a reduction in generated power is allowed is reduced (that is, the generated power at night is steady). It is also possible to make it lower than the generated power).

また、図7において、通常日射期間T1内の短時間における発電電力の変動に着目した場合、発電電力が日射強度に依存する太陽光発電装置3では、最大発電能力を100%として、発電電力の変動幅が0〜100%となる。例えば、太陽光発電装置3における最大発電能力が1000kW(キロワット)であり、ごみ発電装置2における定常発電電力P1が3000kWである場合、比較例の発電システム全体における総発電電力の変動幅は75〜100%(3000〜4000kW)となり、通常日射期間T1内の短時間にて最大25%の総発電電力の変動が生じてしまう(図7中の線R2参照)。   Further, in FIG. 7, when focusing on fluctuations in the generated power in a short time within the normal solar radiation period T1, in the solar power generation device 3 whose generated power depends on the solar radiation intensity, the maximum power generation capacity is assumed to be 100%. The fluctuation range is 0 to 100%. For example, when the maximum power generation capacity in the solar power generation device 3 is 1000 kW (kilowatt) and the steady power generation P1 in the garbage power generation device 2 is 3000 kW, the fluctuation range of the total power generation in the entire power generation system of the comparative example is 75 to It becomes 100% (3000 to 4000 kW), and the fluctuation of the total generated power of 25% at maximum occurs in a short time within the normal solar radiation period T1 (see line R2 in FIG. 7).

これに対し、発電システム1では、太陽光発電装置3に蓄電池33が設けられ、1日の各時刻における太陽光発電装置3の実際の発電電力と、修正済みの予測曲線の発電電力との差に基づいて蓄電池33の充放電が制御される。これにより、通常日射期間T1内の短時間における過渡的な発電電力のピークカットおよびボトムカットが行われ、太陽光発電装置3からの出力電力の変動、および、発電システム1全体における総出力電力の変動を低減することができる。   On the other hand, in the power generation system 1, the storage battery 33 is provided in the solar power generation device 3, and the difference between the actual generated power of the solar power generation device 3 at each time of day and the generated power of the corrected prediction curve. The charge / discharge of the storage battery 33 is controlled based on the above. Thereby, the peak cut and bottom cut of the transient generated power in a short time within the normal solar radiation period T1 are performed, the fluctuation of the output power from the solar power generation device 3, and the total output power in the entire power generation system 1 Variations can be reduced.

なお、図5の修正前の予測曲線A2における13時近傍では、発電電力が長時間に亘って修正済みの予測曲線A4よりも大幅に低くなり、蓄電池33における電力が不足して、太陽光発電装置3の実際の発電電力と、予測曲線A4の発電電力との差に基づく蓄電池33の放電ができなくなる虞がある。このように、1日の実際の発電電力量と予測曲線A4が示す1日の発電電力量とに大差はないが、一時的に蓄電池33における電力が不足することが予測される場合には、例えば、各時刻における修正済みの予測曲線の発電電力に1よりも小さい係数を乗じて予測曲線をさらに修正して(すなわち、予測曲線が示す山を低くして)、蓄電池33における電力不足が回避されることが好ましい。   In the vicinity of 13:00 in the uncorrected prediction curve A2 in FIG. 5, the generated power is much lower than the corrected prediction curve A4 over a long period of time, and the power in the storage battery 33 is insufficient, so that solar power generation There is a possibility that the storage battery 33 cannot be discharged based on the difference between the actual generated power of the device 3 and the generated power of the prediction curve A4. Thus, although there is no large difference between the actual generated power amount per day and the generated power amount per day indicated by the prediction curve A4, when it is predicted that the power in the storage battery 33 is temporarily insufficient, For example, the power generation in the storage battery 33 is avoided by further correcting the prediction curve by multiplying the generated power of the corrected prediction curve at each time by a coefficient smaller than 1 (that is, lowering the peak indicated by the prediction curve). It is preferred that

