JP5544678B2 - Processing system and processing method of object to be processed - Google Patents

Processing system and processing method of object to be processed Download PDF

Info

Publication number
JP5544678B2
JP5544678B2 JP2007115882A JP2007115882A JP5544678B2 JP 5544678 B2 JP5544678 B2 JP 5544678B2 JP 2007115882 A JP2007115882 A JP 2007115882A JP 2007115882 A JP2007115882 A JP 2007115882A JP 5544678 B2 JP5544678 B2 JP 5544678B2
Authority
JP
Japan
Prior art keywords
gas
moisture
extremely low
ppb
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007115882A
Other languages
Japanese (ja)
Other versions
JP2008272609A (en
Inventor
和彦 遠藤
哲也 三野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007115882A priority Critical patent/JP5544678B2/en
Priority to PCT/JP2008/054778 priority patent/WO2008114740A1/en
Priority to TW097109115A priority patent/TWI388371B/en
Priority to US12/531,260 priority patent/US8597732B2/en
Publication of JP2008272609A publication Critical patent/JP2008272609A/en
Application granted granted Critical
Publication of JP5544678B2 publication Critical patent/JP5544678B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02E60/366

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)
  • Drying Of Gases (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Description

本発明は、薄膜表面からの水分を極限までに低減させるための極低水分ガスを利用した処理システム、及び、極低水分ガスを用いた被処理物体の処理方法に関する。   The present invention relates to a processing system using an extremely low moisture gas for reducing moisture from the surface of a thin film to the limit, and a method for processing an object to be processed using the extremely low moisture gas.

近年、金属・絶縁体・半導体等の固体表面、もしくは固体内部から水を脱水除去する技術開発が進行している。特に半導体や電気・電子部品等の製造においては、製造装置の装置壁面金属からの脱水はもちろん、堆積した薄膜、特に金属や絶縁体・半導体薄膜の表面、あるいは有機EL層や液晶等に付着した水分を脱水除去するのが必須となっている。これは、残留水分が薄膜の信頼性、ひいては半導体や電気・電子部品装置の信頼性に大きく影響を及ぼすためであり、そのため半導体や電気・電子部品の製造時には十分に水分量を低下させる必要があるためである。   In recent years, development of technology for dehydrating and removing water from a solid surface of a metal, an insulator, a semiconductor, or the like, or from the inside of the solid has progressed. Especially in the manufacture of semiconductors, electrical / electronic components, etc., not only dehydration from the equipment wall surface metal of the manufacturing equipment, but also adhered to the deposited thin film, especially the surface of the metal, insulator / semiconductor thin film, organic EL layer, liquid crystal, etc. It is essential to dehydrate and remove moisture. This is because residual moisture greatly affects the reliability of thin films, and hence the reliability of semiconductors and electrical / electronic component devices. Therefore, it is necessary to sufficiently reduce the amount of moisture when manufacturing semiconductors and electrical / electronic components. Because there is.

そこで、製造環境における脱水処理が必須となっているが、通常の室温の空気中では、表面からの脱水乾燥には長時間を要するため、大気圧よりも減圧した真空下での脱水処理乾燥が広く行われている。これは、通常よりも減圧下とすることで、水蒸気の分圧を低下させ、蒸発を促進させる効果に基づく。さらには、上記真空下で部材や膜を100-200℃程度に加熱し、水の蒸発をより活発に促し、より短時間での脱水処理が行われている。   Therefore, dehydration in the production environment is essential, but in normal air at room temperature, dehydration drying from the surface takes a long time, so dehydration drying under a vacuum reduced from atmospheric pressure is required. Widely done. This is based on the effect of lowering the partial pressure of water vapor and promoting evaporation by setting the pressure lower than usual. Furthermore, the member and the film are heated to about 100-200 ° C. under the above-mentioned vacuum to promote the evaporation of water more actively, and the dehydration process is performed in a shorter time.

たとえば、半導体や電気・電子部品製造装置においては、装置を大気圧から真空排気して、水のない良質な真空を実現するには、真空下で装置を100℃―200℃に加熱し、ステンレスもしくはアルミニウム等で構成される装置内壁部に付着した水分を加熱除去し、到達する真空度を向上させる手法が用いられる。また、半導体や電気・電子部品装置の製造においても、十分に到達真空度を向上させた装置内にて、薄膜堆積、熱処理、エッチング処理を行うことにより、半導体薄膜中に含まれる残留水分を極力低減させ、水分による膜の変質、酸化や信頼性の低下を防止している。また、薄膜堆積後に、当該薄膜から水分を加熱除去することなども通常行なわれている。さらには、半導体や電気・電子部品製造装置を構成する各種部品も、あらかじめ真空槽内にて加熱脱水処理を行うことにより、十分に脱水処理を施した後に装置に組み入れられる。   For example, in semiconductor and electrical / electronic component manufacturing equipment, to evacuate the equipment from atmospheric pressure and achieve a high-quality vacuum without water, the equipment is heated to 100 ° C-200 ° C under vacuum, and stainless steel is used. Alternatively, a technique is used in which moisture adhering to the inner wall portion of the apparatus made of aluminum or the like is removed by heating, and the degree of vacuum reached is improved. Also, in the manufacture of semiconductors and electrical / electronic component devices, residual moisture contained in semiconductor thin films is reduced as much as possible by performing thin film deposition, heat treatment, and etching processes in devices that have sufficiently improved ultimate vacuum. This reduces the deterioration of the film due to moisture, oxidation, and deterioration of reliability. In addition, after the thin film is deposited, water is usually removed from the thin film. Furthermore, various components constituting the semiconductor and electrical / electronic component manufacturing apparatus are incorporated in the apparatus after sufficient dehydration treatment by performing heat dehydration treatment in a vacuum chamber in advance.

このように、従来は、金属や絶縁体、半導体等の固体表面および固体内部からの水分を脱水除去するためには、通常真空装置内で材料・部材を加熱していた。しかしながら、樹脂部品なども含まれるため真空装置材料固有の耐熱性限界があり、通常は100-200℃の加熱に留まるため、十分な脱水処理が行えないなどの制約がある。また、真空度も通常は最大でも10-5Pa程度の低真空中での加熱が用いられるため、十分に水分圧が低い状態での脱水ではないため、残留水分の影響を受けてしまうという制約があった。特に従来技術では、吸着剤などを用いてガス中の脱水処理を行っても、真空装置や、乾燥ガス中の水分量を1PPB以下に低下させるのは一般に困難であった。そこで、本願発明では、ガス中の水分量を1PPB以下となる極限まで乾燥した雰囲気を、新規の手法を用いて実現させ、当該雰囲気を用いて脱水処理および半導体や電気・電子部品装置の製造を行なう環境を新規に提供することが課題となる。 As described above, conventionally, in order to dehydrate and remove moisture from a solid surface such as a metal, an insulator, or a semiconductor and from the inside of the solid, the material / member is usually heated in a vacuum apparatus. However, since resin parts and the like are included, there is a heat resistance limit inherent to vacuum device materials, and there is a restriction that, for example, sufficient dehydration cannot be performed because heating is normally limited to 100-200 ° C. In addition, since heating in a low vacuum of about 10 -5 Pa is usually used at the maximum, dehydration is not performed under a sufficiently low water pressure, and therefore it is affected by residual moisture. was there. In particular, in the prior art, it has been generally difficult to reduce the amount of water in a vacuum apparatus or a dry gas to 1 PPB or less even when a dehydration treatment in a gas is performed using an adsorbent or the like. Therefore, in the present invention, an atmosphere dried to the limit where the amount of moisture in the gas is 1 PPB or less is realized by using a novel technique, and dehydration treatment and manufacturing of semiconductors and electrical / electronic component devices are performed using the atmosphere. Providing a new environment to perform is an issue.

一方、半導体や電気・電子部品の製造においては、特に薄膜の堆積や原料の導入時に、極限まで水分を除去する必要があるが、これまでは不純物として水分量を1PPB以下にすることが不可能であり、したがって、膜中に残留水分が存在し、装置のメンテナンスサイクルが低下するなどの課題が存在する。そこで本発明では、水分量を1PPB以下に乾燥させた環境を新規に実現させ、半導体や電気・電子部品を製造する環境を実現するのが第2の課題である。   On the other hand, in the manufacture of semiconductors and electrical / electronic components, it is necessary to remove moisture to the limit, particularly when depositing thin films and introducing raw materials, but until now it has been impossible to reduce the amount of moisture as an impurity to 1 PPB or less. Therefore, there is a problem that residual moisture exists in the film and the maintenance cycle of the apparatus is lowered. Therefore, in the present invention, a second problem is to realize an environment in which a moisture content is dried to 1 PPB or less and to realize an environment in which semiconductors and electrical / electronic parts are manufactured.

一般に使用されている不活性ガス、窒素等の産業用途のガスには、微量ではあるが不純物として酸素を含む。このことは、あらゆる分野において酸化を防ぐ目的の工程がある場合に酸素分子が問題となる場合がある。例えば、CVD、スパッタ等による金属薄膜の作成時、金属間化合物の製造時、半導体や電気・電子部品製造工程の配線処理等で問題になることがある。   Generally used gas for industrial use such as inert gas and nitrogen contains oxygen as an impurity although it is a trace amount. This can be a problem for oxygen molecules when there is a process aimed at preventing oxidation in all fields. For example, there may be a problem in the production of a metal thin film by CVD, sputtering, etc., in the production of an intermetallic compound, or in the wiring process of a semiconductor or electrical / electronic component manufacturing process.

(1)本発明の処理システムは、
1対の金属製管体と、
前記各管体にそれぞれ接続され、前記管体からのガスが通過する中空を有するセラミック製固体電解質体と、
該電解質体の内面に設けられた内側電極と外側電極と、
ここで、前記管体は、前記内側電極と共に内側電極を構成し固体電解質体を構成するセラミック材料の熱膨張係数とほぼ同じ金属材料で作られて固体電解質体と密封固着されており、
を備える酸素分子排出装置と、
前記酸素分子排出装置を加熱する加熱装置と、
前記酸素分子排出装置の電極間に電圧を印加する印加手段と、
ここで、前記酸素分子排出時に電圧印加をONにし、前記酸素分子排出装置の電極間に電圧を印加して中空を通過するガス中の酸素分圧を制御する酸素分圧制御装置と、を備える前記ガス中の水分量を1PPB以下に生成する極低水分ガス生成装置と;
前記極低水分ガス生成装置で生成された前記ガス中の水分量が1PPB以下の極低水分ガスが導入され、該装置内部の水分が除去されてなる処理装置と;を備える。
(1) The processing system of the present invention
A pair of metal tubes;
A ceramic solid electrolyte body connected to each of the tubes and having a hollow through which gas from the tubes passes;
An inner electrode and an outer electrode provided on the inner surface of the electrolyte body;
Here, the tube body is made of a metal material that is substantially the same as the thermal expansion coefficient of the ceramic material that constitutes the inner electrode together with the inner electrode, and is hermetically fixed to the solid electrolyte body,
An oxygen molecule discharging apparatus comprising:
A heating device for heating the oxygen molecule discharging device;
Applying means for applying a voltage between the electrodes of the oxygen molecule discharging apparatus;
Here, an oxygen partial pressure control device that controls the partial pressure of oxygen in the gas passing through the hollow by applying voltage between the electrodes of the oxygen molecule discharging device by turning on voltage application during the oxygen molecule discharging is provided. An extremely low moisture gas generating device for generating a moisture content in the gas to 1 PPB or less;
And a processing apparatus in which an extremely low moisture gas having an amount of moisture of 1 PPB or less introduced into the gas generated by the extremely low moisture gas generating apparatus is introduced and the moisture inside the apparatus is removed.

(2)本発明の処理システムは、
1対の金属製管体と;
前記各管体にそれぞれ接続され、前記管体からのガスが通過する中空を有するセラミック製固体電解質体と、
該電解質体の内面に設けられた金又は白金製の内側電極と外側電極と、
前記管体は、ジルコニア製固体電解質体の熱膨張係数とほぼ同じコバール材料で作られて固体電解質体と銀ロウ付けで固着されており、かつ、該管体は、前記白金製内側電極と共に内側電極を構成し、
を備える酸素分子排出装置と;
前記酸素分子排出装置を加熱する加熱装置と;
前記酸素分子排出装置の電極間に電圧を印加する印加手段と、
前記酸素分子の排出時に電圧印加をONにし;
前記酸素分子排出装置の電極間に電圧を印加して中空を通過するガス中の酸素分圧を制御する酸素分圧制御装置と、を備える前記ガス中の水分量を1PPB以下に生成する極低水分ガス生成装置と;
前記極低水分ガス生成装置で生成された前記ガス中の水分量が1PPB以下の極低水分ガスが導入され、該装置内部に設けられた被処理物体から水分が脱水除去されてなる処理装置と;を備える。
(2) The processing system of the present invention
A pair of metal tubes;
A ceramic solid electrolyte body connected to each of the tubes and having a hollow through which gas from the tubes passes;
An inner electrode and an outer electrode made of gold or platinum provided on the inner surface of the electrolyte body;
The tubular body is made of a Kovar material having substantially the same thermal expansion coefficient as that of the solid electrolyte body made of zirconia, and is fixed to the solid electrolyte body by silver brazing, and the tubular body has an inner side together with the platinum inner electrode. Configure the electrodes,
An oxygen molecule discharging device comprising:
A heating device for heating the oxygen molecule discharging device;
Applying means for applying a voltage between the electrodes of the oxygen molecule discharging apparatus;
Turning on the voltage application when the oxygen molecules are discharged;
An oxygen partial pressure control device that controls a partial pressure of oxygen in a gas passing through a hollow by applying a voltage between electrodes of the oxygen molecule discharging device, and generates an extremely low water content in the gas to 1 PPB or less. A moisture gas generator;
A processing apparatus in which an extremely low moisture gas having a moisture content of 1 PPB or less introduced in the gas generated by the extremely low moisture gas generation apparatus is introduced, and moisture is dehydrated and removed from an object to be processed provided in the apparatus; Comprising.

(3)本発明の処理システムは、
1対の金属製管体と;
前記各管体にそれぞれ接続され、前記管体からのガスが通過する中空を有するセラミック製固体電解質体と、
該電解質体の内面に設けられた金又は白金製の内側電極と外側電極と、
前記管体は、ジルコニア製固体電解質体の熱膨張係数とほぼ同じコバール材料で作られて固体電解質体と銀ロウ付けで固着されており、かつ、該銀ロウ付け固着部分と該管体は、金又は白金で電解メッキを施した電解メッキ層と、電解メッキ部分を酸又はアルカリで前処理した後に無電解の金又は白金メッキを施した無電解メッキ層を備え、
を備える酸素分子排出装置と;
前記酸素分子排出装置を加熱する加熱装置と;
前記酸素分子排出装置の電極間に電圧を印加して中空を通過するガス中の酸素分圧を制御する酸素分圧制御装置とを備える前記ガス中の水分量を1PPB以下に生成する極低水分ガス生成装置と;
前記極低水分ガス生成装置で生成された前記ガス中の水分量が1PPB以下の極低水分ガスが導入される処理装置と、ここで前記ガスは、被処理物体のエッチング用ガス、スパッタ用ガス又はキャリアガスのいずれか1である;
を備えることを特徴とする処理システム。
(3) The processing system of the present invention
A pair of metal tubes;
A ceramic solid electrolyte body connected to each of the tubes and having a hollow through which gas from the tubes passes;
An inner electrode and an outer electrode made of gold or platinum provided on the inner surface of the electrolyte body;
The tubular body is made of a Kovar material having substantially the same thermal expansion coefficient as that of the solid electrolyte body made of zirconia, and is secured to the solid electrolyte body by silver brazing, and the silver brazing secured portion and the tubular body are: An electroplating layer electroplated with gold or platinum, and an electroless plating layer electrolessly plated with gold or platinum after pretreatment of the electroplated portion with acid or alkali,
An oxygen molecule discharging device comprising:
A heating device for heating the oxygen molecule discharging device;
And an oxygen partial pressure control device for controlling the oxygen partial pressure in the gas passing through the hollow by applying a voltage between the electrodes of the oxygen molecule discharging device, and generating an extremely low moisture content in the gas of 1 PPB or less. A gas generator;
A processing apparatus into which an extremely low moisture gas having a moisture content of 1 PPB or less generated in the gas generated by the extremely low moisture gas generating apparatus is introduced, and the gas is an etching gas for an object to be processed and a sputtering gas Or any one of the carrier gases;
A processing system comprising:

(4)(2)の処理システムにおいて、
前記被処理物体は、ステンレス板、アルミニウム板、アルミナ板、ガラス板、石英板、シリコンウエハ、絶縁膜、金属膜又は半導体膜の堆積物のいずれか1である。
(4) In the processing system of (2),
The object to be processed is any one of a stainless plate, an aluminum plate, an alumina plate, a glass plate, a quartz plate, a silicon wafer, an insulating film, a metal film, or a semiconductor film deposit.

(5)(1)〜(3)いずれかの処理システムにおいて、
前記ガス中の酸素分圧は、10のマイナス21乗気圧以下、好ましくは10のマイナス29乗気圧以下10のマイナス35乗気圧以上である。
(5) In any of the processing systems (1) to (3),
The oxygen partial pressure in the gas is 10 minus 21 squared or less, preferably 10 minus 29 squared or less, 10 minus 35 squared or more.

(6)(1)〜(3)いずれかの処理システムにおいて、
さらに、真空排気と、1PPB以下の水分量の極低水分ガスの導入によるパージが繰り替えされる。
(6) In any of the processing systems (1) to (3),
Further, the vacuum evacuation and the purge by introducing an extremely low moisture gas having a moisture content of 1 PPB or less are repeated.

(7)(1)〜(3)いずれかの処理システムを使用して、ガス中の水分量を1PPB以下に制御した雰囲気中で被処理物体から水分を脱水除去するための被処理物体の処理方法とした。 (7) Using the processing system according to any one of (1) to (3), processing the object to be processed for dehydrating and removing the water from the object to be processed in an atmosphere in which the amount of water in the gas is controlled to 1 PPB or less. It was a method.

(8)(1)または(2)の処理システムを使用して、ガス中の水分量を1PPB以下に制御した雰囲気中で被処理物体をエッチングするための被処理物体の処理方法とした。 (8) A processing method of an object to be processed for etching the object to be processed in an atmosphere in which the amount of moisture in the gas is controlled to 1 PPB or less using the processing system of (1) or (2).

(9)(1)または(2)の処理システムを使用して、ガス中の水分量を1PPB以下に制御した雰囲気中で基板上に薄膜を堆積するための被処理物体の処理方法とした。 (9) Using the processing system of (1) or (2), a processing method of an object to be processed for depositing a thin film on a substrate in an atmosphere in which the amount of moisture in the gas is controlled to 1 PPB or less.

(10)(1)または(2)の処理システムを使用して、ガス中の水分量を1PPB以下に制御した雰囲気中で被処理物体に熱処理を施こするための被処理物体の処理方法とした。 (10) A processing method for an object to be processed for heat-treating the object to be processed in an atmosphere in which the moisture content in the gas is controlled to 1 PPB or less using the processing system of (1) or (2) did.

(11)(1)または(2)の処理システムを使用して、水分量を1PPB以下に制御したガスを原料のキャリアガスに使用して被処理物体を処理するための被処理物体の処理方法とした。 (11) A processing method of an object to be processed for processing an object to be processed using a gas whose water content is controlled to 1 PPB or less as a raw material carrier gas using the processing system of (1) or (2) It was.

本発明により、水分量が1PPB以下というこれまで実現しえなかった環境下での脱水を行うことができる。これにより、脱水時間を顕著に短縮し、残留水分を低減化する顕著な効果が得られる。また、極めて水の少ない環境下で半導体や電気・電子部品装置の製造を行うことができるので、半導体や電気・電子部品装置に不純物として残留する水を極限まで低減させることが可能となる。   According to the present invention, dehydration can be performed in an environment where the moisture content is 1 PPB or less, which has not been realized so far. Thereby, the remarkable effect which shortens dehydration time remarkably and reduces a residual water | moisture content is acquired. In addition, since semiconductors and electrical / electronic component devices can be manufactured in an environment with very little water, water remaining as impurities in the semiconductors and electrical / electronic component devices can be reduced to the limit.

以下、本発明の実施の形態について、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本願発明に係る処理システムの概略図を示す。処理システム10は、処理装置12と、真空処理容器12内を減圧するための真空ポンプ14と、真空処理装置12内に水分量1PPB以下の極低水分ガスを供給するための極低水分ガス生成装置16とを備える。符号18は、真空処理装置12内に設けられた試料である。   FIG. 1 shows a schematic diagram of a processing system according to the present invention. The processing system 10 includes a processing device 12, a vacuum pump 14 for depressurizing the inside of the vacuum processing container 12, and extremely low moisture gas generation for supplying an extremely low moisture gas having a moisture content of 1 PPB or less into the vacuum processing device 12. Device 16. Reference numeral 18 denotes a sample provided in the vacuum processing apparatus 12.

図2は、真空処理装置としての半導体や電気・電子部品製造装置の概略図を示す。半導体製造装置12は、ロードロック22および真空処理室12を備える。ロードロック室22は、1×10−4Pa に、および真空処理容器12は 1×10−5Pa まで真空排気される。真空処理容器12にはプラズマ源24及びヒータ26が設けられ、薄膜の堆積やエッチングが行われる。更に、半導体製造装置は、原料ガス28中から水分を排出する電気化学的な酸素分子排出装置を備える極低水分ガス生成装置16が備えられている。半導体製造装置は、原料シリンダー30から水分量1PPB以下、酸素分圧10-35気圧の超低水分の不活性ガス中でウエハー25を加熱処理するか、あるいは薄膜を堆積する。 FIG. 2 shows a schematic diagram of a semiconductor or electrical / electronic component manufacturing apparatus as a vacuum processing apparatus. The semiconductor manufacturing apparatus 12 includes a load lock 22 and a vacuum processing chamber 12. The load lock chamber 22 is evacuated to 1 × 10 −4 Pa, and the vacuum processing vessel 12 is evacuated to 1 × 10 −5 Pa. The vacuum processing vessel 12 is provided with a plasma source 24 and a heater 26, and a thin film is deposited and etched. Further, the semiconductor manufacturing apparatus is provided with an extremely low moisture gas generating device 16 including an electrochemical oxygen molecule discharging device that discharges moisture from the source gas 28. The semiconductor manufacturing apparatus heats the wafer 25 or deposits a thin film in an inert gas of ultra-low moisture having a water content of 1 PPB or less and an oxygen partial pressure of 10 −35 atm from the raw material cylinder 30.

図3は、図1及び図2の極低水分ガス生成装置を構成する酸素分子排出装置20を示す要部概略図である。酸素分子排出装置20は、酸素イオン伝導性を有するジルコニア製固体電解質体40と、固体電解質体40の内面及び外面に配設された金又は白金よりなるネット状の電極42、44とを備える。ジルコニア製固体電解質体40は、両端部でコパール材からなる金属製管体46と銀ロウ付け48で固着される。固体電解質体の電極と管体46は、内側電極を構成する。酸素分子排出装置の内圧は、3kg/cm以下であり、通常0.1〜1.0kg/cmである。 FIG. 3 is a main part schematic diagram showing an oxygen molecule discharging apparatus 20 constituting the extremely low moisture gas generating apparatus of FIGS. 1 and 2. The oxygen molecule discharging apparatus 20 includes a zirconia solid electrolyte body 40 having oxygen ion conductivity, and net-like electrodes 42 and 44 made of gold or platinum disposed on the inner and outer surfaces of the solid electrolyte body 40. The zirconia solid electrolyte body 40 is fixed at both ends by a metal tube 46 made of a copal material and a silver brazing 48. The electrode of the solid electrolyte body and the tube body 46 constitute an inner electrode. The internal pressure of the oxygen molecule discharging apparatus is 3 kg / cm 2 or less, is usually 0.1~1.0kg / cm 2.

図4は、酸素分子排出装置20の作用を示す概略図である。内面電極42と外面電極44間に直流電源Eから電流Iを流すと、密閉容器内に存在する水分子(H2O)が、内面電極42によって水素イオンと酸素イオンに電気分解され、固体電解質40を通った後、再び酸素分子(O)として密閉容器の外部に放出するので、この密閉容器の外部に放出された酸素分子を空気等の補助気体をキャリアガスとして排気することにより、密閉容器に供給される不活性ガス中の水分子を除去して、水分量を低減できる。続いて、この密閉容器の外部に放出された酸素分子を空気等の補助気体をキャリアガスとして排気することにより、密閉容器に供給される不活性ガス中の酸素分子を除去して、その酸素分圧も同時に制御できる。 FIG. 4 is a schematic diagram showing the operation of the oxygen molecule discharging apparatus 20. When a current I is passed from the DC power source E between the inner surface electrode 42 and the outer surface electrode 44, water molecules (H 2 O) present in the sealed container are electrolyzed into hydrogen ions and oxygen ions by the inner surface electrode 42, and the solid electrolyte After passing through 40, oxygen molecules (O 2 ) are released again outside the sealed container. Therefore, the oxygen molecules released outside the sealed container are sealed by exhausting auxiliary gas such as air as a carrier gas. The amount of water can be reduced by removing water molecules in the inert gas supplied to the container. Subsequently, the oxygen molecules released to the outside of the sealed container are exhausted using an auxiliary gas such as air as a carrier gas to remove oxygen molecules in the inert gas supplied to the sealed container, and the oxygen content is reduced. The pressure can be controlled simultaneously.

このように酸素分子排出装置は、固体電解質体内40に導入されたガスが固体電解質体内21中を通過する間にガス中の酸素分子を外気に排出して、極めて低い水分ガスを生成して、固体電解質体から真空処理装置に向けて供給する。図4において、●は、ガス、○○は、水分子及び酸素分子、○は、水イオン及び酸素イオンである。   As described above, the oxygen molecule discharging apparatus discharges oxygen molecules in the gas to the outside air while the gas introduced into the solid electrolyte body 40 passes through the solid electrolyte body 21 to generate extremely low moisture gas, Supply from the solid electrolyte body toward the vacuum processing apparatus. In FIG. 4, ● is a gas, OO is a water molecule and an oxygen molecule, and ◯ is a water ion and an oxygen ion.

次に、極低水分ガス生成装置の動作について説明する。まず、水分量設定部によって、所望の水分量、例えば1PPTに設定する。水分量設定部によって設定された水分量に設定するための制御信号が、水分圧制御部からポンプに送られる。その制御信号によってポンプの電流Iが制御されて、ガス供給弁およびマスフローコントローラを通って酸素分子排出装置に供給されたN ,Ar,He等の不活性ガス中の水分量が、水分量設定部によって設定された水分量に制御される。 Next, the operation of the extremely low moisture gas generator will be described. First, a desired moisture amount, for example, 1 PPT is set by the moisture amount setting unit. A control signal for setting the moisture amount set by the moisture amount setting unit is sent from the moisture pressure control unit to the pump. The current I of the pump is controlled by the control signal, and the amount of water in the inert gas such as N 2 , Ar, and He supplied to the oxygen molecule discharging device through the gas supply valve and the mass flow controller is set to the amount of water. The amount of water set by the unit is controlled.

このように極めて低い水分量に制御された不活性ガスは、水分センサによってその分圧がモニタされた後、真空処理装置の反応室に供給される。また真空反応室を通って排気される使用済みガスの水分圧が水分センサによってモニタされて、そのモニタ値が水分量制御部に入力され、水分量設定部で設定値と比較される。このようにして、水分量が1PPT以下に制御された不活性ガスが供給される。なお、処理の際の圧力は、減圧下で行っても、あるいは常圧から加圧状態で行っても良く、また使用済みガスは、真空ポンプを介して装置外に排気しても、あるいは処理の間に使用済みガスを再び酸素分子ガス排出装置に戻すような閉ループを形成してもよい。なお、水分量は、酸素イオン伝導体を用いた酸素センサーを使い、熱力学計算から求めることができる。   The inert gas controlled to have a very low moisture content is supplied to the reaction chamber of the vacuum processing apparatus after its partial pressure is monitored by the moisture sensor. Further, the moisture pressure of the used gas exhausted through the vacuum reaction chamber is monitored by the moisture sensor, and the monitored value is input to the moisture amount control unit, and is compared with the set value by the moisture amount setting unit. In this way, an inert gas whose water content is controlled to 1 PPT or less is supplied. The pressure during the treatment may be performed under reduced pressure, or from normal pressure to increased pressure, and the used gas may be exhausted outside the apparatus via a vacuum pump, or the treatment may be performed. In the meantime, a closed loop may be formed so that the spent gas is returned to the oxygen molecular gas discharge device again. The water content can be obtained from thermodynamic calculation using an oxygen sensor using an oxygen ion conductor.

固体電解質体40を構成する固体電解質 は、例えば、一般式( ZrO ) 1-x-y( In ) x( Y ) y( 0< x < 0.20、0< y < 020、0.08< x+y <0.20) で表されるジルコニア系が利用できる。その中でも、0<x<0.20、y = 0 であることが望ましく、さらに、0.06<x< 0.12、 y=0 であることがより望ましい。 The solid electrolyte constituting the solid electrolyte body 40 is, for example, a general formula (ZrO 2 ) 1-xy (In 2 O 3 ) x (Y 2 O 3 ) y (0 <x <0.20, 0 <y <020, 0.08). A zirconia system represented by <x + y <0.20) can be used. Among them, 0 <x <0.20 and y = 0 are preferable, and 0.06 <x <0.12 and y = 0 are more preferable.

固体電解質は、上記に例示したもの以外に、例えば、Ba および In を含む複合B酸化物であって、この複合酸化物のBa の一部をLaで固溶置換したもの、特に、原子数比{ La /( Ba+La ) } を0.3 以上としたものや、さらにInの一部をGaで置換したものや、一般式{ Ln 1 - x Srx Ga 1 - ( y + z )Mg y Co z O 、ただし、Ln = La,Nd の1種または2種、x = 0.05〜 0.3、y = 0〜 0.29、z = 0.01〜 0.3、y+z = 0.025〜 0.3} で示されるものや、一般式{ Ln ( 1 - x ) A x Ga ( 1 - y - z ) B1y B2z O3-d、ただし、Ln = La,Ce,Pr,Nd,Sm の1種または2種以上、A = Sr, Ca, Ba の1 種または2 種以上、B 1= Mg,Al,In の1 種または2 種以上、B 2= Co,Fe,Ni, Cu の1 種または2 種以上} で示されるものや、一般式{ Ln 2-xM xGe 1 - y Ly O5、ただし、Ln = La,Ce,Pr,Sm,Nd,Gd, Yd,Y,Sc、M = Li,Na,K,Rb,Ca,Sr,Ba の1種もしくは2 種以上、L = Mg,Al,Ga,In,Mn,Cr,Cu,Zn の1種もしくは2 種以上}や、一般式{ La ( 1 - x ) Sr xGa ( 1 - y - z ) Mg y Al 2 O 3 、ただし、0< x ≦ 0.2、0< y ≦ 0.2、0< z < 0.4} や、一般式{ La ( 1 - x ) A x Ga ( 1 - y - z ) B 1y B 2z O 3 、ただし、Ln = La,Ce,Pr,Sm,Ndの1 種もしくは2種以上、A = Sr,Ca,Ba の1 種もしくは2種以上、B 1= Mg,Al,In の1種もしくは2種以上、B 2= Co,Fe,Ni,Cu の1 種もしくは2 種以上、x = 0.05〜 0.3、y = 0〜 0.29、z = 0.01〜 0.3、y +z =0.025〜 0.3}等が採用できる。 In addition to those exemplified above, the solid electrolyte is, for example, a composite B oxide containing Ba and In, in which a part of Ba of the composite oxide is replaced by solid solution with La, in particular, the atomic ratio {La / (Ba + La) } what was 0.3 or more and, and those further substituted for part of in in Ga, formula {Ln 1 - x Srx Ga 1 - (y + z) Mg y Co z O 3 However, one or two of Ln = La and Nd, x = 0.05 to 0.3, y = 0 to 0.29, z = 0.01 to 0.3, y + z = 0.025 to 0.3}, or a general formula {Ln ( 1-x) AxGa (1-y-z) B1yB2zO3-d, provided that Ln = La, Ce, Pr, Nd, Sm or one or more of A, S = Sr, Ca, Ba One or more species, B 1 = Mg, Al, In, B 2 = Co, Fe, Ni, Cu 1 type or 2 types or more, or a general formula {Ln2-xMxGe1-yLyO5, where Ln = La, Ce, Pr, Sm, Nd, Gd, Yd, Y, Sc, M = One or more of Li, Na, K, Rb, Ca, Sr, Ba, L = one or more of Mg, Al, Ga, In, Mn, Cr, Cu, Zn} Formula {La (1-x) SrxGa (1-y-z) MgyAl2O3, where 0 <x≤0.2, 0 <y≤0.2, 0 <z <0.4} and the general formula {La (1 -x) A x Ga (1 -y-z) B 1y B 2z O 3, provided that Ln = La, Ce, Pr, Sm, Nd, one or more, A = Sr, Ca, Ba 1 type or 2 types or more, B 1 = 1 type or 2 types or more of Mg, Al, In, B 2 = 1 type or 2 types or more of Co, Fe, Ni, Cu , X = 0.05~ 0.3, y = 0~ 0.29, z = 0.01~ 0.3, y + z = 0.025~ 0.3} and the like can be employed.

上述した固体電解質体の両端部と管体との気密性の良さが水分及び酸素分圧に強い影響を与える。イオン伝導性を発揮させるために固体電解質は、600℃〜1000℃に加熱される。極低水分ガスの水分量を少なくする場合、固体電解質をより高温に加熱することが好ましい。また、従来は、両端部はOリングや、真空機器用接着剤を用いて気密性を保っていたが、耐熱性を考えて、空冷等の措置がとられていた。しかし、十分な機密性を得ることができなかった。固体電解質体の両端部と管体との密封構造として、管体と固体電解質体を金属のロウで接合することを採用する.その結果、耐熱温度が向上するため、高い気密性を得ることができ、より低い極低水分ガスを得ることができる。   The good airtightness between the both ends of the solid electrolyte body and the pipe body described above has a strong influence on moisture and oxygen partial pressure. In order to exhibit ionic conductivity, the solid electrolyte is heated to 600 ° C to 1000 ° C. When reducing the moisture content of the extremely low moisture gas, it is preferable to heat the solid electrolyte to a higher temperature. Conventionally, both ends are kept airtight using an O-ring or an adhesive for vacuum equipment, but measures such as air cooling have been taken in consideration of heat resistance. However, sufficient confidentiality could not be obtained. As a sealing structure between both ends of the solid electrolyte body and the tube body, it is adopted to join the tube body and the solid electrolyte body with metal brazing. As a result, the heat-resistant temperature is improved, so that high airtightness can be obtained and a lower extremely low moisture gas can be obtained.

また、シール構造の耐熱性及び酸素分子排出装置の機能向上を考慮すると、この酸素分子排出装置を構成する固体電解質体は一本よりも複数本あることが望ましく、かつ、それぞれの固体電解質体は長ければ長いほど分子排出機能が良く、加熱部分から離れたところでシール機能を持たせることができる。よって、管体の耐熱性も考える必要がなくなる。しかしながら、固体電解質体は、コストや取り扱いを考慮すると、15cm〜60cmの長さ有することが望ましい。片側の各管体の長さは、3cm〜60cmであることが望ましい。   Further, considering the heat resistance of the seal structure and the improvement of the function of the oxygen molecule discharging device, it is desirable that there are a plurality of solid electrolyte bodies constituting this oxygen molecule discharging device, and each solid electrolyte body is The longer it is, the better the molecule discharging function, and the sealing function can be provided at a distance from the heating part. Therefore, it is not necessary to consider the heat resistance of the tubular body. However, the solid electrolyte body preferably has a length of 15 cm to 60 cm in consideration of cost and handling. The length of each tube on one side is desirably 3 cm to 60 cm.

固体電解質体の両端部と管体との密封を保つためのシール構造は、以下のようにして行った。固体電解質体の両端部と管体とを銀ロウ付けにより固着する。次に、銀ロウ付け固着部分及び金属製管体を、金又は白金で電解メッキを施す。そして、電解メッキ部分を酸又はアルカリで前処理した後、固体電解質体も同時に無電解白金メッキを施す。   The sealing structure for maintaining the sealing between the both ends of the solid electrolyte body and the tube body was performed as follows. Both ends of the solid electrolyte body and the tube are fixed by silver brazing. Next, the silver brazing fixing portion and the metal tube are subjected to electrolytic plating with gold or platinum. Then, after the electrolytic plating portion is pretreated with acid or alkali, the solid electrolyte body is also subjected to electroless platinum plating.

図5及び図6に示すように、固体電解質体として、長さが50cm の6%モルのイットリアをドープしたジルコニア管を6本用いた。管体46とジルコニア管40との気密性は、銀ロウ付けにより接合することで、強度、耐熱性を向上させた。容器50内にジルコニア管40を6本並列して配設した。ジルコニア管の上下に加熱ヒータ52が配設される。   As shown in FIGS. 5 and 6, six zirconia tubes doped with 6% mol of yttria having a length of 50 cm 2 were used as the solid electrolyte body. The airtightness between the tube body 46 and the zirconia tube 40 was improved by strength and heat resistance by bonding by silver brazing. Six zirconia tubes 40 were arranged in parallel in the container 50. Heater heaters 52 are disposed above and below the zirconia tube.

ガス導入口よりアルゴンガスを導入し、マスフローコントローラで2L/min.となるように設定した。ジルコニア管を600℃〜1000℃に加熱し、内外壁にある両電極間に電圧として2V印加した。なお、固体電解質体の外側にはパージガスとして空気を流した状態としておく。   Argon gas was introduced from the gas inlet, and the mass flow controller was set to 2 L / min. The zirconia tube was heated to 600 ° C. to 1000 ° C., and 2 V was applied as a voltage between both electrodes on the inner and outer walls. It should be noted that air is allowed to flow as a purge gas outside the solid electrolyte body.

続いて、分子排出装置内のジルコニア管を通過した水および酸素分圧を低減させたガスを水・酸素センサに導き、酸素分圧を測定した。なお、酸素分圧の測定には固体電解質体の内外の酸素分圧差に伴う濃淡電池反応による起電力を用いた。このとき、約2時間で酸素分圧は10のマイナス21乗気圧、好ましくは10のマイナス29乗気圧から10マイナス35乗気圧を示した。   Subsequently, water that passed through the zirconia tube in the molecular discharger and gas with reduced oxygen partial pressure were introduced to a water / oxygen sensor, and the oxygen partial pressure was measured. The oxygen partial pressure was measured by using an electromotive force generated by a concentration cell reaction associated with a difference in oxygen partial pressure inside and outside the solid electrolyte body. At this time, in about 2 hours, the oxygen partial pressure showed 10 minus 21 squared atmospheric pressure, preferably 10 minus 29 squared atmospheric pressure to 10 minus 35 squared atmospheric pressure.

半導体製造装置に極低水分ガスを導入して、処理容器内の水分除去を以下の如くに行なった。まずターボ分子ポンプにより10−5Pa程度にまで容器内を真空排気した後、酸素分圧10のマイナス35乗気圧、水分量1PPT以下の窒素ガスを流量2SLMで導入して、大気圧乃至加圧状態まで容器内を満たした。続いて窒素ガスの導入をやめて、再びターボ分子ポンプにより10−5PaPaまで真空排気し、さらに窒素ガスを大気圧まで流入させる動作を繰り返した。その後上記動作を合計で6回繰り返した後、真空容器を改めて真空ポンプにより排気した。 An extremely low moisture gas was introduced into the semiconductor manufacturing apparatus, and the moisture in the processing container was removed as follows. First, the inside of the container is evacuated to about 10 −5 Pa by a turbo molecular pump, and then nitrogen gas having an oxygen partial pressure of −35 and a moisture content of 1 PPT or less is introduced at a flow rate of 2 SLM, so that atmospheric pressure or pressurization is achieved. The container was filled to the state. Subsequently, the introduction of nitrogen gas was stopped, and the operation of evacuating to 10 −5 PaPa again with a turbo molecular pump and further flowing the nitrogen gas to atmospheric pressure was repeated. Thereafter, the above operation was repeated a total of 6 times, and then the vacuum vessel was again evacuated by a vacuum pump.

その時の、大気圧からの排気曲線を図7に示す。極低水分ガスによる水分除去を行なわないで、ただ単に真空排気を行なった場合に比べて、極低水分ガスを導入した後の排気速度および到達真空度は共に向上することが分かった。そこで、装置内の水分を調べたところ、本発明による極低水分ガスを導入すると、真空処理容器内部の水分量が低下して、排気速度および到達真空度が向上することが明らかになった。なお、水分の低減効果は、低水分ガスを、容器内に少なくとも1回以上導入すれば効果があり、さらにはガスの種類としては、一般的な不活性ガスである窒素以外にもアルゴン、ヘリウム、等の不活性ガスを用いても同様に効果があることを確認した。   FIG. 7 shows an exhaust curve from atmospheric pressure at that time. It was found that both the exhaust speed and the ultimate vacuum after the introduction of the extremely low moisture gas were improved as compared with the case where only the vacuum evacuation was performed without removing the moisture with the extremely low moisture gas. Therefore, when the moisture in the apparatus was examined, it was found that when the extremely low moisture gas according to the present invention was introduced, the moisture content inside the vacuum processing vessel was reduced, and the exhaust speed and ultimate vacuum were improved. The moisture reduction effect is effective if a low moisture gas is introduced into the container at least once. Further, as the kind of gas, in addition to nitrogen, which is a general inert gas, argon, helium It was confirmed that the use of an inert gas such as.

また、極低水分ガスを100℃-200に加熱して、真空処理容器内に導入した場合、さらには、真空処理容器を100℃に加熱(ベーキング)して、なおかつ、極低水分ガスを導入すると、水分が更に効率的に除去され、到達真空度がさらに向上する効果があることが分かった。
更には、真空処理容器内に、0.1−1 Mpa 程度に加圧した極低水分ガスジェットを高速で吹き付けた場合には、吹き付け効果により、より短時間で水分が効率的に除去されることが分かった。
また、窒素ガスと真空排気の繰り返し動作、いわゆるサイクルパージを行わずに、窒素ガスを真空処理容器内に連続的に流し続けて使用した場合も、到達真空度が向上する同様の効果が得られることが分かった。この場合、大気圧以上になると真空処理容器から余剰の窒素ガスが漏れ出すが、この漏れ出したガスはそのまま排気放出してもよく、あるいは、溢れたガスを再び極低水分発生装置に戻し、水分量を再び低減させて再び容器に戻す様な一種の閉ループを構成した場合も同様な効果があることが分かった。
In addition, when an extremely low moisture gas is heated to 100 ° C.-200 and introduced into a vacuum processing container, the vacuum processing container is further heated (baked) to 100 ° C. and an extremely low moisture gas is introduced. As a result, it was found that moisture was more efficiently removed and the ultimate vacuum was further improved.
Furthermore, the vacuum processing vessel, when sprayed with extremely low moisture gas jet pressurized to about 0.1 -1 Mpa at a high speed, by spraying effect, moisture is effectively removed in a shorter time I understood that.
In addition, when nitrogen gas is continuously flowed into the vacuum processing vessel without using a repetitive operation of nitrogen gas and evacuation, so-called cycle purge, the same effect of improving the ultimate vacuum can be obtained. I understood that. In this case, excess nitrogen gas leaks from the vacuum processing container when the pressure exceeds atmospheric pressure, but the leaked gas may be exhausted and discharged as it is, or the overflow gas is returned to the extremely low moisture generator again. It was found that the same effect was obtained when a kind of closed loop was constructed in which the amount of water was reduced again and returned to the container.

なお、半導体製造装置の材質はステンレス(SUS304,316,316L)製でもアルミニウム製でも、石英製でもよく、更には、半導体製造装置の内部にウエハー加熱機構や、プラズマ源、ウエハー支持機構等の様々な付帯機構があっても同様の効果が得られる。   The material of the semiconductor manufacturing apparatus may be made of stainless steel (SUS304, 316, 316L), aluminum, or quartz. Furthermore, the semiconductor manufacturing apparatus includes various devices such as a wafer heating mechanism, a plasma source, and a wafer support mechanism. Even if there is an incidental mechanism, the same effect can be obtained.

直径6インチのSUS板、アルミニウム板、アルマイト処理されているアルミニウム板、アルミナ板、ガラス板、石英板、シリコンウエハ、プラスチック基板や有機膜、からの脱水処理は、極低水分ガスを導入して、以下の如くに行った。   Dehydration treatment from 6 inch diameter SUS plate, aluminum plate, anodized aluminum plate, alumina plate, glass plate, quartz plate, silicon wafer, plastic substrate and organic film, introduces extremely low moisture gas It went as follows.

まず、上記各種部材を超純水にて洗浄処理した後、真空処理容器内に入れて処理を行った。まずターボ分子ポンプにより10−5Pa程度にまで真空処理容器内を真空排気した後、酸素分圧10−35乗気圧、水分量1PPT以下の窒素ガスを流量2SLMで導入した。導入は、真空下でも、大気圧でも、あるいは加圧状態にしても良い。続いて窒素ガスの導入をやめて、再びターボ分子ポンプにより10−5Paまで真空排気し、さらに窒素ガスを大気圧まで流入させる動作を繰り返した。その後上記動作を合計で6回繰り返した後、真空処理容器を改めて真空ポンプにより排気した。
その結果、極低水分ガスによる水分除去を行なわないで、ただ単に真空排気を行なった場合に比べて、本ガスを導入した後の排気速度および到達真空度共に向上することが分かった。すなわち、効果的に脱水乾燥できることが分かった。
First, the various members were washed with ultrapure water and then placed in a vacuum processing container for processing. First, the inside of the vacuum processing vessel was evacuated to about 10 −5 Pa by a turbo molecular pump, and then nitrogen gas having an oxygen partial pressure of 10 −35 to atmospheric pressure and a water content of 1 PPT or less was introduced at a flow rate of 2 SLM. The introduction may be performed under vacuum, atmospheric pressure, or a pressurized state. Subsequently, the introduction of nitrogen gas was stopped, and the operation of evacuating again to 10 −5 Pa with a turbo molecular pump and flowing the nitrogen gas to atmospheric pressure was repeated. Thereafter, the above operation was repeated a total of 6 times, and then the vacuum processing container was again evacuated by a vacuum pump.
As a result, it was found that both the exhaust speed and the ultimate vacuum after the introduction of this gas were improved as compared with the case where only the vacuum evacuation was performed without removing the moisture with the extremely low moisture gas. That is, it was found that dehydration and drying can be performed effectively.

なお、水分の低減効果は、減圧下の装置内に、低水分ガスを装置内に少なくとも1回以上導入すれば効果があり、さらには、ガスの種類としては、一般的な不活性ガスである窒素以外にもアルゴン、ヘリウム、等の不活性ガスを用いても同様に効果があることを確認した。また低酸素ガスを100℃-200℃に加熱して、容器内に導入した場合、さらには、容器内をヒータで200℃に加熱(ベーキング)してなおかつ、低水分ガスを導入すると、排気速度ならびに到達真空度がさらに向上する効果があることが分かった。更には、真空容器内に、0.1−1Mpa 程度に加圧した極低水分ガスジェットを高速で吹き付けた場合には、吹き付け効果により、より短時間で水分が効率的に除去されることが分かった。
また、窒素ガスと真空排気の繰り返し動作、いわゆるサイクルパージを行わずに、窒素ガスを、乾燥装置内に連続的に流し続けて使用した場合も、到達真空度が向上する同様の効果が得られることが分かった。この場合、大気圧以上になると乾燥装置から余剰の窒素ガスが漏れ出すが、この漏れ出したガスはそのまま排気放出してもよく、あるいは、ガスを再び極低水分ガス発生装置に戻し、水分量を再び低減させて再び製造装置に戻す様な一種の閉ループを構成した場合も同様な効果があることが分かった。なお、本効果は、上記に記載した各種の板に限らず、あらゆる部材の脱水に効果があることは言うまでもない。
Note that the effect of reducing moisture is effective if a low moisture gas is introduced into the apparatus at least once in the apparatus under reduced pressure. Furthermore, the type of gas is a general inert gas. It was confirmed that the use of an inert gas such as argon or helium other than nitrogen would have the same effect. In addition, when the low oxygen gas is heated to 100 ° C.-200 ° C. and introduced into the container, and further, the inside of the container is heated (baked) to 200 ° C. with a heater and the low moisture gas is introduced, the exhaust rate is increased. It was also found that the ultimate vacuum was further improved. Furthermore, the vacuum vessel, when sprayed with extremely low moisture gas jet pressurized to about 0.1 -1 Mpa at a high speed, by spraying effect, the shorter time the water is efficiently removed I understood.
In addition, when nitrogen gas is continuously flowed into the drying apparatus without performing a repetitive operation of nitrogen gas and evacuation, so-called cycle purge, the same effect of improving the ultimate vacuum can be obtained. I understood that. In this case, excess nitrogen gas leaks from the drying device when the atmospheric pressure is exceeded, but this leaked gas may be exhausted and discharged as it is, or the gas is returned to the extremely low moisture gas generator again, It has been found that the same effect can be obtained when a kind of closed loop is constructed in which the amount of slag is reduced again and returned to the manufacturing apparatus. In addition, it cannot be overemphasized that this effect is effective in spin-drying | dehydrating not only the various board | plate described above but all members.

半導体装置における薄膜の膜内およびその表面からの脱水処理を極低水分ガスで以下の如くに行った。絶縁膜からの脱水処理に当該ガスを用いた。シリコンウエハ上に酸化シリコン膜を100nm堆積したウエハを用いて、熱処理装置で、300℃の熱処理を行った。水分量1PPT以下、酸素分圧10−35乗気圧のガスを熱処理装置に流量2SLMで導入し、基板を300℃に加熱したところ、酸化シリコン膜中や表面に残留した水分が顕著に減少する効果が得られた。続いて、シリコンウエハ上に比誘電率3.0の炭素含有酸化シリコン膜を100nm堆積したウエハを用いて、同様に脱水処理したところ、同様に膜中や膜表面水分の顕著な減少が見られた。同様に、アルミニウムや銅などの金属膜、シリコンやゲルマニウムなどの半導体膜を熱処理したところ、表面の水分を顕著に低減させる同様の効果が得られた。また、また低酸素ガスを100℃-200℃に加熱して、装置内に導入した場合、更には、0.1−1Mpa 程度に加圧した極低水分ガスジェットを高速で吹き付けた場合、より短時間で水分が効率的に除去されることが分かった。 In the semiconductor device, the dehydration process from the inside of the thin film and from the surface thereof was performed with an extremely low moisture gas as follows. The gas was used for dehydration treatment from the insulating film. Heat treatment at 300 ° C. was performed with a heat treatment apparatus using a wafer in which a silicon oxide film was deposited to a thickness of 100 nm on a silicon wafer. When a gas having a water content of 1 PPT or less and an oxygen partial pressure of 10 −35 to the atmospheric pressure is introduced into the heat treatment apparatus at a flow rate of 2 SLM and the substrate is heated to 300 ° C., the effect of significantly reducing the moisture remaining in the silicon oxide film and on the surface was gotten. Subsequently, when a dehydration process was performed in the same manner using a wafer in which a carbon-containing silicon oxide film having a relative dielectric constant of 3.0 was deposited on a silicon wafer to a thickness of 100 nm, a remarkable decrease in moisture in the film and on the film surface was also observed. It was. Similarly, when a metal film such as aluminum or copper, or a semiconductor film such as silicon or germanium was heat-treated, the same effect of remarkably reducing the moisture on the surface was obtained. In addition, when the low oxygen gas is heated to 100 ° C.-200 ° C. and introduced into the apparatus, and further, an extremely low moisture gas jet pressurized to about 0.1 −1 Mpa is sprayed at a high speed, It was found that moisture was efficiently removed in a shorter time.

半導体や電気・電子部品装置における薄膜の堆積に極低水分ガスを適用した実施例は、以下の如くに行った。ポリシリコンの堆積において、まず真空反応室にモノシランガスを流量100sccmで導入し、同時に水分量1PPT以下および酸素分圧10−35乗気圧の極低水分量の窒素ガスを流量500sccmで導入し、圧力10−1Pおよび基板温度600℃でポリシリコン膜をシリコン基板上に堆積させた。その結果、ポリシリコン膜中の水分及び酸素量が顕著に減少する効果が得られた。熱によるモノシランの分解を用いているが、より低温でプラズマを用いた分解を利用してもよい。むろん、ポリシリコン膜の堆積以外の薄膜の製造にも適用できることはいうまでもない。 An example in which an extremely low moisture gas was applied to the deposition of a thin film in a semiconductor or electrical / electronic component device was performed as follows. In the deposition of polysilicon, first, monosilane gas is introduced into the vacuum reaction chamber at a flow rate of 100 sccm, and at the same time, nitrogen gas having a water content of 1 PPT or less and an oxygen partial pressure of 10 −35 to the atmospheric pressure is introduced at a flow rate of 500 sccm. A polysilicon film was deposited on the silicon substrate at −1 P and a substrate temperature of 600 ° C. As a result, the effect of significantly reducing the amount of moisture and oxygen in the polysilicon film was obtained. Although decomposition of monosilane by heat is used, decomposition using plasma at a lower temperature may be used. Of course, it is needless to say that the present invention can be applied to the production of thin films other than the deposition of a polysilicon film.

スパッタリングを極低水分ガスで以下の如くに行った。アルゴンガス中の水分量1PPT以下および酸素分圧10-35乗気圧と、装置内に100sccmで導入し、圧力1Pa、電力200W でプラズマ化し、これをターゲットとなるアルミニウム板に衝突させてスパッタリングによりシリコン基板上にアルミニウム薄膜を堆積させたところ、膜中の酸素濃度が少ない、低抵抗のアルミニウムが形成された。   Sputtering was performed with extremely low moisture gas as follows. Introduced into the apparatus at a rate of 1 scpt or less and a 10-35 oxygen partial pressure of oxygen in argon gas at 100 sccm, turned into plasma at a pressure of 1 Pa and a power of 200 W, and collided with an aluminum plate as a target to form silicon by sputtering. When an aluminum thin film was deposited on the substrate, low-resistance aluminum having a low oxygen concentration in the film was formed.

薄膜のプラズマエッチングを極低水分ガスで以下の如くに行った。CF4ガス中の水分量1PPT以下および酸素分圧10−35乗気圧としたものを、装置内に100sccmで導入し、圧力1Pa、電力200W でプラズマ化し、これを、酸化シリコン基板上に吹き付けたところ、酸化シリコン膜に形成した微細なパターンを形状異常なく、均一にエッチングすることを可能とした。 Plasma etching of the thin film was performed with an extremely low moisture gas as follows. A CF4 gas having a water content of 1 PPT or less and an oxygen partial pressure of 10 −35 to the atmospheric pressure is introduced into the apparatus at 100 sccm, converted into plasma at a pressure of 1 Pa and power of 200 W, and sprayed onto a silicon oxide substrate. The fine pattern formed on the silicon oxide film can be uniformly etched without any shape abnormality.

薄膜堆積のための原料のキャリアガスに極低水分ガスを適用した実施例は、以下の如くに行った。原料として、塩化物や有機金属、TiCl, Ti[N(CH)], HfCl, Hf[N(CH)] に適用した。これらの原料を原料シリンダに充填し、シリンダを50―100℃に加熱し、更に水分量1PPT以下および酸素分圧10−35乗気圧の極低水分窒素ガスを流量100sccmで流入させ、原料塩化物や有機金属を極低水分ガス中に気化させて混合したものを真空処理室に導入した。更にシリコンウエハをおよそ300℃に加熱したところ、使用した原料により、チタン、ハフニウム等の金属膜がウエハ上に堆積した。極低水分ガスを用いたために、配管内の水分が著しく低減され、その結果、乗気圧シリンダから発生するパーティクル数に著しい低減効果が得られた。特に、原料ガスラインの寿命がおよそ数倍に延びる効果が得られた。また、堆積した膜中の水分量や残留酸素量も、従来の不活性ガスを用いたものに比べて低減する効果が得られた。
また、本極低水分ガスは、液晶や有機EL素子等の表示電子デバイスの作成にも有効である。すなわち、液晶の封入工程、あるいは有機EL発光層の堆積中に、水分量1PPT以下および酸素分圧10−35乗気圧の極低水分窒素ガスを、流量100sccmから2SLMで流入させ、十分に水分を除去することにより、高信頼の表示電子デバイスの作製が可能となる。
An example in which an extremely low moisture gas was applied as a raw material carrier gas for thin film deposition was performed as follows. As raw materials, it was applied to chlorides, organic metals, TiCl 4 , Ti [N (CH 3 ) 2 ] 4 , HfCl 4 , Hf [N (CH 3 ) 2 ] 4 . These raw materials were charged into a source cylinder to heat the cylinder to 50-100 ° C., allowed to further flow into the water content 1PPT less and an oxygen partial pressure of 10 -35 square extremely low moisture nitrogen gas pressure at a flow rate of 100 sccm, a raw material chlorides In addition, a mixture of vaporized and organic metal vaporized in an extremely low moisture gas was introduced into the vacuum processing chamber. Further, when the silicon wafer was heated to about 300 ° C., a metal film such as titanium or hafnium was deposited on the wafer depending on the raw material used. Since the extremely low moisture gas was used, the moisture in the piping was remarkably reduced, and as a result, a remarkable reduction effect was obtained in the number of particles generated from the riding pressure cylinder. In particular, the effect of extending the life of the source gas line by several times was obtained. Moreover, the effect of reducing the water content and the residual oxygen content in the deposited film was obtained as compared with the conventional one using an inert gas.
In addition, this extremely low moisture gas is also effective for producing display electronic devices such as liquid crystals and organic EL elements. That is, the liquid crystal of the encapsulation process or during deposition of the organic EL light-emitting layer, the moisture content 1PPT less and an oxygen partial pressure of 10 -35 square extremely low moisture nitrogen gas pressure is flowed in 2SLM from the flow 100 sccm, a sufficient water By removing it, a highly reliable display electronic device can be manufactured.

極低水分ガスを使用して製品を製造する分野において用いられ、半導体製造装置、液晶製造装置、電気・電子部品製造装置、食品製造装置などに利用できる。   It is used in the field of manufacturing products using extremely low moisture gas, and can be used for semiconductor manufacturing equipment, liquid crystal manufacturing equipment, electrical / electronic component manufacturing equipment, food manufacturing equipment, and the like.

本発明に係る真空処理システムを示す構成図である。It is a block diagram which shows the vacuum processing system which concerns on this invention. 本発明に係る真空処理システムを示す概略図である。It is the schematic which shows the vacuum processing system which concerns on this invention. 本発明に係る酸素分子排出装置の要部を示す平面図である。It is a top view which shows the principal part of the oxygen molecule discharging apparatus which concerns on this invention. 本発明に係る酸素分子排出装置の原理を説明する概略構成断面図である。It is a schematic structure sectional view explaining the principle of the oxygen molecule discharge device concerning the present invention. 本発明に係る酸素分子排出装置を、6本並列に配設した状態を示す概略平面図である。It is a schematic plan view which shows the state which has arrange | positioned six oxygen molecule discharge apparatuses which concern on this invention in parallel. 本発明に係る酸素分子排出装置を、6本並列に配設した状態を示す概略側面図である。It is a schematic side view which shows the state which has arrange | positioned six oxygen molecule discharging apparatuses which concern on this invention in parallel. 排気時間と圧力との関係を示すグラフである。It is a graph which shows the relationship between exhaust time and a pressure.

符号の説明Explanation of symbols

10 真空処理システム
12 真空処理容器
14 真空ポンプ
16 極低水分ガス生成装置
18 試料
20 酸素分子排出装置
22 ロードロック
24 プラズマ源
28 原料ガス
30 原料シリンダ
40 固体電解質
42 内側電極
44 外側電極
46 管体
48 ロウ付け部分
50 容器
52 ヒータ
DESCRIPTION OF SYMBOLS 10 Vacuum processing system 12 Vacuum processing container 14 Vacuum pump 16 Extremely low moisture gas production | generation apparatus 18 Sample 20 Oxygen molecule discharge apparatus 22 Load lock 24 Plasma source 28 Raw material gas 30 Raw material cylinder 40 Solid electrolyte 42 Inner electrode 44 Outer electrode 46 Tube 48 Brazing part 50 Container 52 Heater

Claims (11)

1対の金属製管体と、
前記1対の金属製管体にそれぞれ接続され、前記1対の金属製管体からのガスが通過する中空を有し、前記1対の金属製管体の熱膨張係数と同一の熱膨張係数を有し、前記1対の金属製管体に密着固定されるセラミック製固体電解質体と、
前記セラミック製固体電解質体の内面に設けられた内側電極と外面に設けられた外側電極とを備える酸素分子排出装置と、
前記酸素分子排出装置を加熱する加熱装置と、
前記酸素分子排出装置の電極間に電圧を印加する印加手段と、
前記酸素分子排出装置の電極間に印加する電圧を制御して中空を通過するガス中の酸素分圧を制御する酸素分圧制御装置と、
前記ガス中の水分量を1PPB以下に生成する極低水分ガス生成装置と、
前記極低水分ガス生成装置で生成された前記ガス中の水分量が1PPB以下の極低水分ガスが導入され、内部の水分が除去されてなる処理装置と、
を備えることを特徴とする処理システム。
A pair of metal tubes;
A thermal expansion coefficient that is respectively connected to the pair of metal pipes and that has a hollow through which gas from the pair of metal pipes passes, and that is the same as the thermal expansion coefficient of the pair of metal pipes A solid electrolyte body made of ceramic that is closely fixed to the pair of metal pipe bodies,
An oxygen molecule discharging device comprising an inner electrode provided on the inner surface of the ceramic solid electrolyte body and an outer electrode provided on the outer surface;
A heating device for heating the oxygen molecule discharging device;
Applying means for applying a voltage between the electrodes of the oxygen molecule discharging apparatus;
An oxygen partial pressure control device that controls the voltage applied between the electrodes of the oxygen molecule discharging device to control the oxygen partial pressure in the gas passing through the hollow;
An extremely low moisture gas generating device for generating a moisture content in the gas to 1 PPB or less;
Said water content of extremely low water vapor in the gas generated by the generating device is introduced following extremely low water vapor 1 ppb, moisture of the inner part is formed by removal processing unit,
A processing system comprising:
ジルコニア製固体電解質体の熱膨張係数と同一であり、コバール材料で作られて固体電解質体と銀ロウ付けで固着される1対の金属製管体と、
前記1対の金属製管体にそれぞれ接続され、前記1対の金属製管体からのガスが通過する中空を有するジルコニア製固体電解質体と、
前記ジルコニア製電解質体の内面に設けられた内側電極と外面に設けられた外側電極とを備える酸素分子排出装置と、
前記酸素分子排出装置を加熱する加熱装置と、
前記酸素分子排出装置の電極間に電圧を印加する印加手段と、
前記酸素分子排出装置の電極間に印加する電圧を制御して中空を通過するガス中の酸素分圧を制御する酸素分圧制御装置と、
前記ガス中の水分量を1PPB以下に生成する極低水分ガス生成装置と、
前記極低水分ガス生成装置で生成された前記ガス中の水分量が1PPB以下の極低水分ガスが導入され、内部の水分が除去されてなる処理装置と、
を備えることを特徴とする処理システム。
A pair of metal tubes having the same thermal expansion coefficient as the solid electrolyte body made of zirconia, made of Kovar material, and fixed to the solid electrolyte body by silver brazing;
A solid electrolyte body made of zirconia connected to the pair of metal pipe bodies and having a hollow through which gas from the pair of metal pipe bodies passes;
An oxygen molecule discharging device comprising an inner electrode provided on the inner surface of the zirconia electrolyte body and an outer electrode provided on the outer surface;
A heating device for heating the oxygen molecule discharging device;
Applying means for applying a voltage between the electrodes of the oxygen molecule discharging apparatus;
An oxygen partial pressure control device that controls the voltage applied between the electrodes of the oxygen molecule discharging device to control the oxygen partial pressure in the gas passing through the hollow;
An extremely low moisture gas generating device for generating a moisture content in the gas to 1 PPB or less;
Said water content of extremely low water vapor in the gas generated by the generating device is introduced following extremely low water vapor 1 ppb, moisture of the inner part is formed by removal processing unit,
A processing system comprising:
ジルコニア製固体電解質体の熱膨張係数と同一であり、コバール材料で作られて固体電解質体と銀ロウ付けで固着され、かつ該銀ロウ付け固着部分と管体は、金又は白金で電解メッキを施した電解メッキ層と、
電解メッキ部分を酸又はアルカリで前処理した後に無電解の金又は白金メッキを施した無電解メッキ層を備える1対の金属製管体と、
前記1対の金属製管体にそれぞれ接続され、前記1対の金属製管体からのガスが通過する中空を有するジルコニア製固体電解質体と、
前記ジルコニア製固体電解質体の内面に設けられた内側電極と外面に設けられた外側電極とを備える酸素分子排出装置と、
前記酸素分子排出装置を加熱する加熱装置と、
前記酸素分子排出装置の電極間に電圧を印加する印加手段と、
前記酸素分子排出装置の電極間に印加する電圧を制御して中空を通過するガス中の酸素分圧を制御する酸素分圧制御装置と、
前記ガス中の水分量を1PPB以下に生成する極低水分ガス生成装置と、
前記極低水分ガス生成装置で生成された前記ガス中の水分量が1PPB以下の極低水分ガスが導入され、内部の水分が除去されてなる処理装置とを備えることを特徴とする処理システムであり、かつ極低水分ガスは、被処理物体のエッチング用ガス、スパッタ用ガス又はキャリアガスのいずれか一つである処理システム。
It has the same thermal expansion coefficient as that of the solid electrolyte body made of zirconia, is made of Kovar material, and is fixed to the solid electrolyte body by silver brazing, and the silver brazing fixing portion and the tube are electroplated with gold or platinum. The applied electroplating layer,
A pair of metal tubes comprising an electroless plated layer that has been subjected to electroless gold or platinum plating after pretreatment of the electroplated portion with acid or alkali;
A solid electrolyte body made of zirconia connected to the pair of metal pipe bodies and having a hollow through which gas from the pair of metal pipe bodies passes;
An oxygen molecule discharging device comprising an inner electrode provided on the inner surface of the zirconia solid electrolyte body and an outer electrode provided on the outer surface;
A heating device for heating the oxygen molecule discharging device;
Applying means for applying a voltage between the electrodes of the oxygen molecule discharging apparatus;
An oxygen partial pressure control device that controls the voltage applied between the electrodes of the oxygen molecule discharging device to control the oxygen partial pressure in the gas passing through the hollow;
An extremely low moisture gas generating device for generating a moisture content in the gas to 1 PPB or less;
Processing system water content of the gas the generated with extremely low moisture gas generator is introduced following extremely low water vapor 1 ppb, characterized in that it comprises a processing device and the moisture of the inner portion is formed by removing And the extremely low moisture gas is any one of an etching gas, a sputtering gas, and a carrier gas for an object to be processed.
前記処理装置内部に設けられた被処理物体は、ステンレス板、アルミニウム板、アルミナ板、ガラス板、石英板、シリコンウエハ、絶縁膜、金属膜又は半導体膜、プラスチック基板、有機膜、あるいは当該基板上の堆積物のいずれかを少なくとも含む、ことを特徴とする請求項2記載の処理システム。 The object to be processed provided inside the processing apparatus is a stainless plate, aluminum plate, alumina plate, glass plate, quartz plate, silicon wafer, insulating film, metal film or semiconductor film, plastic substrate, organic film, or on the substrate. The processing system according to claim 2, comprising at least one of the deposits. 前記ガス中の酸素分圧は、10のマイナス29乗気圧以下10のマイナス35乗気圧以上である、ことを特徴とする請求項1〜3のいずれか1項に記載の処理システム。   The processing system according to any one of claims 1 to 3, wherein an oxygen partial pressure in the gas is 10 minus 29th atmospheric pressure or less and 10 minus 35th atmospheric pressure or more. さらに、真空排気と、1PPB以下の水分量の極低水分ガスの導入によるパージが繰り替えされる、ことを特徴とする請求項1〜3のいずれか1項に記載の処理システム。   The processing system according to any one of claims 1 to 3, wherein the evacuation and the purge by introducing an extremely low moisture gas having a moisture content of 1 PPB or less are repeated. 請求項1〜3のいずれか1項に記載の処理システムを使用して、ガス中の水分量を1PPB以下に制御した雰囲気中で被処理物体から水分を脱水除去する、ことを特徴とする被処理物体の処理方法。   Using the treatment system according to any one of claims 1 to 3, moisture is dehydrated and removed from an object to be treated in an atmosphere in which the amount of moisture in the gas is controlled to 1 PPB or less. Processing method of processing object. 請求項1又は2に記載の処理システムを使用して、ガス中の水分量を1PPB以下に制御した雰囲気中で被処理物体をエッチングする、ことを特徴とする被処理物体の処理方法。   A processing method for an object to be processed, wherein the object to be processed is etched in an atmosphere in which the moisture content in the gas is controlled to 1 PPB or less using the processing system according to claim 1. 請求項1又は2に記載の処理システムを使用して、ガス中の水分量を1PPB以下に制御した雰囲気中で基板上にシリコン、アルミニウム、チタン、ハフニウムの単体薄膜、もしくはそれらの化合物薄膜を堆積する、ことを特徴とする被処理物体の処理方法。   Depositing a thin film of silicon, aluminum, titanium, hafnium or a compound thin film thereof on a substrate in an atmosphere in which the amount of moisture in the gas is controlled to 1 PPB or less using the processing system according to claim 1 or 2. A method for processing an object to be processed. 請求項1又は2に記載の処理システムを使用して、ガス中の水分量を1PPB以下に制御した雰囲気中で被処理物体に熱処理を施す、ことを特徴とする被処理物体の処理方法。   A processing method for an object to be processed, wherein the object to be processed is heat-treated in an atmosphere in which the amount of moisture in the gas is controlled to 1 PPB or less using the processing system according to claim 1. 請求項1又は2に記載の処理システムを使用して、水分量を1PPB以下に制御したガスを原料のキャリアガスに使用して被処理物体を処理する、ことを特徴とする被処理物体の処理方法。   Using the processing system according to claim 1 or 2, the object to be processed is processed using a gas whose water content is controlled to 1 PPB or less as a raw material carrier gas. Method.
JP2007115882A 2007-03-16 2007-04-25 Processing system and processing method of object to be processed Expired - Fee Related JP5544678B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007115882A JP5544678B2 (en) 2007-04-25 2007-04-25 Processing system and processing method of object to be processed
PCT/JP2008/054778 WO2008114740A1 (en) 2007-03-16 2008-03-14 Apparatus for generating gas having extremely low oxygen concentration, processing system, thin film deposition method and inert gas
TW097109115A TWI388371B (en) 2007-03-16 2008-03-14 Ultralow oxygen content gas production equipment, process system, thim fhim deposition method and idle gas
US12/531,260 US8597732B2 (en) 2007-03-16 2008-03-14 Thin film depositing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007115882A JP5544678B2 (en) 2007-04-25 2007-04-25 Processing system and processing method of object to be processed

Publications (2)

Publication Number Publication Date
JP2008272609A JP2008272609A (en) 2008-11-13
JP5544678B2 true JP5544678B2 (en) 2014-07-09

Family

ID=40051278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007115882A Expired - Fee Related JP5544678B2 (en) 2007-03-16 2007-04-25 Processing system and processing method of object to be processed

Country Status (1)

Country Link
JP (1) JP5544678B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6103312B2 (en) * 2013-11-06 2017-03-29 パナソニックIpマネジメント株式会社 Solvent separation method and apparatus
EP3189915B1 (en) * 2014-08-13 2020-12-23 National Institute of Advanced Industrial Science and Technology Sintering device for metal material
CN108680422A (en) * 2018-08-02 2018-10-19 济南兰光机电技术有限公司 Remove purifier, the system and method for moisture in high-purity inert gas

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0341850U (en) * 1989-09-01 1991-04-22
US5192414A (en) * 1990-12-20 1993-03-09 General Electric Company Electrode probe for use in aqueous environments of high temperature and high radiation
US5259935A (en) * 1991-05-03 1993-11-09 The Boc Group, Inc. Stainless steel surface passivation treatment
JPH0686708A (en) * 1991-08-09 1994-03-29 Tanaka Kikinzoku Kogyo Kk Production of hollow ornaments
JP4213335B2 (en) * 2000-10-10 2009-01-21 株式会社東芝 Platinum reference electrode
JP2005331339A (en) * 2004-05-19 2005-12-02 National Institute Of Advanced Industrial & Technology Oxygen partial pressure control device and recovery method of solid electrolyte for oxygen partial pressure control
JP3890070B2 (en) * 2005-06-29 2007-03-07 キヤノンマシナリー株式会社 Gas pump

Also Published As

Publication number Publication date
JP2008272609A (en) 2008-11-13

Similar Documents

Publication Publication Date Title
JP5382677B2 (en) Protective film structure of metal member, metal part using protective film structure, and semiconductor or flat panel display manufacturing apparatus using protective film structure
TWI487026B (en) Silicon nitride film formation apparatus and method for using the same
JP4459329B2 (en) Method and apparatus for removing attached film
KR101070666B1 (en) Cleaning method and substrate processing apparatus
US20090130331A1 (en) Method of Forming Thin Film and Method of Manufacturing Semiconductor Device
US6942892B1 (en) Hot element CVD apparatus and a method for removing a deposited film
JPS60211061A (en) Ion-nitrifying method of aluminum material
JP5544678B2 (en) Processing system and processing method of object to be processed
JP2014053136A (en) Atmospheric pressure plasma processing apparatus
TWI388371B (en) Ultralow oxygen content gas production equipment, process system, thim fhim deposition method and idle gas
JP5178342B2 (en) Deposit removing method and deposited film forming method
US20040198029A1 (en) Process for producing thin oxide film and production apparatus
JP7146287B2 (en) Ammonia production method and apparatus for ammonia production
WO2005054543A1 (en) Cleaning method
JP5483043B2 (en) Extremely low moisture gas generating device, inert gas, processing device, and method for measuring moisture content in gas
WO2020196061A1 (en) Contamination treatment method for substrate treatment device and substrate treatment device
JP5187736B2 (en) Thin film deposition method
JP2010225751A (en) Device for growing atomic layer
JP2010192736A (en) Device and method for atomic layer growth
JP2008050662A (en) Substrate treatment device
JPH0192354A (en) Aluminum composite material excellent in corrosion resistance and its production
JP2006222243A (en) Cleaning method of semiconductor manufacturing equipment
JP2007113031A (en) Method for forming oxide film
JP2008311310A (en) Semiconductor manufacturing apparatus
JP2018080366A (en) Manufacturing method of metal oxide thin film, and thin film manufacturing apparatus

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100309

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140428

R150 Certificate of patent or registration of utility model

Ref document number: 5544678

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees