JP5544185B2 - Continuous casting mold - Google Patents

Continuous casting mold Download PDF

Info

Publication number
JP5544185B2
JP5544185B2 JP2010030352A JP2010030352A JP5544185B2 JP 5544185 B2 JP5544185 B2 JP 5544185B2 JP 2010030352 A JP2010030352 A JP 2010030352A JP 2010030352 A JP2010030352 A JP 2010030352A JP 5544185 B2 JP5544185 B2 JP 5544185B2
Authority
JP
Japan
Prior art keywords
short side
support member
continuous casting
casting mold
bolt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010030352A
Other languages
Japanese (ja)
Other versions
JP2011161507A (en
Inventor
勇一 小川
猛 岡崎
新一 平野
健也 末長
和則 植田
武士 大川
新一 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mishima Kosan Co Ltd
Nippon Steel Corp
Original Assignee
Mishima Kosan Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mishima Kosan Co Ltd, Nippon Steel Corp filed Critical Mishima Kosan Co Ltd
Priority to JP2010030352A priority Critical patent/JP5544185B2/en
Publication of JP2011161507A publication Critical patent/JP2011161507A/en
Application granted granted Critical
Publication of JP5544185B2 publication Critical patent/JP5544185B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

本発明は、鋳片を製造するために使用する連続鋳造用鋳型に関する。 The present invention relates to a continuous casting mold used for producing a slab.

従来、鋳片の連続鋳造は、冷却部材(水冷銅板)で囲まれて形成され、上下方向に貫通する空間部を備えた連続鋳造用鋳型を使用し、この空間部に供給した溶鋼を冷却部材で冷却しながら凝固させることにより行われている。ここで、鋳片の製造に際しては、空間部内で形成される凝固シェルの成長を確実に行う必要があるが、凝固シェルの成長が不安定な場合、凝固シェルが鋳造中に破れ、未凝固の溶鋼が流出するブレークアウトが発生し、例えば、鋳造作業の中断、又は長時間の休止、更には設備損傷のような事故を招く恐れがある。そこで、冷却部材に複数の熱電対を埋設し、これら熱電対の温度変化等を検出する連続鋳造用鋳型が開示されている(例えば、特許文献1参照)。 Conventionally, continuous casting of a slab is formed by being surrounded by a cooling member (water-cooled copper plate) and using a continuous casting mold having a space portion penetrating in the vertical direction, and the molten steel supplied to the space portion is cooled by the cooling member. This is done by solidifying while cooling. Here, in the production of the slab, it is necessary to surely grow the solidified shell formed in the space portion. However, when the solidified shell growth is unstable, the solidified shell is broken during casting and unsolidified. There is a breakout in which the molten steel flows out, and there is a risk of causing an accident such as interruption of the casting operation, a long pause, and damage to the equipment. Therefore, a continuous casting mold is disclosed in which a plurality of thermocouples are embedded in a cooling member and a temperature change or the like of these thermocouples is detected (see, for example, Patent Document 1).

特開2006−284503号公報JP 2006-284503 A

ここで、特許文献1に記載された連続鋳造用鋳型は、冷却部材の温度変化を検出するものであり、冷却部材の温度が低下した場合、冷却部材と凝固シェルとの接触状態が低下したと判断できるが、冷却部材と凝固シェルとの接触状態を回復させるために、冷却部材の位置を凝固シェル側にどの程度移動させればよいかの判断はできない。このため、冷却部材の位置を変更しても冷却部材と凝固シェルとの接触状態が回復しない場合、溶鋼の冷却不足が生じて凝固シェルの成長が不安定になって、ブレークアウトが発生するという問題が生じる。一方、冷却部材の位置を変更して冷却部材が凝固シェルを強く押圧するようになると、凝固シェルに過大な力が作用して凝固シェルが破れ、ブレークアウトや鋳片割れが発生するという問題が生じる。 Here, the continuous casting mold described in Patent Document 1 detects a temperature change of the cooling member, and when the temperature of the cooling member decreases, the contact state between the cooling member and the solidified shell decreases. Although it can be determined, it cannot be determined how much the position of the cooling member should be moved to the solidified shell side in order to recover the contact state between the cooling member and the solidified shell. For this reason, if the contact state between the cooling member and the solidified shell does not recover even if the position of the cooling member is changed, insufficient cooling of the molten steel occurs, and the growth of the solidified shell becomes unstable, causing a breakout. Problems arise. On the other hand, when the position of the cooling member is changed so that the cooling member strongly presses the solidified shell, an excessive force acts on the solidified shell to break the solidified shell, causing a problem that breakout or slab cracking occurs. .

本発明はかかる事情に鑑みてなされたもので、冷却部材と凝固シェルとの接触状態を監視して、ブレークアウトや鋳片割れの発生のない安定した鋳造作業を行うことが可能な連続鋳造用鋳型を提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances. A continuous casting mold capable of monitoring a contact state between a cooling member and a solidified shell and performing a stable casting operation without occurrence of breakout or slab cracking. The purpose is to provide.

前記目的に沿う本発明に係る連続鋳造用鋳型は、対向配置された対となる冷却部材と、該各冷却部材の裏面側に配置され、該冷却部材が複数の締結ボルトを介して固定された支持部材と、該支持部材の裏面側に連結し、該支持部材を介して前記冷却部材を保持する保持機構とを有する連続鋳造用鋳型において、
鋳造中に前記冷却部材に発生する応力を検出する荷重センサを内部に取付けたボルトが、前記支持部材に形成された貫通ねじ孔に取付けられ、しかも、該貫通ねじ孔の前記支持部材の裏面側に前記ボルトの基側が固定され、該貫通ねじ孔の前記冷却部材側の領域は拡径部となり、前記ボルトの先端側は球面部となって、前記冷却部材の裏面に当接している
The continuous casting mold according to the present invention that meets the above-described object is disposed on the back side of each cooling member and a pair of opposing cooling members, and the cooling members are fixed via a plurality of fastening bolts. In a continuous casting mold having a support member and a holding mechanism connected to the back side of the support member and holding the cooling member via the support member,
A bolt having a load sensor for detecting a stress generated in the cooling member during casting is attached to a through screw hole formed in the support member, and the back surface side of the support member of the through screw hole The base side of the bolt is fixed, the region on the cooling member side of the through screw hole is a diameter-enlarged portion, and the tip side of the bolt is a spherical portion, which is in contact with the back surface of the cooling member .

本発明に係る連続鋳造用鋳型において、前記冷却部材は、該連続鋳造用鋳型の短辺であって、前記荷重センサは、該短辺を固定する前記支持部材に取付けることができる。
また、前記冷却部材は、該連続鋳造用鋳型の長辺であって、前記荷重センサは、該長辺を固定する前記支持部材に取付けることができる。
In the continuous casting mold according to the present invention, the cooling member may be a short side of the continuous casting mold, and the load sensor may be attached to the support member that fixes the short side.
The cooling member may be a long side of the continuous casting mold, and the load sensor may be attached to the support member that fixes the long side.

本発明に係る連続鋳造用鋳型においては、鋳造中に冷却部材に発生する応力を検出する荷重センサを設けているので、冷却部材に発生する応力から、鋳造中に冷却部材が鋳片から受ける反力の大きさを知ることができ、冷却部材と凝固シェルとの接触状態を監視することができる。その結果、十分な厚みの凝固シェルを安定して形成することができ、ブレークアウトや鋳片割れの発生のない安定した鋳造作業を行うことが可能になる。 In the continuous casting mold according to the present invention, a load sensor for detecting the stress generated in the cooling member during casting is provided, so that the cooling member receives from the slab during casting from the stress generated in the cooling member. The magnitude of the force can be known, and the contact state between the cooling member and the solidified shell can be monitored. As a result, a solidified shell having a sufficient thickness can be stably formed, and a stable casting operation can be performed without occurrence of breakout or slab cracking.

本発明に係る連続鋳造用鋳型において、冷却部材が、連続鋳造用鋳型の短辺であって、荷重センサが、短辺を固定する支持部材に取付けられている場合、連続鋳造用鋳型の長期使用に伴い、短辺が摩耗してその厚みが薄くなってくると、短辺が凝固シェルから受ける反力が変化し、変化した反力を荷重センサで検出することができるので、短辺の寿命を監視して、補修時期を決定することができる。
また、冷却部材が、連続鋳造用鋳型の長辺であって、荷重センサが、長辺を固定する支持部材に取付けられている場合、連続鋳造用鋳型の長期使用に伴い、長辺が摩耗してその厚みが薄くなってくると、長辺が凝固シェルから受ける反力が変化し、変化した反力を荷重センサで検出することができるので、長辺の寿命を監視して、補修時期を決定することができる。
In the continuous casting mold according to the present invention, when the cooling member is the short side of the continuous casting mold and the load sensor is attached to the support member that fixes the short side, the long-term use of the continuous casting mold As the short side wears and the thickness decreases, the reaction force that the short side receives from the solidified shell changes, and the changed reaction force can be detected by the load sensor. Can be monitored to determine the repair timing.
In addition, when the cooling member is the long side of the continuous casting mold and the load sensor is attached to the support member that fixes the long side, the long side is worn with long-term use of the continuous casting mold. As the thickness decreases, the reaction force received by the long side from the solidified shell changes, and the changed reaction force can be detected by the load sensor. Can be determined.

本発明の第1の実施の形態に係る連続鋳造用鋳型の説明図である。It is explanatory drawing of the casting mold for continuous casting which concerns on the 1st Embodiment of this invention. 同連続鋳造用鋳型の短辺及び短辺側支持部材の説明図である。It is explanatory drawing of the short side and short side side supporting member of the same casting mold. 同連続鋳造用鋳型の短辺側支持部材に取付けた荷重センサの説明図である。It is explanatory drawing of the load sensor attached to the short side support member of the same casting mold. 変形例に係る荷重センサの取付け方法を示す説明図である。It is explanatory drawing which shows the attachment method of the load sensor which concerns on a modification. 本発明の第2の実施の形態に係る連続鋳造用鋳型において短辺側支持部材に取付けた荷重センサの説明図である。It is explanatory drawing of the load sensor attached to the short side support member in the casting mold for continuous casting which concerns on the 2nd Embodiment of this invention. (A)は本発明の第3の実施の形態に係る連続鋳造用鋳型の説明図、(B)は短辺間隔調整用シリンダに取付けた荷重センサの説明図である。(A) is explanatory drawing of the casting mold for continuous casting which concerns on the 3rd Embodiment of this invention, (B) is explanatory drawing of the load sensor attached to the cylinder for short side space | interval adjustment.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
図1に示すように、本発明の第1の実施の形態に係る連続鋳造用鋳型10は、間隔を有して対向配置された対となる冷却部材の一例である対となる長辺(具体的には銅板、長片ともいう)11と、対となる長辺11の間に挟まれて間隔を有して対向配置された対となる冷却部材の一例である対となる短辺(具体的には銅板、短片ともいう)12とを有している。また、連続鋳造用鋳型10は、長辺11の裏面側にそれぞれ配置され、長辺11が複数の締結ボルト(図示せず)を介して固定された長辺側支持部材(支持部材の一例)13と、長辺側支持部材13の裏面側に連結し、長辺側支持部材13を介して長辺11を保持する保持機構(図示せず)とを有している。更に、連続鋳造用鋳型10は、短辺12の裏面側にそれぞれ配置され、短辺12が複数の締結ボルト14を介して固定された短辺側支持部材(支持部材の一例)15と、短辺側支持部材15の裏面側に連結し、短辺側支持部材15を介して短辺12を保持する保持機構16とを有している。以下、詳細に説明する。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
As shown in FIG. 1, the continuous casting mold 10 according to the first embodiment of the present invention is a pair of long sides (an example of a pair of cooling members that are opposed to each other with a gap therebetween). Specifically, the pair of short sides (specifically, a pair of cooling members sandwiched between the pair of long sides 11 and opposed to each other with a gap therebetween) (It is also called a copper plate or a short piece) 12. The continuous casting mold 10 is disposed on the back side of the long side 11, and the long side support member (an example of a support member) in which the long side 11 is fixed via a plurality of fastening bolts (not shown). 13 and a holding mechanism (not shown) that is connected to the back side of the long side support member 13 and holds the long side 11 via the long side support member 13. Further, the continuous casting mold 10 is disposed on the back side of the short side 12, and a short side support member (an example of a support member) 15 in which the short side 12 is fixed via a plurality of fastening bolts 14, and a short side. It has a holding mechanism 16 that is connected to the back side of the side support member 15 and holds the short side 12 via the short side support member 15. Details will be described below.

図2に示すように、短辺12(長辺11も同様)は、その裏面側(溶鋼接触面側とは反対側)の上下方向に設けられた多数の導水溝17、18に冷却水を流すことで、短辺12の冷却を行うと共に、溶鋼の冷却を行って凝固シェル(鋳片)を形成する。この短辺12は、例えば、幅が50mm以上300mm以下程度(一対の長辺11の間隔と等しい)、上下方向の長さが600mm以上1200mm以下程度である。また、長辺11は、対向配置される一対の短辺12の間隔を、600mm以上3000mm以下の範囲で変更可能とすることのできる幅を有し、上下方向の長さは短辺12と同程度である。なお、短辺12と長辺11は、銅又は銅合金で構成されている。また、符号19は、短辺12と短辺側支持部材15との間から冷却水が漏れるのを防止するOリングである。これにより、例えば、幅が600mm以上3000mm以下程度、厚みが50mm以上300mm以下程度のスラブを製造できる。 As shown in FIG. 2, the short side 12 (the same applies to the long side 11) is used to supply cooling water to a large number of water guide grooves 17 and 18 provided in the vertical direction on the back surface side (the side opposite to the molten steel contact surface side). By flowing, the short side 12 is cooled and the molten steel is cooled to form a solidified shell (slab). For example, the short side 12 has a width of about 50 mm to 300 mm (equal to the distance between the pair of long sides 11), and a vertical length of about 600 mm to 1200 mm. Further, the long side 11 has a width that can change the interval between the pair of opposing short sides 12 in a range of 600 mm or more and 3000 mm or less, and the vertical length is the same as the short side 12. Degree. The short side 12 and the long side 11 are made of copper or a copper alloy. Reference numeral 19 denotes an O-ring that prevents cooling water from leaking between the short side 12 and the short side support member 15. Thereby, for example, a slab having a width of about 600 mm to about 3000 mm and a thickness of about 50 mm to about 300 mm can be manufactured.

短辺側支持部材15(長辺側支持部材13も同様)は、その下部に設けられた給水部(図示しない)から、短辺12の裏面側に設けられた多数の導水溝17、18を介して、短辺側支持部材15の上部に設けられた排水部(図示しない)へ冷却水を流し、短辺12の冷却を行う。また、図3に示すように、短辺側支持部材15には、鋳造中に短辺12に発生する応力を検出する荷重センサ20(例えば、歪みゲージを用いたもの、ロードセル等からなる)が取付けられている。ここで、荷重センサ20は、細長形状(長さ:例えば、5〜20mm程度、幅:例えば、0.5〜2mm)の検知部21と、検知部21に発生した信号を取出すリード線22とを備えている。そして、荷重センサ20を短辺側支持部材15に取付けるには、先ず、ボルト23の頂部からその軸心に沿って形成した、例えば、径が1〜3mm程度の穴24内に荷重センサ20の検知部21を入れて周囲を接着剤で固定し、荷重センサ20を取付けたボルト23を、短辺側支持部材15に形成した貫通ねじ孔25にボルト23の先端を先側にしてねじ込む。なお、ボルト23の先端と短辺12の裏面との間には隙間δ(例えば、0.1〜1mm)を設けているが、ボルト23の先端が短辺12の裏面に当接してもよい。 The short side support member 15 (the same applies to the long side support member 13) is provided with a large number of water guide grooves 17 and 18 provided on the back side of the short side 12 from a water supply part (not shown) provided in the lower part thereof. Then, cooling water is allowed to flow to a drainage section (not shown) provided on the upper part of the short side support member 15 to cool the short side 12. As shown in FIG. 3, the short side support member 15 has a load sensor 20 (for example, a strain gauge, a load cell, or the like) that detects stress generated on the short side 12 during casting. Installed. Here, the load sensor 20 includes a detection unit 21 having an elongated shape (length: about 5 to 20 mm, width: for example, 0.5 to 2 mm), and a lead wire 22 for taking out a signal generated in the detection unit 21. It has. In order to attach the load sensor 20 to the short side support member 15, first, the load sensor 20 is placed in the hole 24 having a diameter of about 1 to 3 mm formed from the top of the bolt 23 along the axis. The detection unit 21 is inserted, the periphery is fixed with an adhesive, and the bolt 23 to which the load sensor 20 is attached is screwed into the through screw hole 25 formed in the short side support member 15 with the tip of the bolt 23 leading. A gap δ (for example, 0.1 to 1 mm) is provided between the tip of the bolt 23 and the back surface of the short side 12, but the tip of the bolt 23 may contact the back surface of the short side 12. .

ボルト23を短辺側支持部材15の貫通ねじ孔25にねじ込むことによりボルト23と短辺側支持部材15は一体化する。このため、短辺側支持部材15が歪むと、短辺側支持部材15にねじ込まれているボルト23も短辺側支持部材15と共に歪む。そして、ボルト23が歪むと穴24も歪み、穴24内を充填している接着剤が歪んで検知部21からボルト23の歪みに応じた信号が出力される。ここで、短辺側支持部材15の歪みは、短辺12が凝固シェルを押す反作用として短辺12が凝固シェルから押し返される際に生じる短辺12の変形に伴って生じるので、検知部21で測定されたボルト23の歪み量から、短辺12を変形させる際に凝固シェルから短辺12に負荷された荷重を求めることができる。なお、使用にあっては、事前に荷重の校正を行う。 The bolt 23 and the short side support member 15 are integrated by screwing the bolt 23 into the through screw hole 25 of the short side support member 15. For this reason, when the short side support member 15 is distorted, the bolt 23 screwed into the short side support member 15 is also distorted together with the short side support member 15. When the bolt 23 is distorted, the hole 24 is also distorted, the adhesive filling the hole 24 is distorted, and a signal corresponding to the distortion of the bolt 23 is output from the detection unit 21. Here, the distortion of the short side support member 15 is caused by the deformation of the short side 12 that occurs when the short side 12 is pushed back from the solidified shell as a reaction that the short side 12 pushes the solidified shell. From the amount of distortion of the bolt 23 measured in step 1, the load applied to the short side 12 from the solidified shell when the short side 12 is deformed can be obtained. In use, calibrate the load in advance.

図4に、変形例に係る荷重センサ20の取付け方法を示す。変形例では、短辺側支持部材26に、短辺側支持部材26の裏面側から径が1〜3mm程度の穴27を形成し、この穴27内に荷重センサ20の検知部21を含む先側を装入し、穴27内を接着剤で充填して荷重センサ20の先側を穴27内に固定している。これによって、短辺12に発生した応力で短辺12が歪むと、短辺12が固定されている短辺側支持部材26も歪む。そして、短辺側支持部材26が歪むと、穴27も歪み、穴27内を充填している接着剤が歪んで検知部21から短辺側支持部材26の歪み量に応じた信号が出力される。ここで、短辺側支持部材26の歪み量は、短辺側支持部材26を歪ませた短辺12の歪み量の影響を受け、短辺12の歪み量は短辺12に発生した応力の影響を受けるので、検知部21で測定された短辺側支持部材26の歪み量から、短辺12に加わる荷重を求めることができる。 In FIG. 4, the attachment method of the load sensor 20 which concerns on a modification is shown. In the modification, a hole 27 having a diameter of about 1 to 3 mm is formed in the short side support member 26 from the back surface side of the short side support member 26, and the detection portion 21 of the load sensor 20 is included in the hole 27. The front side of the load sensor 20 is fixed in the hole 27 by filling the hole 27 with an adhesive. Accordingly, when the short side 12 is distorted by the stress generated on the short side 12, the short side support member 26 to which the short side 12 is fixed is also distorted. When the short side support member 26 is distorted, the hole 27 is also distorted, the adhesive filling the hole 27 is distorted, and a signal corresponding to the amount of distortion of the short side support member 26 is output from the detection unit 21. The Here, the strain amount of the short side support member 26 is influenced by the strain amount of the short side 12 that distorts the short side support member 26, and the strain amount of the short side 12 is the stress generated in the short side 12. Since it is influenced, the load applied to the short side 12 can be obtained from the amount of distortion of the short side support member 26 measured by the detection unit 21.

保持機構16は、短辺側支持部材15の裏面側の上部と下部にそれぞれ取付けられた短辺間隔調整用シリンダ16aを有している。各短辺間隔調整用シリンダ16aは、その基部が連続鋳造用鋳型10の取付け架台(図示せず)に取付けられ、各短辺間隔調整用シリンダ16aのロッド28の先部は、短辺側支持部材15の裏面側の上部及び下部にそれぞれ突出して設けられた対となる連結受部材30、31の間に装入され、ピン32を介して連結受部材30、31と接続されている。これによって、各短辺間隔調整用シリンダ16aのロッド28を同期して移動させることにより、対向配置した長辺11により幅方向両側が挟み込まれた状態の対向配置された短辺12の間隔を調整することができる。 The holding mechanism 16 includes short side interval adjusting cylinders 16 a attached to the upper and lower portions on the back side of the short side support member 15. The base of each short side interval adjusting cylinder 16a is attached to a mounting base (not shown) of the continuous casting mold 10, and the tip of the rod 28 of each short side interval adjusting cylinder 16a is supported on the short side. The pair of connecting receiving members 30 and 31 that protrude from the upper and lower portions of the back surface of the member 15 are inserted between the connecting receiving members 30 and 31 and connected to the connecting receiving members 30 and 31 via pins 32. Thus, by moving the rods 28 of the respective short-side interval adjusting cylinders 16a in synchronization, the interval between the opposed short sides 12 in a state where both sides in the width direction are sandwiched by the opposed long sides 11 is adjusted. can do.

続いて、本発明の第1の実施の形態に係る連続鋳造用鋳型10の作用について説明する。
短辺12の裏面側の上下方向に設けられた多数の導水溝17、18、及び長辺11の裏面側の上下方向に設けられた多数の導水溝にそれぞれ冷却水を流しながら、1対の短辺12と1対の長辺11とで形成された空間部に溶鋼を供給すると、溶鋼は短辺12と長辺11で冷却されて凝固シェルを形成し、この凝固シェルを下方へ引き抜くことにより鋳片が製造される。ここで、長辺11は長辺側支持部材13を介して保持機構により規定の位置に固定されて、対向する長辺11間が所定の間隔に保持され、短辺12は短辺側支持部材15を介して短辺間隔調整用シリンダ16aにより規定の位置に固定されて、対向する短辺12間が所定の間隔に保持されている。このため、短辺12、長辺11は形成された凝固シェルを押すことになり、凝固シェルは短辺12、長辺11を押し返す(短辺12、長辺11には凝固シェルからの反力が加わる)。そして、短辺12、長辺11の表面が形成された凝固シェルと一様に接触している場合、短辺12、長辺11が凝固シェルを押す力(凝固シェルが短辺12、長辺11を押し返す反力)は一定範囲内の値(目標荷重値)となる。
Next, the operation of the continuous casting mold 10 according to the first embodiment of the present invention will be described.
While flowing cooling water through a large number of water guide grooves 17, 18 provided in the vertical direction on the back side of the short side 12 and a large number of water guide grooves provided in the vertical direction on the back side of the long side 11, a pair of When molten steel is supplied to the space formed by the short side 12 and the pair of long sides 11, the molten steel is cooled by the short side 12 and the long side 11 to form a solidified shell, and the solidified shell is drawn downward. Thus, a slab is manufactured. Here, the long side 11 is fixed at a predetermined position by the holding mechanism via the long side support member 13, the long side 11 facing each other is held at a predetermined interval, and the short side 12 is the short side support member. 15 is fixed to a predetermined position by a short side interval adjusting cylinder 16a through 15 and the opposed short sides 12 are held at a predetermined interval. For this reason, the short side 12 and the long side 11 push the formed solidified shell, and the solidified shell pushes back the short side 12 and the long side 11 (the reaction force from the solidified shell is applied to the short side 12 and the long side 11). Is added). When the surfaces of the short side 12 and the long side 11 are uniformly in contact with the formed solidified shell, the force of the short side 12 and the long side 11 pressing the solidified shell (the solidified shell is the short side 12 and the long side The reaction force that pushes back 11 is a value within a certain range (target load value).

鋳造中に、短辺12の熱変形が大きくなって、又は凝固シェルとの接触で短辺12の表面側が磨耗してくると、短辺12の位置を規定の位置に保持した場合、短辺12の表面と凝固シェルとの間に隙間が生じる。これにより、溶鋼の冷却不足が生じて凝固シェルの成長が不安定になる。また、短辺12が凝固シェルを押す力(凝固シェルが短辺12を押し返す反力)も低下する。そして、これらのことは、短辺側支持部材15に取付けた荷重センサ20で測定される荷重値の低下として検知できる。 During the casting, when the thermal deformation of the short side 12 becomes large or the surface side of the short side 12 is worn due to contact with the solidified shell, A gap is created between the surface of 12 and the solidified shell. As a result, insufficient cooling of the molten steel occurs, and the growth of the solidified shell becomes unstable. Further, the force with which the short side 12 pushes the solidified shell (reaction force with which the solidified shell pushes back the short side 12) also decreases. These can be detected as a decrease in the load value measured by the load sensor 20 attached to the short side support member 15.

そこで、短辺間隔調整用シリンダ16aを操作して、短辺12を凝固シェル側に押し込み、荷重センサ20で測定される荷重値を目標荷重値に回復させることにより、短辺12の表面が一様に凝固シェルに接触する状態に回復させることができる。このとき、荷重センサ20で測定される荷重値を参照しながら短辺間隔調整用シリンダ16aを操作するため、短辺12で凝固シェルを強く押圧するのを防止することができ、凝固シェルが破れてブレークアウトや鋳片割れが発生するのを回避できる。その結果、十分な厚みの凝固シェルを安定して形成することができ、ブレークアウトや鋳片割れの発生のない安定した鋳造作業を行うことが可能になる。 Therefore, by operating the short side interval adjusting cylinder 16a, the short side 12 is pushed into the solidified shell side, and the load value measured by the load sensor 20 is restored to the target load value. In this way, it is possible to recover the state in contact with the solidified shell. At this time, since the short side interval adjusting cylinder 16a is operated while referring to the load value measured by the load sensor 20, it is possible to prevent the solidified shell from being strongly pressed by the short side 12, and the solidified shell is broken. Breakage and slab cracking can be avoided. As a result, a solidified shell having a sufficient thickness can be stably formed, and a stable casting operation can be performed without occurrence of breakout or slab cracking.

図5に示すように、本発明の第2の実施の形態に係る連続鋳造用鋳型33は、第1の実施の形態に係る連続鋳造用鋳型10と比較して、荷重センサ20を取付けたボルト34の形状と、ボルト34の短辺側支持部材35に対する取付け構造が異なっていることが特徴となっている。このため、ボルト34の形状と、ボルト34の短辺側支持部材35に対する取付け構造について説明する。 As shown in FIG. 5, the continuous casting mold 33 according to the second embodiment of the present invention is a bolt to which the load sensor 20 is attached as compared with the continuous casting mold 10 according to the first embodiment. The shape of 34 and the attachment structure with respect to the short side support member 35 of the volt | bolt 34 differ. For this reason, the shape of the bolt 34 and the attachment structure with respect to the short side support member 35 of the bolt 34 are demonstrated.

ボルト34のボルト長さL(ねじが形成されている軸部(頭部を除く部分)の長さ)は、短辺側支持部材35の厚みより長く(例えば、短辺側支持部材35の厚みより0.5〜5mmの範囲で長く)形成されている。また、ボルト34の先端側は丸められて、例えば、ボルト34(軸部)の外径と同一の直径を有する球面部(半球面)36となっている。なお、ボルトの先端側の球面部の形状を、ボルトの外径より大きな長さの直径を有する球面の一部に一致する形状にしてもよい。そして、ボルト34が取付けられる短辺側支持部材35に形成された貫通ねじ孔37では、ボルト34がねじ込まれる基側(短辺側支持部材35の裏面側)から先側に向けて、例えば、ボルト長さLの1/3〜1/2倍の長さに相当する範囲にボルト34に螺合する雌ねじ部38が形成され、雌ねじ部38より先側の領域は拡径部38aとなっている。 The bolt length L of the bolt 34 (the length of the shaft portion (portion excluding the head) where the screw is formed) is longer than the thickness of the short side support member 35 (for example, the thickness of the short side support member 35). Longer in the range of 0.5 to 5 mm). Further, the front end side of the bolt 34 is rounded to form, for example, a spherical portion (semispherical surface) 36 having the same diameter as the outer diameter of the bolt 34 (shaft portion). The shape of the spherical portion on the tip side of the bolt may be a shape that matches a part of the spherical surface having a diameter larger than the outer diameter of the bolt. And in the penetration screw hole 37 formed in the short side support member 35 to which the bolt 34 is attached, from the base side (the back side of the short side support member 35) into which the bolt 34 is screwed, the front side, for example, A female screw portion 38 that is screwed into the bolt 34 is formed in a range corresponding to a length that is 1/3 to 1/2 times the bolt length L, and a region on the front side of the female screw portion 38 is an enlarged diameter portion 38a. Yes.

このような構成とすることにより、ボルト34を貫通ねじ孔37にねじ込んだ際に、ボルト34の基側を短辺側支持部材35に固定すると共に、ボルト34の先端を短辺12の裏面に当接させることができる。なお、ボルト34の先端が当接する短辺12の当接部は、ボルト34の先端側の球面部36の直径よりも大きな直径を有する球面の一部に一致する曲面を有する凹部としてもよい。なお、使用にあっては、事前に荷重の校正を行う。 With such a configuration, when the bolt 34 is screwed into the through screw hole 37, the base side of the bolt 34 is fixed to the short side support member 35 and the tip of the bolt 34 is attached to the back surface of the short side 12. It can be made to contact. The abutting portion of the short side 12 with which the tip of the bolt 34 abuts may be a recess having a curved surface that coincides with a part of a spherical surface having a diameter larger than the diameter of the spherical portion 36 on the tip side of the bolt 34. In use, calibrate the load in advance.

続いて、本発明の第2の実施の形態に係る連続鋳造用鋳型33の作用について説明するが、連続鋳造用鋳型33の基本的な作用は、第1の実施の形態に係る連続鋳造用鋳型10の作用と基本的に同様なので、連続鋳造用鋳型10にはない連続鋳造用鋳型33の特徴的な作用について説明する。
連続鋳造用鋳型33では、ボルト34を短辺側支持部材35の貫通ねじ孔37にねじ込むことにより、ボルト34は、その基側が短辺側支持部材35に固定され、ボルト34の先端が短辺12の裏面に当接する状態にすることができる。このため、短辺12が凝固シェルを押す反作用として、短辺12が凝固シェルから押し返されて短辺12が変形した場合、ボルト34は、ボルト34の先端が当接している短辺12の当接部の変形に追従して変形する。ここで、短辺側支持部材35の各部位における歪みは、短辺12が凝固シェルを押す反作用として、短辺12が凝固シェルから押し返される際に生じる短辺12の各部位の変形に伴って生じるので、検知部21で測定されたボルト34の歪み量から、凝固シェルから短辺12の各部位に負荷された荷重を求めることができる。したがって、短辺間隔調整用シリンダ16aの操作を精緻に行って、荷重センサ20で測定される荷重値を目標荷重値に回復させることができる。
Subsequently, the operation of the continuous casting mold 33 according to the second embodiment of the present invention will be described. The basic operation of the continuous casting mold 33 is the continuous casting mold according to the first embodiment. Since it is basically the same as the operation of No. 10, the characteristic operation of the continuous casting mold 33 not provided in the continuous casting mold 10 will be described.
In the continuous casting mold 33, the bolt 34 is screwed into the through screw hole 37 of the short side support member 35, whereby the base side of the bolt 34 is fixed to the short side support member 35, and the tip of the bolt 34 is short side. 12 can be brought into contact with the back surface. For this reason, as a reaction in which the short side 12 pushes the solidified shell, when the short side 12 is pushed back from the solidified shell and the short side 12 is deformed, the bolt 34 has the short side 12 with which the tip of the bolt 34 abuts. Deforms following the deformation of the abutment. Here, the distortion in each part of the short side support member 35 is accompanied by deformation of each part of the short side 12 that occurs when the short side 12 is pushed back from the solidified shell as a reaction in which the short side 12 pushes the solidified shell. Therefore, the load applied to each part of the short side 12 from the solidified shell can be obtained from the amount of distortion of the bolt 34 measured by the detection unit 21. Therefore, the load value measured by the load sensor 20 can be recovered to the target load value by precisely operating the short side interval adjusting cylinder 16a.

図6(A)に示すように、本発明の第3の実施の形態に係る連続鋳造用鋳型39は、第1の実施の形態に係る連続鋳造用鋳型10と比較して、荷重センサ20が短辺側支持部材40ではなくて、短辺間隔調整用シリンダ16aのロッド41に取付けられていることが特徴となっている。このため、荷重センサ20のロッド41への取付けについてのみ説明する。 As shown in FIG. 6 (A), the continuous casting mold 39 according to the third embodiment of the present invention has a load sensor 20 as compared with the continuous casting mold 10 according to the first embodiment. It is characterized by being attached to the rod 41 of the short side interval adjusting cylinder 16a instead of the short side support member 40. For this reason, only the attachment of the load sensor 20 to the rod 41 will be described.

図6(B)に示すように、ロッド41内に、ロッド41の軸に平行で径が1〜3mm程度、長さが10〜30mm程度の収納部42を形成し、収納部42と連通しロッド41の側面に開口する連通路43からこの収納部42内に荷重センサ20の先側の検知部21がその長手方向をロッド41の軸方向となるように装入し、収納部42及び連通路43内を接着剤で充填して荷重センサ20の先側を収納部42及び連通路43内に固定している。これによって、短辺12に発生した応力で短辺12が歪むと、短辺12が固定されている短辺側支持部材40も歪む。そして、短辺側支持部材40が歪むと、短辺側支持部材40からロッド41に加わる力が変化し、ロッド41に生じていた歪も変化する。その結果、ロッド41内に形成した収納部42の形状も変化し、収納部42内を充填している接着剤が歪んで検知部21から短辺側支持部材40の歪みに応じた信号が出力される。ここで、短辺側支持部材40の歪み量は、短辺側支持部材40を歪ませた短辺12の歪み量の影響を受け、短辺12の歪み量は短辺12に発生した応力の影響を受けるので、検知部21で測定されたロッド41の歪み量から、短辺12に加わる荷重を求めることができる。
なお、本発明の第3の実施の形態に係る連続鋳造用鋳型39の作用は、第1の実施の形態に係る連続鋳造用鋳型10の作用と同様なので、説明は省略する。
As shown in FIG. 6B, a storage portion 42 is formed in the rod 41, which is parallel to the axis of the rod 41 and has a diameter of about 1 to 3 mm and a length of about 10 to 30 mm, and communicates with the storage portion 42. The detecting portion 21 on the front side of the load sensor 20 is inserted into the storage portion 42 from the communication passage 43 opened on the side surface of the rod 41 so that the longitudinal direction thereof is the axial direction of the rod 41. The inside of the passage 43 is filled with an adhesive, and the front side of the load sensor 20 is fixed in the storage portion 42 and the communication passage 43. Accordingly, when the short side 12 is distorted by the stress generated in the short side 12, the short side support member 40 to which the short side 12 is fixed is also distorted. When the short side support member 40 is distorted, the force applied to the rod 41 from the short side support member 40 changes, and the strain generated in the rod 41 also changes. As a result, the shape of the storage portion 42 formed in the rod 41 also changes, the adhesive filling the storage portion 42 is distorted, and a signal corresponding to the distortion of the short side support member 40 is output from the detection portion 21. Is done. Here, the strain amount of the short side support member 40 is affected by the strain amount of the short side 12 that distorts the short side support member 40, and the strain amount of the short side 12 is the stress generated in the short side 12. Since it is influenced, the load applied to the short side 12 can be obtained from the amount of strain of the rod 41 measured by the detection unit 21.
Note that the operation of the continuous casting mold 39 according to the third embodiment of the present invention is the same as the operation of the continuous casting mold 10 according to the first embodiment, and a description thereof will be omitted.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載した構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。
例えば、第1の実施の形態において、荷重センサを、長辺を固定する長辺側支持部材に取付けることができる。
また、第3の実施の形態において、荷重センサを、短辺間隔調整用シリンダを連続鋳造用鋳型の取付け架台に取付ける際に使用する短辺間隔調整用シリンダの固定部材に取付けてもよい。この場合、荷重センサの検知部の長手方向を短辺間隔調整用シリンダの軸方向に平行にする。
As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above-described embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included.
For example, in the first embodiment, the load sensor can be attached to the long side support member that fixes the long side.
In the third embodiment, the load sensor may be attached to the fixing member of the short side interval adjusting cylinder used when the short side interval adjusting cylinder is attached to the mounting base of the continuous casting mold. In this case, the longitudinal direction of the detection part of the load sensor is made parallel to the axial direction of the short side interval adjusting cylinder.

10:連続鋳造用鋳型、11:長辺、12:短辺、13:長辺側支持部材、14:締結ボルト、15:短辺側支持部材、16:保持機構、16a:短辺間隔調整用シリンダ、17、18:導水溝、19:Oリング、20:荷重センサ、21:検知部、22:リード線、23:ボルト、24:穴、25:貫通ねじ孔、26:短辺側支持部材、27:穴、28:ロッド、30、31:連結受部材、32:ピン、33:連続鋳造用鋳型、34:ボルト、35:短辺側支持部材、36:球面部、37:貫通ねじ孔、38:雌ねじ部、38a:拡径部、39:連続鋳造用鋳型、40:短辺側支持部材、41:ロッド、42:収納部、43:連通路 10: Continuous casting mold, 11: Long side, 12: Short side, 13: Long side support member, 14: Fastening bolt, 15: Short side support member, 16: Holding mechanism, 16a: Short side interval adjustment Cylinder, 17, 18: Water guide groove, 19: O-ring, 20: Load sensor, 21: Detection part, 22: Lead wire, 23: Bolt, 24: Hole, 25: Through screw hole, 26: Short side support member 27: Hole, 28: Rod, 30, 31: Connection receiving member, 32: Pin, 33: Continuous casting mold, 34: Bolt, 35: Short side support member, 36: Spherical surface part, 37: Through screw hole , 38: female thread part, 38a: expanded diameter part, 39: casting mold for continuous casting, 40: short side support member, 41: rod, 42: storage part, 43: communication path

Claims (3)

対向配置された対となる冷却部材と、該各冷却部材の裏面側に配置され、該冷却部材が複数の締結ボルトを介して固定された支持部材と、該支持部材の裏面側に連結し、該支持部材を介して前記冷却部材を保持する保持機構とを有する連続鋳造用鋳型において、
鋳造中に前記冷却部材に発生する応力を検出する荷重センサを内部に取付けたボルトが、前記支持部材に形成された貫通ねじ孔に取付けられ、しかも、該貫通ねじ孔の前記支持部材の裏面側に前記ボルトの基側が固定され、該貫通ねじ孔の前記冷却部材側の領域は拡径部となり、前記ボルトの先端側は球面部となって、前記冷却部材の裏面に当接していることを特徴とする連続鋳造用鋳型。
A pair of opposing cooling members, a support member disposed on the back side of each cooling member, the cooling member being fixed via a plurality of fastening bolts, and connected to the back side of the support member; In a continuous casting mold having a holding mechanism for holding the cooling member via the support member,
A bolt having a load sensor for detecting a stress generated in the cooling member during casting is attached to a through screw hole formed in the support member, and the back surface side of the support member of the through screw hole The base side of the bolt is fixed, the region on the cooling member side of the through screw hole is a diameter-enlarged portion, the tip side of the bolt is a spherical portion, and is in contact with the back surface of the cooling member. Features a continuous casting mold.
請求項1記載の連続鋳造用鋳型において、前記冷却部材は、該連続鋳造用鋳型の短辺であって、前記荷重センサは、該短辺を固定する前記支持部材に取付けられていることを特徴とする連続鋳造用鋳型。 2. The continuous casting mold according to claim 1, wherein the cooling member is a short side of the continuous casting mold, and the load sensor is attached to the support member that fixes the short side. A continuous casting mold. 請求項1記載の連続鋳造用鋳型において、前記冷却部材は、該連続鋳造用鋳型の長辺であって、前記荷重センサは、該長辺を固定する前記支持部材に取付けられていることを特徴とする連続鋳造用鋳型。 2. The continuous casting mold according to claim 1, wherein the cooling member is a long side of the continuous casting mold, and the load sensor is attached to the support member that fixes the long side. A continuous casting mold.
JP2010030352A 2010-02-15 2010-02-15 Continuous casting mold Active JP5544185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010030352A JP5544185B2 (en) 2010-02-15 2010-02-15 Continuous casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010030352A JP5544185B2 (en) 2010-02-15 2010-02-15 Continuous casting mold

Publications (2)

Publication Number Publication Date
JP2011161507A JP2011161507A (en) 2011-08-25
JP5544185B2 true JP5544185B2 (en) 2014-07-09

Family

ID=44592817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010030352A Active JP5544185B2 (en) 2010-02-15 2010-02-15 Continuous casting mold

Country Status (1)

Country Link
JP (1) JP5544185B2 (en)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5689357A (en) * 1979-12-21 1981-07-20 Nippon Steel Corp Detection of abnormality in continuous casting
JPS5973161A (en) * 1982-10-20 1984-04-25 Nippon Steel Corp Continuous casting method of steel
JPS6289553A (en) * 1985-10-16 1987-04-24 Kawasaki Steel Corp Mold for continuous casting
JPS63281755A (en) * 1987-05-14 1988-11-18 Nkk Corp Continuous casting method
JP2987906B2 (en) * 1990-09-05 1999-12-06 日本鋼管株式会社 Assembly mold of continuous casting machine
JPH0847762A (en) * 1994-08-08 1996-02-20 Nippon Steel Corp Continuous casting method
JP2972098B2 (en) * 1994-11-04 1999-11-08 住友重機械工業株式会社 Short-side independent mechanism of horizontal vibration mold
JPH09262642A (en) * 1996-03-28 1997-10-07 Kawasaki Steel Corp Mold device for continuous casting
JP2003208687A (en) * 2001-11-06 2003-07-25 Nippon Steel Corp Processor of measurement information used for steel production equipment and breakout prediction method using it
JP4219123B2 (en) * 2002-07-02 2009-02-04 三島光産株式会社 Continuous casting mold
JP4709569B2 (en) * 2005-04-04 2011-06-22 新日鉄エンジニアリング株式会社 Thermocouple mounting structure for continuous casting mold
JP4008018B1 (en) * 2006-10-26 2007-11-14 三島光産株式会社 Continuous casting mold
JP5383457B2 (en) * 2009-12-01 2014-01-08 三島光産株式会社 Abnormality detection method for continuous casting mold and continuous casting mold

Also Published As

Publication number Publication date
JP2011161507A (en) 2011-08-25

Similar Documents

Publication Publication Date Title
JP4688755B2 (en) Steel continuous casting method
KR101131433B1 (en) Thermosensor for casting machine and casting machine
JP4568301B2 (en) Continuous casting mold
KR101960628B1 (en) Continuous casting mold
CN103016622A (en) Shackle assembly
JP5544185B2 (en) Continuous casting mold
EP2870447B1 (en) Load sensing arrangement on a bearing component, method and computer program product
JP5383457B2 (en) Abnormality detection method for continuous casting mold and continuous casting mold
JP5877167B2 (en) Continuous casting method of slab and mold for continuous casting
Xu et al. Molten steel breakout prediction based on thermal friction measurement
JP5882242B2 (en) Continuous casting method of slab and mold for continuous casting
JP6251833B1 (en) Intermediate fixing method for PC steel
KR100598693B1 (en) Heat deformation correcting system of mold for low pressure casting utility
JPS6372467A (en) Method for controlling die casting
JP2007000893A (en) System and method for measuring deformation of metallic die
JP6319179B2 (en) Method for adjusting roll interval of slab support roll
JP5915463B2 (en) Breakout prediction method
JP5776886B2 (en) Mold deformation measurement system
Kipensky et al. Analysis of Frictional Interaction in a Couple “Billet–Crystallizer”
KR101304789B1 (en) Apparatus for measurement of roll's load
JPH07124734A (en) Pressure in die measuring unit and casting die having therefor
JP2017030029A (en) Breakout prediction method, breakout prediction device and continuous casting method
JP6408328B2 (en) Die casting machine injection equipment
KR100889290B1 (en) A Method for Calculating the Roll Life in a Continuous Casting
JP5383462B2 (en) Displacement measurement method for water-cooled copper plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140512

R150 Certificate of patent or registration of utility model

Ref document number: 5544185

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250