ところで、発電システム1では、蓄電池33の容量を大きくすることにより、パワーコンディショナ32における発電効率を低下させる既述の処理が不要となるが、蓄電池33は比較的高価であるため、蓄電池33の容量は必要最小限とすることが好ましい。したがって、過去数年間(例えば、5年間)における毎日の日照量(日射強度の1日の積分値)の予測と実際の日照量との差を太陽光発電装置3における発電電力量に換算し、全ての1日の発電電力量のうち最大となる発電電力量が充電可能な最小の容量の蓄電池33を設けることにより、不必要に大きな容量の蓄電池33を設けて発電システム1の設置コストが増大することを防止しつつ、パワーコンディショナ32における発電効率を低下させる既述の処理を省略することが可能となる。言い換えると、発電システム1では、年間を通じて太陽光発電出力を安定化させるために、蓄電池33だけでなく、ごみ発電での電力を用いるとともに、日射強度の変化の予測に基づいた予測曲線に基づいて蓄電池33の充放電制御を行なうため、蓄電池33の容量を必要最小限に抑えることができる。なお、上記の場合、蓄電池33に充電された電力を夜間にある程度放電しておくことが好ましい。実際には、長期間の使用により蓄電池33は消耗するため、蓄電池33の容量を必要最小限とすることにより、蓄電池33の交換時におけるコストも削減可能となる。   By the way, in the power generation system 1, by increasing the capacity of the storage battery 33, the processing described above for reducing the power generation efficiency in the power conditioner 32 becomes unnecessary. However, since the storage battery 33 is relatively expensive, It is preferable to minimize the capacity. Therefore, the difference between the predicted amount of daily sunshine (daily integrated value of solar radiation intensity) in the past several years (for example, five years) and the actual amount of sunshine is converted into the amount of generated power in the solar power generation device 3, By providing the storage battery 33 with the minimum capacity that can be charged with the maximum amount of generated power for all of the day, the storage battery 33 with an unnecessarily large capacity is provided to increase the installation cost of the power generation system 1. Thus, it is possible to omit the above-described processing for reducing the power generation efficiency in the power conditioner 32 while preventing this. In other words, the power generation system 1 uses not only the storage battery 33 but also power generated by waste power generation in order to stabilize the photovoltaic power generation output throughout the year, and based on a prediction curve based on prediction of changes in solar radiation intensity. Since the charge / discharge control of the storage battery 33 is performed, the capacity of the storage battery 33 can be minimized. In the above case, it is preferable to discharge the power charged in the storage battery 33 to some extent at night. Actually, since the storage battery 33 is consumed due to long-term use, the capacity at the time of replacement of the storage battery 33 can be reduced by minimizing the capacity of the storage battery 33.

次に、発電システム1における他の処理例について説明する。以下の処理例では、図1の補助発電機4が使用される。補助発電機4はディーゼル発電機とされる。補助発電機4では、例えばごみ焼却施設にてごみから精製されるメタン燃料を使用した発電が可能とされる。   Next, another processing example in the power generation system 1 will be described. In the following processing example, the auxiliary generator 4 of FIG. 1 is used. The auxiliary generator 4 is a diesel generator. In the auxiliary generator 4, for example, power generation using methane fuel purified from waste in a waste incineration facility is possible.

本処理例では、上記の処理例と同様に、太陽光発電装置3における予測曲線、および、ごみ発電装置2における予定曲線が取得されると(図3:ステップS11〜S14)、その翌日に当該予定曲線に従ってごみ発電装置2における発電電力が制御されるとともに、太陽光発電装置3の実際の発電電力と、予測曲線の発電電力との差に基づいて蓄電池33の充放電が制御される(ステップS15)。   In the present processing example, when the prediction curve in the solar power generation device 3 and the planned curve in the waste power generation device 2 are acquired (FIG. 3: Steps S11 to S14), the day after that, The generated power in the waste power generator 2 is controlled according to the scheduled curve, and the charge / discharge of the storage battery 33 is controlled based on the difference between the actual generated power of the solar power generator 3 and the generated power of the prediction curve (step) S15).

