JP5545987B2 - Optical interference measuring device and shape measuring device - Google Patents

Optical interference measuring device and shape measuring device Download PDF

Info

Publication number
JP5545987B2
JP5545987B2 JP2010137064A JP2010137064A JP5545987B2 JP 5545987 B2 JP5545987 B2 JP 5545987B2 JP 2010137064 A JP2010137064 A JP 2010137064A JP 2010137064 A JP2010137064 A JP 2010137064A JP 5545987 B2 JP5545987 B2 JP 5545987B2
Authority
JP
Japan
Prior art keywords
light
reference mirror
reflectance
interference
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010137064A
Other languages
Japanese (ja)
Other versions
JP2012002631A (en
Inventor
義将 鈴木
聡 古賀
章憲 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Original Assignee
Mitutoyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp filed Critical Mitutoyo Corp
Priority to JP2010137064A priority Critical patent/JP5545987B2/en
Publication of JP2012002631A publication Critical patent/JP2012002631A/en
Application granted granted Critical
Publication of JP5545987B2 publication Critical patent/JP5545987B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)

Description

本発明は、光干渉測定装置および形状測定装置に関し、特に、多重反射光による干渉ノイズの低減化に関する。   The present invention relates to an optical interference measurement device and a shape measurement device, and more particularly to reduction of interference noise due to multiple reflected light.

従来、先端の尖った探針(スタイラスとも呼ぶ。)を測定対象物に接触させ、または周期的に接触させながら走査することによって、測定対象物の表面形状を高い空間分解能で観察したり、表面形状を高精度に測定したりすることが可能な装置が多く知られている。例えば、機械加工した面などの表面粗さを定量的に測定する表面粗さ測定機や、表面凹凸を原子レベルで拡大観察する原子間力顕微鏡(AFM)のような走査型プローブ顕微鏡などがあり、所望する空間分解能に応じて様々な測定装置や顕微装置がある。   Conventionally, a probe with a sharp tip (also called a stylus) is brought into contact with the measurement object or scanned while periodically contacting the object to observe the surface shape of the measurement object with high spatial resolution, Many devices capable of measuring the shape with high accuracy are known. For example, there are surface roughness measuring machines that quantitatively measure the surface roughness of machined surfaces and scanning probe microscopes such as an atomic force microscope (AFM) that magnifies and observes surface irregularities at the atomic level. There are various measuring devices and microscopic devices according to the desired spatial resolution.

走査型プローブ顕微鏡において探針の変位を光波干渉式変位計で直接的に測定する方法が報告されている(例えば特許文献1、2参照)。この方法を図1に基づいて簡単に説明する。図1は、従来の微細形状測定装置10の要部を示す構成図である。測定装置10は、ワーク20に対して位置及び姿勢が変化しないように保持された参照鏡12と、ワーク20の表面を走査しながら凹凸に応じて上下方向に変位する探針14と、該探針14の変位量を測定する変位計と、探針14をワーク20の表面に沿って走査させる走査手段と、を備える。   There has been reported a method for directly measuring the displacement of a probe with a light wave interference displacement meter in a scanning probe microscope (see, for example, Patent Documents 1 and 2). This method will be briefly described with reference to FIG. FIG. 1 is a configuration diagram showing a main part of a conventional fine shape measuring apparatus 10. The measuring apparatus 10 includes a reference mirror 12 that is held so that the position and orientation of the workpiece 20 are not changed, a probe 14 that is displaced in the vertical direction according to the unevenness while scanning the surface of the workpiece 20, and the probe. A displacement meter for measuring the amount of displacement of the needle 14 and scanning means for scanning the probe 14 along the surface of the workpiece 20 are provided.

探針14の走査によってもワーク20に対する参照鏡12の位置及び姿勢は変化しない。また、参照鏡12に対向する反射面36が探針に形成されている。レーザ光源70からのレーザの一部は参照鏡12を透過して探針の反射面36に照射される。この反射面36からの測定光56は、参照鏡12を反射した参照光54と干渉する。変位計は、測定光56と参照光54との干渉光(以降、便宜的に干渉信号と呼ぶ場合がある。)を検出する検出手段30を有し、検出干渉光に基づいて探針14の上下方向への変位を取得する、いわゆる光波干渉式変位計である。
このように、ワーク20との相対的な位置が変わらない参照鏡12の位置を基準にして、形状に応じて変位する探針14の変位量を光波干渉によって検出する方法が知られていた。
The position and posture of the reference mirror 12 with respect to the workpiece 20 do not change even when the probe 14 is scanned. Further, a reflecting surface 36 facing the reference mirror 12 is formed on the probe. A part of the laser from the laser light source 70 passes through the reference mirror 12 and is irradiated on the reflecting surface 36 of the probe. The measurement light 56 from the reflecting surface 36 interferes with the reference light 54 reflected from the reference mirror 12. The displacement meter has detection means 30 that detects interference light between the measurement light 56 and the reference light 54 (hereinafter, sometimes referred to as an interference signal for convenience), and the displacement meter has a probe 14 based on the detected interference light. This is a so-called light wave interferometer that acquires displacement in the vertical direction.
As described above, there has been known a method of detecting the amount of displacement of the probe 14 that is displaced according to the shape based on the position of the reference mirror 12 whose relative position with respect to the workpiece 20 is not changed, as a reference.

特開2008−76221号公報JP 2008-76221 A 特開2008−51602号公報JP 2008-51602 A

<多重反射光>
特許文献1、2に記載された従来の微細形状測定装置100では、検出干渉光から探針14の変位を正確に測定するには、測定光56および参照光54の干渉光である干渉信号のS/N比が十分高い必要がある。しかし、参照鏡12とスタイラス14の反射面36とが一直線上に配置されている。つまり、参照鏡12とスタイラス14の反射面36間に形成される測定光の光軸は、スタイラス14の変位方向の移動軸に常に一致している。そのため、参照鏡12とスタイラス14間で発生する多重反射光75が干渉ノイズとなって検出手段30に入り、干渉信号のS/N比を下げてしまうという問題があった。干渉ノイズ発生の詳細については後述する。
このような問題は、図1の微細形状測定装置100に限らず、従来の表面粗さ測定機や走査プローブ顕微鏡などに光波干渉式変位計を用いる場合にも共通する問題であった。
<Multiple reflected light>
In the conventional fine shape measuring apparatus 100 described in Patent Documents 1 and 2, in order to accurately measure the displacement of the probe 14 from the detected interference light, an interference signal that is the interference light of the measurement light 56 and the reference light 54 is used. The S / N ratio needs to be sufficiently high. However, the reference mirror 12 and the reflecting surface 36 of the stylus 14 are arranged on a straight line. That is, the optical axis of the measurement light formed between the reference mirror 12 and the reflecting surface 36 of the stylus 14 always coincides with the movement axis of the stylus 14 in the displacement direction. For this reason, there is a problem that the multiple reflected light 75 generated between the reference mirror 12 and the stylus 14 becomes interference noise and enters the detection means 30 to reduce the S / N ratio of the interference signal. Details of the generation of interference noise will be described later.
Such a problem is not limited to the fine shape measuring apparatus 100 of FIG. 1, but is a problem common to the case where a light wave interference displacement meter is used in a conventional surface roughness measuring machine, a scanning probe microscope, or the like.

本発明は、前記従来技術に鑑みなされたものであり、その解決すべき課題は、測定に必要な干渉信号のS/Nを低下させることなく、高精度な光干渉測定を実行可能な光干渉測定装置および形状測定装置を提供することにある。   The present invention has been made in view of the above-described prior art, and a problem to be solved is an optical interference capable of performing highly accurate optical interference measurement without reducing the S / N of an interference signal necessary for measurement. The object is to provide a measuring device and a shape measuring device.

前記課題を解決するために本発明の請求項1に係る光干渉測定装置は、
対向する第一面と第二面を有し、前記第一面から内部を透過して第二面へ直角に入射される透過光の一部を前記第二面で反射して参照光にするとともに、反射しない前記透過光を第二面から出射する参照鏡と、
前記第二面から出射した透過光の進行方向に設けられ、該進行方向に沿って変位自在で、前記透過光をもと来た方向に反射する可変反射体と、
前記可変反射体からの反射光のうち前記参照鏡を透過する光を測定光として、該測定光と前記参照鏡の第一面から同方向に進む前記参照光とを干渉させて、該干渉光を検出する干渉光検出手段と、
検出干渉光に基づいて前記参照鏡に対する前記可変反射体の変位量を取得する変位量取得手段と、を備え、
さらに、前記参照鏡と可変反射体との間の光軸上に配置された光減衰手段を備え、
該光減衰手段は、前記参照鏡の第二面と前記可変反射体との間を往復する光を減衰させて、該参照鏡と可変反射体との間に生じる多重反射光に基づく前記検出干渉光中の干渉ノイズを低減することを特徴とする。
In order to solve the above problem, an optical interference measuring apparatus according to claim 1 of the present invention is provided.
It has a first surface and a second surface that face each other, and a part of transmitted light that is transmitted through the first surface and incident at a right angle on the second surface is reflected by the second surface to become reference light. And a reference mirror that emits the transmitted light that does not reflect from the second surface;
A variable reflector that is provided in the traveling direction of the transmitted light emitted from the second surface, is displacable along the traveling direction, and reflects the transmitted light in the original direction;
Of the reflected light from the variable reflector, the light that passes through the reference mirror is used as measurement light, and the measurement light and the reference light traveling in the same direction from the first surface of the reference mirror are caused to interfere with each other, thereby the interference light. Interference light detecting means for detecting,
Displacement amount acquisition means for acquiring a displacement amount of the variable reflector with respect to the reference mirror based on detected interference light, and
Furthermore, it comprises a light attenuating means disposed on the optical axis between the reference mirror and the variable reflector,
The light attenuating means attenuates light reciprocating between the second surface of the reference mirror and the variable reflector, and detects the detection interference based on multiple reflected light generated between the reference mirror and the variable reflector. It is characterized by reducing interference noise in light.

本発明の請求項2に係る形状測定装置は、ワークの表面形状に応じて所定方向に変位する探針の変位量を取得し、該取得変位量から前記ワーク表面の凹凸形状を測定する形状測定装置であって、
対向する第一面と第二面を有し、前記第一面から内部を透過して第二面へ直角に入射される透過光の一部を前記第二面で反射して参照光にするとともに、反射しない前記透過光を第二面から前記探針に向けて出射する参照鏡と、
前記探針と一体となって変位自在で、前記参照鏡からの前記透過光をもと来た方向に反射する可変反射体と、
前記可変反射体からの反射光のうち前記参照鏡を透過する光を測定光として、該測定光と前記参照鏡の第一面から同方向に進む前記参照光とを干渉させて、該干渉光を検出する干渉光検出手段と、
検出干渉光に基づいて前記参照鏡に対する前記探針の変位量を取得する変位量取得手段と、を備え、
さらに、前記参照鏡と可変反射体との間の光軸上に配置された光減衰手段を備え、
該光減衰手段は、前記参照鏡の第二面と前記可変反射体との間を往復する光を減衰させて、該参照鏡と可変反射体との間に生じる多重反射光に基づく前記検出干渉光中の干渉ノイズを低減することを特徴とする。
The shape measuring apparatus according to claim 2 of the present invention acquires a displacement amount of a probe that is displaced in a predetermined direction in accordance with a surface shape of a workpiece, and measures the shape of the unevenness of the workpiece surface from the acquired displacement amount. A device,
It has a first surface and a second surface that face each other, and a part of transmitted light that is transmitted through the first surface and incident at a right angle on the second surface is reflected by the second surface to become reference light. And a reference mirror that emits the non-reflected transmitted light from the second surface toward the probe;
A variable reflector that is displaceable integrally with the probe and reflects the transmitted light from the reference mirror in the original direction;
Of the reflected light from the variable reflector, the light that passes through the reference mirror is used as measurement light, and the measurement light and the reference light traveling in the same direction from the first surface of the reference mirror are caused to interfere with each other, thereby the interference light. Interference light detecting means for detecting,
Displacement amount acquisition means for acquiring a displacement amount of the probe with respect to the reference mirror based on detected interference light, and
Furthermore, it comprises a light attenuating means disposed on the optical axis between the reference mirror and the variable reflector,
The light attenuating means attenuates light reciprocating between the second surface of the reference mirror and the variable reflector, and detects the detection interference based on multiple reflected light generated between the reference mirror and the variable reflector. It is characterized by reducing interference noise in light.

ここで、前記可変反射体は、前記探針を有するカンチレバーの表面に形成された反射面からなり、該反射面の反射率は、前記カンチレバーの素材の反射率であることが好ましい。あるいは、前記可変反射体の反射面の反射率は、該反射面に施された減反射層によって、前記カンチレバーの素材の反射率よりも小さいことが好ましい。
また、前記参照鏡の反射率は、該参照鏡の素材の反射率であることが好ましい。
Here, it is preferable that the variable reflector includes a reflecting surface formed on a surface of the cantilever having the probe, and the reflectance of the reflecting surface is a reflectance of the material of the cantilever. Alternatively, it is preferable that the reflectance of the reflecting surface of the variable reflector is smaller than the reflectance of the material of the cantilever due to the reduced reflection layer applied to the reflecting surface.
The reflectance of the reference mirror is preferably the reflectance of the material of the reference mirror.

さらに、前記光減衰手段の透過率を20%〜40%の範囲で設定することが好ましい。より好ましい前記光減衰手段の透過率は30%である。
また、前記参照鏡の第一面へ直角に入射される入射光はレーザであり、前記光減衰手段は前記レーザと同じ波長帯の光を減衰させることが好ましい。さらに、前記参照鏡と変位反射体との間の同じ光路を用いて、観察像を観察することが好ましい。
Furthermore, it is preferable to set the transmittance of the light attenuating means in a range of 20% to 40%. More preferably, the transmittance of the light attenuating means is 30%.
In addition, it is preferable that incident light incident at a right angle on the first surface of the reference mirror is a laser, and the light attenuating means attenuates light having the same wavelength band as that of the laser. Furthermore, it is preferable to observe the observation image using the same optical path between the reference mirror and the displacement reflector.

本発明に係る光干渉測定装置の構成によれば、参照鏡と可変反射体との間に光減衰手段を配置したことによって、参照鏡と可変反射体との間で多重反射光が生じても、生じた多重反射光が光減衰手段で減少し、干渉信号に含まれる干渉ノイズが減衰する。従って、測定に必要な干渉信号のS/Nを低下させることなく、高精度な光干渉測定が可能となる。   According to the configuration of the optical interference measuring apparatus according to the present invention, even if multiple reflected light is generated between the reference mirror and the variable reflector by arranging the light attenuating means between the reference mirror and the variable reflector. The generated multiple reflected light is reduced by the light attenuating means, and the interference noise included in the interference signal is attenuated. Accordingly, highly accurate optical interference measurement can be performed without reducing the S / N of the interference signal necessary for the measurement.

測定光は、参照鏡と可変反射体との間を一往復するため、光減衰手段を2回透過する。一方、多重反射光の発生原因は、光減衰手段で減衰した測定光が参照鏡を透過しないで、参照鏡を反射し、再び探針に向かって進行する測定光の反射光である。前述の測定光の一往復分を含めると、1次の多重反射光は参照鏡と可変反射体との間を二往復することになり、光減衰手段を4回透過する。なお、2次の多重反射光は6回、3次の多重反射光は8回とn次の多重反射光は2(n+1)回も、光減衰手段を透過することになる。ここでは、干渉信号への影響が最も大きくなる1次の多重反射光に着目する。
このように、測定光の2回に対して、多重反射光は光減衰手段を4回も透過するので、多重反射光を測定光よりも大きな割合で減少させることになり、結果的に干渉信号に含まれる干渉ノイズを減衰させることができる。
Since the measurement light makes one round trip between the reference mirror and the variable reflector, it passes through the light attenuating means twice. On the other hand, the cause of the generation of the multiple reflected light is the reflected light of the measurement light that is reflected by the reference mirror without being transmitted through the reference mirror, and travels toward the probe again without passing through the reference mirror. Including one round trip of the measurement light described above, the first-order multiple reflected light makes two round trips between the reference mirror and the variable reflector, and passes through the light attenuating means four times. The second-order multiple reflected light passes through the light attenuating means 6 times, the third-order multiple reflected light 8 times, and the n-order multiple reflected light 2 (n + 1) times. Here, attention is focused on the first-order multiple reflected light that has the greatest influence on the interference signal.
In this way, since the multiple reflected light passes through the light attenuating means four times with respect to the measurement light twice, the multiple reflected light is reduced at a larger rate than the measurement light, resulting in an interference signal. The interference noise contained in can be attenuated.

従来の微細形状測定装置の要部を示す構成図である。It is a block diagram which shows the principal part of the conventional fine shape measuring apparatus. 本発明の第一実施形態にかかる微細形状測定装置を示す全体構成図である。It is a whole lineblock diagram showing the fine shape measuring device concerning a first embodiment of the present invention. 前記微細形状測定装置の要部を示す構成図である。It is a block diagram which shows the principal part of the said fine shape measuring apparatus. 多重反射光の影響を説明するグラフである。It is a graph explaining the influence of multiple reflected light. 前記微細形状測定装置の性能特性を説明する特性曲線図である。It is a characteristic curve figure explaining the performance characteristic of the said fine shape measuring apparatus. 本発明の第二実施形態にかかる微細形状測定装置を示す全体構成図である。It is a whole block diagram which shows the fine shape measuring apparatus concerning 2nd embodiment of this invention.

以下、図面に基づき本発明の好適な実施形態について説明する。
第一実施形態
図2に本発明の第一実施形態にかかる微細形状測定装置の全体構成を示す。
微細形状測定装置10は、ワーク(測定対象物)20の表面形状に応じて所定方向に変位する探針14の変位量を取得し、該取得変位量からワーク表面の微細な凹凸形状を測定する装置であり、探針14の変位に応じて変化する干渉光を検知することによって変位量を取得することに特徴がある。
すなわち、測定装置10は、先端部の探針14をZ軸方向に変位可能に保持するカンチレバー21と、対向する第一面12Aと第二面12Bを有し探針14を覆うように配置された参照鏡12と、レーザ光源70を有する干渉光学系28と、干渉光学系28からの干渉光を検出する検出手段30と、探針14をカンチレバー21ごとワーク表面に沿って移動させるためにカンチレバー21をXY方向に移動させてワーク表面を走査する走査手段18と、カンチレバー21をZ方向に移動させるZ方向駆動手段42と、制御手段としてのコントローラー44とを備える。以下に、各構成の具体的な説明を行う。
Preferred embodiments of the present invention will be described below with reference to the drawings.
First Embodiment FIG. 2 shows the overall configuration of a fine shape measuring apparatus according to a first embodiment of the present invention.
The fine shape measuring apparatus 10 acquires the displacement amount of the probe 14 that is displaced in a predetermined direction according to the surface shape of the workpiece (measurement object) 20, and measures the fine uneven shape of the workpiece surface from the acquired displacement amount. The apparatus is characterized in that the amount of displacement is acquired by detecting the interference light that changes in accordance with the displacement of the probe 14.
That is, the measuring apparatus 10 is disposed so as to cover the probe 14 having a cantilever 21 that holds the probe 14 at the distal end so as to be displaceable in the Z-axis direction, and a first surface 12A and a second surface 12B that face each other. The reference mirror 12, the interference optical system 28 having the laser light source 70, the detection means 30 for detecting the interference light from the interference optical system 28, and the cantilever for moving the probe 14 along the work surface along with the cantilever 21. The scanning means 18 which scans the workpiece | work surface by moving 21 to an XY direction, the Z direction drive means 42 which moves the cantilever 21 to a Z direction, and the controller 44 as a control means are provided. Hereinafter, each configuration will be specifically described.

探針14は、可撓性を有するカンチレバー21の自由端に設けられている。カンチレバー21の基端は、Z軸駆動手段42に保持され、Z方向に移動可能である。Z軸駆動手段42は走査手段18に保持され、XY方向に移動可能となっている。探針14は、これらカンチレバー21、Z軸駆動手段42、走査手段18によって、ワーク20上を走査しながら、表面のZ方向の凹凸をなぞることができる。さらに、探針14の先端のZ方向への変位軌跡を示す変位軸線38と、干渉光学系28および参照鏡12によって形成される測定軸線40とを一致させた状態で、ワーク表面を走査することができ、探針14の変位量を高精度に取得できる。なお、走査手段18としては、ワーク21をXY方向に移動する走査ステージであっても同様の効果が得られる。   The probe 14 is provided at the free end of the cantilever 21 having flexibility. The base end of the cantilever 21 is held by the Z-axis drive means 42 and is movable in the Z direction. The Z-axis driving means 42 is held by the scanning means 18 and can move in the XY directions. The probe 14 can trace the surface irregularities in the Z direction while scanning the workpiece 20 by the cantilever 21, the Z-axis drive means 42, and the scanning means 18. Further, the workpiece surface is scanned in a state where the displacement axis 38 indicating the displacement locus in the Z direction of the tip of the probe 14 and the measurement axis 40 formed by the interference optical system 28 and the reference mirror 12 coincide with each other. Thus, the displacement amount of the probe 14 can be acquired with high accuracy. The same effect can be obtained even if the scanning unit 18 is a scanning stage that moves the workpiece 21 in the XY directions.

干渉光学系28は、光射出手段としてのレーザ光源70と、ビームスプリッタ34と、を備える。レーザ光源70は、可干渉光(レーザ)をビームスプリッタ34に向けて出射する。ビームスプリッタ34は、プリズム型であり、レーザ光源70からのレーザを透過するとともに、逆方向からの入射光を45度方向に反射することができる接合面を有する。   The interference optical system 28 includes a laser light source 70 as light emitting means and a beam splitter 34. The laser light source 70 emits coherent light (laser) toward the beam splitter 34. The beam splitter 34 is a prism type, and has a joint surface that transmits the laser from the laser light source 70 and can reflect incident light from the opposite direction in a 45-degree direction.

参照鏡12は、干渉光学系28と探針14との間に配置され、ビームスプリッタ34からのレーザによって照射される。この参照鏡12は、探針14の変位量取得の基準として用いられ、ビームスプリッタ34からのレーザを分割する光分割手段でもある。ここでは、第一面12A、第二面12Bを有する平面型のビームスプリッタを用いる。前述のプリズム型のビームスプリッタ34からのレーザは、第一面12Aへ入射される。第一面12Aから参照鏡内部を透過して第二面12Bへ直角に入射されるレーザの一部は第二面12Bを反射して参照光54になる。この参照光54は第一面12Aからビームスプリッタ34に向けて戻る方向に進む。また、第二面12Bを反射しないで、この第二面から参照鏡12の外部に出射するレーザは、探針14に向けて進む。参照鏡12のサイズは、ワーク20の測定領域と同程度である。参照鏡12は、走査時において、ワーク20に対して位置と姿勢とが変化しないように保持されている。本実施形態では、ワーク20がベース22上に設けられ、また、ベース22には図示しない保持部材が固定されている。参照鏡12は、この保持部材に保持され、その位置及び姿勢がワーク20に対して固定された状態になっている。   The reference mirror 12 is disposed between the interference optical system 28 and the probe 14 and is irradiated with a laser from the beam splitter 34. The reference mirror 12 is used as a reference for acquiring the displacement amount of the probe 14 and is also a light splitting unit that splits the laser from the beam splitter 34. Here, a planar beam splitter having a first surface 12A and a second surface 12B is used. The laser beam from the prism type beam splitter 34 is incident on the first surface 12A. A part of the laser which is transmitted through the reference mirror from the first surface 12A and is incident on the second surface 12B at a right angle reflects the second surface 12B to become reference light 54. The reference light 54 travels in a direction returning from the first surface 12A toward the beam splitter 34. Further, the laser emitted from the second surface to the outside of the reference mirror 12 without reflecting the second surface 12B travels toward the probe 14. The size of the reference mirror 12 is approximately the same as the measurement area of the workpiece 20. The reference mirror 12 is held so that the position and posture of the workpiece 20 do not change during scanning. In the present embodiment, the workpiece 20 is provided on the base 22, and a holding member (not shown) is fixed to the base 22. The reference mirror 12 is held by this holding member, and its position and posture are fixed with respect to the workpiece 20.

参照鏡12を透過したレーザは、測定軸線40に沿って進行し、該測定軸線40上に配置された探針14を照射する。探針14の表面には、レーザをもと来た方向に反射する反射面(特定部位)36が形成されている。この反射面36の法線方向は、測定軸線40と一致する。すなわち、探針14の反射面36を反射したレーザは、再び測定軸線40に沿って参照鏡12に向かって進行する。反射面36の反射光は、参照鏡12を透過して、ビームスプリッタ34を照射する。この反射面36の反射光を測定光56として用いる。
ビームスプリッタ34は、上記の測定光56と、前述の参照光54とを検出手段30に向けて反射する。検出手段30は、測定光56と参照光54との干渉光を検出して、検出干渉光の強度情報をコントローラー44に向けて出力する。
The laser transmitted through the reference mirror 12 travels along the measurement axis 40 and irradiates the probe 14 arranged on the measurement axis 40. On the surface of the probe 14, a reflection surface (specific part) 36 that reflects the laser in the original direction is formed. The normal direction of the reflecting surface 36 coincides with the measurement axis 40. That is, the laser beam reflected by the reflecting surface 36 of the probe 14 travels again toward the reference mirror 12 along the measurement axis 40. The reflected light from the reflecting surface 36 passes through the reference mirror 12 and irradiates the beam splitter 34. The reflected light from the reflecting surface 36 is used as the measurement light 56.
The beam splitter 34 reflects the measurement light 56 and the reference light 54 described above toward the detection unit 30. The detecting unit 30 detects the interference light between the measurement light 56 and the reference light 54 and outputs the intensity information of the detected interference light to the controller 44.

なお、探針14に形成された反射面36に代えて、水平状態にあるカンチレバー21の背面において探針14の中心軸上に位置するところに形成された反射面を用いてもよい。また、レーザを反射する特定部位としては、上記の反射面36に代えて、探針14とは別個に形成したレーザ反射体を用いてもよい。このレーザ反射体を探針14もしくはカンチレバー21の自由端に取り付けて、探針14と一体でレーザ反射体を変位させれば、反射面36の代わりとなる。   Instead of the reflecting surface 36 formed on the probe 14, a reflecting surface formed on the central axis of the probe 14 on the back surface of the cantilever 21 in a horizontal state may be used. In addition, as the specific portion that reflects the laser, a laser reflector formed separately from the probe 14 may be used instead of the reflection surface 36 described above. If this laser reflector is attached to the free end of the probe 14 or the cantilever 21 and the laser reflector is displaced integrally with the probe 14, the reflective surface 36 can be substituted.

本実施形態では、以上のビームスプリッタ34、参照鏡12、探針14の反射面36、及び探針14の先端が一直線上に配置されている。   In the present embodiment, the beam splitter 34, the reference mirror 12, the reflecting surface 36 of the probe 14, and the tip of the probe 14 are arranged in a straight line.

コントローラー44は、検出手段30からの検出干渉光の強度情報に基づいて探針14のZ方向の変位量を取得する変位量取得手段45と、走査手段18を駆動させるXY軸駆動回路46と、Z軸駆動手段42を駆動させるZ軸駆動回路48と、解析手段50と、を備える。Z軸駆動回路48は、変位量取得手段45からのZ方向の変位情報に基づいてZ軸駆動手段42を駆動し、また、変位情報を解析手段50に向けて出力する。解析手段50は、探針14のXY方向の座標情報およびZ方向の変位情報に基づいてワーク表面の凹凸形状を解析するコンピュータである。   The controller 44 includes a displacement amount acquisition unit 45 that acquires the displacement amount of the probe 14 in the Z direction based on the intensity information of the detected interference light from the detection unit 30, an XY axis drive circuit 46 that drives the scanning unit 18, and A Z-axis drive circuit 48 for driving the Z-axis drive means 42 and an analysis means 50 are provided. The Z-axis drive circuit 48 drives the Z-axis drive unit 42 based on the displacement information in the Z direction from the displacement amount acquisition unit 45 and outputs the displacement information to the analysis unit 50. The analysis means 50 is a computer that analyzes the uneven shape of the workpiece surface based on the coordinate information of the probe 14 in the X and Y directions and the displacement information in the Z direction.

本実施形態にかかる微細形状測定装置10は概略以上のように構成され、以下にその作用について説明する。なお以下においては、探針14をX軸方向に走査してZ方向の変位を測定する場合を説明する。
図2においては、走査時に、探針14の変位軸線38と、測定光56の光路である測定軸線40とを常に一致させた状態で、カンチレバー21の探針14でワーク20の表面をなぞりながら、探針14の反射面36のZ変位量を測定している。
The fine shape measuring apparatus 10 according to the present embodiment is configured as described above, and the operation thereof will be described below. In the following, a case will be described in which the probe 14 is scanned in the X-axis direction to measure the displacement in the Z direction.
In FIG. 2, while scanning, the displacement axis 38 of the probe 14 and the measurement axis 40 that is the optical path of the measurement light 56 are always matched, while tracing the surface of the workpiece 20 with the probe 14 of the cantilever 21. The Z displacement amount of the reflection surface 36 of the probe 14 is measured.

図3に、測定光54や参照光56の経路を模式的に示す。なお、同図は、図2の測定装置の干渉光の測定部分を拡大した図である。図3にて、レーザ光源70から出たレーザ(可干渉光)52はコリメートレンズ72で適当な径の平行光束になる。ビームスプリッタ34を透過したレーザの一部は、参照鏡12の第一面12Aから内部を透過して第二面12Bで反射され、参照光54になる。この参照光54は、所定の偏光面を持つ直線偏光である。   FIG. 3 schematically shows the paths of the measurement light 54 and the reference light 56. The figure is an enlarged view of the interference light measurement portion of the measurement apparatus of FIG. In FIG. 3, a laser (coherent light) 52 emitted from a laser light source 70 is converted into a parallel light beam having an appropriate diameter by a collimator lens 72. A part of the laser beam that has passed through the beam splitter 34 passes through the first surface 12A of the reference mirror 12 and is reflected by the second surface 12B to become reference light 54. The reference light 54 is linearly polarized light having a predetermined polarization plane.

また、ビームスプリッタ34からのレーザ52の残りの少なくとも一部は、参照鏡12を透過したら第二面12Bを反射せずに参照鏡12の外部へ出る。参照鏡12を透過したレーザ52はλ/4波長板74を透過して円偏光になり、集光レンズ60で探針14の反射面36上に集光される。反射面36を反射した円偏光は再びλ/4波長板74を透過し直線偏光となる。このようにλ/4波長板74を2回透過したレーザは、参照光54と直交する偏光面を持った直線偏光となり、測定光56として用いられる。この測定光56は、参照鏡12を透過することによって、参照光54と重なり合って干渉光となる。この干渉光は、ビームスプリッタ34で反射され、検出手段30で観測される。本実施形態ではこの干渉光を干渉信号58と呼ぶ。   Further, at least a part of the remaining laser 52 from the beam splitter 34 goes out of the reference mirror 12 without being reflected by the second surface 12B after passing through the reference mirror 12. The laser 52 that has passed through the reference mirror 12 passes through the λ / 4 wavelength plate 74 and becomes circularly polarized light, and is condensed on the reflection surface 36 of the probe 14 by the condenser lens 60. The circularly polarized light reflected by the reflecting surface 36 is transmitted again through the λ / 4 wavelength plate 74 and becomes linearly polarized light. Thus, the laser that has passed through the λ / 4 wavelength plate 74 twice becomes linearly polarized light having a polarization plane orthogonal to the reference light 54 and is used as the measurement light 56. The measurement light 56 passes through the reference mirror 12 and thus overlaps the reference light 54 to become interference light. This interference light is reflected by the beam splitter 34 and observed by the detection means 30. In the present embodiment, this interference light is referred to as an interference signal 58.

この干渉信号58は、探針14の反射面36のZ変位に応じて、干渉強度変化(明暗)を示す。このような干渉強度情報(明暗情報)をもつ干渉信号58が検出手段30で光電変換される。このため検出手段30の出力は、探針14の反射面36のZ変位に応じて、つまり前記干渉強度の変化に応じて、変化する。この結果、変位量取得手段45は、検出手段30の出力変化に含まれる干渉強度変化を解析することにより、参照鏡12と反射面36との間の距離を取得し、探針14の反射面36のZ変位を算出することができる。   The interference signal 58 indicates a change in interference intensity (brightness) according to the Z displacement of the reflecting surface 36 of the probe 14. An interference signal 58 having such interference intensity information (brightness / darkness information) is photoelectrically converted by the detection means 30. For this reason, the output of the detection means 30 changes according to the Z displacement of the reflecting surface 36 of the probe 14, that is, according to the change of the interference intensity. As a result, the displacement amount acquisition unit 45 acquires the distance between the reference mirror 12 and the reflection surface 36 by analyzing the interference intensity change included in the output change of the detection unit 30, and the reflection surface of the probe 14. A Z displacement of 36 can be calculated.

ここで、本実施形態においては、カンチレバー21の走査時に、探針14の反射面36のZ変位が、探針14の反射面36の真上から観測されるように、変位観測位置を、ワーク20に対して固定ではなく、探針14のX方向(横方向)への走査に応じて移動している。本実施形態においては、ワーク20及び参照鏡12を静止した状態で、探針14及びビームスプリッタ34を走査しており、このような走査によっても、常に変位軸線38と測定軸線40とが常に一致している。
この結果、本実施形態においては、走査時は常に、探針14の反射面36の変位を、その真上から測定することができる。このため、本実施形態においては、コサイン誤差の発生を大幅に低減することができるので、探針14の高精度な変位測定を行うことができる。
Here, in the present embodiment, the displacement observation position is set so that the Z displacement of the reflection surface 36 of the probe 14 is observed from directly above the reflection surface 36 of the probe 14 during scanning of the cantilever 21. It is not fixed with respect to 20, but moves according to the scanning of the probe 14 in the X direction (lateral direction). In the present embodiment, the probe 14 and the beam splitter 34 are scanned while the workpiece 20 and the reference mirror 12 are stationary. Even by such scanning, the displacement axis 38 and the measurement axis 40 are always one. I'm doing it.
As a result, in the present embodiment, the displacement of the reflecting surface 36 of the probe 14 can be measured from directly above at the time of scanning. For this reason, in this embodiment, since the occurrence of cosine errors can be greatly reduced, highly accurate displacement measurement of the probe 14 can be performed.

また、本実施形態においては、ワーク20の測定領域と同程度のサイズを有する参照鏡12をワーク20に対して固定で設置している。このようなワーク20に対して位置及び姿勢が固定な参照鏡12を基準に、探針14の反射面36のZ変位を測定している。
この結果、本実施形態においては、カンチレバー21の走査時に運動誤差が生じた場合であっても、探針14がワーク20の表面に接触している状態であれば、カンチレバー21に撓みが生じるだけで、該運動誤差がワーク20の測定結果に重畳されるのを防ぐことができる。このため、本実施形態においては、探針14の高精度な変位測定を行うことができる。
In the present embodiment, the reference mirror 12 having the same size as the measurement area of the workpiece 20 is fixedly installed on the workpiece 20. The Z displacement of the reflecting surface 36 of the probe 14 is measured based on the reference mirror 12 whose position and posture are fixed with respect to the workpiece 20.
As a result, in this embodiment, even if a motion error occurs during scanning of the cantilever 21, if the probe 14 is in contact with the surface of the workpiece 20, the cantilever 21 is only bent. Thus, the motion error can be prevented from being superimposed on the measurement result of the workpiece 20. For this reason, in this embodiment, the highly accurate displacement measurement of the probe 14 can be performed.

このようにして求められた探針14のZ方向への相対変位量、及び走査手段18からのX方向への送り量に基づき、ワーク20の表面形状を参照鏡12に対する相対形状として得ているので、ワーク20表面の微細な形状を高精度に測定することができる。   Based on the relative displacement amount of the probe 14 in the Z direction and the feed amount in the X direction from the scanning unit 18 thus obtained, the surface shape of the workpiece 20 is obtained as a relative shape with respect to the reference mirror 12. Therefore, the fine shape on the surface of the workpiece 20 can be measured with high accuracy.

<多重反射光について>
一方で、干渉信号58から探針14の変位を正確に測定するには、干渉信号58のS/N比が十分高い必要がある。また上記の通り、変位軸線38と測定軸線40とが常に一致しコサイン誤差を低減できるという利点があるが、そのため各光学素子は一直線上に設置されている。この光学素子は、ビームスプリッタ34、参照鏡12、探針14の反射面36を指す。従って、参照鏡12の第二面12Bと探針14の反射面36との間で発生した反射光が、ノイズとなって検出手段30に入り、干渉信号のS/N比を下げるという問題があった。これについて、従来の装置を示す図1を用いて詳しく説明する。
<About multiple reflected light>
On the other hand, in order to accurately measure the displacement of the probe 14 from the interference signal 58, the S / N ratio of the interference signal 58 needs to be sufficiently high. Further, as described above, there is an advantage that the displacement axis 38 and the measurement axis 40 always coincide with each other and the cosine error can be reduced. For this reason, each optical element is installed on a straight line. This optical element indicates the beam splitter 34, the reference mirror 12, and the reflecting surface 36 of the probe 14. Therefore, the reflected light generated between the second surface 12B of the reference mirror 12 and the reflecting surface 36 of the probe 14 becomes noise and enters the detecting means 30, and there is a problem that the S / N ratio of the interference signal is lowered. there were. This will be described in detail with reference to FIG. 1 showing a conventional apparatus.

図1にて、反射面36で反射したレーザ(測定光56)の一部は、参照鏡12で反射され、同じ光路を辿って再び反射面36で反射されて、多重反射光75となる。この多重反射光75が参照鏡12を透過してビームスプリッタ34側へ進行すると、参照光54および測定光56とともに検出手段30で検出される。多重反射光75は同じ偏光面を持つ参照光54と干渉するため、その干渉光は干渉ノイズとなって干渉信号58を劣化させてしまう。   In FIG. 1, a part of the laser (measurement light 56) reflected by the reflecting surface 36 is reflected by the reference mirror 12, followed by the same optical path, and again reflected by the reflecting surface 36, thereby becoming multiple reflected light 75. When the multiple reflected light 75 passes through the reference mirror 12 and travels toward the beam splitter 34 side, it is detected by the detection means 30 together with the reference light 54 and the measurement light 56. Since the multiple reflected light 75 interferes with the reference light 54 having the same polarization plane, the interference light becomes interference noise and degrades the interference signal 58.

図1の装置構成において、多重反射光75の強度を算出してみる。干渉測定において干渉信号58のコントラストを高くするには、参照光54および測定光56の各強度を等しくする必要があった。
参照光強度Iは、参照鏡12の反射率Rrefで決まる。ビームスプリッタ34から参照鏡12の第一面12Aへの入射光量を1として規格化すると、参照光強度をI=Rrefと表すことができる。次に、測定光強度Iは、参照鏡12を透過した光が反射面36で反射し、再び参照鏡12を透過した後のレーザの強度であり、反射面36の反射率をRとすると、次式となる。

Figure 0005545987
In the apparatus configuration of FIG. 1, the intensity of the multiple reflected light 75 is calculated. In order to increase the contrast of the interference signal 58 in the interference measurement, it is necessary to make the intensities of the reference light 54 and the measurement light 56 equal.
The reference light intensity I R is determined by the reflectivity R ref of the reference mirror 12. When the amount of incident light from the beam splitter 34 to the first surface 12A of the reference mirror 12 is normalized as 1, the reference light intensity can be expressed as I R = R ref . Next, the measurement light intensity I M is the intensity of the laser after the light transmitted through the reference mirror 12 is reflected by the reflecting surface 36 and again transmitted through the reference mirror 12, and the reflectance of the reflecting surface 36 is denoted by R C. Then, the following equation is obtained.
Figure 0005545987

説明を簡単にするため、探針14の反射面36の反射率をR= 1 とし、参照光強度Iと測定光強度Iが等しいとすると、I=Iは次の方程式で表される。

Figure 0005545987
For the sake of simplicity, assuming that the reflectance of the reflecting surface 36 of the probe 14 is R C = 1 and the reference light intensity I R is equal to the measured light intensity I M , I R = I M is given by the following equation: expressed.
Figure 0005545987

この方程式から、Rref= 0.38 ( < 1 ) が得られるから、参照鏡の反射率を 38 %にした場合に最大のコントラストが得られる。
また、干渉信号振幅Aは次式で表される。

Figure 0005545987
From this equation, R ref = 0.38 (<1) is obtained, so that the maximum contrast is obtained when the reflectance of the reference mirror is 38%.
The interference signal amplitude A is expressed by the following equation.
Figure 0005545987

ここで、反射面36の反射率を 100 %(R= 1 )とし、参照鏡の反射率を 38 %(Rref= 0.38 )とする条件下で、多重反射光75の強度Iを算出する。
図1のように多重反射光75は、参照鏡12を透過したレーザ52が反射面36で反射され、参照鏡12で反射された後、再び反射面36で反射されてから参照鏡12を透過した光である。つまり、多重反射光75は、測定光56よりも参照鏡12と反射面36との間を1回だけ余計に往復した光であるから、その強度は、次式で表される。

Figure 0005545987
Here, under conditions that the reflectance of the reflection surface 36 100% (R C = 1 ) and then, the reflectivity of the reference mirror to 38% (R ref = 0.38) , calculated intensity I N of the multiple reflected light 75 To do.
As shown in FIG. 1, the multiple reflected light 75 is reflected by the reflecting surface 36 of the laser 52 that has passed through the reference mirror 12, reflected by the reference mirror 12, reflected again by the reflecting surface 36, and then transmitted through the reference mirror 12. Light. That is, since the multiple reflected light 75 is light that has reciprocated between the reference mirror 12 and the reflecting surface 36 only once more than the measuring light 56, the intensity thereof is expressed by the following equation.
Figure 0005545987

多重反射光75は、参照鏡12を透過した後、同じ偏光面を持つ参照光54と干渉し干渉ノイズになる。干渉ノイズの干渉強度振幅Aを次式で表す。

Figure 0005545987
The multiple reflected light 75 passes through the reference mirror 12 and then interferes with the reference light 54 having the same polarization plane to become interference noise. The interference intensity amplitude A N of the interference noise expressed by the following equation.
Figure 0005545987

これらの干渉強度振幅A、Aを用いて、干渉信号58中の干渉ノイズの割合Nratioを算出する。干渉ノイズの割合Nratioは、上記と同様に干渉信号58のコントラストを最大にするため参照鏡12の反射率をRref= 0.38 とし、反射面36の反射率をR= 1 とする条件下で次のようになる。

Figure 0005545987
These interference intensity amplitude A, with A N, and calculates the ratio N ratio of the interference noise in the interference signal 58. The ratio N ratio of the interference noise is a condition in which the reflectance of the reference mirror 12 is R ref = 0.38 and the reflectance of the reflecting surface 36 is R C = 1 in order to maximize the contrast of the interference signal 58 as described above. Then it becomes as follows.
Figure 0005545987

この結果、干渉ノイズの干渉信号振幅Aの大きさは、本来必要とされる干渉信号振幅Aの 61.6 %にも達することが分かる。干渉信号と干渉ノイズ信号のシミュレーション結果を図4に示す。同図において、測定に必要な干渉信号(基本波で示す波形)および干渉ノイズ信号(倍波で示す波形)の各振幅は、上記で求めた割合( 61.6 %)を用いて示されている。
干渉信号を形成する測定光56と参照光54との光路差は、参照鏡12と反射面36との間の一往復分の光路長に相当する。一方、干渉ノイズを形成する多重反射光75と参照光54との光路差は、二往復分の光路長に相当する。従って、干渉ノイズの周期は、測定に必要とされる干渉信号の周波数の2倍になる。基本波および倍波は、これらを重ね合わせた図中の合成波となって検出手段30で検出されることになる。このような干渉信号から正確な測定をすることは困難だった。
As a result, the magnitude of the interference signal amplitude A N of the interference noise, it can be seen that even reach 61.6% of the interference signal amplitude A which is originally required. FIG. 4 shows a simulation result of the interference signal and the interference noise signal. In the figure, the amplitudes of the interference signal (waveform indicated by the fundamental wave) and the interference noise signal (waveform indicated by the double wave) necessary for the measurement are shown using the ratio (61.6%) obtained above.
The optical path difference between the measurement light 56 and the reference light 54 that forms an interference signal corresponds to the optical path length for one round trip between the reference mirror 12 and the reflecting surface 36. On the other hand, the optical path difference between the multiple reflected light 75 and the reference light 54 that forms interference noise corresponds to the optical path length for two round trips. Therefore, the period of interference noise is twice the frequency of the interference signal required for measurement. The fundamental wave and the harmonic wave are detected by the detection means 30 as a combined wave in the figure in which these are superimposed. It has been difficult to make accurate measurements from such interference signals.

<参照鏡とカンチレバー間に減衰フィルタを配置した構成>
本発明で特徴的なことは、図3に示すように、参照鏡12とカンチレバー21との間の測定軸線上に減衰フィルタを設けて、多重反射光に基づく干渉ノイズを低減できるようにしたことである。減衰フィルタ76は、光の透過量を制限するものであり本発明の光減衰手段に相当する。通常、NDフィルタ(neutral density filter)と呼ばれる。
<Configuration with an attenuation filter between the reference mirror and the cantilever>
What is characteristic of the present invention is that an attenuation filter is provided on the measurement axis line between the reference mirror 12 and the cantilever 21, as shown in FIG. 3, so that interference noise based on multiple reflected light can be reduced. It is. The attenuation filter 76 limits the amount of transmitted light and corresponds to the light attenuation means of the present invention. Usually, it is called an ND filter (neutral density filter).

減衰フィルタ76は、参照鏡12と探針14の反射面36との間のいずれかの位置に設置されていればよい。本実施形態では、λ/4波長板74と集光レンズ60との間に減衰フィルタ76を配置した。減衰フィルタ76の透過率をTNDとすると、図3に示すように測定光56は減衰フィルタ76を2回透過するため、透過率の2条(TND )に相当する割合まで光量が減衰する。しかし、多重反射光75は減衰フィルタ76を4回透過するため、透過率の4条(TND )に相当する割合まで光量が減衰する。測定光56と比較すると、多重反射光75の減衰量は非常に大きくなる。
減衰フィルタ76を設置した時の測定光56の強度Iは、次式になる。

Figure 0005545987
The attenuation filter 76 may be installed at any position between the reference mirror 12 and the reflecting surface 36 of the probe 14. In the present embodiment, the attenuation filter 76 is disposed between the λ / 4 wavelength plate 74 and the condenser lens 60. When the transmittance of the attenuation filter 76 and T ND, for measuring light 56 as shown in FIG. 3 is transmitted through the attenuation filter 76 twice, the light quantity is attenuated to a rate equivalent to 2 Article transmittance (T ND 2) To do. However, since the multiple reflected light 75 is transmitted through the attenuation filter 76 four times, the amount of light is attenuated to a ratio corresponding to four transmittances (T ND 4 ). Compared with the measurement light 56, the attenuation amount of the multiple reflected light 75 is very large.
The intensity I M of the measurement light 56 when the attenuation filter 76 is installed is expressed by the following equation.
Figure 0005545987

また、干渉信号振幅Aは、前述と同様に次式で表される。

Figure 0005545987
Further, the interference signal amplitude A is expressed by the following equation as described above.
Figure 0005545987

多重反射光75は、参照鏡12を透過した光が減衰フィルタ76を透過後、反射面36で反射され、再び減衰フィルタ76を透過する。その後、この減衰フィルタ76を2回透過した光は、さらに参照鏡12の第二面12Bで反射され、減衰フィルタ76を透過し、反射面36で再び反射される。反射面36の反射光は、減衰フィルタ76を透過し、参照鏡12を透過する。このように多重反射光75は、減衰フィルタ76を4回透過した光であるので、その強度Iは、次式となる。

Figure 0005545987
The multi-reflected light 75 passes through the reference mirror 12, passes through the attenuation filter 76, is reflected by the reflection surface 36, and passes through the attenuation filter 76 again. Thereafter, the light that has passed through the attenuation filter 76 twice is further reflected by the second surface 12 </ b> B of the reference mirror 12, passes through the attenuation filter 76, and is reflected again by the reflection surface 36. The reflected light from the reflecting surface 36 passes through the attenuation filter 76 and passes through the reference mirror 12. Thus, since the multiple reflected light 75 is light that has passed through the attenuation filter 76 four times, its intensity IN is expressed by the following equation.
Figure 0005545987

多重反射光75は同じ偏光面を持つ参照光54と干渉して、干渉ノイズとなる。干渉ノイズの干渉強度振幅Aは、次式となる。

Figure 0005545987
The multiple reflected light 75 interferes with the reference light 54 having the same polarization plane and becomes interference noise. Interference intensity amplitude A N of the interference noise, the following equation.
Figure 0005545987

従って、減衰フィルタ76を設置した時の干渉信号58に含まれる干渉ノイズの割合Nratioは、以下のようになる。

Figure 0005545987
Accordingly, the ratio N ratio of the interference noise included in the interference signal 58 when the attenuation filter 76 is installed is as follows.
Figure 0005545987

減衰フィルタ76がない場合と同様に、干渉信号58のコントラストを最大にするため参照鏡12の反射率をRref= 0.38 とし、反射面36の反射率をR= 1 とする条件下で、設置した減衰フィルタの透過率TND= 0.5の条件を加えると、上記の干渉ノイズの割合Nratioは、次の値となる。

Figure 0005545987
As in the case without the attenuation filter 76, in order to maximize the contrast of the interference signal 58, the reflectance of the reference mirror 12 is R ref = 0.38, and the reflectance of the reflecting surface 36 is R C = 1. When the condition of transmittance T ND = 0.5 of the installed attenuation filter is added, the above-described interference noise ratio N ratio becomes the following value.
Figure 0005545987

干渉ノイズの信号振幅Aは、本来必要な干渉信号振幅Aの 30.8 %に相当し、減衰フィルタ76のない場合の同割合が 61.8 %であることと比べると、大幅に低減されたことが分かる。
通常は、測定光の光路上に減衰フィルタ76を配置すると、測定光56までもが減衰してしまうため、測定光の光路上への減衰フィルタ76の配置は極力避けることが一般的な考えであった。
The signal amplitude A N of the interference noise corresponds to 30.8% of the originally required interference signal amplitude A, and it can be seen that the interference noise signal amplitude A N is greatly reduced compared to 61.8% when the attenuation filter 76 is not provided. .
Normally, when the attenuation filter 76 is arranged on the optical path of the measurement light, even the measurement light 56 is attenuated. Therefore, it is a general idea to avoid the arrangement of the attenuation filter 76 on the optical path of the measurement light as much as possible. there were.

本実施形態によれば、測定光の光路上に敢えて減衰フィルタ76を配置したことで、干渉ノイズの原因となる多重反射光を大幅に減衰させることができ、従来よりも干渉ノイズによる干渉信号の影響を小さくすることができる。
なお、減衰フィルタ76は、市販のものからある程度自由に選ぶことが可能である。上式によると減衰フィルタの透過率TNDを小さくすると、干渉ノイズの割合Nratioも小さくなる。しかし、後述のように、集光レンズ60が、対象物20の拡大観察用対物レンズを兼ね、干渉光学系と観察光学系とが同軸上に形成されている場合は、対象物20の照明光を減衰させたくないため、減衰フィルタの透過率TNDを可能な限り大きくしたい。
According to the present embodiment, the attenuating filter 76 is intentionally arranged on the optical path of the measurement light, so that the multiple reflected light that causes interference noise can be greatly attenuated. The influence can be reduced.
The attenuation filter 76 can be freely selected to some extent from commercially available ones. According to the above equation, when the transmittance T ND of the attenuation filter is reduced, the interference noise ratio N ratio is also reduced. However, as will be described later, when the condenser lens 60 also serves as an objective lens for magnifying observation of the object 20, and the interference optical system and the observation optical system are formed on the same axis, the illumination light of the object 20 Therefore, it is desirable to increase the transmittance T ND of the attenuation filter as much as possible.

<探針の反射面の反射率の設定>
また、上式によると、探針14の反射面36の反射率Rを変更することでも、多重反射光75を低減させられることが分かる。
カンチレバー21は一般的にシリコン(Si)で形成される。探針14が一体形成されているカンチレバー21を用いる場合、反射面36の反射率はSiの反射率で決まり、 35 %程度になる。従来、反射面36の反射率を高めるため、カンチレバー21の表面にアルミニウム(Al)または金(Au)などをコーティングしていた。コーティングにより反射率Rは 75 〜 90 %程度まで高くなる。
<Setting the reflectance of the reflective surface of the probe>
Further, according to the above equation, it can be seen that the multiple reflected light 75 can be reduced by changing the reflectance RC of the reflecting surface 36 of the probe 14.
The cantilever 21 is generally formed of silicon (Si). When the cantilever 21 with the probe 14 formed integrally is used, the reflectance of the reflecting surface 36 is determined by the reflectance of Si and is about 35%. Conventionally, the surface of the cantilever 21 has been coated with aluminum (Al) or gold (Au) in order to increase the reflectance of the reflecting surface 36. The reflectance RC is increased to about 75 to 90% by the coating.

しかし、本実施形態では、反射率Rを素材であるシリコン(Si)の反射率( 35 %程度)のままにすることが好ましい。上式を用いて干渉信号に含まれるノイズの割合を算出する。参照鏡12の反射率をRref= 0.38、減衰フィルタの透過率をTND= 0.5、反射面36の反射率をR= 0.35 とすると、干渉信号に含まれるノイズの割合Nratioは、以下の値になる。

Figure 0005545987
However, in this embodiment, it is preferable to keep the reflectance RC as the reflectance of silicon (Si) (about 35%) as the material. The ratio of noise included in the interference signal is calculated using the above equation. When the reflectance of the reference mirror 12 is R ref = 0.38, the transmittance of the attenuation filter is T ND = 0.5, and the reflectance of the reflecting surface 36 is R C = 0.35, the ratio of noise N ratio included in the interference signal is as follows: Value.
Figure 0005545987

本実施形態によれば、干渉ノイズの信号振幅は、本来必要な干渉信号振幅の 18.2 %まで削減される。減衰フィルタ76を設置しただけで、反射面36の反射率を従来のまま(R= 0.9 程度)とした場合よりも、さらに干渉ノイズを低減させることが可能になる。また、カンチレバー21に増反射用のコーティングを施す必要がないため、コストメリットを得られる。 According to this embodiment, the signal amplitude of interference noise is reduced to 18.2% of the originally required interference signal amplitude. By simply installing the attenuation filter 76, it is possible to further reduce the interference noise as compared with the case where the reflectance of the reflection surface 36 is kept as it is (R C = 0.9). Further, since it is not necessary to apply the coating for increasing reflection to the cantilever 21, a cost merit can be obtained.

<参照鏡の反射率の設定>
また、上式によると、参照鏡12の反射率Rrefを変更することでも、多重反射光75を低減させることができる。つまり、反射率Rrefが 38 %よりも小さい値の参照鏡12を用いれば、干渉ノイズをさらに低減させることが可能である。例えば、参照鏡の反射率をRref= 0.1 とし、減衰フィルタの透過率をTND= 0.5 、反射面36の反射率をR= 0.35 とすると、干渉信号に含まれるノイズの割合Nratioは、以下の値となる。

Figure 0005545987
<Reflector reflectivity setting>
Further, according to the above equation, the multiple reflected light 75 can be reduced by changing the reflectance R ref of the reference mirror 12. That is, interference noise can be further reduced by using the reference mirror 12 having a reflectance R ref smaller than 38%. For example, if the reflectance of the reference mirror is R ref = 0.1, the transmittance of the attenuation filter is T ND = 0.5, and the reflectance of the reflecting surface 36 is R C = 0.35, then the ratio of noise N ratio included in the interference signal is The following values are obtained.
Figure 0005545987

干渉ノイズの信号振幅は、本来必要な干渉信号振幅の 9.3 %まで削減され、干渉ノイズを低減させることが可能になる。ここで、反射率Rrefの下限について説明する。参照鏡12の反射率Rrefは、反射コーティングを施さなければ、その素材の反射率で決まる。参照鏡12は、合成石英(SiO2)や一般的なBK7(ホウケイ酸ガラス)などの硝材を素材として形成されている。例えば、参照鏡12を合成石英(SiO)で形成した場合、合成石英自体の反射率は約 4 %である。参照鏡の反射率をRref= 0.04 として用いれば、反射コーティングを施す必要がなくなる。参照鏡12のコストメリットを考えると、最適な反射率Rrefの下限は、約 4 %となる。 The signal amplitude of the interference noise is reduced to 9.3% of the originally required interference signal amplitude, and the interference noise can be reduced. Here, the lower limit of the reflectance R ref will be described. The reflectance R ref of the reference mirror 12 is determined by the reflectance of the material if no reflective coating is applied. The reference mirror 12 is made of a glass material such as synthetic quartz (SiO2) or general BK7 (borosilicate glass). For example, when the reference mirror 12 is formed of synthetic quartz (SiO 2 ), the reflectance of the synthetic quartz itself is about 4%. If the reflectance of the reference mirror is used as R ref = 0.04, it is not necessary to apply a reflective coating. Considering the cost merit of the reference mirror 12, the lower limit of the optimum reflectivity R ref is about 4%.

また、合成石英の反射率よりも高くしたい場合は、増反射コーティングを行い、反射率を低くしたい場合は、減反射コーティングを行うことで、参照鏡12の反射率Rrefをある程度任意の値に設定することが可能である。
一方、減衰フィルタ76を設置すること、探針の反射面36の反射率Rを下げること、または、参照鏡12の反射率Rrefを下げること、といった措置を講じた場合、干渉信号58のコントラストおよび干渉信号強度は低下する。しかし干渉信号58に含まれるノイズの割合Nratioが低くなれば、干渉信号58を電気的に増幅させることが可能であり、干渉信号58のコントラストおよび干渉信号強度の低下という問題を回避できる。
Further, when it is desired to make the reflectance higher than that of synthetic quartz, an increased reflection coating is performed, and when a lower reflectance is desired, the reflectance R ref of the reference mirror 12 is set to an arbitrary value to some extent by performing a reduced reflection coating. It is possible to set.
Meanwhile, placing the attenuating filter 76, to reduce the reflectivity R C of the reflective surface 36 of the probe, or to lower the reflectivity R ref of the reference mirror 12, if measures were taken, such as, the interference signal 58 Contrast and interference signal strength are reduced. However, if the ratio N ratio of noise included in the interference signal 58 is lowered, the interference signal 58 can be electrically amplified, and the problem of the contrast of the interference signal 58 and the decrease in the interference signal intensity can be avoided.

<各光学素子の特性値の最適な組合せ>
以降、本発明の測定装置10に用いる光学素子(参照鏡12、減衰フィルタ76、探針の反射面36)の光学特性値の最適な組み合わせについて述べる。
図5は、各光学素子の特性値を組み合わせた場合のノイズの割合の変化を示すグラフである。これによると参照鏡12の反射率Rrefを下げると、ノイズ割合Nratioが小さくなることが分かる。そして、参照鏡の反射率を、反射コーティングが要らない合成石英の反射率 4 %に固定したとき(Rref= 0.04 )、反射面36の反射率をR= 0.35、減衰フィルタの透過率をTND= 0.2 とする場合(図中の下から3本目のカーブ)のノイズ割合Nratioは 2.4 %となり、反射率をR= 0.9、透過率をTND= 0.1 とする場合(図中の下から2本目のカーブ)のノイズ割合Nratioは 1.9 %となる。つまり、ノイズ割合Nratioが 0.5 %(= 2.4 %− 1.9 %)しか変わらないにも関わらず、減衰フィルタの透過率TNDについては 10 %から 20 %に 2 倍高いものに代えることができる。集光レンズ60を対象物20の拡大観察用の対物レンズとして用いて、参照鏡12やビームスプリッタ34に観察用の照明光を通す場合には、透過率TNDが高い方が有利になる。
カンチレバーの反射面36の反射率Rについては、素材であるシリコン(Si)の反射率( 35 %)を反射コーティングなしで使用してもよいが、更には、反射面36に減反射用のコーティングを行って、シリコン基材の反射率を更に低くする減反射層を形成してもよい。反射率Rが素材のままでの 35 %よりも小さくすることで、他の条件が同じであってもノイズ割合Nratioを更に低減させることができる。
<Optimal combination of characteristic values of each optical element>
Hereinafter, an optimum combination of optical characteristic values of optical elements (reference mirror 12, attenuation filter 76, probe reflecting surface 36) used in the measuring apparatus 10 of the present invention will be described.
FIG. 5 is a graph showing a change in the ratio of noise when the characteristic values of the optical elements are combined. According to this, it can be seen that when the reflectance R ref of the reference mirror 12 is lowered, the noise ratio N ratio becomes smaller. Then, when the reflectance of the reference mirror is fixed to 4% of the reflectance of synthetic quartz that does not require a reflective coating (R ref = 0.04), the reflectance of the reflecting surface 36 is R C = 0.35, and the transmittance of the attenuation filter is When T ND = 0.2 (third curve from the bottom in the figure), the noise ratio N ratio is 2.4%, when the reflectance is R C = 0.9 and the transmittance is T ND = 0.1 (in the figure) The noise ratio N ratio in the second curve from the bottom is 1.9%. That is, although the noise ratio N ratio is only 0.5% (= 2.4% −1.9%), the transmittance T ND of the attenuation filter can be changed from 10% to 20%, which is twice as high. When the condenser lens 60 is used as an objective lens for magnifying and observing the object 20 and the illumination light for observation is passed through the reference mirror 12 and the beam splitter 34, it is advantageous that the transmittance TND is higher.
Regarding the reflectivity RC of the cantilever reflecting surface 36, the reflectivity (35%) of silicon (Si) as a material may be used without a reflective coating. Coating may be performed to form a reduced reflection layer that further reduces the reflectivity of the silicon substrate. By making the reflectance RC smaller than 35% of the raw material, the noise ratio N ratio can be further reduced even if other conditions are the same.

また、例えば図5中の上から4本目と5本目のカーブを比較すると明らかなように、透過率TNDを高く設定しても、反射率Rcの設定次第でノイズ割合Nratioを低減し得ることが分かる。4本目のカーブは、反射率Rが 90 %で、透過率TNDが 20 %である場合を示し、5本目のカーブは、反射率Rが 35 %で、透過率TNDが 30 %である場合を示す。これらのカーブで参照鏡12の反射率Rrefが4 %である時のノイズ割合Nratioを比較すると、5本目のカーブの方が高い透過率TND( 30 %)であるにも関わらず、低い透過率TND( 20 %)の4本目のカーブよりも、ノイズ割合Nratioを 0.25 %低減させることができる。図5中の上から2本目と3本目のカーブを比較した場合にも同様の効果があることが判る。さらに、参照鏡12の反射率Rrefを大きくするにつれて、ノイズ割合Nratioを低減できる効果は大きくなる。
なお、減衰フィルタ76の透過率TNDは、10 〜 50 %の範囲で設定することが好ましい。より好ましくは、20 〜 40 %の範囲がよい。ノイズ割合を低くしたい場合には、透過率TNDを低くする。逆に観察光を多く透過させたいならば、ノイズ割合の許容範囲内で透過率TNDを高くすればよい。
図5からも分かるように、合成石英の反射率 4 %をそのまま参照鏡12の反射率Rrefとして用いることで、反射コーティングが不要になり安価になる。一方、反射率Rrefの上限については、ノイズ割合Nratioをどの程度許容するかによって定まるものである。例えば、図5中の下から3本目のカーブの条件では、反射率Rrefを略 15 %以上に設定すると、ノイズ割合Nratioが 5 %を超える。このことから、反射率Rおよび透過率TNDの条件にもよるが、参照鏡12の反射率Rrefとしは、4 〜 40 %の範囲で設定することがよく、より好ましくは、4 〜 15 %の範囲で設定するのがよい。
また、図5からも分かるように、ノイズ割合を低減できる効果が得られる特性値の組み合わせの選択範囲が広いため、測定装置10に用いる光学素子の配置構成に応じて、各光学素子の反射率および透過率の組み合わせを適宜選択することができる。
Further, for example, as is clear from comparison between the fourth curve and the fifth curve from the top in FIG. 5, even if the transmittance T ND is set high, the noise ratio N ratio can be reduced depending on the setting of the reflectance Rc. I understand that. The fourth curve shows a case where the reflectance RC is 90% and the transmittance TND is 20%, and the fifth curve is a reflectance RC of 35% and the transmittance TND is 30%. The case is shown. When comparing the noise ratio N ratio when the reflectance R ref of the reference mirror 12 is 4% in these curves, the fifth curve has a higher transmittance T ND (30%). The noise ratio N ratio can be reduced by 0.25% compared to the fourth curve having a low transmittance T ND (20%). It can be seen that the same effect is obtained when the second and third curves from the top in FIG. 5 are compared. Further, as the reflectance R ref of the reference mirror 12 is increased, the effect of reducing the noise ratio N ratio is increased.
The transmittance T ND of the attenuation filter 76 is preferably set in the range of 10 to 50%. More preferably, the range is 20 to 40%. When it is desired to reduce the noise ratio, the transmittance T ND is decreased. Conversely, if it is desired to transmit a large amount of observation light, the transmittance T ND may be increased within the allowable range of the noise ratio.
As can be seen from FIG. 5, by using the reflectivity 4% of synthetic quartz as it is as the reflectivity R ref of the reference mirror 12, a reflective coating becomes unnecessary and the cost is reduced. On the other hand, the upper limit of the reflectance R ref is determined by how much the noise ratio N ratio is allowed. For example, under the condition of the third curve from the bottom in FIG. 5, if the reflectance R ref is set to approximately 15% or more, the noise ratio N ratio exceeds 5%. Therefore, depending on the conditions of the reflectivity R C and the transmittance T ND, reflectivity R ref cities of the reference mirror 12 may be set in the range of 4 to 40%, more preferably, 4 to It should be set within the range of 15%.
Further, as can be seen from FIG. 5, since the selection range of the combination of characteristic values that can reduce the noise ratio is wide, the reflectivity of each optical element depends on the arrangement configuration of the optical elements used in the measuring apparatus 10. And a combination of transmittances can be selected as appropriate.

第二実施形態
図6は、本発明の第二実施形態に係る拡大観察機能付き微細形状測定装置を示す断面図である。
本実施形態の微細形状測定装置110は前述の図3で示した測定装置10と略同じ構成であるが、拡大観察するための光学系が新たに付加されている点と、減衰フィルタ76に代えてダイクロイックフィルタ77が配置されている点と、がそれぞれ異なっている。ここでは、前述と異なる部材について説明する。
Second Embodiment FIG. 6 is a sectional view showing a fine shape measuring apparatus with a magnification observation function according to a second embodiment of the present invention.
The fine shape measuring apparatus 110 of the present embodiment has substantially the same configuration as the measuring apparatus 10 shown in FIG. 3 described above, except that an optical system for magnifying observation is newly added, and the attenuation filter 76 is used instead. The difference is that the dichroic filter 77 is disposed. Here, members different from those described above will be described.

<拡大観察機能>
第1ビームスプリッタ34と検出手段58との間に第2ビームスプリッタ78が設置されている。第2ビームスプリッタ78は、第1ビームスプリッタ34からの光束を分岐する。すなわち光束の一部を透過して検出手段58に受光させるとともに、光束の他の一部を接合面で反射させる。第2ビームスプリッタ78の反射光は、拡大観察のためのカメラ81側に向けて進行する。反射光の進行方向には、結像レンズ79、第3ビームスプリッタ80、カメラ81が順番に配置されている。
<Magnification observation function>
A second beam splitter 78 is installed between the first beam splitter 34 and the detection means 58. The second beam splitter 78 branches the light beam from the first beam splitter 34. That is, a part of the light beam is transmitted and received by the detecting means 58, and the other part of the light beam is reflected by the joint surface. The reflected light of the second beam splitter 78 travels toward the camera 81 for magnified observation. An imaging lens 79, a third beam splitter 80, and a camera 81 are sequentially arranged in the traveling direction of the reflected light.

カメラ81は、結像レンズ79の焦点位置に設置され、照明されたワーク20を拡大観察できるようになっている。拡大倍率は、集光レンズ60と結像レンズ79の焦点距離の比で決まる。例えば集光レンズ60の焦点距離が 25 mm、結像レンズ79の焦点距離が 250 mmであるとすると、拡大倍率は 10 倍になる。
第3ビームスプリッタ80には、照明光源82からの照明光が照射される。照明光は、第3ビームスプリッタ80、第2ビームスプリッタ78、第1ビームスプリッタ34の順で反射され照明光を測定軸線に導入される。照明光源82は一般的なハロゲンランプなどを用いた白色光源で構わない。照明光は干渉光学系に導入され、集光レンズ60で集光されて対象物20上を照射する。
The camera 81 is installed at the focal position of the imaging lens 79 so that the illuminated workpiece 20 can be enlarged and observed. The magnification is determined by the ratio of the focal lengths of the condenser lens 60 and the imaging lens 79. For example, if the focal length of the condenser lens 60 is 25 mm and the focal length of the imaging lens 79 is 250 mm, the enlargement magnification is 10 times.
The third beam splitter 80 is irradiated with illumination light from the illumination light source 82. The illumination light is reflected in the order of the third beam splitter 80, the second beam splitter 78, and the first beam splitter 34, and the illumination light is introduced into the measurement axis. The illumination light source 82 may be a white light source using a general halogen lamp. The illumination light is introduced into the interference optical system, is condensed by the condenser lens 60, and irradiates the object 20.

図3の測定装置10では、干渉光学系に多重反射光75を減衰させるための減衰フィルタ76を配置しているが、図6の拡大観察のための光学系を備えた本実施形態の測定装置110に同様に減衰フィルタ76を用いると、減衰フィルタ76が照明光も減衰してしまい、観察像が暗くなってしまう。   In the measurement apparatus 10 of FIG. 3, the attenuation filter 76 for attenuating the multiple reflected light 75 is arranged in the interference optical system. However, the measurement apparatus of the present embodiment provided with the optical system for enlarged observation of FIG. If the attenuation filter 76 is similarly used for 110, the attenuation filter 76 also attenuates illumination light, and the observation image becomes dark.

<参照鏡とカンチレバー間にダイクロイックフィルタを配置した構成>
本実施形態において特徴的なことは、減衰フィルタ76に替えて、レーザ52の波長帯のみを減衰させるダイクロイックフィルタ77を設置したことである。レーザ52による多重反射光の波長帯は、当然レーザの波長帯と一致するから、光減衰手段としてのダイクロイックフィルタ77が多重反射光を減衰させ、レーザの波長帯でない照明光については減衰させない。
従って、本実施形態によれば、前記実施形態と同様に干渉ノイズを低減できるとともに、減衰フィルタを用いた場合よりも観察像が暗くならないで済む。なお、ダイクロイックフィルタ77の減衰率は減衰フィルタ76と同様に決定することができる。
<Configuration with a dichroic filter placed between the reference mirror and the cantilever>
What is characteristic in this embodiment is that a dichroic filter 77 for attenuating only the wavelength band of the laser 52 is provided in place of the attenuation filter 76. Since the wavelength band of the multiple reflected light by the laser 52 naturally matches the wavelength band of the laser, the dichroic filter 77 as the light attenuating means attenuates the multiple reflected light and does not attenuate illumination light that is not in the laser wavelength band.
Therefore, according to the present embodiment, interference noise can be reduced as in the above-described embodiment, and the observation image does not become darker than when an attenuation filter is used. The attenuation factor of the dichroic filter 77 can be determined in the same manner as the attenuation filter 76.

なお、本発明の参照鏡としては、実施形態に示したような二つの面(12A、12B)が互いに平行な平面型ビームスプリッタでもよいが、例えば第一面12Aをレーザの光軸に対して僅かに傾斜させたくさび型のビームスプリッタとしてもよい。くさび型の参照鏡を用いれば、第一面12Aを反射するカンチレバー21側(裏面側)からの光を逃がすことができるので、第一面12Aを反射する反射光に起因するノイズの影響を防止することができる。
また、本発明は、測定対象物の表面形状を高い空間分解能で観察したり、表面形状を高精度に測定したりすることが可能な測定装置に広く適用できる。例えば、表面粗さ測定機や、表面凹凸を原子レベルで拡大観察する原子間力顕微鏡(AFM)のような走査型プローブ顕微鏡などに有効である。
The reference mirror of the present invention may be a planar beam splitter in which the two surfaces (12A, 12B) are parallel to each other as shown in the embodiment. For example, the first surface 12A is arranged with respect to the optical axis of the laser. A wedge-shaped beam splitter slightly inclined may be used. If a wedge-shaped reference mirror is used, light from the cantilever 21 side (back side) reflecting the first surface 12A can be escaped, so that the influence of noise caused by the reflected light reflecting the first surface 12A is prevented. can do.
In addition, the present invention can be widely applied to a measuring apparatus that can observe the surface shape of a measurement object with high spatial resolution or measure the surface shape with high accuracy. For example, it is effective for a surface roughness measuring machine, a scanning probe microscope such as an atomic force microscope (AFM) that magnifies and observes surface irregularities at an atomic level, and the like.

10 :微細形状測定装置(光干渉測定装置、形状測定装置)
12 :参照鏡
12A :第一面
12B :第二面
14 :探針
18 :走査手段
20 :ワーク(測定対象物)
21 :カンチレバー
30 :検出手段(干渉光検出手段)
34 :ビームスプリッタ
36 :探針の反射面(可変反射体)
38 :変位軸線
40 :測定軸線
45 :変位量取得手段
52 :レーザ
54 :参照光
56 :測定光
58 :干渉光(干渉信号)
60 :集光レンズ
70 :レーザ光源
72 :コリメートレンズ
74 :λ/4波長板
75 :多重反射光
76 :減衰フィルタ(光減衰手段)
77 :ダイクロイックフィルタ(光減衰手段)
78 :第二ビームスプリッタ
79 :結像レンズ
80 :第三ビームスプリッタ
81 :カメラ
82 :照明光源
10: Fine shape measuring device (optical interference measuring device, shape measuring device)
12: Reference mirror 12A: First surface 12B: Second surface 14: Probe 18: Scanning means 20: Workpiece (measurement object)
21: Cantilever 30: Detection means (interference light detection means)
34: Beam splitter 36: Reflecting surface of the probe (variable reflector)
38: displacement axis 40: measurement axis 45: displacement amount acquisition means 52: laser 54: reference light 56: measurement light 58: interference light (interference signal)
60: condensing lens 70: laser light source 72: collimating lens 74: λ / 4 wavelength plate 75: multiple reflected light 76: attenuation filter (light attenuation means)
77: Dichroic filter (light attenuation means)
78: Second beam splitter 79: Imaging lens 80: Third beam splitter 81: Camera 82: Illumination light source

Claims (5)

ワークの表面形状に応じて所定方向に変位する探針の変位量を取得し、該取得変位量から前記ワーク表面の凹凸形状を測定する形状測定装置であって、
対向する第一面と第二面を有し、前記第一面から内部を透過して第二面へ直角に入射される透過光の一部を前記第二面で反射して参照光にするとともに、反射しない前記透過光を第二面から前記探針に向けて出射する参照鏡と、
前記探針と一体となって変位自在で、前記参照鏡からの前記透過光をもと来た方向に反射する反射面を有する可変反射体と、
前記可変反射体からの反射光のうち前記参照鏡を透過する光を測定光として、該測定光と前記参照鏡の第一面から同方向に進む前記参照光とを干渉させて、該干渉光を検出する干渉光検出手段と、
検出干渉光に基づいて前記参照鏡に対する前記探針の変位量を取得する変位量取得手段と、を備え、
さらに、前記参照鏡と可変反射体との間の光軸上に配置された光減衰手段を備え、
該光減衰手段は、前記参照鏡の第二面と前記可変反射体との間を往復する光を減衰させて、該参照鏡と可変反射体との間に生じる多重反射光に基づく前記検出干渉光中の干渉ノイズを低減するものであって
前記干渉ノイズであるN ratio は、下記式(1)に従い、決定されることを特徴とする形状測定装置。
(式1)
Figure 0005545987
(式中、R ref は前記参照鏡の反射率を、T ND は反射率減衰手段の透過率を、およびR は前記可変反射体の反射面の反射率を、それぞれ意味している。)
A shape measuring device that acquires a displacement amount of a probe that is displaced in a predetermined direction in accordance with a surface shape of a workpiece, and measures an uneven shape of the workpiece surface from the acquired displacement amount,
It has a first surface and a second surface that face each other, and a part of transmitted light that is transmitted through the first surface and incident at a right angle on the second surface is reflected by the second surface to become reference light. And a reference mirror that emits the non-reflected transmitted light from the second surface toward the probe;
A variable reflector that has a reflecting surface that is displaceable integrally with the probe and reflects the transmitted light from the reference mirror in the original direction;
Of the reflected light from the variable reflector, the light that passes through the reference mirror is used as measurement light, and the measurement light and the reference light traveling in the same direction from the first surface of the reference mirror are caused to interfere with each other, thereby the interference light. Interference light detecting means for detecting,
Displacement amount acquisition means for acquiring a displacement amount of the probe with respect to the reference mirror based on detected interference light, and
Furthermore, it comprises a light attenuating means disposed on the optical axis between the reference mirror and the variable reflector,
The light attenuating means attenuates light reciprocating between the second surface of the reference mirror and the variable reflector, and detects the detection interference based on multiple reflected light generated between the reference mirror and the variable reflector. It is one that reduces the interference noise in the light
N ratio which is the said interference noise is determined according to following formula (1), The shape measuring apparatus characterized by the above-mentioned.
(Formula 1)
Figure 0005545987
( Wherein , R ref means the reflectance of the reference mirror, T ND means the transmittance of the reflectance attenuating means, and RC means the reflectance of the reflecting surface of the variable reflector.)
請求項1に記載の形状測定装置において、
前記参照鏡の反射率R ref は4〜40%の範囲で設定され、
前記反射率減衰手段の透過率T ND は10〜20%の範囲で設定され、
更に、前記可変反射体の反射面の反射率R は35〜90%未満の範囲で設定されることを特徴とする形状測定装置。
In the shape measuring apparatus according to claim 1,
The reflectance R ref of the reference mirror is set in the range of 4 to 40%,
The transmittance T ND of the reflectance attenuating means is set in the range of 10 to 20%,
Furthermore, the reflectance RC of the reflecting surface of the variable reflector is set in a range of 35 to less than 90%.
請求項1に記載の形状測定装置において、
前記参照鏡の反射率R ref は4〜40%の範囲で設定され、
前記反射率減衰手段の透過率T ND は30〜40%の範囲で設定され、
更に、前記可変反射体の反射面の反射率R は35〜90%未満の範囲で設定されることを特徴とする形状測定装置。
In the shape measuring apparatus according to claim 1,
The reflectance R ref of the reference mirror is set in the range of 4 to 40%,
The transmittance T ND of the reflectance attenuation means is set in the range of 30-40%,
Furthermore, the reflectance RC of the reflecting surface of the variable reflector is set in a range of 35 to less than 90%.
請求項1から3のいずれかに記載の形状測定装置において、前記参照鏡の第一面へ直角に入射される入射光はレーザであり、前記光減衰手段は前記レーザと同じ波長帯の光を減衰させることを特徴とする形状測定装置。   4. The shape measuring apparatus according to claim 1, wherein the incident light incident at a right angle on the first surface of the reference mirror is a laser, and the light attenuating means emits light in the same wavelength band as the laser. 5. A shape measuring device characterized by attenuation. 請求項4記載の形状測定装置において、前記参照鏡と変位反射体との間の同じ光路を用いて、観察像を観察することを特徴とする形状測定装置。   5. The shape measuring apparatus according to claim 4, wherein an observation image is observed using the same optical path between the reference mirror and the displacement reflector.
JP2010137064A 2010-06-16 2010-06-16 Optical interference measuring device and shape measuring device Expired - Fee Related JP5545987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010137064A JP5545987B2 (en) 2010-06-16 2010-06-16 Optical interference measuring device and shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010137064A JP5545987B2 (en) 2010-06-16 2010-06-16 Optical interference measuring device and shape measuring device

Publications (2)

Publication Number Publication Date
JP2012002631A JP2012002631A (en) 2012-01-05
JP5545987B2 true JP5545987B2 (en) 2014-07-09

Family

ID=45534794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010137064A Expired - Fee Related JP5545987B2 (en) 2010-06-16 2010-06-16 Optical interference measuring device and shape measuring device

Country Status (1)

Country Link
JP (1) JP5545987B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102591031B (en) * 2012-03-02 2014-07-02 浙江大学 Aligning device and aligning method for partial compensating lens during detection of aspheric surface and nonzero digit interference
JP6030346B2 (en) * 2012-05-31 2016-11-24 株式会社ミツトヨ Shape measuring instruments
TWI475210B (en) * 2012-07-27 2015-03-01 Optical detection apparatus

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05223690A (en) * 1992-02-12 1993-08-31 Konica Corp Measuring device for lens transmissivity
JP3174465B2 (en) * 1994-11-28 2001-06-11 松下電器産業株式会社 Atomic force microscope
JPH0972722A (en) * 1995-09-07 1997-03-18 Kao Corp Board external appearance inspecting apparatus
JP2000161930A (en) * 1998-12-01 2000-06-16 Nikon Corp Method and apparatus for measuring forms
JP2005127853A (en) * 2003-10-23 2005-05-19 Mitsutoyo Corp Lightwave interferometer
JP5122775B2 (en) * 2006-08-23 2013-01-16 株式会社ミツトヨ measuring device
EP2163906B1 (en) * 2008-09-16 2014-02-26 Mitutoyo Corporation Method of detecting a movement of a measuring probe and measuring instrument
JP2010096570A (en) * 2008-10-15 2010-04-30 Mitsutoyo Corp Profilometer

Also Published As

Publication number Publication date
JP2012002631A (en) 2012-01-05

Similar Documents

Publication Publication Date Title
US9891418B2 (en) Apparatus for imaging a sample surface
JP5122775B2 (en) measuring device
US8345260B2 (en) Method of detecting a movement of a measuring probe and measuring instrument
EP2369293B1 (en) White light interferometric microscope
JP5172040B2 (en) Surface shape measuring method and surface shape measuring apparatus
JP4790551B2 (en) Fine shape measuring device
JP5669182B2 (en) Vibration measuring apparatus and vibration measuring method by white interference method
Schulz et al. Scanning deflectometric form measurement avoiding path-dependent angle measurement errors
US8107088B2 (en) Displacement sensor
JP2006250826A (en) Measuring element, processing device and measuring method, and measuring element of refractive index
JP6030346B2 (en) Shape measuring instruments
JP2010014426A (en) Measuring device
JP5545987B2 (en) Optical interference measuring device and shape measuring device
JP2010237183A (en) Low coherence interferometer and optical microscope
JP5514641B2 (en) Laser interference bump measuring instrument
US8314940B2 (en) Probe microscope
JP2010096570A (en) Profilometer
KR20200006590A (en) Scanning probe microscope system and method for mapping nanostructures on sample surface
JP2010014536A (en) Measuring method and measuring apparatus for object under measurement mounted on processing apparatus
JP2005106706A (en) Instrument and method for measuring refractive index and thickness
JP2007171145A (en) Inspection device and method
JP5100248B2 (en) Atomic force microscope
JP5239049B2 (en) Roughness measuring method and roughness measuring apparatus
KR101175661B1 (en) Optical Composite Measuring Apparatus and Method
JP2010197089A (en) Interferometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140512

R150 Certificate of patent or registration of utility model

Ref document number: 5545987

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees