JP5545816B2 - Circulating grain dryer - Google Patents

Circulating grain dryer Download PDF

Info

Publication number
JP5545816B2
JP5545816B2 JP2010017301A JP2010017301A JP5545816B2 JP 5545816 B2 JP5545816 B2 JP 5545816B2 JP 2010017301 A JP2010017301 A JP 2010017301A JP 2010017301 A JP2010017301 A JP 2010017301A JP 5545816 B2 JP5545816 B2 JP 5545816B2
Authority
JP
Japan
Prior art keywords
grain
drying
air
predicted
moisture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010017301A
Other languages
Japanese (ja)
Other versions
JP2011153808A (en
Inventor
浩次 奥村
克司 杉本
智裕 升尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Satake Corp
Yamamoto Manufacturing Co Ltd
Original Assignee
Satake Corp
Yamamoto Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Satake Corp, Yamamoto Manufacturing Co Ltd filed Critical Satake Corp
Priority to JP2010017301A priority Critical patent/JP5545816B2/en
Publication of JP2011153808A publication Critical patent/JP2011153808A/en
Application granted granted Critical
Publication of JP5545816B2 publication Critical patent/JP5545816B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drying Of Solid Materials (AREA)

Description

本発明は、籾(もみ)や麦などの穀物を乾燥する循環式穀物乾燥機に係り、特に、乾燥運転の際の低燃費化、省エネ化に関するものである。 The present invention relates to a circulation type grain dryer that dries grains such as rice cakes and wheat, and particularly relates to reduction in fuel consumption and energy saving during drying operation.

従来、循環式穀物乾燥機において、穀物を乾燥する際に、熱風を生成するバーナーの灯油燃料の消費量を低減することを目的としたものが知られている(特許文献1)。この特許文献1に記載のものは、乾燥運転の途中前記バーナー等を全停止する休止運転(調質運転)を任意時間行い、この休止運転の間に燃焼しない分だけの灯油量を低減するものであった。 2. Description of the Related Art Conventionally, a circulation type grain dryer has been known that aims to reduce the consumption of kerosene fuel of a burner that generates hot air when grains are dried (Patent Document 1). The one described in Patent Document 1 performs a pause operation (tempering operation) in which the burner and the like are completely stopped during the drying operation for an arbitrary time, and reduces the amount of kerosene that does not burn during the pause operation. It was a thing.

特開平11−132657号公報Japanese Patent Laid-Open No. 11-132657

上記特許文献1に記載のものは、前記休止運転する間にバーナー等を停止して燃料消費量を低減する効果はある。しかし、休止運転する条件としては、乾燥開始後、穀物水分値が20%以下まで低下し、かつ、外気温度が一番低い深夜から朝方の時間帯に限って行なうものであり、穀物水分値が20%まで乾燥されるまでの時間及び前記外気温度の低い時間帯以外のときには、何ら燃料消費量を低減する手段が講じられていないものであった
そこで、本願発明は上記問題点にかんがみ、灯油燃料の消費量をより低減して省エネルギー化を図った循環式穀物乾燥機を提供することを技術的課題とするものである。
The thing of the said patent document 1 has the effect of stopping a burner etc. during the said pause operation, and reducing fuel consumption . However, as the condition for deactivating operation, after the start of drying, grain moisture value is reduced to 20% or less, and is intended to perform only a low outside air temperature is most midnight morning time zone, grain moisture value At times other than the time until drying to 20% and the time zone when the outside air temperature is low, no means for reducing the fuel consumption was taken .
In view of the above problems, the present invention has as a technical problem to provide a circulation type grain dryer that further reduces energy consumption by reducing the consumption of kerosene fuel.

本発明の循環式穀物乾燥機は上記課題を解決するため、
穀物の貯留タンク部と、
該貯留タンク部から流下した穀物を熱風通風して乾燥する乾燥部と、
該乾燥部における穀物を排出する排出部と、
該排出部から排出された穀物を降機及び前記貯留タンク部の上部の上部横搬送手段を介して貯留タンク部に還流する還流部と、
穀物水分を測定する穀物水分測定部と、
該穀物水分測定部で測定された穀物水分値が設定水分値になるまで乾燥運転等を制御するとともに、熱風乾燥運転、送風運転及び調質運転等の運転切換を制御する運転制御部と、
を備えた循環式穀物乾燥機において、
前記運転制御部は、現在の外気条件で送風運転したときの予測乾減率dVを常に演算し、該予測乾減率dVが所定値以上の場合に前記穀物の乾燥が進行すると判断して送風運転への運転切換えを行う、という技術的手段を講じた。
In order to solve the above problems, the circulation type grain dryer of the present invention,
A grain storage tank,
A drying section for drying the grain flowing down from the storage tank section by blowing hot air;
A discharge section for discharging grain in the drying section;
A recirculation section for returning to the reservoir tank grain discharged from the outlet portion via the upper transverse conveying means of the upper temperature disembarkation and the reservoir tank,
A grain moisture measuring unit for measuring grain moisture;
An operation control unit that controls drying operation and the like until the grain moisture value measured by the grain moisture measurement unit reaches a set moisture value, and controls operation switching such as hot air drying operation, air blowing operation, and tempering operation;
In the circulating grain dryer with
The operation control unit always calculates a predicted drying rate dV when the blowing operation is performed under the current outside air condition, and determines that drying of the grain proceeds when the predicted drying rate dV is equal to or greater than a predetermined value. Technical measures were taken to switch operation to operation.

また、前記運転制御部は、前記予測乾減率dVが所定値未満の場合、穀物水分値が所定値より大きいか否かを判定し、前記穀物水分値が所定値より大きいときには乾減率を小さくした熱風乾燥運転に切換え、前記穀物水分値が所定値より小さいときには調質運転(休止運転)に切換えるとよい。これにより、休止運転(全停止)によって、排風機の駆動停止による電力使用量の低減の省エネ効果も得られる。 The operation control unit determines whether the grain moisture value is larger than a predetermined value when the predicted drying rate dV is less than a predetermined value, and determines the drying rate when the grain moisture value is larger than a predetermined value. It is preferable to switch to a reduced hot air drying operation and to a tempering operation (pause operation) when the grain moisture value is smaller than a predetermined value. Thereby, the energy-saving effect of the reduction of the electric power consumption by the drive stop of an exhaust fan is also acquired by rest driving | operation (all stop).

本発明の循環式穀物乾燥機は、乾燥運転開始後に、現在の外気条件(温度、湿度等)で送風運転したときの予測乾減率dVを常に演算し、該予測乾減率dVが所定値以上の場合に穀物の乾燥が進行すると判断してバーナー燃焼を行わない外気による送風運転に切換えるようにした。これにより、外気温度や外気湿度の外気条件が変化した場合においても、常に、乾燥が進行するような外気条件であるか否かを監視しながら送風運転への切換えを行うので、送風運転の選択・切換えが的確であり、灯油燃料の消費量を低減して省エネルギー化を図ることができ、また、穀物乾燥の進行が確保されて高水分等の穀物においてカビ等を生じさせることがなく品質的にも安全な乾燥が行える。そして本発明の循環式穀物乾燥機は、従来の穀物乾燥機のような運転切換えする際の時間的制限を受けることがないので、灯油燃料の消費量を低減する省エネ効果を更に向上させることができる。 The circulation type grain dryer of the present invention always calculates the predicted drying rate dV when the air blowing operation is performed under the current outside air conditions (temperature, humidity, etc.) after starting the drying operation, and the predicted drying rate dV is a predetermined value. In the above case, it was judged that the drying of the grain proceeded, and the operation was switched to the blowing operation by the outside air not performing the burner combustion. As a result, even if the outside air conditions such as outside temperature and outside humidity change, switching to the blowing operation is always performed while monitoring whether or not the outside air condition is such that drying proceeds, so the selection of the blowing operation・ Switching is accurate, energy consumption can be reduced by reducing the consumption of kerosene fuel , and quality is maintained without causing mold etc. in grains with high moisture content by ensuring the progress of grain drying. Safe drying. And since the circulation type grain dryer of this invention does not receive the time restriction | limiting at the time of operation switching like the conventional grain dryer, it further improves the energy-saving effect which reduces the consumption of kerosene fuel. Can do.

本発明の循環式穀物乾燥機における前方斜視図を示す。The front perspective view in the circulation type grain dryer of the present invention is shown. 本発明の循環式穀物乾燥機における後方斜視図を示す。The rear perspective view in the circulation type grain dryer of the present invention is shown. 本発明の循環式穀物乾燥機における正面縦断面図を示す。The front longitudinal cross-sectional view in the circulation type grain dryer of this invention is shown. 本発明の運転制御部におけるブロック図を示す。The block diagram in the operation control part of this invention is shown. 本発明における省エネ乾燥運転プログラムのフロー図を示す。The flowchart of the energy saving drying operation program in this invention is shown. 本発明の省エネ乾燥運転プログラムに関係する計算式の一覧表を示す。The list of the calculation formulas related to the energy saving drying operation program of the present invention is shown. 本発明の省エネ乾燥運転プログラムに関係する計算例1を示す。Calculation Example 1 related to the energy-saving drying operation program of the present invention is shown. 本発明の省エネ乾燥運転プログラムに関係する計算例2を示す。Calculation Example 2 related to the energy-saving drying operation program of the present invention is shown. 本発明の省エネ乾燥運転プログラムに関係する予測除水量Wと送風空気吸水可能量Eの関係を表すグラフを示す。The graph showing the relationship between the predicted water removal amount W related to the energy-saving drying operation program of this invention and the blowing air water absorption possible amount E is shown.

図1は、本発明における循環式穀物乾燥機1の前方斜視図であり、図2は同上の後方斜視図であり、図3は同上の正面から見た縦断面図である。循環式穀物乾燥機1は、穀物を貯留する貯留部2、乾燥風を通風して穀物の乾燥を行う乾燥部3及び前記通風を受けた穀物を機外に取出す取出部4を重設して構成し、さらに、前記取出部4には、取出された穀物を前記貯留部2に還流する穀物還流手段5を接続する。該穀物還流手段5とは昇降機5a及び上部搬送部5bのことを指す。前記上部搬送部5bの搬送終端部には、貯留部2内に臨ませた穀物分散装置5cを配設する。前記貯留部2は天井壁や側壁によって囲んで形成する。前記乾燥部3は機体中央に横設した熱風胴6と、該熱風胴6の両側に横設され、有孔壁により形成された乾燥室(穀物流下通路),7と、該乾燥室7の各側方に横設した排風胴8,8とを有する。そして、熱風胴6の一端開口部には熱風を供給するように熱風発生手段(バーナー)9接続される。該熱風発生手段9により生成された熱風は、熱風胴6、乾燥室7,7及び排風胴8,8を通風し、排風胴8,8の排風口に接続される排風機10の吸引作用によって機外に排風されるなお、乾燥部3の機体を形成するには穀物を張り込むための開閉蓋3aが備えてある。 Figure 1 is a front perspective view of a circulating type grain dryer 1 of the present invention, FIG. 2 is a rear perspective view of the upper same, FIG. 3 is a longitudinal sectional view seen from the front side of the upper same . Circulating type grain dryer 1, reservoir 2 for storing grain, the take-out portion 4 and eject the by ventilating dry air undergoing drying section 3 and the air to dry the cereal grains to the outside of the apparatus a heavy set to configure, further, the the take-out portion 4 connects grain recirculation means 5 for recirculating Installing issued cereal in the reservoir 2. The grain recirculation means 5 refers to the elevator 5a and the upper transport unit 5b. A grain dispersal device 5c facing the storage unit 2 is disposed at the conveyance end of the upper conveyance unit 5b. The storage part 2 is formed by being surrounded by a ceiling wall or a side wall. The drying unit 3 includes a hot wind tunnel 6 installed in the center of the machine body , drying chambers (grain flow passages) 7 , 7 that are horizontally installed on both sides of the hot wind drum 6 and are formed with perforated walls , and the drying chamber 7. The exhaust wind tunnels 8 and 8 are installed horizontally on the sides. A hot air generating means (burner) 9 is connected to one end opening of the hot air drum 6 so as to supply hot air. Hot air generated by the heat air generating means 9, Neppudo 6, a drying chamber 7, 7 and Haifudo 8, 8 and ventilation, suction exhaust fan 10 connected to the air discharge port of Haifudo 8, 8 The air is exhausted by the action . Incidentally, the side walls forming the body of the drying unit 3 are equipped with lid 3a for you include your grain.

前記取出部4は、前記左右の乾燥室,7の下端が交わる中央位置に横設されたロータリーバルブ11と、該ロータリーバルブ11の下方位置して穀物を集穀する漏斗状の集穀板(ダッシュボード)13,13と、該集穀板13,13の下部の下部搬送部12とから構成される。そして、前記ロータリーバルブ11から繰出された穀物前記下部搬送部12に集穀されて機外に搬出されるようになっている。なお、前記下部搬送部12の搬送終端側は前記昇降機5aの搬送始端側と接続し、搬出された穀物が前記昇降機5aに搬送されるようになっている。また、前記昇降機5aの側部には公知の穀物水分計15が配設されている符号14は、循環式穀物乾燥機の運転を制御する運転制御部である。 The take-out unit 4 includes a rotary valve 11 horizontally installed at a central position where the lower ends of the left and right drying chambers 7 , 7 intersect, and a funnel-shaped collection of grains that is positioned below the rotary valve 11 and collects grains. It consists of boards (dashboards) 13 and 13 and a lower transport section 12 below the grain collection boards 13 and 13 . Then, the fed out from the rotary valve 11 grain is adapted to be transported out of the apparatus being AtsumariKoku to the lower transport section 12. In addition, the conveyance termination | terminus side of the said lower conveyance part 12 is connected with the conveyance start end side of the said elevator 5a, and the conveyed grain is conveyed by the said elevator 5a. A known grain moisture meter 15 is disposed on the side of the elevator 5a. Reference numeral 14 denotes an operation control unit that controls the operation of the circulation type grain dryer.

次に、前運転制御部14の構成について詳細に説明する。図4は運転制御部14の一例を示すブロック図である転制御部14は、中央演算部(以下「CPU」という)19を構成するとともに、該CPU19とそれぞれ電気的に接続した入出力回路(以下「I/O」という)20、書き込み専用の記憶部21(以下「ROM」という)及び書き込み・読み込み兼用記憶部22(以下「RAM」という)とから構成される記I/O20に乾燥運転ボタンや張込運転ボタン、張込量設定ダイヤル及び仕上げ水分値設定ダイヤル等からなる各種運転操作ボタン23が電気的に接続されている。この運転操作ボタン23には、通常の乾燥運転ボタンや送風運転ボタンのほか、本発明に関する省エネ乾燥運転モードボタンを備えている。このほか前記I/O20は、前記穀物水分計15や熱風発生手段9、前記昇降機5aやロータリーバルブ11などの各モータ(図示せず)を駆動させる動力系駆動回路24、乾燥運転条件等を入力設定するための入力設定部18のほか、後述する外気温度センサー16及び外気湿度センサー17電気的に接続してある。また、運転制御部14には時計機能も備えてある。 Next, a detailed description of the construction of the prior SL operation control unit 14. Figure 4 is a block diagram showing an example of the operation control unit 14. OPERATION control unit 14, together constitute a central unit (hereinafter referred to as "the CPU") 19, the CPU19 and input-output circuit (hereinafter referred to as "I / O") electrically connected respectively 20, write-only memory part 21 is constructed from (hereinafter "ROM" hereinafter) and a write-read combined storage section 22 (hereinafter referred to as "RAM") and. Before SL I / O20 drying operation buttons and Chokomi operation button, various operating operation buttons 23 consisting Chokomi amount setting dial and finishing moisture value setting dial and the like are electrically connected. This is driving operation button 23, conventional drying operation buttons or other blowing operation buttons, Ru Tei with an energy-saving drying operation mode button with the present invention. The addition the I / O20, the grain moisture meter 15 and the hot air generator 9, the elevators 5a and a rotary valve 11 the motors (not shown) power system driving circuit for driving the like 24, a drying operation conditions In addition to the input setting unit 18 for input setting, an outside air temperature sensor 16 and an outside air humidity sensor 17 described later are electrically connected. The operation control unit 14 also has a clock function.

また、前記運転制御部14には、該運転制御部14の近傍などの任意の箇所に、外気温度センサー16及び外気湿度センサー17が配設してあり、これら外気温度センサー16及び外気湿度センサー17は前述のように運転制御部14に検出信号を送るようにしてある。 The operation control unit 14 is provided with an outside air temperature sensor 16 and an outside air humidity sensor 17 at arbitrary locations such as in the vicinity of the operation control unit 14 , and these outside air temperature sensor 16 and outside air humidity sensor 17. As described above, a detection signal is sent to the operation control unit 14.

前記運転制御部14のROM21には、本発明の特徴構成である、いわゆる省エネ乾燥運転プログラムの一例が記憶してある(図5のフロー図参照) The ROM 21 of the operation control unit 14 stores an example of a so-called energy-saving drying operation program that is a characteristic configuration of the present invention (see the flowchart of FIG. 5) .

作用:
次に、上記構成の循環式穀物乾燥機1の作用を説明する。循環式穀物乾燥機1は、本発明の省エネ乾燥運転を開始する前に、前記入力設定部18から乾燥仕上水分値や穀物の張込量等を入力設定するとともに、この外の設定条件を入力設定する。そして、この後、前記運転操作ボタン23の省エネ乾燥運転モードボタンを押すことによって、前記運転制御部14による前記省エネ乾燥運転プログラムの実行が開始される。なお穀物はあらかじめ張り込み済みとする。
Action:
Next, the operation of the circulation type grain dryer 1 having the above configuration will be described. Before starting the energy saving drying operation of the present invention, the circulation type grain dryer 1 inputs and sets a dry finish moisture value, a grain tension amount, and the like from the input setting unit 18 and inputs other setting conditions. Set. Thereafter, when the energy saving drying operation mode button of the operation operation button 23 is pressed, execution of the energy saving drying operation program by the operation control unit 14 is started. In addition , cereal is already pasted.

ステップ1、2:
前記省エネ乾燥運転モードボタン(運転操作ボタン23)を押して前記省エネ乾燥運転プログラムを実行開始する。該省エネ乾燥運転プログラムを実行開始すると、まず、循環式穀物乾燥機1の循環系である前記穀物還流手段5やロータリーバルブ11、下部搬送部12等が駆動し運転が開始される。
Step 1, 2:
The energy saving drying operation mode button (driving operation button 23) is pressed to start execution of the energy saving drying operation program. When the execution of the energy saving drying operation program is started, first, the grain recirculation means 5, the rotary valve 11, the lower conveyance unit 12, etc., which are the circulation system of the circulation type grain dryer 1, are driven to start the operation.

ステップ3:
前記外気温度センサー16及び外気湿度センサー17により外気温度及び外気湿度を測定して各値を読み込む。
Step 3:
Wherein the outside air temperature sensor 16 and the outdoor air humidity sensor 17 measures the outside air temperature and outdoor humidity read values.

ステップ4:
次に、前記外気温度値と外気湿度値を基にして外気飽和水蒸気圧及び外気水蒸気圧を例えば、図6(a)に示した計算式によって求め、次いで、該外気飽和水蒸気圧と外気水蒸気圧を基にして外気絶対湿度C及び外気飽和絶対湿度Dも求める。そして該外気絶対湿度Cと外気飽和絶対湿度D差を演算し、そのときの外気条件において送風乾燥(送風運転)した場合に1kgの外気が今後吸水可能な吸水量である送風空気吸水可能量Eを求める。これらの演算についても、図6(a)に示した計算式によって求めることができる。
Step 4:
Then, the outside air saturated water vapor pressure and the ambient air water vapor pressure based on the outdoor air temperature value and the outdoor air humidity value, for example, determined by calculation expression shown in FIG. 6 (a), then the external air saturated water vapor pressure and the ambient water the vapor pressure based on outside air absolute humidity C and the outdoor air saturated absolute humidity D is also determined. Then, it calculates a difference of the outer air absolute humidity C and the ambient air saturated absolute humidity D, and when blown dry (blast operation) in ambient conditions at that time, air blown water outside air 1kg is water available water absorption future The possible amount E is obtained. These calculations can also be obtained by the calculation formula shown in FIG.

ステップ5:
次に、現在、調質運転中であるか否かを判定する。前記省エネ乾燥運転プログラム開始直後の当該ステップ6の判断においては、調質運転(休止運転)のほか、熱風乾燥運転(バーナー燃焼と送風)及び外気による送風運転(送風乾燥:送風のみ)はまだ実行されていないので、次のステップ6に進む。一方、調質運転中であるときにはステップ9に進む。
Step 5:
Next, it is determined whether the tempering operation is currently in progress. In the judgment of Step 6 immediately after the start of the energy-saving drying operation program , in addition to the tempering operation (pause operation), the hot air drying operation (burner combustion and blowing) and the blowing operation by the outside air (fan drying: only blowing) are still executed. Since it is not done, the process proceeds to the next step 6. On the other hand, when the tempering operation is in progress, the routine proceeds to step 9.

ステップ6:
前記穀物水分計15で穀物水分を測定して値を読み込む。
Step 6:
The grain moisture meter 15 measures grain moisture and reads the value.

ステップ7、8:
前記測定水分値が、前記乾燥仕上水分値となっているか否かを判断し、前記乾燥仕上水分値となっていれば乾燥終了し、一方、前記乾燥仕上水分値に未到達であれば、次のステップ9に進む。
Steps 7 and 8:
It is determined whether or not the measured moisture value is the dry finish moisture value.If the measured moisture value is the dry finish moisture value, the drying is terminated, while if the dry finish moisture value is not reached, Proceed to the next step 9.

ステップ9:
このステップでは、送風乾燥(送風運転)時における予測除水量Wと予測乾減率dVを求める。前記予測除水量Wは、そのときの外気条件において送風乾燥(送風運転)した場合の1時間当たりに除水される水分量の予測値である。前記予測除水量Wは、図7に示したように、現在の外気条件に基づいて求めた前記送風空気吸水可能量E(ステップ4で算出済み)との関係において比例の相関がある。このため、前記予測除水量Wは、前記送風空気吸水可能量Eとの関係において実験的に図6(a)に示した関係式(計算式)を適宜作成し、これにより求めるようにするとよい。このとき図6(a)において、予測除水量Wの計算式における係数は単なる一例である。また、前記送風空気吸水可能量Eについては、図7に示したように、穀物水分値(籾水分)の高・低において変化し、また、穀物の張込量等に応じて適宜決定する送風量Qによっても変化するので、これらの項目も考慮に入れて前記予測除水量Wは求める必要がある。
Step 9:
In this step, the predicted water removal amount W and the predicted dryness reduction rate dV at the time of air drying (air blowing operation) are obtained. The predicted water removal amount W is a predicted value of the amount of water to be removed per hour when air blowing and drying (air blowing operation) is performed under the outdoor air conditions at that time. As shown in FIG. 7, the predicted water removal amount W has a proportional correlation with the blast air water absorption amount E (calculated in step 4) obtained based on the current outside air condition. For this reason, the predicted water removal amount W may be appropriately determined by experimentally creating the relational expression (calculation formula) shown in FIG. 6A in relation to the blast air water absorption possible amount E. . At this time, in FIG. 6A, the coefficient in the calculation formula of the predicted water removal amount W is merely an example. Further, as shown in FIG. 7, the blowable air water absorption amount E varies depending on the grain moisture value (powder moisture) high and low, and is appropriately determined according to the amount of cereal filling. Since it also changes depending on the air volume Q, it is necessary to obtain the predicted water removal amount W taking these items into consideration.

一方、前記予測乾減率dVは、現在の外気条件において送風乾燥(送風運転)した場合の1時間当たりに乾燥される乾減率の予測値である。前記予測乾減率dVの計算は、例えば、図6(b)の計算例1に示したように、まず、現在の外気条件に基づいて求めた上記予測除水量Wを考慮に入れ1時間後の推定籾水分(推定穀物水分)Y23.7%を求め、次いで、測定水分値24%から23.7%を引き算することにより、計算例1の場合、予測乾減率dVは0.3%/hとして求めることができる。また、図6(c)の計算例2についても同様に予測乾減率dVを求めることができる。 On the other hand, the predicted drying rate dV is a predicted value of the drying rate that is dried per hour when blown and dried (fan operation) under the current outside air conditions. For example, as shown in Calculation Example 1 in FIG. 6B, the predicted dryness reduction rate dV is calculated by taking into consideration the predicted water removal amount W obtained based on the current outside air condition , for one hour. Subsequent estimated drought moisture (estimated grain moisture ) Y = 23.7% is obtained, and then by subtracting 23.7% from the measured moisture value of 24%, in the case of calculation example 1, the predicted drying rate dV is 0. .3% / h. In addition, the predicted dryness reduction rate dV can be similarly obtained for calculation example 2 in FIG.

ステップ10:
このステップは、ステップ9で求めた前記予測乾減率dVが所定の乾減率以上か否かを判定して、現在の外気条件において送風乾燥(送風運転)した場合の乾燥作用の進行程度を予測し、送風乾燥するか否かについて判断する。前記予測乾減率dVが例えば0.2%/h以上である場合には、送風運転しても現在の外気条件において乾燥作用の進行が確保されることが予測されるため、ステップ11に進んで送風乾燥(送風運転)を開始する。一方、前記予測乾減率dVが0.2%/h未満の場合には、ステップ12に進む。
Step 10:
In this step, it is determined whether or not the predicted dryness rate dV obtained in step 9 is equal to or higher than a predetermined dryness rate, and the degree of progress of the drying action in the case of air drying (air blowing operation) under the current outside air condition is determined. Predict and judge whether to blow and dry. When the predicted drying rate dV is, for example, 0.2% / h or more, it is predicted that the progress of the drying action is ensured under the current outside air condition even if the air blowing operation is performed, and thus the process proceeds to Step 11. To start air drying (air blowing operation). On the other hand, if the predicted drying rate dV is less than 0.2% / h, the process proceeds to step 12.

ステップ11:
このステップでは、送風乾燥(送風運転)の実行が開始される。該送風運転は、前記バーナー9を燃焼することなく、前記排風機10の作用によって循環式穀物乾燥機1の正面側から外気を吸引して前記乾燥室7を流下する穀物に通風させる運転である。このため、当該送風運転を行っている間は、前記バーナー9を駆動しないので灯油燃料が消費されず、省エネルギーな乾燥が進行なされる。また、このとき、送風運転を行っても前記予測乾減率dVが0.2%/h以上であるので、穀物が高水分であっても穀物にカビ等を生じさせることなく乾燥させることができ、穀物品質にも安全な乾燥を進行することができる。
Step 11:
In this step, execution of blow drying (blow operation) is started. The air blowing operation is an operation of sucking outside air from the front side of the circulation type grain dryer 1 by the action of the exhaust fan 10 and causing the grain to flow through the drying chamber 7 without burning the burner 9. . For this reason, since the burner 9 is not driven during the air blowing operation, the kerosene fuel is not consumed, and energy-saving drying proceeds. At this time, since the predicted drying rate dV is 0.2% / h or more even if the air blowing operation is performed, the grain can be dried without causing mold or the like even if the grain has high moisture. It is possible to proceed with drying that is safe for grain quality.

ステップ12:
このステップでは、前記ステップ6で測定した穀物水分値が18%未満か否かを判断すし、穀物水分値が18%よりも低い場合はステップ13に進んで調質運転(停止運転)を行なう一方、穀物水分値が18%よりも高い場合はステップ14に進んで熱風乾燥運転を行なう。
Step 12:
In this step, it is determined whether or not the grain moisture value measured in step 6 is less than 18%. If the grain moisture value is lower than 18%, the process proceeds to step 13 and the tempering operation (stop operation) is performed. If the grain moisture value is higher than 18%, the routine proceeds to step 14 where hot air drying operation is performed.

ステップ13:
このステップでは調質運転を行なう。該調質運転は、循環式穀物乾燥機1の循環系である前記穀物還流手段5やロータリーバルブ11等の駆動を停止し、また、前記排風機10も駆動停止し、前記貯留部2において穀物が調質(テンパリング)される。当該調質運転により、バーナー9の燃焼及び送風機10の駆動が共に停止するので、灯油消費量の低減及び電力使用量の低減による省エネ効果を奏する。
Step 13:
In this step, tempering operation is performed. The tempering operation stops the driving of the grain recirculation means 5 and the rotary valve 11 which are the circulation system of the circulation type grain dryer 1, and also stops the driving of the exhaust fan 10, and the grain is stored in the storage unit 2. Is tempered. Since both the combustion of the burner 9 and the driving of the blower 10 are stopped by the tempering operation, an energy saving effect is achieved by reducing the amount of kerosene consumed and the amount of power used.

ステップ14:
このステップでは熱風乾燥運転を行なう。該熱風乾燥運転は、前記バーナー9を駆動し、灯油の燃焼量等を抑えながら比較的低温の熱風を生成し、前記乾燥室7を流下する穀物に通風し、低速(乾減率を小さめ)で穀物乾燥を行なう運転である。これにより、高水分の乾燥穀物にカビ等を生じさせることがないように、燃焼量等を抑えた低燃費による熱風生成によって安全な乾燥を進行することができる。
Step 14:
In this step, a hot air drying operation is performed. In the hot air drying operation, the burner 9 is driven to generate hot air having a relatively low temperature while suppressing the amount of burning of kerosene, etc., and is passed through the grains flowing down the drying chamber 7 at a low speed (small drying rate is reduced). The operation is to dry the grain. Thereby, safe drying can be promoted by hot air generation by low fuel consumption with reduced combustion amount and the like so as not to cause mold or the like in dry grains with high moisture content.

以上のステップにより、本発明の省エネ乾燥運転プログラム(図5)は、現在の外気条件を監視しながら、バーナー燃焼をできるだけ行わないで省エネ効果(灯油燃料の消費量を低減)を得る目的で、送風乾燥(ステップ11)、調質運転(全停止運転、ステップ13)及び熱風乾燥(低速・ゆっくり、前記ステップ14)のいずれかの運転に切換える。そして、この後、前記ステップ3に戻って、上記と同様の判断・処理が、穀物水分値が乾燥仕上水分値になるまで繰り返し行なわれる。これにより、外気温度や外気湿度の外気条件が変化した場合においても、随時、前記送風乾燥した場合の前記予測乾減率dVを求め、送風乾燥するか又はその他の運転をするかを的確に判断して運転が行われる。このため、常に、乾燥が進行するような外気条件であるか否かを監視しながら送風運転への切換えを的確に行い、灯油燃料の消費量を削減して省エネルギー運転を図り、乾燥穀物の品質を低下しない安全な乾燥が可能になる。   With the above steps, the energy-saving drying operation program of the present invention (FIG. 5) is for the purpose of obtaining energy-saving effect (reducing consumption of kerosene fuel) without performing burner combustion as much as possible while monitoring the current outside air conditions. The operation is switched to one of blow drying (step 11), tempering operation (all stop operation, step 13) and hot air drying (low speed / slow, step 14). Thereafter, returning to Step 3, the same determination and processing as described above are repeated until the grain moisture value becomes the dry finish moisture value. Thereby, even when the outside air temperature and the outside air conditions change, the predicted drying rate dV in the case of the air drying is obtained at any time, and whether to perform the air drying or other operation is accurately determined. Then driving is performed. For this reason, while always monitoring whether or not the outside air conditions are such that the drying proceeds, the switching to the blowing operation is performed accurately, the consumption of kerosene fuel is reduced, energy saving operation is performed, and the quality of the dried grain Safe drying without lowering is possible.

本発明によれば、本発明の循環式穀物乾燥機により、現在の外気条件に基づいて送風乾燥した場合に乾燥作用が進行するか否かを常に判断しながら送風運転への切換えを行うようにしたので、高水分の穀物においても品質に悪影響を及ぼすことなく安全な乾燥が行なえ、また、灯油燃料の消費量を低減した省エネルギーな乾燥が行えるようになる。   According to the present invention, the circulation grain dryer according to the present invention switches to the air blowing operation while always judging whether or not the drying action proceeds when air drying is performed based on the current outside air condition. As a result, safe drying can be performed without adversely affecting the quality of high moisture grains, and energy-saving drying with reduced consumption of kerosene fuel can be performed.

1 循環式穀物乾燥機
2 貯留部
3 乾燥部
3a 開閉蓋
4 取出部
5 穀物還流手段
5a 昇降機
5b 上部搬送部
5c 穀物分散装置
6 熱風胴
7 乾燥室
8 排風胴
9 熱風発生手段(バーナー)
10 排風機
11 ロータリーバルブ
12 下部搬送部
13 集穀板
14 運転制御部
15 穀物水分計
16 外気温度センサー
17 外気湿度センサー
18 入力設定部
19 中央演算部(CPU)
20 入出力回路(I/O)
21 書き込み専用記憶部(ROM)
22 書き込み・読み込み兼用記憶部(RAM)
23 運転操作ボタン
24 動力系駆動回路
DESCRIPTION OF SYMBOLS 1 Circulating grain dryer 2 Storage part 3 Drying part 3a Opening / closing lid 4 Extraction part 5 Grain recirculation means 5a Elevator 5b Upper conveyance part 5c Grain disperser 6 Hot air drum 7 Drying chamber 8 Exhaust air drum 9 Hot air generating means (burner)
DESCRIPTION OF SYMBOLS 10 Air exhaust machine 11 Rotary valve 12 Lower conveyance part 13 Grain collection board 14 Operation control part 15 Grain moisture meter 16 Outside temperature sensor 17 Outside air humidity sensor 18 Input setting part 19 Central processing part (CPU)
20 I / O circuit (I / O)
21 Write-only memory (ROM)
22 Write / read memory unit (RAM)
23 Operation button 24 Power system drive circuit

Claims (2)

穀物の貯留タンク部と、
該貯留タンク部から流下した穀物を熱風通風して乾燥する乾燥部と、
該乾燥部における穀物を排出する排出部と、
該排出部から排出された穀物を降機及び前記貯留タンク部の上部の上部横搬送手段を介して貯留タンク部に還流する還流部と、
穀物水分を測定する穀物水分測定部と、
該穀物水分測定部で測定された穀物水分値が設定水分値になるまで乾燥運転等を制御するとともに、熱風乾燥運転、送風運転及び調質運転の運転切換を制御する運転制御部と、
を備えた循環式穀物乾燥機において、
前記運転制御部は、現在の外気条件で送風運転したときの予測乾減率dVを常に演算し、該予測乾減率dVが所定値以上の場合に前記穀物の乾燥が進行すると判断して送風運転への運転切換えを行うことを特徴とする循環式穀物乾燥機。
A grain storage tank,
A drying section for drying the grain flowing down from the storage tank section by blowing hot air;
A discharge section for discharging grain in the drying section;
A recirculation section for returning to the reservoir tank grain discharged from the outlet portion via the upper transverse conveying means of the upper temperature disembarkation and the reservoir tank,
A grain moisture measuring unit for measuring grain moisture;
An operation control unit that controls the drying operation and the like until the grain moisture value measured by the grain moisture measurement unit reaches a set moisture value, and that controls operation switching between hot air drying operation, air blowing operation, and tempering operation,
In the circulating grain dryer with
The operation control unit always calculates a predicted drying rate dV when the blowing operation is performed under the current outside air condition, and determines that drying of the grain proceeds when the predicted drying rate dV is equal to or greater than a predetermined value. Circulation type grain dryer characterized by switching operation to operation.
前記運転制御部は、前記予測乾減率dVが所定値未満の場合、穀物水分値が所定値より大きいか否かを判定し、前記穀物水分値が所定値より大きいときには乾減率を小さくした熱風乾燥運転に切換え、前記穀物水分値が所定値より小さいときには調質運転に切換える請求項に記載の循環式穀物乾燥機。

The operation control unit determines whether or not the grain moisture value is larger than a predetermined value when the predicted drying rate dV is less than a predetermined value, and decreases the drying rate when the grain moisture value is larger than a predetermined value. The circulating grain dryer according to claim 1 , wherein the circulation grain dryer is switched to a hot air drying operation and switched to a tempering operation when the grain moisture value is smaller than a predetermined value.

JP2010017301A 2010-01-28 2010-01-28 Circulating grain dryer Active JP5545816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010017301A JP5545816B2 (en) 2010-01-28 2010-01-28 Circulating grain dryer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010017301A JP5545816B2 (en) 2010-01-28 2010-01-28 Circulating grain dryer

Publications (2)

Publication Number Publication Date
JP2011153808A JP2011153808A (en) 2011-08-11
JP5545816B2 true JP5545816B2 (en) 2014-07-09

Family

ID=44539909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010017301A Active JP5545816B2 (en) 2010-01-28 2010-01-28 Circulating grain dryer

Country Status (1)

Country Link
JP (1) JP5545816B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108559566A (en) * 2018-01-09 2018-09-21 合肥工业大学 A kind of biomass granulation machine and application method of quick adjustment biomass moulding condition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0464885A (en) * 1990-07-04 1992-02-28 Yamamoto Mfg Co Ltd Grain drying method
JP5258377B2 (en) * 2008-05-14 2013-08-07 株式会社山本製作所 Grain drying equipment

Also Published As

Publication number Publication date
JP2011153808A (en) 2011-08-11

Similar Documents

Publication Publication Date Title
CN105671916A (en) Controlling method for air discharging type clothes drier
JP4379388B2 (en) Grain dryer
JP2018040527A (en) Grain dryer and method of using the grain dryer
US8302326B2 (en) Steam dryer control method
KR101094582B1 (en) A dryer and method of controlling the same
JP5545816B2 (en) Circulating grain dryer
JP5545820B2 (en) Circulating grain dryer
KR20040046221A (en) Control Method of Drying Time for Dryer
JP5545815B2 (en) Circulating grain dryer
JP6429487B2 (en) Drying apparatus, drying apparatus control method, and control apparatus therefor
KR101337662B1 (en) Method for controlling dryness of dryer
JPH0464885A (en) Grain drying method
JP2599270B2 (en) Grain drying method
JP5152283B2 (en) Grain dryer
JP2011120778A (en) Drying machine
JP7403114B2 (en) gas dryer
JPS5853271B2 (en) Dryer
JP6450713B2 (en) Control method of nori production system
JP4433257B2 (en) Circulating grain dryer
JPH0560983B2 (en)
JP2001286772A (en) Gain drying method by gain drying and storage apparatus
JPH0439595B2 (en)
JPS6380187A (en) Cereal grain drying control system of cereal grain drier
JPS62276390A (en) Drying controller for cereal grain drier
JPH03271690A (en) Control system for drying in grain drier

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110401

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131125

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20131126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140509

R150 Certificate of patent or registration of utility model

Ref document number: 5545816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250