図8は、ごみ発電装置2および太陽光発電装置3による総発電電力の変化を示す図である。図8では、予定曲線を符号C1を付す太い実線にて示し、総目標曲線を符号C0を付す破線にて示し、ごみ発電装置2および太陽光発電装置3による実際の総発電電力の変化を符号C2を付す細い実線にて示している。   FIG. 8 is a diagram showing a change in the total generated power by the garbage power generation device 2 and the solar power generation device 3. In FIG. 8, the planned curve is indicated by a thick solid line with a reference C <b> 1, the total target curve is indicated by a broken line with a reference C <b> 0, and changes in actual total generated power by the garbage power generation apparatus 2 and the solar power generation apparatus 3 are This is indicated by a thin solid line with C2.

ここで、前日に取得される日射強度の変化の予測は、その翌日の実際の日射強度の変化と大幅に相違することがあり、仮に、実際の日射強度が日射強度の予測値よりも大幅に低くなる時間が長い場合には、ごみ発電装置2および太陽光発電装置3による実際の総発電電力(図8中の曲線C2参照)が総目標曲線C0の発電電力よりも低くくなる時間も長くなる。この場合、ある期間での太陽光発電装置3における発電電力の総和(すなわち、発電電力量)が目標曲線A0(図4および図5参照)が示す発電電力量よりも大幅に低くなり、蓄電池33に蓄えられる電力が不足して、発電システム1(ごみ発電装置2および太陽光発電装置3)からの総出力電力が総目標曲線C0が示す電力よりも低くなる。   Here, the prediction of the change in the solar radiation intensity acquired on the previous day may be significantly different from the change in the actual solar radiation intensity on the next day, and the actual solar radiation intensity is significantly larger than the predicted value of the solar radiation intensity. When the time to be lowered is long, the time that the actual total generated power (see curve C2 in FIG. 8) by the waste power generation device 2 and the solar power generation device 3 is lower than the generated power of the total target curve C0 is also long. Become. In this case, the total amount of generated power (that is, the amount of generated power) in the solar power generation device 3 in a certain period is significantly lower than the amount of generated power indicated by the target curve A0 (see FIGS. 4 and 5), and the storage battery 33 And the total output power from the power generation system 1 (the garbage power generation device 2 and the solar power generation device 3) becomes lower than the power indicated by the total target curve C0.

そこで、制御部51では、太陽光発電装置3の実際の発電電力が(修正済みの)予測曲線の発電電力よりも所定値以上小さくなる場合に、補助発電機4が駆動され、図8中にて総目標曲線C0の発電電力と、曲線C2が示すごみ発電装置2および太陽光発電装置3による実際の総発電電力との差に相当する電力(すなわち、総目標曲線C0と曲線C2との間における白い領域に相当する電力量)が、補助発電機4により発電される。これにより、発電システム1では、実際の日射強度が日射強度の予測値と大きく乖離する場合であっても、補助発電機4の駆動により電力を補充することができ、電力をさらに安定して供給することが実現される。換言すると、予測曲線に比べ実際の発電電力が低下した場合、補助発電機4(非常用発電機)の電力を加えることで、安定した電力供給が可能な発電システム1における蓄電池33の容量をさらに抑えることができる。補助発電機4を使用する処理例では、太陽光発電装置3における実際の発電電力の長期的な変動の影響はごみ発電装置2により補われ、短期的な変動の影響は補助発電機4により補われ、より短期的な変動の影響は蓄電池33により補われていると捉えることができる。なお、大容量の蓄電池33を設ける場合には、発電システム1の設置コストは増大するが、蓄電池33にて常時十分な電力を蓄積することにより、補助発電機4を使用することなく、電力を安定して供給することが可能となる。   Therefore, the control unit 51 drives the auxiliary generator 4 when the actual generated power of the solar power generation device 3 is smaller than the generated power of the (corrected) prediction curve by a predetermined value or more, as shown in FIG. Power corresponding to the difference between the generated power of the total target curve C0 and the actual total generated power by the garbage power generation device 2 and the solar power generation device 3 indicated by the curve C2 (that is, between the total target curve C0 and the curve C2) ) Is generated by the auxiliary generator 4. As a result, in the power generation system 1, even when the actual solar radiation intensity deviates greatly from the predicted value of the solar radiation intensity, power can be supplemented by driving the auxiliary generator 4, and power can be supplied more stably. Is realized. In other words, when the actual generated power is lower than the predicted curve, the capacity of the storage battery 33 in the power generation system 1 capable of stable power supply can be further increased by adding the power of the auxiliary generator 4 (emergency generator). Can be suppressed. In the processing example using the auxiliary generator 4, the long-term fluctuation effect of the actual generated power in the photovoltaic power generator 3 is compensated by the waste power generator 2, and the short-term fluctuation effect is compensated by the auxiliary generator 4. In other words, it can be understood that the effect of short-term fluctuations is compensated by the storage battery 33. In addition, when installing the large capacity storage battery 33, although the installation cost of the electric power generation system 1 increases, electric power can be stored without using the auxiliary generator 4 by always storing sufficient electric power in the storage battery 33. It becomes possible to supply stably.

ところで、以上に説明した処理例では、修正済みの予測曲線が、天候が理想的な晴天である場合における発電電力の変化を示す目標曲線A0(図4または図5参照)に近似した形状とされ、当該予測曲線に従って太陽光発電装置3の蓄電池33の充放電が制御されるが、電力会社から要求される出力電力の変化は太陽光発電装置3における理想的な発電電力の変化とは相違する場合がある。   By the way, in the processing example described above, the corrected prediction curve has a shape approximated to the target curve A0 (see FIG. 4 or FIG. 5) indicating the change in generated power when the weather is ideally sunny. The charging / discharging of the storage battery 33 of the solar power generation device 3 is controlled according to the prediction curve, but the change in output power required by the power company is different from the ideal change in generated power in the solar power generation device 3. There is a case.

具体的には、図9に示すように、電力が最大となるピーク時刻が太陽光発電装置3における目標曲線D0のピーク時刻から遅延している出力電力の変化を示す曲線D1(すなわち、電力需要の変化を示す曲線であり、図9中にて細い実線にて示しており、以下、「需要曲線D1」という。)が予め定められる場合がある。図9の需要曲線D1では、電力が増大する時刻が目標曲線D0よりもおよそ3時間遅延しており、需要曲線D1のピーク時刻における電力は、目標曲線D0のピーク時刻における電力よりも大きくなっている。なお、上記需要曲線D1は太陽光発電装置3に対して求められる発電電力の変化を示すものであり、発電システム1の全体に対する総需要曲線は各時刻において需要曲線D1が示す電力に定常発電電力P1を加算したものとなる。   Specifically, as shown in FIG. 9, a curve D1 (that is, power demand) indicating a change in output power in which the peak time at which the power is maximum is delayed from the peak time of the target curve D0 in the solar power generation device 3. 9 is indicated by a thin solid line in FIG. 9, and hereinafter referred to as “demand curve D1”) may be determined in advance. In the demand curve D1 of FIG. 9, the time when the power increases is delayed by about 3 hours from the target curve D0, and the power at the peak time of the demand curve D1 is larger than the power at the peak time of the target curve D0. Yes. The demand curve D1 indicates a change in the generated power required for the solar power generation device 3, and the total demand curve for the entire power generation system 1 is the steady power generated at the power indicated by the demand curve D1 at each time. P1 is added.

本処理例では、大容量のナトリウム硫黄(NAS)電池が蓄電池33として用いられ、天候が理想的な晴天である場合には、目標曲線D0の発電電力が需要曲線D1の電力よりも大きくなる時刻にて、これらの電力の差に相当する電力が蓄電池33に充電され、目標曲線D0の発電電力が需要曲線D1の電力よりも小さくなる時刻にて、これらの電力の差に相当する電力が蓄電池33から放電される。図9では、間隔が広い平行斜線を付す領域の面積が蓄電池33に充電される電力量を示し、間隔が狭い平行斜線を付す領域の面積が蓄電池33から放電される電力量を示している。   In this processing example, when a large-capacity sodium-sulfur (NAS) battery is used as the storage battery 33 and the weather is ideally clear, the time when the generated power of the target curve D0 becomes larger than the power of the demand curve D1. At the time when the power corresponding to the difference between these powers is charged in the storage battery 33 and the generated power of the target curve D0 becomes smaller than the power of the demand curve D1, the power corresponding to the difference between these powers is stored in the storage battery. 33 is discharged. In FIG. 9, the area of a region with parallel diagonal lines with a wide interval indicates the amount of power charged in the storage battery 33, and the area of a region with parallel narrow lines with a small interval indicates the amount of power discharged from the storage battery 33.

実際には、太陽光発電における発電電力は天候による日射強度に依存するため、太陽光発電装置3における発電電力の変化は、図9中にて太い実線にて示す修正済みの予測曲線D2におよそ倣ったものとなるが、各時刻における目標曲線D0の発電電力と予測曲線D2の発電電力との差に相当する電力がごみ発電装置2により追加的に発電され、一旦、太陽光発電装置3に入力される。そして、目標曲線D0の発電電力が需要曲線D1の電力よりも大きくなる時刻では蓄電池33にて(主として)充電が行われ、目標曲線D0の発電電力が需要曲線D1の電力よりも小さくなる時刻では蓄電池33にて(主として)放電が行われる。このようにして、制御部51により、需要曲線D1に従って蓄電池33の充放電が制御される。   Actually, since the generated power in the solar power generation depends on the solar radiation intensity due to the weather, the change in the generated power in the solar power generation device 3 is approximately in the corrected prediction curve D2 indicated by the thick solid line in FIG. Although it is imitated, power corresponding to the difference between the generated power of the target curve D0 and the generated power of the prediction curve D2 at each time is additionally generated by the garbage power generation device 2, and is temporarily supplied to the solar power generation device 3. Entered. Then, at the time when the generated power of the target curve D0 becomes larger than the power of the demand curve D1, the storage battery 33 is (mainly) charged, and at the time when the generated power of the target curve D0 becomes smaller than the power of the demand curve D1. The storage battery 33 is (mainly) discharged. Thus, charging / discharging of the storage battery 33 is controlled by the control part 51 according to the demand curve D1.

また、例えば、6時〜18時の間にて太陽光発電装置3にて発電電力が得られる場合に、需要曲線D1が8時〜20時の間における電力の出力を示すものであるときには、6時〜8時の間における日射強度を用いて予測曲線D2を修正し、あるいは、8時における最新の日射強度の変化の予測を用いて予測曲線を再取得し、新たな予測曲線に基づいて予定曲線が取得され、信頼性の高い当該予定曲線に従ってごみ発電装置2における発電電力の制御が行われてもよい。   In addition, for example, when generated power is obtained by the solar power generation device 3 between 6 o'clock and 18 o'clock, when the demand curve D1 indicates an output of electric power between 8 o'clock and 20 o'clock, 6 o'clock to 8 o'clock The forecast curve D2 is corrected using the solar radiation intensity during the hour, or the forecast curve is re-acquired using the latest prediction of the change in solar radiation intensity at 8 o'clock, and the planned curve is obtained based on the new prediction curve, Control of the generated power in the garbage power generation device 2 may be performed according to the scheduled curve with high reliability.

以上のように、本処理例では、太陽光発電装置3に対する需要曲線D1に従って蓄電池33の充放電を制御することにより、需要曲線D1に合わせて太陽光発電装置3からの出力電力を精度よく調整する、換言すれば、発電システム1に対する総需要曲線に合わせて発電システム1からの総出力電力を精度よく調整することができる。また、日射強度の予測精度を高めるために電力需要に合わせた電力シフト(例えば2〜3時間のシフト)とすることで、蓄電池33の容量をさらに抑えることができる。なお、蓄電池が太陽光発電装置3の外部に設けられるとともに、太陽光発電装置3およびごみ発電装置2の双方に接続されてもよい。   As described above, in this processing example, by controlling charging / discharging of the storage battery 33 according to the demand curve D1 for the solar power generation device 3, the output power from the solar power generation device 3 is accurately adjusted according to the demand curve D1. In other words, the total output power from the power generation system 1 can be accurately adjusted in accordance with the total demand curve for the power generation system 1. Moreover, the capacity | capacitance of the storage battery 33 can be further suppressed by setting it as the electric power shift (for example, shift of 2-3 hours) matched with the electric power demand in order to raise the prediction precision of solar radiation intensity | strength. The storage battery may be provided outside the solar power generation device 3 and connected to both the solar power generation device 3 and the garbage power generation device 2.

以上、本発明の実施の形態について説明してきたが、本発明は上記実施の形態に限定されるものではなく、様々な変形が可能である。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made.

発電システム1では、修正済みの予測曲線に基づいてごみ発電装置2における発電電力の予定曲線が決定されるが、修正前の予測曲線が比較的緩やかな変化を示すものである場合には、修正前の予測曲線に基づいて予定曲線が決定されてもよい。また、修正前の予測曲線に基づいて生成される予定曲線が二次曲線等にて近似されて修正され、修正済みの予定曲線に従ってごみ発電装置2の発電電力が制御されてもよい。   In the power generation system 1, the planned curve of the generated power in the garbage power generation device 2 is determined based on the corrected prediction curve. If the prediction curve before the correction shows a relatively gradual change, the correction is made. A scheduled curve may be determined based on the previous prediction curve. Further, the planned curve generated based on the prediction curve before correction may be approximated and corrected by a quadratic curve or the like, and the generated power of the garbage power generation apparatus 2 may be controlled according to the corrected planned curve.

また、上記実施の形態では、1日間の予測曲線および予定曲線が求められるが、これらの曲線が求められる期間は任意に決定されてよく、例えば、6時間置きに予測曲線および予定曲線が求められてもよい。このように、演算部52では、日射強度の変化の予測に基づいて、所定期間における太陽光発電装置3での発電電力の予測曲線、および、ごみ発電装置2での発電電力の予定曲線が当該期間よりも前に求められ、ごみ発電装置2における発電電力が予定曲線に従って制御されることにより、ごみ焼却施設において太陽光発電を利用しつつ電力を安定して供給することが可能となる。   Further, in the above embodiment, the prediction curve and the scheduled curve for one day are obtained, but the period for which these curves are obtained may be arbitrarily determined, for example, the forecast curve and the scheduled curve are obtained every 6 hours. May be. Thus, in the calculation part 52, based on the prediction of the change of solar radiation intensity, the prediction curve of the electric power generated in the solar power generation device 3 in the predetermined period and the planned curve of the electric power generated in the garbage power generation device 2 are concerned. It is calculated | required before a period, and it becomes possible to supply electric power stably, utilizing solar power generation in a garbage incineration plant | facility by controlling the electric power generated in the garbage power generation apparatus 2 according to a schedule curve.

図4および図5中の目標曲線A0は、実測値に基づいて求められてもよく、また、太陽電池パネル31の設置場所や設置条件(方角、傾斜角度等)に従った演算により求められてもよい。さらに、季節によって目標曲線A0が変更されてもよい。   The target curve A0 in FIGS. 4 and 5 may be obtained based on actual measurement values, or may be obtained by calculation according to the installation location and installation conditions (direction, inclination angle, etc.) of the solar cell panel 31. Also good. Furthermore, the target curve A0 may be changed according to the season.

1 発電システム
2 ごみ発電装置
3 太陽光発電装置
4 補助発電機
31 太陽電池パネル
33 蓄電池
51 制御部
52 演算部
A0,D0 目標曲線
A1〜A4,D2 予測曲線
B1,C1 予定曲線
D1 需要曲線
DESCRIPTION OF SYMBOLS 1 Power generation system 2 Garbage power generation device 3 Solar power generation device 4 Auxiliary generator 31 Solar cell panel 33 Storage battery 51 Control part 52 Calculation part A0, D0 Target curve A1-A4, D2 Prediction curve B1, C1 Scheduled curve D1 Demand curve

Claims (3)

ごみ焼却施設に設けられる発電システムであって、
ごみを焼却することにより得られるエネルギーを利用して発電を行うごみ発電装置と、
ごみ焼却施設に設けられる太陽電池パネルを用いて発電を行う太陽光発電装置と、
補助発電機と、
日射強度の変化の予測に基づいて前記太陽光発電装置における所定期間の発電電力の予測曲線を求め、前記太陽光発電装置における発電電力の目標曲線と前記発電電力の前記予測曲線との差に基づいて、前記ごみ発電装置における発電電力の予定曲線を決定する演算部と、
前記発電電力の前記予定曲線に従って前記ごみ発電装置における発電電力を制御するとともに、前記太陽光発電装置の実際の発電電力が前記予測曲線の発電電力よりも所定値以上小さくなる場合に、前記補助発電機を駆動する制御部と、
を備えることを特徴とする発電システム。
A power generation system installed in a garbage incineration facility,
A waste power generation device that generates power using energy obtained by incineration of waste;
A solar power generation device that generates power using a solar cell panel provided in a garbage incineration facility;
An auxiliary generator,
Based on the prediction of the change in solar radiation intensity, a prediction curve of the generated power for a predetermined period in the solar power generation device is obtained, and based on the difference between the target curve of the generated power in the solar power generation device and the prediction curve of the generated power A calculation unit for determining a planned curve of generated power in the waste power generation device,
The auxiliary power generation when the generated power in the waste power generation device is controlled according to the scheduled curve of the generated power, and the actual generated power of the photovoltaic power generation device is smaller than the generated power of the prediction curve by a predetermined value or more. A control unit for driving the machine ;
A power generation system comprising:
請求項1に記載の発電システムであって、
前記太陽光発電装置が蓄電池を備え、
前記制御部が、前記所定期間の各時刻における前記太陽光発電装置の実際の発電電力と、前記予測曲線の発電電力との差に基づいて、前記蓄電池の充放電を制御することを特徴とする発電システム。
The power generation system according to claim 1,
The solar power generation device includes a storage battery,
The control unit controls charging / discharging of the storage battery based on a difference between actual generated power of the photovoltaic power generation apparatus at each time of the predetermined period and generated power of the prediction curve. Power generation system.
請求項1に記載の発電システムであって、
蓄電池をさらに備え、
前記所定期間が1日であり、前記目標曲線のピーク時刻からピーク時刻が遅延している出力電力の需要曲線が予め定められており、
前記制御部が、前記需要曲線に従って前記蓄電池の充放電を制御することを特徴とする発電システム。
The power generation system according to claim 1,
A storage battery,
The predetermined period is one day, and a demand curve of output power in which the peak time is delayed from the peak time of the target curve is predetermined,
The power generation system, wherein the control unit controls charging and discharging of the storage battery according to the demand curve.
JP2009254117A 2009-11-05 2009-11-05 Power generation system Expired - Fee Related JP5546206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009254117A JP5546206B2 (en) 2009-11-05 2009-11-05 Power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009254117A JP5546206B2 (en) 2009-11-05 2009-11-05 Power generation system

Publications (2)

Publication Number Publication Date
JP2011101492A JP2011101492A (en) 2011-05-19
JP5546206B2 true JP5546206B2 (en) 2014-07-09

Family

ID=44192196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009254117A Expired - Fee Related JP5546206B2 (en) 2009-11-05 2009-11-05 Power generation system

Country Status (1)

Country Link
JP (1) JP5546206B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102522917B (en) * 2011-11-18 2015-03-25 中国电力科学研究院 Method for predicting output power of power generation in photovoltaic power station
JP5992748B2 (en) * 2012-07-23 2016-09-14 シャープ株式会社 Solar power generation system and power supply system
US20160190808A1 (en) * 2014-12-29 2016-06-30 Lg Cns Co., Ltd. Method and system for managing electric power
CN106156455A (en) * 2015-03-26 2016-11-23 中国能源建设集团新疆电力设计院有限公司 A kind of photovoltaic generating system generated energy computational methods based on all the period of time analog integration
CN106642141A (en) * 2016-12-29 2017-05-10 陶煜民 Multifunctional electricity generating station
JP6680711B2 (en) * 2017-02-28 2020-04-15 三菱重工環境・化学エンジニアリング株式会社 Power generation system and power generation system control method
JP6824500B2 (en) * 2017-09-14 2021-02-03 株式会社プランテック Power generation structure, thermoelectric power generation method
KR102063876B1 (en) * 2019-08-16 2020-01-08 김경환 Self-powered incinerator system
KR20210026045A (en) * 2019-08-29 2021-03-10 (주)대륜엔지니어링 A Management System of PV-ESS Applicable to Recycling Equipment

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5425411A (en) * 1977-07-27 1979-02-26 Toshiba Corp Parallel running method of generator
JPS58119736A (en) * 1982-01-08 1983-07-16 株式会社東芝 Method of controlling operation of non-utility generator facility
JPS59185939U (en) * 1983-05-30 1984-12-10 株式会社東芝 Power generation control device
JP2849943B2 (en) * 1990-06-29 1999-01-27 株式会社荏原製作所 Power generation control device
JPH07123591A (en) * 1993-10-22 1995-05-12 Toshiba Corp Power generation controller
JPH0894050A (en) * 1994-09-29 1996-04-12 Hitachi Eng Co Ltd Exhaust heat utilizing generator
JP3775134B2 (en) * 1999-10-08 2006-05-17 株式会社日立製作所 Private power generation facilities
JP2002118969A (en) * 2000-10-03 2002-04-19 Nissin Electric Co Ltd Distributed power supply system
JP2002171666A (en) * 2000-11-29 2002-06-14 Osaka Gas Co Ltd Method for supplying energy and information
JP2004064814A (en) * 2002-07-25 2004-02-26 Kawasaki Heavy Ind Ltd Method and system for power supply
JP2004312797A (en) * 2003-04-02 2004-11-04 Tokyo Gas Co Ltd Output power compensating system
JP4053965B2 (en) * 2003-11-18 2008-02-27 株式会社日立製作所 Combined heat and power system control method and combined heat and power system controller
JP2005287220A (en) * 2004-03-30 2005-10-13 Jfe Engineering Kk Production volume receipt control method
JP2007159225A (en) * 2005-12-02 2007-06-21 Kawasaki Heavy Ind Ltd Microgrid using high-performance secondary battery
JP4527092B2 (en) * 2006-08-23 2010-08-18 三菱電機株式会社 System stabilization device

Also Published As

Publication number Publication date
JP2011101492A (en) 2011-05-19

Similar Documents

Publication Publication Date Title
JP5546206B2 (en) Power generation system
JP3740099B2 (en) Power network management system and power network management method
JP5625005B2 (en) Stand-alone power supply system
JP2005312138A (en) Power controller, power generation system and power system
WO2016088761A1 (en) Electric power control system, electric power control method, and program
JP5836164B2 (en) Solar power system
JP6108510B1 (en) Hybrid power generation system, hybrid power generation control device, and hybrid power generation control method
WO2015029138A1 (en) Solar generator system
CN103620903A (en) Power supply system
JP2008182017A (en) Control method of photovoltaic power generation system and power generation predicting apparatus of photovoltaic power generation system
JP2013031283A (en) Demand controller
JP6417063B1 (en) Power generation system, control device, and control method
JP7011881B2 (en) Hybrid power generation system and power control device
WO2012057307A1 (en) Control device for power management
JP2009232668A (en) Electric power supply system and power supply method
KR20140111118A (en) Solar-cell system having maximum power saving function and method thereof
JP2013066278A (en) Power system supporting system
JP2018157700A (en) Electrical generating system, power generation controller, power generation control method, and magnification method of interconnection power generation of the electrical generating system
JP6651361B2 (en) Generator control system
JP2012095483A (en) Power generator
JP7180993B2 (en) power generation system
JP2021141769A (en) Power monitoring control device, power monitoring control method, and control program
JP2005278338A (en) Power supply system
Mohamed et al. Design of hybrid PV/diesel generator systems at minimum cost: Case study for Kuching, Malaysia
WO2011129003A1 (en) Power management control system used in natural energy generating system incorporating storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140513

R150 Certificate of patent or registration of utility model

Ref document number: 5546206

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees