JP5544561B2 - Pressure-sensitive paint and pressure sensor with reduced temperature sensitivity - Google Patents

Pressure-sensitive paint and pressure sensor with reduced temperature sensitivity Download PDF

Info

Publication number
JP5544561B2
JP5544561B2 JP2008187174A JP2008187174A JP5544561B2 JP 5544561 B2 JP5544561 B2 JP 5544561B2 JP 2008187174 A JP2008187174 A JP 2008187174A JP 2008187174 A JP2008187174 A JP 2008187174A JP 5544561 B2 JP5544561 B2 JP 5544561B2
Authority
JP
Japan
Prior art keywords
pressure
sensitive
sensitive paint
temperature
paint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008187174A
Other languages
Japanese (ja)
Other versions
JP2010024348A (en
Inventor
和徳 満尾
誠 小幡
重信 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aerospace Exploration Agency JAXA
Original Assignee
Japan Aerospace Exploration Agency JAXA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aerospace Exploration Agency JAXA filed Critical Japan Aerospace Exploration Agency JAXA
Priority to JP2008187174A priority Critical patent/JP5544561B2/en
Publication of JP2010024348A publication Critical patent/JP2010024348A/en
Application granted granted Critical
Publication of JP5544561B2 publication Critical patent/JP5544561B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、感圧塗料および感圧センサ、特に、温度補正用の感温塗料を使用することなく、感圧塗料(感圧色素)の発光データに含まれる温度計測誤差を低減し計測精度を高めることが出来る感圧塗料および感圧センサに関するものである。   The present invention reduces the temperature measurement error included in the light emission data of pressure-sensitive paint (pressure-sensitive dye) without using a pressure-sensitive paint and pressure-sensitive sensor, in particular, a temperature-sensitive paint for temperature correction, thereby improving measurement accuracy. The present invention relates to a pressure-sensitive paint and a pressure-sensitive sensor that can be enhanced.

感圧塗料(Pressure-Sensitive Paint:PSP)を用いた圧力場計測が、航空宇宙分野の風洞実験において注目されている。この計測は、感圧塗料に含まれた色素の発光強度が酸素により消光する現象を利用したものである。被測定物である模型表面に塗られた感圧塗料に励起光を照射すると色素が発光する。その発光強度は圧力(酸素濃度)と相関関係があり、模型上の発光強度分布をCCDカメラで計測し所定の画像処理を行うことにより模型上の圧力場を視覚的に求めることができる。従来技術の殆どは静圧孔を利用した計測であるために離散的なデータしか計測することが出来なかったが、このPSPを利用することにより模型全面の連続した圧力分布データを得ることが出来る。さらに、手軽で安価に計測できる利点がある。
しかしながら、感圧塗料の発光強度は圧力だけではなく温度にも感応する特性を有している。そのため、実用化を想定した場合、圧力データに含まれる温度感度に起因する計測誤差は無視することができない。これまで、感圧塗料と感温塗料の塗り分け方式による温度補正法や、赤外線カメラを使用した温度補正法等種々の補正方法が検討・提案されてきた(例えば、特許文献1および非特許文献1を参照。)。その塗り分け方式では、機体の半分に塗られた感温塗料はもう半分の感圧塗料の温度補正用に利用されるため、結局、機体半分の圧力に関する情報しか得ることが出来ない。また、流れの対称性の仮定が失われる形態、例えば模型が横滑り角をとる形態では、温度補正をすることが出来ないため、精度の良い圧力場の計測は出来なくなる。赤外線カメラを使った場合、特殊な光学窓ガラスを使用しなければならず、また背景温度の写りこみにも十分な配慮が必要となり、実用向きではない。
また、従来の感圧塗料では、感圧色素とそれを物体表面に薄膜固化させるバインダー(ポリマー)を溶解させる溶媒としては、トルエンやベンゼンが使用されている(例えば、特許文献2を参照。)。周知の通り、ベンゼンは毒性が強く、人が長期にわたり繰り返し吸入を続けた場合、脳障害を負うことが確認されている。中でもベンゼンは一般に発がん性物質であると考えられており、「特定化学物質障害予防規則」の特定第2類および特別管理物質に指定され、厳重な管理が要求されている。また環境面での懸念からベンゼンとトルエンは「化学物質管理促進法」(いわゆるPRTR法)の第1種指定化学物質に指定されており、その環境への排出量を管理することが義務づけられている物質である。また、ベンゼンは消防法による危険物(第四類引火性液体、第一石油類)に指定されており、一定以上の貯蔵には消防署への届け出が必要である。加えて、ベンゼンは常温で引火性を有するため、その取り扱いには厳重な注意が必要とされる。
Pressure field measurement using pressure-sensitive paint (PSP) is attracting attention in aerospace wind tunnel experiments. This measurement is based on the phenomenon that the emission intensity of the dye contained in the pressure-sensitive paint is quenched by oxygen. When excitation light is irradiated to the pressure-sensitive paint applied to the model surface, which is the object to be measured, the dye emits light. The emission intensity has a correlation with the pressure (oxygen concentration), and the pressure field on the model can be obtained visually by measuring the emission intensity distribution on the model with a CCD camera and performing predetermined image processing. Most of the prior art was measured using static pressure holes, so only discrete data could be measured. By using this PSP, continuous pressure distribution data on the entire model surface can be obtained. . Furthermore, there is an advantage that it can be measured easily and inexpensively.
However, the light emission intensity of the pressure-sensitive paint has a characteristic that is sensitive not only to pressure but also to temperature. Therefore, when practical use is assumed, measurement errors caused by temperature sensitivity included in the pressure data cannot be ignored. So far, various correction methods such as a temperature correction method using a pressure-sensitive paint and a temperature-sensitive paint, and a temperature correction method using an infrared camera have been studied and proposed (for example, Patent Document 1 and Non-Patent Document). 1). In this method, the temperature-sensitive paint applied to the half of the fuselage is used to correct the temperature of the other half of the pressure-sensitive paint, so that only information about the pressure of the half of the fuselage can be obtained. In addition, in a form in which the assumption of flow symmetry is lost, for example, in a form in which the model has a side-slip angle, temperature correction cannot be performed, so that the pressure field cannot be accurately measured. When an infrared camera is used, a special optical window glass must be used, and sufficient consideration must be given to the reflection of the background temperature, which is not practical.
In the conventional pressure-sensitive paint, toluene or benzene is used as a solvent for dissolving a pressure-sensitive dye and a binder (polymer) that solidifies the pressure-sensitive dye on the object surface (for example, see Patent Document 2). . As is well known, benzene is highly toxic and has been confirmed to cause brain damage if a person continues to inhale repeatedly over a long period of time. Among them, benzene is generally considered to be a carcinogenic substance, and is designated as a specified second category and specially controlled substance in the “Specific Chemical Substances Prevention Regulations” and requires strict management. In addition, due to environmental concerns, benzene and toluene are designated as Class 1 Designated Chemical Substances under the “Chemical Substance Management Promotion Act” (so-called PRTR Law), and it is obliged to manage their emissions into the environment. It is a substance. Benzene is designated as a hazardous material (Class 4 flammable liquids, Petroleum 1) by the Fire Service Act, and must be reported to the fire department for storage above a certain level. In addition, since benzene is flammable at room temperature, strict care is required for its handling.

特開2006−10517号公報JP 2006-10517 A 特開2005−29767号公報JP 2005-29767 A Mebarki Y. and Cooper K.R."Aerodynamic Testing of a Generic Automotive Model with Pressure Sensitive Paint", The 10th International Symposium on Flow Visualization, F0120, August, 2002.Mebarki Y. and Cooper K.R. "Aerodynamic Testing of a Generic Automotive Model with Pressure Sensitive Paint", The 10th International Symposium on Flow Visualization, F0120, August, 2002.

上述した従来の感温塗料と感圧塗料による塗り分け方式では、感圧塗料の発光データに含まれる温度依存性による計測誤差を補正するために、試験開始前に感圧塗料の発光強度−温度特性に関する校正データを予め取得しておく必要があり、一方、試験中は感温塗料の発光データから模型上の温度分布データを取得する必要がある。なお、この感温塗料が塗布された領域Aの温度分布データは、感圧塗料の発光データから温度による計測誤差を除去するために使用されるため、感圧塗料が塗布された領域B(≠領域A)の温度分布データと実質的に等価になる必要がある。従って、領域Aと領域Bは、対称の関係になければならない。そのため、風洞試験においては模型の半分に感圧塗料が塗布され、他の半分に感温塗料が塗布されている。従って、模型の姿勢について、領域Aと領域Bにおいて流れの対称性がくずれる姿勢、例えば模型が横滑り角をとる形態での精度良い圧力場の計測ができないという問題がある。
また、従来の感圧塗料は、溶媒としてトルエンまたはベンゼンが使用されているため、特に人体への影響や換気・火気等に対し厳重な注意が必要とされ、その取り扱いが容易でない問題がある。
そこで、本発明は、上記実情に鑑み創案されたものであって、その目的は温度補正用の感温塗料を使用することなく、感圧塗料(感圧色素)の発光データに含まれる温度計測誤差を低減し計測精度を高めることが出来る感圧塗料および感圧センサを提供することにある。
In the above-described conventional method of temperature-sensitive paint and pressure-sensitive paint, the light-emission intensity-temperature of the pressure-sensitive paint before the start of the test is used to correct the measurement error due to temperature dependence included in the light-emission data of the pressure-sensitive paint. It is necessary to obtain calibration data relating to the characteristics in advance, while it is necessary to obtain temperature distribution data on the model from the light emission data of the temperature-sensitive paint during the test. Note that the temperature distribution data in the region A where the temperature-sensitive paint is applied is used to remove measurement errors due to temperature from the light-emission data of the pressure-sensitive paint, so the region B where the pressure-sensitive paint is applied (≠ It must be substantially equivalent to the temperature distribution data in region A). Therefore, the region A and the region B must have a symmetrical relationship. Therefore, in the wind tunnel test, the pressure-sensitive paint is applied to half of the model, and the temperature-sensitive paint is applied to the other half. Therefore, there is a problem in that the pressure field cannot be accurately measured in the posture where the symmetry of the flow is lost in the regions A and B, for example, in the form where the model takes a side slip angle.
In addition, since conventional pressure-sensitive paints use toluene or benzene as a solvent, strict attention is required particularly to the influence on the human body, ventilation, fire, etc., and there is a problem that handling thereof is not easy.
Therefore, the present invention was devised in view of the above circumstances, and its purpose is to measure the temperature included in the light emission data of the pressure sensitive paint (pressure dye) without using the temperature sensitive paint for temperature correction. An object of the present invention is to provide a pressure-sensitive paint and a pressure-sensitive sensor that can reduce errors and increase measurement accuracy.

前記目的を達成するため、請求項1に記載の感圧塗料は、圧力に応じた発光特性を示す感圧色素と、該感圧色素を薄膜固化するポリマーがバインダーとして溶媒に溶解されて成る感圧塗料であって、
前記ポリマーはメタクリル酸1,1,1,3,3,3-ヘキサフルオロイソプロピル(HFIPM)が単独重合して出来た高分子化合物(Poly(HFIPM))、または該HFIPMとメタクリル酸イソブチル(IBM)との共重合高分子化合物であることを特徴とする。
感圧塗料の温度依存性は、それをバインドするポリマーによって大きく変わることが知られている。本願発明者は、感圧塗料の感圧特性を低減させずに温度依存性(温度感度特性)のみを低減させるポリマーについて鋭意研究した結果、上記メタクリル酸1,1,1,3,3,3-ヘキサフルオロイソプロピル(HFIPM)が単独重合して出来た高分子化合物(Poly(HFIPM))は、感圧塗料の感圧特性を損なわずに温度感度特性のみを低減させることを見出した。また、本願発明者は、上記HFIPMとメタクリル酸イソブチル(IBM)との共重合高分子化合物についても、感圧塗料の感圧特性を低減させずに温度感度特性のみを低減させることを見出した。つまり、本願発明者は、上記HFIPMをモノマーとして含むポリマーには、感圧塗料の温度感度を低減させる作用・効果が有ることを見出した。
その結果、上記感圧塗料では、ポリマーとして上記高分子化合物(Poly(HFIPM))、またはHFIPMとIBMとの共重合高分子化合物が用いられ、感圧塗料の感圧特性は維持されながらその温度依存性のみが低減されている。これにより、感圧塗料そのものの温度依存性が極めて小さくなるため、従来の塗り分け方式による圧力場の計測において見られた温度補正用としての感温塗料は不要となる。従って、塗料の塗布範囲(計測範囲)および模型の姿勢について特別な制約がなくなるため、様々な流れ場の下で精度の高い圧力場の計測が可能となる。
In order to achieve the above object, the pressure-sensitive paint according to claim 1 is a pressure-sensitive dye obtained by dissolving a pressure-sensitive dye exhibiting light-emitting characteristics corresponding to pressure and a polymer for solidifying the pressure-sensitive dye into a solvent as a binder. Pressure paint,
The polymer is a polymer compound (Poly (HFIPM)) obtained by homopolymerization of 1,1,1,3,3,3-hexafluoroisopropyl methacrylate (HFIPM), or the HFIPM and isobutyl methacrylate (IBM). And a copolymerized polymer compound.
It is known that the temperature dependence of a pressure-sensitive paint varies greatly depending on the polymer that binds it. The inventor of the present application has conducted extensive research on a polymer that reduces only the temperature dependence (temperature sensitivity characteristics) without reducing the pressure sensitive characteristics of the pressure sensitive paint, and as a result, the above methacrylic acid 1,1,1,3,3,3 -A polymer compound (Poly (HFIPM)) produced by homopolymerizing hexafluoroisopropyl (HFIPM) has been found to reduce only the temperature sensitivity characteristic without impairing the pressure sensitive characteristic of the pressure sensitive paint. The inventor of the present application has also found that only the temperature sensitivity characteristic of the copolymer polymer compound of HFIPM and isobutyl methacrylate (IBM) is reduced without reducing the pressure sensitive characteristic of the pressure sensitive paint. That is, the present inventor has found that the polymer containing HFIPM as a monomer has an action and an effect of reducing the temperature sensitivity of the pressure-sensitive paint.
As a result, in the pressure sensitive paint, the polymer (Poly (HFIPM)) or a copolymer polymer compound of HFIPM and IBM is used as the polymer, and the pressure sensitive property of the pressure sensitive paint is maintained while maintaining the temperature. Only the dependency is reduced. As a result, the temperature dependence of the pressure-sensitive paint itself becomes extremely small, so that the temperature-sensitive paint for temperature correction found in the measurement of the pressure field by the conventional painting method becomes unnecessary. Accordingly, since there are no special restrictions on the paint application range (measurement range) and the posture of the model, it is possible to measure the pressure field with high accuracy under various flow fields.

請求項2に記載の感圧塗料では、前記溶媒は、酢酸エチルであることとした。
上記感圧塗料では、感圧色素とポリマーを溶解させる溶媒として酢酸エチルを使用する。先述したように、ベンゼンは一般に発がん性物質であると考えられており、トルエンや酢酸エチルと異なり「特定化学物質障害予防規則」の特定第2類および特別管理物質に指定され、厳重な管理が要求されている。また環境面での懸念からベンゼンとトルエンはPRTR法の第1種指定化学物質に指定されており、その環境への排出量を管理することが義務づけられている物質である。酢酸エチルはベンゼンやトルエンのように「特定化学物質障害予防規則」や「化学物質管理促進法」の管理対象物質ではないことから、ベンゼンやトルエンなどに比べ人体や環境への影響が小さい溶媒であるといえる。また、酢酸エチルは、酢酸とエタノールが縮合してできたエステル化合物である。パイナップル・バナナ等の天然の果実油中にも広く含まれる果実臭成分の1つであり、エッセンスなど食品添加物の成分としても利用されている。従って、従来の感圧塗料の溶媒であるトルエンやベンゼンに比べ、人体に対する害は少なく、その取り扱いに厳重な注意が必要とされることはない。
In the pressure-sensitive paint according to claim 2, the solvent is ethyl acetate.
In the pressure-sensitive paint, ethyl acetate is used as a solvent for dissolving the pressure-sensitive dye and the polymer. As mentioned earlier, benzene is generally considered to be a carcinogen, and unlike toluene and ethyl acetate, it is designated as a specified category 2 and specially controlled substances in the “Specific Chemical Substances Prevention Regulations” and is strictly controlled. It is requested. Also, due to environmental concerns, benzene and toluene are designated as Class 1 Designated Chemical Substances under the PRTR Law, and are required to control their environmental emissions. Ethyl acetate is not a controlled substance under the Specified Chemical Substances Prevention Prevention Rules and the Chemical Substance Management Promotion Law, like benzene and toluene, and is a solvent that has less impact on the human body and the environment than benzene and toluene. It can be said that there is. Ethyl acetate is an ester compound formed by condensation of acetic acid and ethanol. It is one of the fruit odor components widely contained in natural fruit oils such as pineapples and bananas, and is also used as a component of food additives such as essences. Therefore, compared with toluene and benzene, which are conventional solvents for pressure-sensitive paints, there is less harm to the human body and strict handling is not required.

請求項3に記載の感圧塗料では、白金テトラキスペンタフルオロフェニルポルフィリン(PtTFPPパラジウムテトラキスペンタフルオロフェニルポルフィリン(PdTFPP白金オクタエチルポルフィリン(PtOEPパラジウムオクタエチルポルフィリン(PdOEP白金テトラフェニルポルフィリン(PtTPPパラジウムテトラフェニルポルフィリン(PdTPP又はポルフォラクトン化合物であるとした。
上記感圧塗料では、上記感圧色素を使用することにより、被測定物の表面に塗布して感圧センサの形態で使用する場合に、被測定物表面の圧力を精度良く計測することができる。
In the pressure-sensitive paint according to claim 3, platinum tetrakispentafluorophenylporphyrin ( PtTFPP ) , palladium tetrakispentafluorophenylporphyrin ( PdTFPP ) , platinum octaethylporphyrin ( PtOEP ) , palladium octaethylporphyrin ( PdOEP ) , platinum tetraphenyl Porphyrin ( PtTPP ) , palladium tetraphenylporphyrin ( PdTPP ) or a porpholactone compound was used.
In the pressure-sensitive paint, by using the pressure-sensitive dye, the pressure on the surface of the object to be measured can be accurately measured when applied to the surface of the object to be measured and used in the form of a pressure sensor. .

前記目的を達成するため、請求項4に記載の感圧センサは、請求項1から3の何れかに記載の感圧塗料を被測定物の外表面に塗布し薄膜固化することにより生成され且つ励起光を受けて圧力に応じて発光強度を変えることを特徴とする。
上記感圧センサでは、被測定物の表面の圧力データを発光データとして光学的に取り出すことが可能となる。そして取り出された発光データは、CCDカメラ等の光−電気変換デバイスによって電気信号に変換された後、コンピュータに取り込まれる。コンピュータ内では、所定の信号処理(画像処理)が成され、最終的には被測定物の表面の圧力データが連続圧力分布データとして視覚的に表示される。
In order to achieve the object, a pressure-sensitive sensor according to claim 4 is produced by applying the pressure-sensitive paint according to any one of claims 1 to 3 to the outer surface of the object to be measured and solidifying the thin film. It is characterized by receiving the excitation light and changing the emission intensity according to the pressure.
In the pressure sensor, pressure data on the surface of the object to be measured can be optically extracted as light emission data. The extracted light emission data is converted into an electrical signal by an optical-electrical conversion device such as a CCD camera and then captured by a computer. In the computer, predetermined signal processing (image processing) is performed, and finally, pressure data on the surface of the object to be measured is visually displayed as continuous pressure distribution data.

本発明の感圧塗料および感圧センサは下記の効果が期待出来る。
(1)本発明の感圧塗料および感圧センサは、温度依存性が従来の感圧塗料に比べ極めて小さいため、従来の感圧塗料において必要とされた温度補正用の感温塗料を使用することなく圧力計測精度を高めることが可能となる。
(2)また、温度補正用の感温塗料が不要となることにより、被測定物に対する計測範囲および姿勢についての特別な制約がなくなり、様々な流れ場の下で精度の高い圧力場の計測が可能となる。
(3)温度による計測誤差を受けにくいため圧力変化の小さい低速試験においても使用することができ、鉄道や自動車への適用が期待できる。
(4)トルエンやベンゼン等のその取り扱いに厳重な注意が必要とされる有機溶媒を使用しなくても塗料を作製することができる(人体に対する害が少ない。)。
(5)本発明に係るポリマーは酸素透過性薄膜として用いることができる。
(6)PtTFPPやPdTFPPのようなポルフィリン系感圧色素と本ポリマーを使用した感圧塗料は、可視波長域で励起することができるため、紫外波長域の光を透過する石英ガラスのような特殊なガラスは必要なく、一般的な光学窓ガラスを用いて計測することができる。また、上記感圧塗料は、励起光による光劣化に関して相対的に強い塗料である。
The pressure-sensitive paint and pressure sensor of the present invention can be expected to have the following effects.
(1) Since the temperature-sensitive paint and pressure-sensitive sensor of the present invention have extremely small temperature dependence as compared with the conventional pressure-sensitive paint, the temperature-sensitive paint for temperature correction required in the conventional pressure-sensitive paint is used. It is possible to improve pressure measurement accuracy without any problems.
(2) In addition, by eliminating the need for temperature-sensitive paint for temperature correction, there are no special restrictions on the measurement range and orientation of the object to be measured, and high-precision pressure fields can be measured under various flow fields. It becomes possible.
(3) Since it is less susceptible to measurement errors due to temperature, it can be used in low-speed tests with small pressure changes, and can be expected to be applied to railways and automobiles.
(4) A paint can be produced without using an organic solvent such as toluene or benzene, which requires strict attention to its handling (there is little harm to the human body).
(5) The polymer according to the present invention can be used as an oxygen permeable thin film.
(6) Pressure-sensitive paints using porphyrin-based pressure-sensitive dyes such as PtTFPP and PdTFPP and this polymer can excite in the visible wavelength range, so they are special like quartz glass that transmits light in the ultraviolet wavelength range. No glass is required, and measurement can be performed using a general optical window glass. The pressure-sensitive paint is a paint that is relatively strong with respect to light degradation caused by excitation light.

以下、図に示す実施の形態により本発明をさらに詳細に説明する。なお、これにより本発明が限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to embodiments shown in the drawings. Note that the present invention is not limited thereby.

図1は、本発明に係るポリメタクリル酸1,1,1,3,3,3-ヘキサフルオロイソプロピル(Poly(HFIPM))100の合成法を示す説明図である。
このPoly(HFIPM)100は、本発明の感圧塗料において感圧色素を薄膜固化するバインダーとして機能する。感圧塗料の感温特性は、塗料に含まれるポリマー(バインダー)に強く依存することが知られている。このPoly(HFIPM)100をバインダーとして使用することにより、感圧塗料の温度依存性(温度感度)を低減させることが出来る。具体的な合成方法としては、モノマーであるHFIPM 2gを乾燥トルエン 2.3mlに溶かし、これにアゾビスイソブチロニトリル(AIBN)53mgを加えて混合液を生成する。そして、その混合液を凍結させ、その凍結した混合液を真空チャンバに入れ、真空排気、窒素封入による窒素置換をし、再び凍結→真空排気→窒素置換の工程を例えば、5回繰り返し、この混合溶液から酸素を除去する。そして、この溶液を60℃の例えば、シリコーンのオイルバスで24時間加熱攪拌する。すると、重合の進行と共に白色固体が生じる。溶液部分を除去し、生成した白色固体を酢酸エチルで溶解し、ヘキサン中に注ぐことにより未反応のモノマー(HFIPM)を除去する。そして、白色沈殿を濾過により集め、真空乾燥後、白色固体(Poly(HFIPM))1.7gを得る。
FIG. 1 is an explanatory view showing a method for synthesizing polymethacrylic acid 1,1,1,3,3,3-hexafluoroisopropyl (Poly (HFIPM)) 100 according to the present invention.
This Poly (HFIPM) 100 functions as a binder for solidifying a pressure-sensitive dye into a thin film in the pressure-sensitive paint of the present invention. It is known that the temperature-sensitive characteristics of a pressure-sensitive paint strongly depend on the polymer (binder) contained in the paint. By using this Poly (HFIPM) 100 as a binder, the temperature dependence (temperature sensitivity) of the pressure-sensitive paint can be reduced. As a specific synthesis method, 2 g of HFIPM as a monomer is dissolved in 2.3 ml of dry toluene, and 53 mg of azobisisobutyronitrile (AIBN) is added thereto to form a mixed solution. Then, the mixed solution is frozen, the frozen mixed solution is put into a vacuum chamber, and the process of freezing → evacuating → replacement with nitrogen is repeated five times, for example, by evacuation and nitrogen replacement by nitrogen filling. Remove oxygen from the solution. Then, this solution is heated and stirred for 24 hours in a 60 ° C. silicone oil bath, for example. Then, a white solid is generated with the progress of polymerization. The solution portion is removed, and the resulting white solid is dissolved in ethyl acetate, and the unreacted monomer (HFIPM) is removed by pouring into hexane. The white precipitate is then collected by filtration, and after vacuum drying, 1.7 g of a white solid (Poly (HFIPM)) is obtained.

また、本発明の感圧塗料の感圧/感温特性評価試験において使用する感圧塗料の仕様およびサンプル基板の作製方法は下記の通りとなる。
(1)本発明の感圧塗料の仕様
感圧塗料は、感圧色素としてPtTFPP(5mg)と、バインダーとして本発明のPoly(HFIPM)(0.5g)と、溶媒として酢酸エチル(20ml)とを混合することにより作製した。なお、本ポリマー(Poly(HFIPM))は単独重合体であるが、例えばIBM(=isobutyl methacrylate)などの他のモノマーと共重合させてポリマー化させることも可能である。ただし、図8に示すように他のモノマーの共重合割合が大きくなると、感圧塗料の感温特性は悪くなる(温度感度が高くなる)。
(2)PSPサンプル基板の作製方法
PSPサンプル基板は、スプレーガンを用いて基板上に上記仕様の感圧塗料を塗装することにより作製した。なお、基板は、アルミ板を使用した。また、作製したPSPサンプル基板は45℃の環境下で2時間乾燥させた。感圧塗料が塗られた基板を、45℃を超える高温で乾燥させない理由は、模型(被測定物)に電子機器を挿入してから塗装する場合があるからであり、そのため機器が故障しないように環境温度を45℃以下に設定してある。
The specifications of the pressure-sensitive paint used in the pressure-sensitive / temperature-sensitive property evaluation test of the pressure-sensitive paint of the present invention and the method for producing the sample substrate are as follows.
(1) Specifications of the pressure-sensitive paint of the present invention The pressure-sensitive paint comprises PtTFPP (5 mg) as a pressure-sensitive dye, Poly (HFIPM) (0.5 g) of the present invention as a binder, and ethyl acetate (20 ml) as a solvent. It was prepared by mixing. The polymer (Poly (HFIPM)) is a homopolymer, but can be polymerized by copolymerization with other monomers such as IBM (= isobutyl methacrylate). However, as shown in FIG. 8, when the copolymerization ratio of other monomers increases, the temperature-sensitive characteristics of the pressure-sensitive paint deteriorate (temperature sensitivity increases).
(2) PSP sample substrate fabrication method
The PSP sample substrate was prepared by painting a pressure sensitive paint having the above specifications on the substrate using a spray gun. The substrate used was an aluminum plate. The produced PSP sample substrate was dried in an environment of 45 ° C. for 2 hours. The reason why the substrate coated with pressure-sensitive paint is not dried at a temperature higher than 45 ° C is that there is a case where an electronic device is inserted into the model (object to be measured) before painting, so that the device does not break down. The environmental temperature is set to 45 ℃ or less.

図2は、本発明の感圧塗料の感圧/感温特性を評価する感圧塗料較正試験装置を示す説明図である。
上記サンプル基板の発光特性評価(感圧/感温特性評価)はJAXA(宇宙航空研究開発機構)所有の感圧塗料較正試験装置(図2)を用いて行った。PSPサンプル基板にかかる圧力と温度をコントロールできる真空チャンバー(較正チャンバ)の中に上記PSPサンプル基板を置き、感圧塗料の発光強度の変化を水冷式CCDカメラで撮影して(発光)データを取得した。取得した発光データは、水冷式CCDカメラで電気信号に変換され、デジタルカメラ制御装置でA/D変換された後、画像処理コンピュータに取り込まれる。コンピュータ内部では所定の信号処理が成され、模型上の圧力データを視覚的に表示した連続圧力分布データが生成される。また、較正チャンバー内の圧力とPSPサンプル基板の温度、水冷式CCDカメラ、励起光源は各々独自のコントローラ(コンピュータ)で制御できるようになっている。
FIG. 2 is an explanatory diagram showing a pressure-sensitive paint calibration test apparatus for evaluating pressure-sensitive / temperature-sensitive characteristics of the pressure-sensitive paint of the present invention.
The sample substrate was evaluated for light emission characteristics (pressure / temperature sensitivity characteristics evaluation) using a pressure-sensitive paint calibration tester (Fig. 2) owned by JAXA (Japan Aerospace Exploration Agency). The PSP sample substrate is placed in a vacuum chamber (calibration chamber) that can control the pressure and temperature applied to the PSP sample substrate, and changes in the light emission intensity of the pressure-sensitive paint are photographed with a water-cooled CCD camera to obtain (light emission) data. did. The acquired light emission data is converted into an electrical signal by a water-cooled CCD camera, A / D converted by a digital camera control device, and then taken into an image processing computer. Predetermined signal processing is performed inside the computer, and continuous pressure distribution data that visually displays the pressure data on the model is generated. The pressure in the calibration chamber, the temperature of the PSP sample substrate, the water-cooled CCD camera, and the excitation light source can be controlled by their own controllers (computers).

励起光ヘッドの前面には、本感圧塗料に適合した波長帯の励起光のみを選択的に透過させるバンドパスフィルタ(380-530mm)が取り付けられている。また、水冷式CCDカメラの前面にはPSPサンプル基板からの発光光のみを選択的に透過させるバンドパスフィルタ(590-710mm)が取り付けられている。なお、感圧色素としてPtTFPPを利用したPSPサンプル基板の発光ピークは波長が650mm付近にある。   A band-pass filter (380-530 mm) that selectively transmits only excitation light having a wavelength band suitable for the pressure-sensitive paint is attached to the front surface of the excitation light head. A band-pass filter (590-710 mm) that selectively transmits only the light emitted from the PSP sample substrate is attached to the front surface of the water-cooled CCD camera. The emission peak of the PSP sample substrate using PtTFPP as the pressure sensitive dye has a wavelength of around 650 mm.

図3は、本発明の感圧塗料の感温特性を示す説明図である。なお、比較例としてPoly(IBM-co-TFEM)をポリマー(バインダー)とした、JAXAがこれまで使用してきた従来の感圧塗料の感温特性を図4において示した。
本発明の感圧塗料は、温度感度が約0.37%/℃(@100kPa)であり、対する従来の感圧塗料の温度感度は約0.94%/℃(@100kPa)であった。従って、本発明の感圧塗料は、従来の感圧塗料に比べ温度感度特性(温度依存性)が格段に小さくなっていることが分かる。
FIG. 3 is an explanatory diagram showing the temperature sensitivity characteristics of the pressure-sensitive paint of the present invention. As a comparative example, FIG. 4 shows the temperature sensitivity characteristics of conventional pressure-sensitive paints that JAXA has used so far, using Poly (IBM-co-TFEM) as a polymer (binder).
The pressure sensitive paint of the present invention had a temperature sensitivity of about 0.37% / ° C. (@ 100 kPa), and the temperature sensitivity of the conventional pressure sensitive paint was about 0.94% / ° C. (@ 100 kPa). Therefore, it can be seen that the pressure-sensitive paint of the present invention has much lower temperature sensitivity characteristics (temperature dependence) than the conventional pressure-sensitive paint.

図5は、本発明の感圧塗料の感圧特性を示す説明図である。なお、比較例としてPoly(IBM-co-TFEM)をポリマー(バインダー)として使用した従来の感圧塗料の感圧特性を図6において示した。
本発明の感圧塗料は、圧力に対して発光強度が大きく変化し圧力感度が高いことが分かる。この圧力感度は従来の感圧塗料と比較しても遜色ない感度である。
FIG. 5 is an explanatory diagram showing the pressure-sensitive characteristics of the pressure-sensitive paint of the present invention. As a comparative example, the pressure-sensitive characteristics of a conventional pressure-sensitive paint using Poly (IBM-co-TFEM) as a polymer (binder) are shown in FIG.
It can be seen that the pressure-sensitive paint of the present invention has a high pressure sensitivity due to a large change in emission intensity with respect to pressure. This pressure sensitivity is comparable to conventional pressure sensitive paints.

上記図3〜図6から、バインダーとしてのポリメタクリル酸1,1,1,3,3,3-ヘキサフルオロイソプロピルPoly(HFIPM)は、感圧塗料の感圧特性を劣化させずに温度感度特性(温度依存性)のみを好適に低減させる効果を有することが分かる。   From Fig. 3 to Fig. 6, polymethacrylic acid 1,1,1,3,3,3-hexafluoroisopropyl poly (HFIPM) as a binder has temperature sensitivity characteristics without degrading the pressure sensitive characteristics of pressure sensitive paints. It turns out that it has the effect of reducing only (temperature dependence) suitably.

ところで、感圧塗料(感圧センサ)の温度依存性を小さくするために、塗料の乾燥時にアニーリング処理(高温加熱処理)を行うことが有効であるという報告がある。
しかし、本発明に係る感圧塗料の場合は、図7に示すように、常温(室温)乾燥によって得られたPSPサンプル基板についても、0〜50℃の温度範囲において、45℃加熱乾燥によって得られたPSPサンプル基板(図3)と同程度の低温度感度を有する結果となった。従って、本発明の感圧塗料に対しては、その温度依存性を小さくすることを目的とするアニーリング処理は特に必要ないものと考える。
By the way, in order to reduce the temperature dependence of the pressure-sensitive paint (pressure sensor), there is a report that it is effective to perform an annealing process (high-temperature heating process) when the paint is dried.
However, in the case of the pressure-sensitive paint according to the present invention, as shown in FIG. 7, the PSP sample substrate obtained by drying at room temperature (room temperature) is also obtained by drying at 45 ° C. in the temperature range of 0 to 50 ° C. As a result, the obtained PSP sample substrate (FIG. 3) has the same low temperature sensitivity. Therefore, it is considered that the pressure-sensitive paint of the present invention does not particularly require an annealing treatment for the purpose of reducing its temperature dependence.

また、本発明の感圧塗料のその他の特徴として、感圧色素とポリマーを溶解させる溶媒が酢酸エチルであることが挙げられる。酢酸エチルは、ベンゼンなどのその取り扱いが厳しく指導される溶媒ではなく、人体に対する害は少ない。また、酢酸エチルの沸点は、約77℃なので乾燥が速く、重ね塗りのために時間を取られる事がない。   Another characteristic of the pressure-sensitive paint of the present invention is that the solvent for dissolving the pressure-sensitive dye and the polymer is ethyl acetate. Ethyl acetate is not a solvent that is strictly instructed to handle such as benzene, and has little harm to the human body. Further, since the boiling point of ethyl acetate is about 77 ° C., drying is fast and time is not taken for repeated coating.

ところで、上記実施例のポリマー(Poly(HFIPM))は、HFIPMが単独重合して出来たポリマーであったが、例えばIBM(=isobutyl methacrylate)などの他のモノマーと共重合させてポリマー化することも可能である。図8は、HFIPMとIBMの共重合割合(組成割合)を変えてポリマー化した時の感圧塗料の温度特性を示す説明図である。
このポリマー評価試験では、共重合割合の最適化を図るため、組成割合(IBMとHFIPMの割合)を変えて感圧塗料の温度特性を評価した。図8(a)に組成割合のデータを示す。ここで、fHFIPMは重合時の仕込みモル分率を表す。従って、fHFIPM=1のときはHFIPMが100%で、fHFIPM=0のときはIBMが100%である。なお、ポリマーと感圧色素および、溶媒の分量は次の通りである。ポリマー:0.3g、溶媒:12ml、感圧色素(PtTFPP):3mg。
図8(b)の感圧塗料の温度感度特性から、HFIPMの割合が高くなるほど温度感度が低下することがわかる。結果として、HFIPMのみ(#22)の特性が最も良かった。なお、感圧特性に関しては、共重合割合を変えても従来通りの特性を得ている。
By the way, the polymer (Poly (HFIPM)) of the above-mentioned example was a polymer obtained by homopolymerizing HFIPM, but it can be polymerized by copolymerizing with other monomers such as IBM (= isobutyl methacrylate). Is also possible. FIG. 8 is an explanatory diagram showing temperature characteristics of the pressure-sensitive paint when polymerized by changing the copolymerization ratio (composition ratio) of HFIPM and IBM.
In this polymer evaluation test, the temperature characteristics of pressure-sensitive paints were evaluated by changing the composition ratio (the ratio of IBM and HFIPM) in order to optimize the copolymerization ratio. FIG. 8 (a) shows composition ratio data. Here, f HFIPM represents the charged mole fraction at the time of polymerization. Therefore, when f HFIPM = 1, HFIPM is 100%, and when f HFIPM = 0, IBM is 100%. The amount of the polymer, the pressure sensitive dye and the solvent is as follows. Polymer: 0.3 g, solvent: 12 ml, pressure sensitive dye (PtTFPP): 3 mg.
From the temperature sensitivity characteristics of the pressure-sensitive paint in FIG. 8 (b), it can be seen that the temperature sensitivity decreases as the ratio of HFIPM increases. As a result, the characteristics of HFIPM alone (# 22) were the best. In addition, regarding the pressure-sensitive property, the conventional property is obtained even if the copolymerization ratio is changed.

また、ポリマー(バインダー)としてPoly(HFIPM)を使用し、溶媒として酢酸エチルを使用することは上記と同様であるが、上記感圧色素に、励起スペクトル帯域がその感圧色素と重複し、且つ発光スペクトル帯域はその感圧色素と分離可能である感温色素を添加して感圧塗料(複合塗料)を作製することが可能である。この複合塗料は、感圧色素の発光スペクトル帯域と感温色素の発光スペクトル帯域が波長的(光学的)に分離可能であり、更に、感温色素の圧力感度が極めて小さい場合は、感圧色素の発光(ピーク)から圧力に関する情報を、他方、感温色素の発光(ピーク)から温度に関する情報を別個独立に得ることが可能となる。従って、この複合塗料を被測定物の外表面に塗布し、励起光を照射して発光強度分布をCCDカメラで計測し所定の画像処理を行うことにより、圧力場の精度良い計測と、温度場の精度良い計測を同時に行うことが可能となる。   Further, using Poly (HFIPM) as the polymer (binder) and using ethyl acetate as the solvent is the same as above, but the excitation spectral band overlaps with the pressure sensitive dye, and It is possible to produce a pressure-sensitive paint (composite paint) by adding a temperature-sensitive dye whose emission spectrum band is separable from the pressure-sensitive dye. This composite paint can separate the emission spectrum band of the pressure-sensitive dye and the emission spectrum band of the temperature-sensitive dye in terms of wavelength (optical), and if the pressure sensitivity of the temperature-sensitive dye is extremely small, the pressure-sensitive dye On the other hand, information on the pressure can be obtained independently from the light emission (peak), and information on the temperature can be obtained independently from the light emission (peak) of the thermosensitive dye. Therefore, by applying this composite paint to the outer surface of the object to be measured, irradiating excitation light, measuring the emission intensity distribution with a CCD camera and performing predetermined image processing, the pressure field can be accurately measured and the temperature field It is possible to perform highly accurate measurement simultaneously.

本発明の感圧塗料および感圧センサは、以下の分野への利用可能性がある。
(1)熱流体計測分野:物体表面圧力を精度良く計測することができる。
(2)マイクロ分野:分子センサーであるためマイクロ物体の計測に適用できる。
(3)バイオ・環境分野:液体や気体中の酸素濃度を計測することができる。
(4)輸送系分野:航空機だけでなく、鉄道や自動車分野への適用が可能である。
(5)スポーツ分野:航空機だけでなく、スキーなどの高速のスピードを伴うスポーツに適用可能である。
The pressure-sensitive paint and pressure-sensitive sensor of the present invention can be used in the following fields.
(1) Thermal fluid measurement field: It is possible to accurately measure the object surface pressure.
(2) Micro field: Since it is a molecular sensor, it can be applied to measurement of micro objects.
(3) Bio / environment field: The oxygen concentration in a liquid or gas can be measured.
(4) Transportation field: It can be applied not only to aircraft but also to railways and automobiles.
(5) Sports field: Applicable to sports involving high speed such as skiing as well as aircraft.

本発明に係るポリメタクリル酸1,1,1,3,3,3-ヘキサフルオロイソプロピル(Poly(HFIPM))の合成法を示す説明図である。It is explanatory drawing which shows the synthesis method of the polymethacrylic acid 1,1,1,3,3,3-hexafluoroisopropyl (Poly (HFIPM)) which concerns on this invention. 本発明の感圧塗料の感圧/感温特性を評価する感圧塗料較正試験装置を示す説明図である。It is explanatory drawing which shows the pressure sensitive paint calibration test apparatus which evaluates the pressure sensitive / temperature sensitive characteristic of the pressure sensitive paint of this invention. 本発明の感圧塗料の感温特性を示す説明図である。It is explanatory drawing which shows the temperature sensitivity characteristic of the pressure sensitive paint of this invention. バインダーとしてPoly(IBM-co-TFEM)を使用した従来の感圧塗料の感温特性を示す説明図である。It is explanatory drawing which shows the temperature sensitivity characteristic of the conventional pressure sensitive paint which uses Poly (IBM-co-TFEM) as a binder. 本発明の感圧塗料の感圧特性を示す説明図である。It is explanatory drawing which shows the pressure-sensitive characteristic of the pressure-sensitive paint of this invention. バインダーとしてPoly(IBM-co-TFEM)を使用した従来の感圧塗料の感圧特性を示す説明図である。It is explanatory drawing which shows the pressure-sensitive characteristic of the conventional pressure-sensitive coating material which uses Poly (IBM-co-TFEM) as a binder. 常温乾燥された本発明の感圧塗料の感温特性を示す説明図である。It is explanatory drawing which shows the temperature sensitivity characteristic of the pressure sensitive paint of this invention dried at normal temperature. HFIPMとIBMの共重合割合(組成割合)を変えてポリマー化した時の感圧塗料の温度特性を示す説明図である。It is explanatory drawing which shows the temperature characteristic of a pressure-sensitive coating material when it polymerizes by changing the copolymerization ratio (composition ratio) of HFIPM and IBM.

符号の説明Explanation of symbols

100 Poly(HFIPM)   100 Poly (HFIPM)

Claims (4)

圧力に応じた発光特性を示す感圧色素と、該感圧色素を物体表面に固着させるポリマーがバインダーとして溶媒に溶解されて成る感圧塗料であって、
前記ポリマーはメタクリル酸1,1,1,3,3,3−ヘキサフルオロイソプロピル(HFIPM)が単独重合して出来た高分子化合物(Poly(HFIPM))、または該HFIPMとメタクリル酸イソブチル(IBM)との共重合高分子化合物であることを特徴とする感圧塗料。
A pressure-sensitive coating material comprising a pressure-sensitive dye exhibiting light-emitting characteristics corresponding to pressure and a polymer for fixing the pressure-sensitive dye to an object surface dissolved in a solvent as a binder,
The polymer is a polymer compound (Poly (HFIPM)) obtained by homopolymerization of 1,1,1,3,3,3-hexafluoroisopropyl methacrylate (HFIPM), or the HFIPM and isobutyl methacrylate (IBM). A pressure sensitive paint characterized in that it is a copolymerized polymer compound.
前記溶媒は、酢酸エチルである請求項1に記載の感圧塗料。   The pressure-sensitive paint according to claim 1, wherein the solvent is ethyl acetate. 前記感圧色素は、白金テトラキスペンタフルオロフェニルポルフィリン(PtTFPPパラジウムテトラキスペンタフルオロフェニルポルフィリン(PdTFPP白金オクタエチルポルフィリン(PtOEPパラジウムオクタエチルポルフィリン(PdOEP白金テトラフェニルポルフィリン(PtTPPパラジウムテトラフェニルポルフィリン(PdTPP又はポルフォラクトン化合物である請求項1又は2に記載の感圧塗料。 The pressure-sensitive dye includes platinum tetrakispentafluorophenylporphyrin ( PtTFPP ) , palladium tetrakispentafluorophenylporphyrin ( PdTFPP ) , platinum octaethylporphyrin ( PtOEP ) , palladium octaethylporphyrin ( PdOEP ) , platinum tetraphenylporphyrin ( PtTPP ) , The pressure-sensitive paint according to claim 1 or 2, which is palladium tetraphenylporphyrin ( PdTPP ) or a porpholactone compound. 請求項1から3の何れかに記載の感圧塗料を被測定物の外表面に塗布し薄膜固化することにより生成され且つ励起光を受けて圧力に応じて発光強度を変えることを特徴とする感圧センサ。   The pressure-sensitive paint according to any one of claims 1 to 3 is generated by applying the pressure-sensitive paint to the outer surface of the object to be measured and solidifying the thin film, and receives the excitation light and changes the emission intensity according to the pressure. Pressure sensitive sensor.
JP2008187174A 2008-07-18 2008-07-18 Pressure-sensitive paint and pressure sensor with reduced temperature sensitivity Active JP5544561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008187174A JP5544561B2 (en) 2008-07-18 2008-07-18 Pressure-sensitive paint and pressure sensor with reduced temperature sensitivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008187174A JP5544561B2 (en) 2008-07-18 2008-07-18 Pressure-sensitive paint and pressure sensor with reduced temperature sensitivity

Publications (2)

Publication Number Publication Date
JP2010024348A JP2010024348A (en) 2010-02-04
JP5544561B2 true JP5544561B2 (en) 2014-07-09

Family

ID=41730465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008187174A Active JP5544561B2 (en) 2008-07-18 2008-07-18 Pressure-sensitive paint and pressure sensor with reduced temperature sensitivity

Country Status (1)

Country Link
JP (1) JP5544561B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5700492B2 (en) * 2009-09-11 2015-04-15 独立行政法人 宇宙航空研究開発機構 Composite pressure-sensitive paint that suppresses degradation of luminescent properties

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3653536B2 (en) * 2002-06-21 2005-05-25 独立行政法人航空宇宙技術研究所 Optical oxygen concentration measuring method and optical oxygen concentration measuring sensor
JP2005029767A (en) * 2003-07-11 2005-02-03 National Aerospace Laboratory Of Japan Pressure/temperature sensitive composite functional paint
JP2005075923A (en) * 2003-08-29 2005-03-24 National Aerospace Laboratory Of Japan Pressure sensitive coating material using fluorine-based polymer
JP3896488B2 (en) * 2004-06-14 2007-03-22 独立行政法人 宇宙航空研究開発機構 Pressure-sensitive paint with pressure-sensitive dye supported on fluoropolymer and its production method

Also Published As

Publication number Publication date
JP2010024348A (en) 2010-02-04

Similar Documents

Publication Publication Date Title
EP2635624B1 (en) Optical sensor and sensing system for oxygen monitoring in fluids using molybdenum cluster phosphorescence
JP2006519381A (en) Optical CO2 sensor and integrated O2 / CO2 sensor
US10161876B2 (en) Polydiacetylene and polydiacetylene/ZnO nanocomposite sensors
DK201370617A1 (en) Sol-gel based matrix
EP3502670B1 (en) Environmental sensor
TW201031907A (en) UV-curing resin status estimation method
JP2010024395A (en) Pressure-sensitive coating material, object, and method for measuring surface pressure of object
JP5544561B2 (en) Pressure-sensitive paint and pressure sensor with reduced temperature sensitivity
Higgins et al. Novel hybrid optical sensor materials for in-breath O 2 analysis
JP5004228B2 (en) Three-layer pressure-sensitive paint thin film sensor
JP3896488B2 (en) Pressure-sensitive paint with pressure-sensitive dye supported on fluoropolymer and its production method
Claucherty et al. An optical-chemical sensor using pyrene-sulfonic acid for unsteady surface pressure measurements
JP5424183B2 (en) Compound molecular sensor
JP2005105160A (en) Low-oxygen-pressure-sensitive coating material and method for producing the same
Stich et al. Fluorescence sensing and imaging using pressure-sensitive paints and temperature-sensitive paints
Gouveia et al. Measurement of CO2 using refractometric fiber optic sensors
Basu et al. A novel pyrene-based binary pressure sensitive paint with low temperature coefficient and improved stability
Shi et al. Polymerizable Oxygen Probe Derived from Platinum-Based Porphyrins for Oxygen Sensing and Pressure-Sensitive Paints
CN104374761A (en) Measuring device and testing method of response time of thermosensitive coating by pulse laser heating method
CN108088821B (en) High-precision air film cooling efficiency testing method based on pressure sensitive paint
JP5700492B2 (en) Composite pressure-sensitive paint that suppresses degradation of luminescent properties
Shi et al. Synthesis of fluorinated copolymers and their applications as pressure‐responsive materials
JP6168509B2 (en) Polymer-linked composite molecular paint and sensor using the same
CN115141527B (en) Multilayer structure pressure sensitive paint layer and preparation method and application thereof
JP2021018176A (en) Method and kit for detecting formaldehyde

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140418

R150 Certificate of patent or registration of utility model

Ref document number: 5544561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250