JP2010024395A - Pressure-sensitive coating material, object, and method for measuring surface pressure of object - Google Patents

Pressure-sensitive coating material, object, and method for measuring surface pressure of object Download PDF

Info

Publication number
JP2010024395A
JP2010024395A JP2008189605A JP2008189605A JP2010024395A JP 2010024395 A JP2010024395 A JP 2010024395A JP 2008189605 A JP2008189605 A JP 2008189605A JP 2008189605 A JP2008189605 A JP 2008189605A JP 2010024395 A JP2010024395 A JP 2010024395A
Authority
JP
Japan
Prior art keywords
pressure
solid particles
sensitive material
sensitive
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008189605A
Other languages
Japanese (ja)
Other versions
JP5509470B2 (en
Inventor
Masaharu Kameda
正治 亀田
Kazuyuki Nakakita
和之 中北
Yutaka Amao
豊 天尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aerospace Exploration Agency JAXA
Tokyo University of Agriculture and Technology NUC
Tokyo University of Agriculture
Oita University
Original Assignee
Japan Aerospace Exploration Agency JAXA
Tokyo University of Agriculture and Technology NUC
Tokyo University of Agriculture
Oita University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aerospace Exploration Agency JAXA, Tokyo University of Agriculture and Technology NUC, Tokyo University of Agriculture, Oita University filed Critical Japan Aerospace Exploration Agency JAXA
Priority to JP2008189605A priority Critical patent/JP5509470B2/en
Publication of JP2010024395A publication Critical patent/JP2010024395A/en
Application granted granted Critical
Publication of JP5509470B2 publication Critical patent/JP5509470B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pressure-sensitive coating material which can be easily uniformly applied on the surfaces of various objects and has excellent adherability and high time response, and to provide the object, and a method for measuring the surface pressure of the object. <P>SOLUTION: The pressure sensitive coating material is slurry containing at least one kind of pressure-sensitive material selected from porphyrin-based compounds, ruthenium complexes and aromatic hydrocarbons and solid particles of at least one kind selected from silica, alumina, titanium oxide, ceria, magnesia, zinc oxide and calcium carbonate. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、感圧塗料、ならびに物体の表面圧力の測定方法に関する。   The present invention relates to a pressure-sensitive paint and a method for measuring the surface pressure of an object.

航空機やロケット機体に及ぼす圧力分布を調べるために、航空機やロケット機体の模型の表面に感圧塗料(PSP)を塗布して、該表面の圧力分布を風洞中で測定する技術が開発されている(特開2005−29767号公報)。   In order to investigate the pressure distribution exerted on aircraft and rocket aircraft, a technology has been developed to apply pressure sensitive paint (PSP) to the surface of aircraft and rocket aircraft models and measure the pressure distribution on the surface in a wind tunnel. (Japanese Unexamined Patent Application Publication No. 2005-29767).

感圧塗料を用いた圧力分布測定では、白金またはパラジウムを中心金属とするポルフィリン(PtTFPP,PtOEP,PdTFPP等)等の化学物質が感圧材として用いられる。上記化学物質は、酸素の存在によりルミネッセンス(蛍光・リン光)を放出し、周囲の酸素濃度に依存して発光強度が変化する性質を有する。したがって、感圧塗料を用いた圧力分布測定では、模型表面の感圧材が生成するルミネッセンスの強度を測定することにより、該ルミネッセンスに対応する圧力を検出する。これにより、模型の表面全体にわたって緻密な圧力分布を得ることができる。   In pressure distribution measurement using a pressure-sensitive paint, a chemical substance such as porphyrin (PtTFPP, PtOEP, PdTFPP, etc.) having platinum or palladium as a central metal is used as a pressure-sensitive material. The chemical substance emits luminescence (fluorescence / phosphorescence) in the presence of oxygen, and has a property that the emission intensity changes depending on the surrounding oxygen concentration. Therefore, in the pressure distribution measurement using the pressure sensitive paint, the pressure corresponding to the luminescence is detected by measuring the intensity of the luminescence generated by the pressure sensitive material on the model surface. Thereby, a precise pressure distribution can be obtained over the entire surface of the model.

感圧塗料を用いた圧力測定は、一般に用いられている半導体圧力センサによる圧力測定と比較して、3次元物体表面の圧力分布が簡便に得られ、かつ、非接触で測定できるという利点を有する。   The pressure measurement using pressure-sensitive paint has the advantage that the pressure distribution on the surface of a three-dimensional object can be obtained easily and can be measured in a non-contact manner, compared with the pressure measurement by a commonly used semiconductor pressure sensor. .

特開2005−29767号公報には、バインダーとしてポリマーを含む感圧塗料を用いた表面圧力の測定が開示されている。しかしながら、この感圧塗料を用いて被膜を物体表面に形成した場合、物体表面の感圧材をポリマーが覆ってしまい、感圧材の応答速度が低い場合がある。
特開2005−29767号公報
Japanese Patent Application Laid-Open No. 2005-29767 discloses measurement of surface pressure using a pressure-sensitive paint containing a polymer as a binder. However, when a film is formed on the object surface using this pressure-sensitive paint, the pressure-sensitive material on the object surface may be covered with the polymer, and the response speed of the pressure-sensitive material may be low.
JP 2005-29767 A

本発明は、様々な物体表面に簡便にかつ均一にコーティングすることができ、付着性に優れかつ圧力感度が高い高速応答性の感圧塗料、ならびに物体および物体の表面圧力の測定方法を提供する。   The present invention provides a high-speed responsive pressure-sensitive paint that can easily and uniformly coat various object surfaces, has excellent adhesion, and has high pressure sensitivity, and a method for measuring the surface pressure of objects and objects. .

本発明の一態様の感圧塗料は、感圧材および固体粒子を含むスラリーである。   The pressure-sensitive paint of one embodiment of the present invention is a slurry containing a pressure-sensitive material and solid particles.

上記感圧塗料において、前記固体粒子の平均粒径が10nm〜1μmであることができる。   In the pressure-sensitive paint, the solid particles may have an average particle size of 10 nm to 1 μm.

上記感圧塗料において、前記固体粒子は、シリカ、アルミナ、酸化チタン、セリア、マグネシア、酸化亜鉛、および炭酸カルシウムから選ばれる少なくとも1種であることができる。   In the pressure-sensitive paint, the solid particles may be at least one selected from silica, alumina, titanium oxide, ceria, magnesia, zinc oxide, and calcium carbonate.

上記感圧塗料において、前記感圧材は、ポルフィリン系化合物、ルテニウム錯体、および芳香族炭化水素から選ばれる少なくとも1種であることができる。   In the pressure-sensitive paint, the pressure-sensitive material may be at least one selected from a porphyrin compound, a ruthenium complex, and an aromatic hydrocarbon.

本発明の別の一態様の物体の表面圧力の測定方法は、上記感圧塗料を用いて物体の表面に被膜を形成する工程と、前記被膜を含む前記物体の表面圧力を測定する工程と、を含む。   The method for measuring the surface pressure of an object according to another aspect of the present invention includes a step of forming a film on the surface of the object using the pressure-sensitive paint, a step of measuring the surface pressure of the object including the film, including.

上記物体の表面圧力の測定方法において、前記被膜の膜厚は1μm〜20μmであることができる。   In the method for measuring the surface pressure of the object, the thickness of the coating film may be 1 μm to 20 μm.

本発明の他の一態様の物体は、感圧材と平均粒径が10nm〜1μmである固体粒子とを含む被膜を有する。   The object of another embodiment of the present invention has a coating film including a pressure-sensitive material and solid particles having an average particle diameter of 10 nm to 1 μm.

上記物体において、前記被膜の膜厚は1μm〜20μmであることができる。   In the object, the thickness of the coating film may be 1 μm to 20 μm.

上記物体において、前記固体粒子は、シリカ、アルミナ、酸化チタン、セリア、マグネシア、酸化亜鉛、および炭酸カルシウムから選ばれる少なくとも1種であることができる。   In the above object, the solid particles may be at least one selected from silica, alumina, titanium oxide, ceria, magnesia, zinc oxide, and calcium carbonate.

上記物体において、前記感圧材は、ポルフィリン系化合物、ルテニウム錯体、および芳香族炭化水素から選ばれる少なくとも1種であることができる。   In the above object, the pressure sensitive material may be at least one selected from a porphyrin compound, a ruthenium complex, and an aromatic hydrocarbon.

上記感圧塗料は、感圧材および固体粒子を含むスラリーであることにより、様々な物体表面に簡便にかつ均一にコーティングすることができ、付着性に優れかつ感度が高い被膜を形成することができるため、上記物体の表面圧力を測定する際には、高精度で高速応答性に優れた圧力測定が可能である。   Since the pressure-sensitive paint is a slurry containing a pressure-sensitive material and solid particles, it can easily and uniformly coat various object surfaces, and can form a film with excellent adhesion and high sensitivity. Therefore, when measuring the surface pressure of the object, it is possible to perform pressure measurement with high accuracy and excellent high-speed response.

また、上記感圧塗料によれば、感圧材と平均粒径が10nm〜1μmである固体粒子とを含む多孔質被膜を有するため、高精度で高速応答性に優れた表面圧力の測定が可能である。   In addition, the pressure-sensitive paint has a porous coating that includes a pressure-sensitive material and solid particles having an average particle diameter of 10 nm to 1 μm, so that the surface pressure can be measured with high accuracy and excellent high-speed response. It is.

さらに、上記物体の表面圧力の測定方法によれば、上記感圧塗料を用いて物体の表面に被膜を形成する工程により、付着性に優れかつ感度が高い被膜を様々な物体表面に簡便にかつ均一に形成することができ、かつ、前記被膜を含む前記物体の表面圧力を測定する工程により、様々な物体表面での圧力感度の測定を高精度かつ高速応答性で行なうことができる。   Furthermore, according to the method for measuring the surface pressure of the object, the process of forming a film on the surface of the object using the pressure-sensitive paint makes it possible to easily and easily form a film having excellent adhesion and high sensitivity on various object surfaces. The pressure sensitivity on various object surfaces can be measured with high accuracy and high-speed response by the step of measuring the surface pressure of the object including the coating film, which can be formed uniformly.

以下に、本発明の一実施形態の感圧塗料、ならびに物体および物体の表面圧力の測定方法について詳細に説明する。   Hereinafter, a pressure-sensitive paint according to an embodiment of the present invention and a method for measuring an object and the surface pressure of the object will be described in detail.

1.感圧塗料、ならびに物体および物体の表面圧力の測定方法
1.1.感圧塗料
本発明の一実施形態の感圧塗料は、感圧材および固体粒子を含むスラリーである。
1. Pressure sensitive paint and method for measuring objects and surface pressure of objects 1.1. Pressure-sensitive paint The pressure-sensitive paint of one embodiment of the present invention is a slurry containing a pressure-sensitive material and solid particles.

1.1.1.感圧材
感圧材は、酸素分圧に応じてルミネッセンス(蛍光・リン光)を放出する化合物である。酸素濃度は雰囲気ガス中の分圧に比例するため、感圧材を用いた物体表面の圧力測定では、感圧材が存在する領域の発光強度を測定することにより、当該領域における圧力を得ることができる。
1.1.1. Pressure-sensitive material The pressure-sensitive material is a compound that emits luminescence (fluorescence / phosphorescence) in accordance with the oxygen partial pressure. Since the oxygen concentration is proportional to the partial pressure in the atmospheric gas, when measuring the pressure on the surface of an object using a pressure sensitive material, the pressure in that region is obtained by measuring the emission intensity in the region where the pressure sensitive material is present. Can do.

感圧材は、発光効率および光安定性が良好であり、かつ入手が容易である点で、例えば、ポルフィリン系化合物、ルテニウム錯体、および芳香族炭化水素から選ばれる少なくとも1種であることが好ましい。   The pressure-sensitive material is preferably at least one selected from, for example, a porphyrin-based compound, a ruthenium complex, and an aromatic hydrocarbon, from the viewpoints of good luminous efficiency and light stability and easy availability. .

ポルフィリン系化合物としては、例えば、PtTFPP、PtOEPP等の白金−ポルフィリン錯体、PdTFPP等のパラジウム−ポルフィリン錯体が挙げられる。ルテニウム錯体としては、例えば、Ru(dpp)等のルテニウム−ジフェニルホスフィン錯体が挙げられる。芳香族炭化水素としては、例えば、ピレン等の多環式芳香族炭化水素が挙げられる。 Examples of porphyrin compounds include platinum-porphyrin complexes such as PtTFPP and PtOEPP, and palladium-porphyrin complexes such as PdTFPP. Examples of the ruthenium complex include a ruthenium-diphenylphosphine complex such as Ru (dpp) 3 . Examples of the aromatic hydrocarbon include polycyclic aromatic hydrocarbons such as pyrene.

本実施形態の感圧塗料における感圧材の使用量は固体粒子に対して、0.1〜10質量%であることが好ましく、0.3〜3質量%であることがより好ましい。感圧材の使用量が10質量%を超えると、発光強度が飽和し,圧力感度が低下する場合があり、一方、0.1質量%未満であると、十分な発光強度が得られない場合がある。また、感圧材はスラリーに溶解した状態で存在することが好ましい。感圧材がスラリーに溶解していないと、スラリーを用いて物体表面に被膜を形成する際に、感圧材が物体表面に不均一に存在する結果、物体表面の圧力測定を高精度で行なうことができない場合がある。   The amount of the pressure-sensitive material used in the pressure-sensitive paint of this embodiment is preferably 0.1 to 10% by mass and more preferably 0.3 to 3% by mass with respect to the solid particles. If the amount of the pressure sensitive material used exceeds 10% by mass, the light emission intensity may be saturated and the pressure sensitivity may decrease. On the other hand, if it is less than 0.1% by mass, sufficient light emission intensity may not be obtained. There is. Moreover, it is preferable that a pressure sensitive material exists in the state melt | dissolved in the slurry. If the pressure-sensitive material is not dissolved in the slurry, when the coating is formed on the object surface using the slurry, the pressure-sensitive material is unevenly present on the object surface. It may not be possible.

1.1.2.固体粒子
固体粒子は、比表面積が大きいため、表面で酸素と接触する面積(単位体積あたり)が大きく、かつ、本実施形態の感圧塗料を塗布した物体の表面に感圧材を均一に配置することができる点で、平均粒径が10nm〜1μmであるのが好ましく、10nm〜100nmであるのがより好ましい。上記平均粒径が1μmを超えると、スラリー中で固体粒子が沈殿しやすくなり、スラリーの分散性が低下する場合があり、さらには、物体表面での付着性が低下し、被膜が剥がれ易い場合がある。
1.1.2. Solid particles Since the solid particles have a large specific surface area, the surface area (per unit volume) in contact with oxygen is large, and the pressure sensitive material is evenly placed on the surface of the object to which the pressure sensitive paint of this embodiment is applied. The average particle diameter is preferably 10 nm to 1 μm, and more preferably 10 nm to 100 nm, in that it can be performed. When the average particle size exceeds 1 μm, solid particles are likely to be precipitated in the slurry, and the dispersibility of the slurry may be reduced. Further, the adhesion on the object surface is reduced, and the film is easily peeled off. There is.

固体粒子は、無機粒子、有機粒子、および無機有機複合粒子から選ばれる少なくとも1種であってもよい。例えば、固体粒子は、シリカ、アルミナ、セリア、マグネシア、酸化チタン(好ましくはルチル型結晶)、酸化亜鉛、および炭酸カルシウムから選ばれる少なくとも1種であることが好ましく、シリカまたはアルミナであることがより好ましい。   The solid particles may be at least one selected from inorganic particles, organic particles, and inorganic-organic composite particles. For example, the solid particles are preferably at least one selected from silica, alumina, ceria, magnesia, titanium oxide (preferably rutile crystals), zinc oxide, and calcium carbonate, and more preferably silica or alumina. preferable.

本実施形態の感圧塗料における固体粒子の使用量はスラリーに対して、1〜30質量%であることが好ましく、5〜20質量%であることがより好ましく、10〜15質量%であることがさらに好ましい。固体粒子の使用量が30質量%を超えると、塗料中の固体粒子の分散性が悪くなる場合があり、一方、1質量%未満であると、被膜を形成するために必要な塗布回数が非常に増える場合がある。   The amount of solid particles used in the pressure-sensitive paint of this embodiment is preferably 1 to 30% by mass, more preferably 5 to 20% by mass, and 10 to 15% by mass with respect to the slurry. Is more preferable. If the amount of the solid particles used exceeds 30% by mass, the dispersibility of the solid particles in the paint may be deteriorated. On the other hand, if the amount used is less than 1% by mass, the number of coatings required to form a coating is very high. May increase.

1.1.3.分散媒
本実施形態の感圧塗料は、固体粒子を分散させるための分散媒をさらに含む。この分散媒は、感圧材を溶解させる性質を有するものであることが好ましい。
1.1.3. Dispersion medium The pressure-sensitive paint of the present embodiment further includes a dispersion medium for dispersing solid particles. The dispersion medium preferably has a property of dissolving the pressure sensitive material.

分散媒は、本実施形態の感圧塗料を物体表面に塗布した後、分散媒を蒸発させて被膜を乾燥させることにより、被膜から除去することができる。したがって、分散媒は沸点が低い(例えば150℃以下)ことが好ましい。   The dispersion medium can be removed from the coating by applying the pressure-sensitive paint of the present embodiment to the object surface and then evaporating the dispersion to dry the coating. Therefore, the dispersion medium preferably has a low boiling point (for example, 150 ° C. or lower).

分散媒としては、例えば、アルコール系溶媒、ケトン系溶媒、アミド系溶媒、エステル系溶媒および非プロトン系溶媒の群から選ばれた少なくとも1種が挙げられ、例えば、感圧材の溶解性が高く、沸点が低く、塗り斑ができにくい点でトルエンが好ましい。分散媒は1種または2種以上を組み合わせて用いることができる。   Examples of the dispersion medium include at least one selected from the group of alcohol solvents, ketone solvents, amide solvents, ester solvents, and aprotic solvents. For example, the pressure-sensitive material has high solubility. Toluene is preferred because it has a low boiling point and is difficult to cause smears. A dispersion medium can be used 1 type or in combination of 2 or more types.

1.1.4.その他の成分
本実施形態の感圧塗料は、ポリマーを含んでいてもよいが、ポリマー含有率は小さいことが好ましい。本実施形態の感圧塗料のポリマー含有率が小さいことにより、空隙のある塗料層を形成することで、高い時間応答性を得ることができる。ここで、「ポリマー含有率が小さい」とは、感圧塗料中のポリマーの含有率が20質量%未満であることをいう。本実施形態の感圧塗料は感圧材および固体粒子を含むスラリーであるため、ポリマー含有率が小さくても、固体粒子を介して十分な量の感圧材を物体表面に付着させることができる。
1.1.4. Other components Although the pressure sensitive paint of this embodiment may contain the polymer, it is preferable that a polymer content rate is small. By forming a paint layer with voids due to the small polymer content of the pressure-sensitive paint of this embodiment, high time responsiveness can be obtained. Here, “the polymer content is small” means that the polymer content in the pressure-sensitive paint is less than 20% by mass. Since the pressure-sensitive paint of this embodiment is a slurry containing a pressure-sensitive material and solid particles, a sufficient amount of pressure-sensitive material can be attached to the object surface via the solid particles even if the polymer content is small. .

1.1.5.用途
本実施形態の感圧塗料は、物体表面に塗布して得られた被膜表面の圧力を測定するために使用される。より具体的には、本実施形態の感圧塗料は、例えばエアーブラシ等を用いたスプレー塗装により、被膜を簡便に形成することができる。
1.1.5. Application The pressure-sensitive paint of this embodiment is used for measuring the pressure on the surface of a coating obtained by applying it to the surface of an object. More specifically, the pressure-sensitive paint of this embodiment can easily form a film by spray coating using, for example, an air brush.

本実施形態の感圧塗料は、塗布する物体表面の材質を選ばないため、例えば、金属、プラスチック、木材等の表面に被膜を形成することができる。したがって、様々な材質の物体表面での圧力測定が可能である。   Since the pressure-sensitive paint of the present embodiment does not select the material of the object surface to be applied, for example, a film can be formed on the surface of metal, plastic, wood, or the like. Therefore, it is possible to measure pressure on the surface of an object made of various materials.

なお、本実施形態の感圧塗料は、感圧材および固体粒子を含むスラリーとして製造されたものでもよいし、あるいは、感圧材および固体粒子をそれぞれ別個のユニットとし、使用直前にこれらを混合することにより、本実施形態の感圧塗料を調製してもよい。   Note that the pressure-sensitive paint of this embodiment may be produced as a slurry containing a pressure-sensitive material and solid particles, or the pressure-sensitive material and solid particles are made into separate units, which are mixed immediately before use. By doing so, the pressure-sensitive paint of this embodiment may be prepared.

1.2.物体の表面圧力の測定方法
本発明の一実施形態の物体の表面圧力の測定方法は、上記感圧塗料を用いて物体の表面に被膜を形成する工程と、前記被膜を含む前記物体の表面圧力を測定する工程と、を含む。
1.2. Method for Measuring Surface Pressure of Object The method for measuring the surface pressure of an object according to an embodiment of the present invention includes a step of forming a film on the surface of the object using the pressure-sensitive paint, and a surface pressure of the object including the film. Measuring.

物体の表面圧力は、本実施形態の感圧塗料を用いて形成された被膜を有する物体(被検体、例えば模型)を超音波風洞に取り付けて風洞実験を行なうことにより測定することができる。なお、風洞実験の具体的な手法は例えば、特開2005−29767号公報および特開2006−10517号公報に開示されている。   The surface pressure of the object can be measured by attaching an object (subject, for example, a model) having a film formed using the pressure-sensitive paint of the present embodiment to an ultrasonic wind tunnel and conducting a wind tunnel experiment. In addition, the specific method of a wind tunnel experiment is disclosed by Unexamined-Japanese-Patent No. 2005-29767 and Unexamined-Japanese-Patent No. 2006-10517, for example.

風洞実験では、まず、被膜を有する物体の表面を撮像装置(CCDカメラ)でカラー撮像して画像情報を得、この画像情報における感圧材の発光波長の強度分布から表面温度分布情報を得る。次に、その表面温度分布情報に基づいて感圧材の発光情報に、必要に応じて感温材に基づく温度による変化分の補正を加えることにより、被膜を有する物体表面全体について、精度が高い圧力分布情報が得られる。   In the wind tunnel experiment, first, color imaging is performed on the surface of an object having a film with an imaging device (CCD camera) to obtain image information, and surface temperature distribution information is obtained from the intensity distribution of the emission wavelength of the pressure sensitive material in this image information. Next, the entire object surface having a coating is highly accurate by correcting the light emission information of the pressure-sensitive material based on the surface temperature distribution information, if necessary, by correcting the change due to the temperature based on the temperature-sensitive material. Pressure distribution information is obtained.

より高精度の物体表面の圧力測定を行なうためには、形成される被膜の膜厚は1μm〜20μmであることが好ましく、2μm〜15μmであることがより好ましく、5μm〜10μmであることがさらに好ましい。被膜の膜厚が1μm未満であると、塗料の発光量が低い場合があり、一方、被膜の膜厚が20μmを超えると、時間応答性が劣化し,被膜が剥がれやすくなる。   In order to measure the pressure on the surface of the object with higher accuracy, the thickness of the formed film is preferably 1 μm to 20 μm, more preferably 2 μm to 15 μm, and further preferably 5 μm to 10 μm. preferable. When the film thickness is less than 1 μm, the amount of light emitted from the paint may be low. On the other hand, when the film thickness exceeds 20 μm, the time responsiveness deteriorates and the film tends to peel off.

1.3.物体
本発明の一実施形態の物体は、上記感圧材と平均粒径が10nm〜1μmである上記固体粒子とを含む被膜を有する。この被膜は、上記感圧塗料を用いて形成することができる。また、精度の高い圧力測定を行なうために、物体の被膜中では、感圧材が固体粒子の表面に存在しているのが好ましい。
1.3. Object An object according to an embodiment of the present invention has a film including the pressure-sensitive material and the solid particles having an average particle diameter of 10 nm to 1 μm. This film can be formed using the pressure-sensitive paint. In order to perform highly accurate pressure measurement, it is preferable that the pressure sensitive material is present on the surface of the solid particles in the coating of the object.

ここで、物体としては、表面圧力の測定が必要とされるものであれば特に限定されないが、例えば、車両(自動車、二輪車、電車等)、航空機、船舶等の輸送機器が挙げられる。一般的には、これらの輸送機器の模型が表面圧力の測定に使用される。   Here, the object is not particularly limited as long as the measurement of the surface pressure is required, and examples thereof include transportation devices such as vehicles (automobiles, two-wheeled vehicles, trains, etc.), airplanes, and ships. Generally, these transport equipment models are used to measure surface pressure.

2.実施例
以下、本発明を、実施例を挙げてさらに具体的に説明する。本発明は以下の実施例に限定されるものではない。
2. EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited to the following examples.

2.1.調製例
2.1.1.感圧塗料の調製
本実施例においては、2種類(バソフェンルテニウム(Ru(dpp)、白金ポルフィリン(PtTFPP))の感圧材を採用し、固体粒子として、3種類((1)SiO(平均粒径25nm)、(2)Al(平均粒径31nm)、(3)Al(平均粒径700nm))を採用した。
2.1. Preparation Example 2.1.1. Preparation of Pressure-Sensitive Paint In this example, two types of pressure-sensitive materials (basofen ruthenium (Ru (dpp) 3 , platinum porphyrin (PtTFPP)) were employed, and three types ((1) SiO 2 were used as solid particles. (Average particle size 25 nm), (2) Al 2 O 3 (average particle size 31 nm), and (3) Al 2 O 3 (average particle size 700 nm)) were employed.

感圧材および固体粒子を有機溶剤(トルエン)と混合して、スラリー(感圧塗料)を調製した。すなわち、作成したスラリーはそれぞれ、(1)10質量%のSiO(平均粒径25nm)およびトルエンを含むスラリー、(2)15質量%のAl(平均粒径31nm)およびトルエンを含むスラリー、(3)15質量%のAl(平均粒径700nm)およびトルエンを含むスラリーである。次に、スプレーを用いてスラリーを基板に塗布して被膜を形成した。 A pressure-sensitive material and solid particles were mixed with an organic solvent (toluene) to prepare a slurry (pressure-sensitive paint). That is, each of the prepared slurries contains (1) a slurry containing 10% by mass of SiO 2 (average particle size 25 nm) and toluene, and (2) 15% by mass of Al 2 O 3 (average particle size 31 nm) and toluene. (3) A slurry containing 15% by mass of Al 2 O 3 (average particle size 700 nm) and toluene. Next, the slurry was applied to the substrate using a spray to form a film.

2.1.2.基板(サンプル)の作成
本実施例においては、基板として、10mm角で厚さ1mmのアルミニウム板(A5052)を用いた。
2.1.2. Production of Substrate (Sample) In this example, an aluminum plate (A5052) 10 mm square and 1 mm thick was used as the substrate.

スラリーを塗布する前にまず、基板の脱脂処理を行った。最初に、基板の表面をエタノールで拭き、水酸化ナトリウム溶液(2wt%)に5分間基板を浸漬させた。その後、蒸留水で洗浄して、真空オーブン内(約10kPa,60℃)で15分間簡易乾燥させた。この手順を3回施した後、基板をエタノールで拭いた。   Before applying the slurry, first, the substrate was degreased. First, the surface of the substrate was wiped with ethanol, and the substrate was immersed in a sodium hydroxide solution (2 wt%) for 5 minutes. Then, it was washed with distilled water and simply dried for 15 minutes in a vacuum oven (about 10 kPa, 60 ° C.). After performing this procedure three times, the substrate was wiped with ethanol.

スラリーの塗布にはエアーブラシ(型名:HP−83C、ノズル径0.3mm、OLYMPOS社製)を用いた。その際、塗布量を調整するニードルアジャスターは約1回転、空気圧は静止時0.8atm、塗布時は0.5atmに設定した。噴出量の目安として、噴出跡が約5mm幅の線となるようにアジャスターを設定するとよい。また、スラリーは、基板から50mm程度離れた位置から塗布した。   An air brush (model name: HP-83C, nozzle diameter: 0.3 mm, manufactured by OLYMPOS) was used for applying the slurry. At that time, the needle adjuster for adjusting the coating amount was set to about 1 rotation, the air pressure was set to 0.8 atm when stationary, and 0.5 atm when coating. As a guide for the amount of ejection, the adjuster should be set so that the ejection trace is a line with a width of about 5 mm. The slurry was applied from a position about 50 mm away from the substrate.

塗布により得られたサンプルは特記しない限り、真空オーブン(型名:AVO−250N、アズワン社製、60℃)内で保管して溶剤を蒸発させ乾燥させることにより、表面に被膜を有する基板を得た。この基板を下記試験用のサンプルとして用いた。   Unless otherwise specified, the sample obtained by coating is stored in a vacuum oven (model name: AVO-250N, manufactured by ASONE, 60 ° C.) to evaporate the solvent and dry to obtain a substrate having a coating on the surface. It was. This substrate was used as a sample for the following test.

2.2.試験方法
2.2.1.静的評価試験
発光特性、圧力特性、および温度特性を評価するため、図1に示す較正試験装置20を用いた。較正試験装置20は図1に示すように、暗室10中に設置され、撮像装置である冷却CCDカメラ11(型名:C4880−5024W、浜松ホトニクス(株)製)、光源12と、圧力および温度が制御可能なチャンバ13とを含む。光源12は、感圧材の励起波長にあわせて、バンドパス付きキセノンランプ(Ru(dpp)用、透過波長:460±50nm)と、レーザダイオード(PtTFPP用、波長:400nm、型名:RV−1000、リコー光学社製)とを使い分けた。また、CCDカメラ11の前方にバンドパスフィルタ19(620±50nm)を設置し、感圧材の発光波長帯付近以外の光を遮断した。温度および圧力をそれぞれ10〜40℃および10〜100kPaの間で変化させて、それぞれの条件での発光強度を測定した。
2.2. Test method 2.2.1. Static Evaluation Test In order to evaluate the light emission characteristics, pressure characteristics, and temperature characteristics, the calibration test apparatus 20 shown in FIG. 1 was used. As shown in FIG. 1, the calibration test apparatus 20 is installed in a dark room 10, and is a cooled CCD camera 11 (model name: C4880-5024W, manufactured by Hamamatsu Photonics), which is an imaging apparatus, a light source 12, and pressure and temperature. Including a controllable chamber 13. The light source 12 includes a xenon lamp with a band pass (for Ru (dpp) 3 , transmission wavelength: 460 ± 50 nm) and a laser diode (for PtTFPP, wavelength: 400 nm, model name: RV) according to the excitation wavelength of the pressure-sensitive material. -1000, manufactured by Ricoh Optical Co., Ltd.). In addition, a band pass filter 19 (620 ± 50 nm) was installed in front of the CCD camera 11 to block light other than near the emission wavelength band of the pressure sensitive material. The temperature and pressure were changed between 10 to 40 ° C. and 10 to 100 kPa, respectively, and the emission intensity under each condition was measured.

2.2.2.時間応答性試験
ステップ圧力変化に対する時間応答性を評価するため、図2に示す衝撃波管30を用いた。衝撃波管30は図2に示すように、高圧室24(1m、Φ38mm)と、低圧室25(2m、Φ38mm)と、テストセクション29(0.2m、流路34mm×34mm)から主に構成される。衝撃波管30では、高圧室24と低圧室25との間に設置した隔膜21(ルミラ膜(12μm×2)、(株)東レ製)を、膜間にはさんだニクロム線の通電加熱によって破膜させて、低圧室25に衝撃波を発生させる。テストセクション29はアクリル製であり、サンプル(被膜を有する基板)14および半導体圧力センサ28(型名:XTL−140、Kulite社製)が管端に設置されている。また、テストセクション29の外部には、感圧材を励起するための光源22と、受光素子26(PMT(光電子増倍管)、型名:C6780、浜松ホトニクス(株)製)とが設置されている。なお、ここで、応答時間とは、ステップ圧力変化後の発光強度を基準として、該発光強度の90%の強度に達するまでの時間と定義する。
2.2.2. Time Response Test In order to evaluate the time response to a step pressure change, the shock tube 30 shown in FIG. 2 was used. As shown in FIG. 2, the shock tube 30 is mainly composed of a high pressure chamber 24 (1 m, Φ38 mm), a low pressure chamber 25 (2 m, Φ38 mm), and a test section 29 (0.2 m, flow path 34 mm × 34 mm). The In the shock wave tube 30, the diaphragm 21 (Lumilla membrane (12 μm × 2), manufactured by Toray Industries, Inc.) installed between the high-pressure chamber 24 and the low-pressure chamber 25 is broken by energization heating of nichrome wire sandwiched between the membranes. Thus, a shock wave is generated in the low pressure chamber 25. The test section 29 is made of acrylic, and a sample (substrate having a coating) 14 and a semiconductor pressure sensor 28 (model name: XTL-140, manufactured by Kulite) are installed at the end of the pipe. A light source 22 for exciting the pressure sensitive material and a light receiving element 26 (PMT (photomultiplier tube), model name: C6780, manufactured by Hamamatsu Photonics Co., Ltd.) are installed outside the test section 29. ing. Here, the response time is defined as the time required to reach 90% of the emission intensity based on the emission intensity after the step pressure change.

2.3.試験例1(特性評価試験)
2.3.1.感圧材および固体粒子依存性
試験例1においては、スラリーは上述のスラリー(1)〜(3)を用いた。すなわち、使用した固体粒子はそれぞれ、(1)SiO(平均粒径21nm、10質量%)、(2)Al(平均粒径31nm、15質量%)、(3)Al(平均粒径700nm、15質量%)である(後述する図4および図5においても同様である。)。
2.3. Test example 1 (characteristic evaluation test)
2.3.1. Pressure Sensitive Material and Solid Particle Dependence In Test Example 1, the above-described slurries (1) to (3) were used as the slurry. That is, the solid particles used were (1) SiO 2 (average particle size 21 nm, 10% by mass), (2) Al 2 O 3 (average particle size 31 nm, 15% by mass), and (3) Al 2 O 3, respectively. (Average particle diameter 700 nm, 15 mass%) (the same applies to FIGS. 4 and 5 described later).

図3は、大気圧での感圧材の発光強度(20℃)を基準値Irefとした場合の相対発光強度(I/Iref)の逆数と圧力との関係を示すグラフ(Stern−Volmerプロット)である。PSPの圧力感度は、このグラフの傾きに基づいて評価することができる。図3において、実線の○・△・□は感圧材としてPtTFPPを用いたスラリーを用いた場合を示し、網掛け線の○・△は感圧材としてRu(dpp)を用いたスラリーを用いた場合を示す(後述する図4および図5においても同様である。)。 FIG. 3 is a graph showing the relationship between the reciprocal of the relative light emission intensity (I / Iref) and the pressure when the light emission intensity (20 ° C.) of the pressure-sensitive material at atmospheric pressure is the reference value Iref (Stern-Volmer plot). It is. The pressure sensitivity of PSP can be evaluated based on the slope of this graph. In FIG. 3, solid lines ○, Δ, and □ indicate the case where a slurry using PtTFPP is used as a pressure-sensitive material, and shaded lines ○ and Δ indicate a slurry that uses Ru (dpp) 3 as a pressure-sensitive material. The case where it is used is shown (the same applies to FIGS. 4 and 5 described later).

図3によれば、感圧材および固体粒子によって圧力感度が異なることがわかった。また、感圧材としてPtTFPPを用いた場合、感圧材としてRu(dpp)を用いた場合と比較して圧力感度が高いことがわかった。 According to FIG. 3, it was found that the pressure sensitivity differs depending on the pressure sensitive material and the solid particles. It was also found that when PtTFPP was used as the pressure sensitive material, the pressure sensitivity was higher than when Ru (dpp) 3 was used as the pressure sensitive material.

図4は、所定温度(20℃)における感圧材の発光強度と圧力との関係を示すグラフである。図4においては、膜厚の影響をなくすため、縦軸は、発光強度をそれぞれの計測膜厚値で除した値とした。   FIG. 4 is a graph showing the relationship between light emission intensity and pressure of a pressure sensitive material at a predetermined temperature (20 ° C.). In FIG. 4, in order to eliminate the influence of the film thickness, the vertical axis is a value obtained by dividing the emission intensity by each measured film thickness value.

図4によれば、感圧材がPtTFPPおよびRu(dpp)のいずれにおいても、固体粒子としてAlを用いた場合、固体粒子としてSiOを用いた場合と比較して約2倍の発光強度を示すことがわかる。 According to FIG. 4, when the pressure sensitive material is either PtTFPP or Ru (dpp) 3 , when Al 2 O 3 is used as the solid particles, it is about twice as much as when SiO 2 is used as the solid particles. It can be seen that the emission intensity of

図5は、所定圧力(100kPa)における感圧材の相対発光強度と温度との関係を示すグラフ(Arrheniusプロット)である。図5は、10℃の時の発光強度を基準値Irefとし、各温度での相対発光強度(I/Iref)をプロットしたものである。圧力は100kPaで一定とした。   FIG. 5 is a graph (Arrhenius plot) showing the relationship between the relative light emission intensity of the pressure-sensitive material and the temperature at a predetermined pressure (100 kPa). FIG. 5 is a plot of relative light emission intensity (I / Iref) at each temperature, with the light emission intensity at 10 ° C. being a reference value Iref. The pressure was constant at 100 kPa.

図5によれば、いずれのスラリーを使用した場合においても、比較的大きな温度感度(1%/℃)を示す。また、固体粒子としてSiOを含むスラリーから形成された被膜は、感圧材としてPtTFPPおよびRu(dpp)のいずれを用いた場合においても温度感度はほぼ一定となったが、固体粒子としてAlを含むスラリーから形成された被膜は、感圧材の種類によって温度感度に差が生じた。 According to FIG. 5, even when any slurry is used, a relatively large temperature sensitivity (1% / ° C.) is exhibited. In addition, the film formed from the slurry containing SiO 2 as the solid particles has a substantially constant temperature sensitivity when either PtTFPP or Ru (dpp) 3 is used as the pressure sensitive material, but the solid particles are made of Al. The film formed from the slurry containing 2 O 3 had a difference in temperature sensitivity depending on the type of pressure sensitive material.

図6は、ステップ圧力上昇に対する感圧材の応答特性を示す。図6で用いたサンプルにおける被膜の膜厚は5μm程度に統一した。図6によれば、固体粒子の違いが時間応答性に大きな影響を与えることがわかる。すなわち、固体粒子として(2)Al(平均粒径31nm)を用いた場合、圧力ステップ後も圧力が一定の値にならず、応答時間は1ms以上であった。これに対して、固体粒子として(1)SiO(平均粒径25nm)を用いた場合、感圧材がRu(dpp)である場合の応答時間は80μsであり、感圧材がPtTFPPである場合の応答時間は40μsとなり、高速応答性を有することが確認された。 FIG. 6 shows the response characteristics of the pressure sensitive material to the step pressure increase. The film thickness of the sample used in FIG. 6 was unified to about 5 μm. According to FIG. 6, it can be seen that the difference in the solid particles has a great influence on the time response. That is, when (2) Al 2 O 3 (average particle size 31 nm) was used as the solid particles, the pressure did not become a constant value even after the pressure step, and the response time was 1 ms or more. On the other hand, when (1) SiO 2 (average particle size 25 nm) is used as the solid particles, the response time when the pressure sensitive material is Ru (dpp) 3 is 80 μs, and the pressure sensitive material is PtTFPP. In some cases, the response time was 40 μs, and it was confirmed to have high-speed response.

2.3.2.膜厚依存性
図7は、被膜の膜厚が2.5μm、5.1μm、11.5μm、および21.0μmである場合の圧力の変化に対する発光強度の変化(一定温度条件下)を示すグラフである。また、図8は、被膜の膜厚が2.5μm、5.1μm、11.5μm、および21.0μmである場合の圧力の変化に対する相対発光強度の逆数の変化を示すグラフである。
2.3.2. FIG. 7 is a graph showing changes in light emission intensity (under a constant temperature condition) with respect to changes in pressure when the film thickness is 2.5 μm, 5.1 μm, 11.5 μm, and 21.0 μm. It is. FIG. 8 is a graph showing the change in the reciprocal of the relative emission intensity with respect to the change in pressure when the film thickness is 2.5 μm, 5.1 μm, 11.5 μm, and 21.0 μm.

図7は、PtTFPP(感圧材)および(1)SiO(平均粒径25nm)(固体粒子)を含むスラリーを用いて形成された被膜について評価を行なった結果である。 FIG. 7 shows the results of evaluation of a coating formed using a slurry containing PtTFPP (pressure sensitive material) and (1) SiO 2 (average particle size 25 nm) (solid particles).

図7によれば、被膜の膜厚の増加に伴い発光強度が増加することがわかる。その原因としては、被膜の膜厚が大きくなるほど、基板上に存在する感圧材の量が増加することが考えられる。   According to FIG. 7, it can be seen that the emission intensity increases as the film thickness increases. As the cause, it is considered that the amount of the pressure sensitive material existing on the substrate increases as the film thickness of the coating increases.

図7によれば、被膜の膜厚が2.0倍、4.6倍、8.4倍と増加するのに対して、発光強度は2倍、3.6倍、5倍しか変化していない。すなわち、膜厚が大きくなるにつれて発光強度が上昇する傾向はあるが、膜厚と発光強度との間に線形比例関係はみられなかった。これに対して、図8よれば、圧力の変化に対する相対発光強度の逆数の変化は、被膜の膜厚によらず一定である。   According to FIG. 7, the film thickness increases to 2.0 times, 4.6 times, and 8.4 times, whereas the emission intensity changes only 2 times, 3.6 times, and 5 times. Absent. That is, the emission intensity tends to increase as the film thickness increases, but no linear proportional relationship was found between the film thickness and the emission intensity. On the other hand, according to FIG. 8, the change in the reciprocal of the relative light emission intensity with respect to the change in pressure is constant irrespective of the film thickness of the coating.

以上の結果より、圧力感度は膜厚に依存せず、発光強度のみに影響を与えることが推察される。また、図示しないが、Ru(dpp)を用いた場合にも同様の傾向を示すことを確認した。 From the above results, it is presumed that the pressure sensitivity does not depend on the film thickness and affects only the emission intensity. Although not shown, it was confirmed that the same tendency was observed when Ru (dpp) 3 was used.

2.3.3.考察
試験例1において、固体粒子の種類によって発光強度、圧力感度、および時間応答性に違いが生じた要因の一つとして、固体粒子の結晶構造の違いが考えられる。例えば、SiOは通常、Alより疎な結晶構造を有するため、固体粒子としてSiOを用いる場合のほうがAlを用いる場合よりも、単位体積あたりの感光材の吸着量が多く、かつ酸素透過性が高いと考えられる。このため、固体粒子としてSiOを用いる場合、Alを用いる場合よりも優れた圧力感度および時間応答性を有すると考えられる。
2.3.3. Discussion In Test Example 1, the difference in the crystal structure of the solid particles can be considered as one of the factors that caused the difference in emission intensity, pressure sensitivity, and time response depending on the type of solid particles. For example, SiO 2 is typically because it has a sparse crystalline structure than Al 2 O 3, than if more of the case of using SiO 2 as the solid particles used Al 2 O 3, the adsorption amount of the photosensitive material per unit volume Many are considered to have high oxygen permeability. Therefore, when using SiO 2 as solid particles, believed to have excellent pressure sensitivity and time response than with Al 2 O 3.

2.4.試験例2(実証試験)
2.4.1.実験装置および方法
本試験例においては、本発明のスラリーを用いて形成された被膜が非定常圧力流れに適応するかを確認するため、独立行政法人宇宙航空研究開発機構・宇宙科学研究本部(JAXA/ISAS)所有の60cm×60cm遷音速風洞で実証試験を行った。
2.4. Test example 2 (demonstration test)
2.4.1. Experimental apparatus and method In this test example, in order to confirm whether the coating formed using the slurry of the present invention is adapted to unsteady pressure flow, the Japan Aerospace Exploration Agency, Japan Aerospace Exploration Agency (JAXA) / ISAS) A demonstration test was conducted in a 60 cm × 60 cm transonic wind tunnel owned by the company.

図9は、本発明の実施例で用いた風洞測定装置の構成を模式的に示す図であり、図10は、風洞測定の対象である模型50を模式的に示す図である((a)は平面図を示し、(b)は側面図を示す)。   FIG. 9 is a diagram schematically showing the configuration of the wind tunnel measuring apparatus used in the example of the present invention, and FIG. 10 is a diagram schematically showing a model 50 that is a target of wind tunnel measurement ((a)). Is a plan view, and (b) is a side view).

遷音速中にデルタ翼の模型50(図10参照)を設置し、バフェット(buffet)と呼ばれる非定常空力現象を発生させた。図10に示すように、模型50の半分にPSP(感圧塗料)を塗布し、もう半分にTSP(感温塗料)を塗布して、PSPとTSPとを同時に計測して得られた値により、温度感度の補正を行なった。また、図10の模型50の静圧孔を設け、半導体圧力センサ51〜54(型名:XCQ−062、Kulite社製)を設けて、かかるセンサ51〜54によって静圧計測を行なうことにより、PSPの感度を確認した。なお、センサ51〜54はそれぞれ、図10の(1)〜(4)で示される位置に設置された。   A delta wing model 50 (see FIG. 10) was installed during the transonic speed to generate an unsteady aerodynamic phenomenon called a buffet. As shown in FIG. 10, PSP (pressure-sensitive paint) is applied to half of the model 50, TSP (temperature-sensitive paint) is applied to the other half, and PSP and TSP are measured simultaneously. The temperature sensitivity was corrected. Further, by providing the static pressure hole of the model 50 of FIG. 10, providing semiconductor pressure sensors 51 to 54 (model name: XCQ-062, manufactured by Kulite), and performing static pressure measurement with the sensors 51 to 54, The sensitivity of PSP was confirmed. In addition, the sensors 51-54 were each installed in the position shown by (1)-(4) of FIG.

通風試験条件はマッハ数0.9、総圧150kPa、および迎角20°とし、高速度ビデオカメラ38はサンプリング周波数1kHzおよび露光時間998μsであり、半導体圧力センサ51〜54のデータは10kHzで取得した。   The ventilation test conditions were a Mach number of 0.9, a total pressure of 150 kPa, and an angle of attack of 20 °, the high-speed video camera 38 had a sampling frequency of 1 kHz and an exposure time of 998 μs, and data of the semiconductor pressure sensors 51 to 54 was acquired at 10 kHz. .

なお、本試験例においては、感圧材(Ru(dpp))、固体粒子(SiO、平均粒径:25nm、10質量%)、有機溶剤(トルエン)、および脂肪酸(C18)を含むスラリーを用いて模型50に被膜を形成した。 In this test example, a slurry containing a pressure-sensitive material (Ru (dpp) 3 ), solid particles (SiO 2 , average particle size: 25 nm, 10% by mass), an organic solvent (toluene), and a fatty acid (C18). Was used to form a coating on the model 50.

2.4.2.実験結果
風洞実験で得られたデータを処理する場合、空力による模型の移動や、PSPの温度依存性により誤差が生じることがある。この誤差をなくすために、東京農工大学亀田研究室が所有する画像処理プログラム(馬越太郎, 関仁志, 亀田正治, 中北和之, “遷音速デルタ翼面非定常圧力のPSP計測”, 第40回流体力学講演会講演集(2008), pp. 369-372))を用いて処理を行った。
2.4.2. Experimental results When processing data obtained in a wind tunnel experiment, errors may occur due to the movement of the model due to aerodynamics and the temperature dependence of the PSP. To eliminate this error, the image processing program owned by Tokyo University of Agriculture and Technology Kameda Laboratory (Taro Magoshi, Hitoshi Seki, Masaharu Kameda, Kazuyuki Nakakita, “PSP measurement of transonic delta wing surface unsteady pressure”, No. 40 Proceedings of the annual hydrodynamics lecture (2008), pp. 369-372)).

図11は、本試験例において風洞測定を行なった模型50の翼面上の圧力場変動を2ms(ミリ秒)間隔で示した図である(図11は、模型50のうちPSPが塗布された側の翼面のみを示す。)。図11には、衝撃波により前縁から生じる剥離渦が変動する様子が捉えられている。なお、図11は本来カラー画像であって、データの分布状態がより明確な画像であるが、特許明細書にはカラー画像を示すことができないため、グレースケールの明度階調画像として示したものである。   FIG. 11 is a diagram showing pressure field fluctuations on the blade surface of the model 50 measured in the wind tunnel in this test example at intervals of 2 ms (milliseconds) (FIG. 11 shows that the PSP of the model 50 was applied). Only the side wing surface is shown.) FIG. 11 shows how the separation vortex generated from the leading edge fluctuates due to a shock wave. Note that FIG. 11 is originally a color image and an image with a clearer data distribution state. However, since a color image cannot be shown in the patent specification, it is shown as a grayscale lightness gradation image. It is.

図12は、半導体圧力センサ51〜54とセンサ周りのPSPデータの時間変動値との比較である。図12において、センサ(1)およびセンサ(4)はそれぞれ、圧力センサ51およびセンサ54により測定されたデータを示し、PSP(1)およびPSP(4)はそれぞれ、圧力センサ51および圧力センサ54の近傍におけるPSPによる表面圧力測定により得られたデータを示す。   FIG. 12 is a comparison between the semiconductor pressure sensors 51 to 54 and the time fluctuation values of the PSP data around the sensors. In FIG. 12, sensor (1) and sensor (4) indicate data measured by the pressure sensor 51 and sensor 54, respectively, and PSP (1) and PSP (4) indicate the pressure sensor 51 and pressure sensor 54, respectively. The data obtained by the surface pressure measurement by PSP in the vicinity are shown.

図12において、センサ(1)の30kPa程度の大きな振幅は衝撃波振動の影響であることがわかる。このことから、圧力センサ51〜54と同様の変動をPSPが捉えていることがわかる。   In FIG. 12, it can be seen that a large amplitude of about 30 kPa of the sensor (1) is due to the influence of shock wave vibration. From this, it can be seen that the PSP captures the same fluctuation as the pressure sensors 51 to 54.

2.5.結論
以上に説明したように、本発明によれば、感圧材および固体粒子を含むスラリーを物体の表面に塗布して被膜を形成し、この物体の表面圧力を測定することにより、物体の表面圧力を簡便な方法にて高感度で測定することができた。なかでも、固体粒子としてSiOを、感圧材としてPtTFPPをそれぞれ含む被膜は、圧力感度および時間応答性が高いことがわかった。
2.5. Conclusion As described above, according to the present invention, a slurry containing a pressure-sensitive material and solid particles is applied to the surface of an object to form a coating, and the surface pressure of the object is measured, thereby measuring the surface of the object. The pressure could be measured with high sensitivity by a simple method. In particular, it was found that a coating containing SiO 2 as solid particles and PtTFPP as a pressure sensitive material has high pressure sensitivity and time response.

本実施の形態に係る説明は以上である。本発明は、上述した実施の形態に限定されるものではなく、さらなる種々の変形が可能である。また本発明は、実施の形態で説明した構成と実質的に同一の構成(例えば、機能、方法及び結果が同一の構成、あるいは目的及び結果が同一の構成)を含む。また、本発明は、実施の形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施の形態で説明した構成と同一の作用効果を奏する構成又は同一の目的を達成することができる構成を含む。また、本発明は、実施の形態で説明した構成に公知技術を付加した構成を含む。   This completes the description of the present embodiment. The present invention is not limited to the above-described embodiment, and various modifications can be made. Further, the invention includes substantially the same configuration (for example, a configuration having the same function, method, and result, or a configuration having the same purpose and result) as the configuration described in the embodiment. In addition, the invention includes a configuration in which a non-essential part of the configuration described in the embodiment is replaced. In addition, the present invention includes a configuration that exhibits the same operational effects as the configuration described in the embodiment or a configuration that can achieve the same object. Further, the invention includes a configuration in which a known technique is added to the configuration described in the embodiment.

本発明は、例えば輸送機器(車両(自動車、二輪車、電車等)、航空機、船舶等)の表面圧力の測定をはじめとする広範な分野において利用することができる。   The present invention can be used in a wide range of fields including measurement of surface pressure of transportation equipment (vehicles (automobiles, motorcycles, trains, etc.), aircrafts, ships, etc.).

本発明の実施例で使用した較正試験装置の構成を模式的に示す図である。It is a figure which shows typically the structure of the calibration test apparatus used in the Example of this invention. 本発明の実施例で使用した衝撃波管の構成を模式的に示す図である。It is a figure which shows typically the structure of the shock tube used in the Example of this invention. 本発明の一実施例の感圧塗料を用いた圧力応答性試験により得られた結果(相対発光強度の逆数と圧力の関係)を示すグラフである。It is a graph which shows the result (relationship of the reciprocal number of relative luminescence intensity, and a pressure) obtained by the pressure responsiveness test using the pressure-sensitive paint of one Example of this invention. 本発明の一実施例の感圧塗料を用いた圧力応答性試験により得られた結果(発光強度に対する圧力依存性)を示すグラフである。It is a graph which shows the result (pressure dependence with respect to emitted light intensity) obtained by the pressure responsiveness test using the pressure-sensitive paint of one Example of this invention. 本発明の一実施例の感圧塗料を用いた温度応答性試験により得られた結果(温度と発光強度との関係)を示すグラフである。It is a graph which shows the result (relationship between temperature and emitted light intensity) obtained by the temperature responsiveness test using the pressure-sensitive paint of one Example of this invention. 本発明の一実施例の感圧塗料を用いた時間応答性試験により得られた結果(圧力の経時変化)を示すグラフである。It is a graph which shows the result (change with time of pressure) obtained by the time responsiveness test using the pressure sensitive paint of one example of the present invention. 本発明の一実施例の感圧塗料を用いた圧力応答性試験により得られた結果(膜厚と発光強度との関係)を示すグラフである。It is a graph which shows the result (relationship between a film thickness and light emission intensity) obtained by the pressure responsiveness test using the pressure-sensitive paint of one Example of this invention. 本発明の一実施例の感圧塗料を用いた圧力応答性試験により得られた結果(膜厚と相対発光強度の逆数との関係)を示すグラフである。It is a graph which shows the result (relationship between a film thickness and the reciprocal of a relative luminescence intensity) obtained by the pressure responsiveness test using the pressure sensitive paint of one Example of this invention. 本発明の実施例で用いた風洞測定装置の構成を模式的に示す図である。It is a figure which shows typically the structure of the wind tunnel measuring apparatus used in the Example of this invention. 本発明の一実施例の風洞測定の対象である模型を模式的に示す図である((a)は平面図を示し、(b)は側面図を示す)。It is a figure which shows typically the model which is the object of the wind tunnel measurement of one Example of this invention ((a) shows a top view, (b) shows a side view). 本発明の一実施例の風洞測定の対象である模型の翼面上の圧力場変動を2ms間隔で示した図である。It is the figure which showed the pressure field fluctuation | variation on the wing | blade surface of the model which is the object of the wind tunnel measurement of one Example of this invention by 2 ms space | interval. 図10に示す模型に設置された半導体圧力センサにより測定された圧力と、前記センサ近傍で感圧試験により得られた圧力との経時変化を示すグラフである。It is a graph which shows a time-dependent change of the pressure measured by the semiconductor pressure sensor installed in the model shown in FIG. 10, and the pressure obtained by the pressure sensitive test in the said sensor vicinity.

符号の説明Explanation of symbols

10,40…暗室、11…撮像装置(CCDカメラ)、12,22…光源、13…チャンバ、14…試料、15…圧力制御装置、16…温度制御装置、17,27…コンピュータ(PC)、19,39…バンドパスフィルタ、20…較正試験装置、21…ダイヤフラム、23…バルブ、24…高圧室、25…低圧室、26…PMT、28…半導体圧力センサ、29…テストセクション、30…衝撃波管、31…流れ、33,50…模型、34…伝達信号、35…メモリ、36…遅延発生装置、38…高速ビデオカメラ、39…針、41…ビーム拡大装置、42…アルゴンイオンレーザ、43…プレナムルーム、51〜54…圧力センサ   DESCRIPTION OF SYMBOLS 10,40 ... Dark room, 11 ... Imaging device (CCD camera), 12, 22 ... Light source, 13 ... Chamber, 14 ... Sample, 15 ... Pressure control device, 16 ... Temperature control device, 17, 27 ... Computer (PC), DESCRIPTION OF SYMBOLS 19,39 ... Band pass filter, 20 ... Calibration test apparatus, 21 ... Diaphragm, 23 ... Valve, 24 ... High pressure chamber, 25 ... Low pressure chamber, 26 ... PMT, 28 ... Semiconductor pressure sensor, 29 ... Test section, 30 ... Shock wave Tube ... 31 ... flow, 33,50 ... model, 34 ... transmitted signal, 35 ... memory, 36 ... delay generator, 38 ... high speed video camera, 39 ... needle, 41 ... beam expander, 42 ... argon ion laser, 43 ... Plenum room, 51-54 ... Pressure sensor

Claims (10)

感圧材および固体粒子を含むスラリーである、感圧塗料。   A pressure-sensitive paint, which is a slurry containing a pressure-sensitive material and solid particles. 前記固体粒子の平均粒径が10nm〜1μmである、請求項1に記載の感圧塗料。   The pressure-sensitive paint according to claim 1, wherein the average particle diameter of the solid particles is 10 nm to 1 μm. 前記固体粒子は、シリカ、アルミナ、酸化チタン、セリア、マグネシア、酸化亜鉛、および炭酸カルシウムから選ばれる少なくとも1種である、請求項1または2に記載の感圧塗料。   The pressure-sensitive paint according to claim 1 or 2, wherein the solid particles are at least one selected from silica, alumina, titanium oxide, ceria, magnesia, zinc oxide, and calcium carbonate. 前記感圧材は、ポルフィリン系化合物、ルテニウム錯体、および芳香族炭化水素から選ばれる少なくとも1種である、請求項1〜3のいずれかに記載の感圧塗料。   The pressure-sensitive paint according to any one of claims 1 to 3, wherein the pressure-sensitive material is at least one selected from a porphyrin-based compound, a ruthenium complex, and an aromatic hydrocarbon. 請求項1〜4のいずれかに記載の感圧塗料を用いて物体の表面に被膜を形成する工程と、
前記被膜を含む前記物体の表面圧力を測定する工程と、
を含む、物体の表面圧力の測定方法。
Forming a film on the surface of the object using the pressure-sensitive paint according to claim 1;
Measuring the surface pressure of the object including the coating;
A method for measuring the surface pressure of an object.
前記被膜の膜厚は1μm〜20μmである、請求項5に記載の物体の表面圧力の測定方法。   The method for measuring the surface pressure of an object according to claim 5, wherein the film has a thickness of 1 μm to 20 μm. 感圧材と平均粒径が10nm〜1μmである固体粒子とを含む被膜を有する、物体。   An object having a coating film including a pressure-sensitive material and solid particles having an average particle diameter of 10 nm to 1 μm. 前記被膜の膜厚は1μm〜20μmである、請求項7に記載の物体。   The object according to claim 7, wherein the film has a thickness of 1 μm to 20 μm. 前記固体粒子は、シリカ、アルミナ、酸化チタン、セリア、マグネシア、酸化亜鉛、および炭酸カルシウムから選ばれる少なくとも1種である、請求項7または8に記載の物体。   The object according to claim 7 or 8, wherein the solid particles are at least one selected from silica, alumina, titanium oxide, ceria, magnesia, zinc oxide, and calcium carbonate. 前記感圧材は、ポルフィリン系化合物、ルテニウム錯体、および芳香族炭化水素から選ばれる少なくとも1種である、請求項7〜9のいずれかに記載の物体。   The object according to any one of claims 7 to 9, wherein the pressure-sensitive material is at least one selected from a porphyrin-based compound, a ruthenium complex, and an aromatic hydrocarbon.
JP2008189605A 2008-07-23 2008-07-23 Pressure sensitive paint, and method for measuring object and surface pressure of object Active JP5509470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008189605A JP5509470B2 (en) 2008-07-23 2008-07-23 Pressure sensitive paint, and method for measuring object and surface pressure of object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008189605A JP5509470B2 (en) 2008-07-23 2008-07-23 Pressure sensitive paint, and method for measuring object and surface pressure of object

Publications (2)

Publication Number Publication Date
JP2010024395A true JP2010024395A (en) 2010-02-04
JP5509470B2 JP5509470B2 (en) 2014-06-04

Family

ID=41730511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008189605A Active JP5509470B2 (en) 2008-07-23 2008-07-23 Pressure sensitive paint, and method for measuring object and surface pressure of object

Country Status (1)

Country Link
JP (1) JP5509470B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011057899A (en) * 2009-09-11 2011-03-24 Japan Aerospace Exploration Agency Composite pressure-sensitive paint suppressing deterioration of light emitting characteristic
WO2012158681A3 (en) * 2011-05-16 2013-04-11 General Electric Company Method and system for embedded temperature and/or strain sensors
JP2014006166A (en) * 2012-06-25 2014-01-16 Japan Aerospace Exploration Agency Super water-repellent surface-emission sensor
JP2014118551A (en) * 2012-12-19 2014-06-30 Tohoku Univ Porous structure, oxygen sensor and separation membrane using the same, and method for producing porous structure
JP2017003293A (en) * 2015-06-05 2017-01-05 株式会社Ihi Shock tube
CN114166386A (en) * 2021-12-02 2022-03-11 中国科学院城市环境研究所 Pipeline stress detection method and system based on edge calculation
CN114459728A (en) * 2022-04-13 2022-05-10 中国空气动力研究与发展中心高速空气动力研究所 Low-temperature-sensitive paint transition measurement test method
CN114739626A (en) * 2022-06-13 2022-07-12 中国空气动力研究与发展中心高速空气动力研究所 Rotating blade grid pressure measurement test method based on quick response pressure-sensitive paint

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1137944A (en) * 1997-07-17 1999-02-12 Natl Aerospace Lab Method for forming oxygen-sensitive film, oxygen sensor utilizing it and pressure measuring method
JP2003012938A (en) * 2001-06-29 2003-01-15 Toyota Central Res & Dev Lab Inc Oxygen-sensitive film
JP2005029767A (en) * 2003-07-11 2005-02-03 National Aerospace Laboratory Of Japan Pressure/temperature sensitive composite functional paint
JP2006234660A (en) * 2005-02-25 2006-09-07 Japan Aerospace Exploration Agency Pressure-sensitive pigment carrying copolymer, and pressure-sensitive paint containing the copolymer
JP2007279013A (en) * 2006-03-13 2007-10-25 Railway Technical Res Inst Pressure distribution measuring system and calibrating probe
JP2008082735A (en) * 2006-09-26 2008-04-10 Japan Aerospace Exploration Agency Image measuring method of unsteady pressure field by pressure-sensitive paint

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1137944A (en) * 1997-07-17 1999-02-12 Natl Aerospace Lab Method for forming oxygen-sensitive film, oxygen sensor utilizing it and pressure measuring method
JP2003012938A (en) * 2001-06-29 2003-01-15 Toyota Central Res & Dev Lab Inc Oxygen-sensitive film
JP2005029767A (en) * 2003-07-11 2005-02-03 National Aerospace Laboratory Of Japan Pressure/temperature sensitive composite functional paint
JP2006234660A (en) * 2005-02-25 2006-09-07 Japan Aerospace Exploration Agency Pressure-sensitive pigment carrying copolymer, and pressure-sensitive paint containing the copolymer
JP2007279013A (en) * 2006-03-13 2007-10-25 Railway Technical Res Inst Pressure distribution measuring system and calibrating probe
JP2008082735A (en) * 2006-09-26 2008-04-10 Japan Aerospace Exploration Agency Image measuring method of unsteady pressure field by pressure-sensitive paint

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011057899A (en) * 2009-09-11 2011-03-24 Japan Aerospace Exploration Agency Composite pressure-sensitive paint suppressing deterioration of light emitting characteristic
US9482585B2 (en) 2011-05-16 2016-11-01 General Electric Company Method and system for multi-functional embedded sensors
CN103703351A (en) * 2011-05-16 2014-04-02 通用电气公司 Method and system for multi-functional embedded sensors
JP2014519601A (en) * 2011-05-16 2014-08-14 ゼネラル・エレクトリック・カンパニイ Method and system for embedded temperature and / or strain sensors
WO2012158681A3 (en) * 2011-05-16 2013-04-11 General Electric Company Method and system for embedded temperature and/or strain sensors
US9551620B2 (en) 2011-05-16 2017-01-24 General Electric Company Method and system for multi-functional embedded sensors
JP2014006166A (en) * 2012-06-25 2014-01-16 Japan Aerospace Exploration Agency Super water-repellent surface-emission sensor
JP2014118551A (en) * 2012-12-19 2014-06-30 Tohoku Univ Porous structure, oxygen sensor and separation membrane using the same, and method for producing porous structure
JP2017003293A (en) * 2015-06-05 2017-01-05 株式会社Ihi Shock tube
CN114166386A (en) * 2021-12-02 2022-03-11 中国科学院城市环境研究所 Pipeline stress detection method and system based on edge calculation
CN114459728A (en) * 2022-04-13 2022-05-10 中国空气动力研究与发展中心高速空气动力研究所 Low-temperature-sensitive paint transition measurement test method
CN114459728B (en) * 2022-04-13 2022-06-24 中国空气动力研究与发展中心高速空气动力研究所 Low-temperature-sensitive paint transition measurement test method
CN114739626A (en) * 2022-06-13 2022-07-12 中国空气动力研究与发展中心高速空气动力研究所 Rotating blade grid pressure measurement test method based on quick response pressure-sensitive paint

Also Published As

Publication number Publication date
JP5509470B2 (en) 2014-06-04

Similar Documents

Publication Publication Date Title
JP5509470B2 (en) Pressure sensitive paint, and method for measuring object and surface pressure of object
Liu et al. Pressure and temperature sensitive paints
Egami et al. Ruthenium-based fast-responding pressure-sensitive paint for measuring small pressure fluctuation in low-speed flow field
Disotell et al. Single-shot temperature-and pressure-sensitive paint measurements on an unsteady helicopter blade
Kameda et al. Image measurements of unsteady pressure fluctuation by a pressure-sensitive coating on porous anodized aluminium
Engler et al. Application of PSP in low speed flows
Sugimoto et al. Characterization of frequency response of pressure-sensitive paints
US10161876B2 (en) Polydiacetylene and polydiacetylene/ZnO nanocomposite sensors
US5307675A (en) Luminescent pressure sensitive composition
Kameda et al. Humidity effects in the response of a porous pressure-sensitive paint
US6575620B1 (en) Method and device for visually measuring structural fatigue using a temperature sensitive coating
Nagata et al. Optimum pressure range evaluation toward aerodynamic measurements using PSP in low-pressure conditions
Nagata et al. Visualization of pressure and skin-friction fields on rotating blade under low-pressure conditions
Asai et al. Recent topics in fast-responding pressure-sensitive paint technology at National Aerospace Laboratory
JP2005029767A (en) Pressure/temperature sensitive composite functional paint
Yorita Application of lifetime-based pressure-sensitive paint technique to cryogenic wind tunnel test
Egami et al. Development of polymer/ceramic pressure-sensitive paint with the same response time as anodized-aluminum PSP
Hubner et al. Pressure-sensitive paint measurements in a shock tube
JP4953245B2 (en) Temperature dependence correction method by time-series temperature change of pressure sensitive paint measurement method
JP5004228B2 (en) Three-layer pressure-sensitive paint thin film sensor
JP5424183B2 (en) Compound molecular sensor
Li et al. Suppression of thermal quenching in fast-responding pressure-sensitive paint by restricting lattice relaxation of luminescent molecules
Sato et al. Surface flow visualization techniques for analysis on Mars-helicopter rotor aerodynamics
Morita et al. Temperature-cancelled anodized-aluminum pressure sensitive paint for hypersonic wind tunnel application
Egami et al. Investigation on non-uniformity of luminescence lifetime of fast-responding pressure-sensitive paint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140305

R150 Certificate of patent or registration of utility model

Ref document number: 5509470

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250