JP5544111B2 - Method for separating, recovering and treating radioactive solid waste mainly composed of silica component - Google Patents
Method for separating, recovering and treating radioactive solid waste mainly composed of silica component Download PDFInfo
- Publication number
- JP5544111B2 JP5544111B2 JP2009099775A JP2009099775A JP5544111B2 JP 5544111 B2 JP5544111 B2 JP 5544111B2 JP 2009099775 A JP2009099775 A JP 2009099775A JP 2009099775 A JP2009099775 A JP 2009099775A JP 5544111 B2 JP5544111 B2 JP 5544111B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- uranium
- gas
- solid waste
- sif
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims description 114
- 239000000377 silicon dioxide Substances 0.000 title claims description 55
- 230000002285 radioactive effect Effects 0.000 title claims description 38
- 238000000034 method Methods 0.000 title claims description 35
- 239000002910 solid waste Substances 0.000 title claims description 35
- 229910052770 Uranium Inorganic materials 0.000 claims description 73
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 claims description 68
- 239000000843 powder Substances 0.000 claims description 42
- 239000007789 gas Substances 0.000 claims description 40
- 238000010438 heat treatment Methods 0.000 claims description 38
- 239000011812 mixed powder Substances 0.000 claims description 23
- 229910017855 NH 4 F Inorganic materials 0.000 claims description 19
- 238000006243 chemical reaction Methods 0.000 claims description 19
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical group [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 15
- 239000002250 absorbent Substances 0.000 claims description 12
- 230000002745 absorbent Effects 0.000 claims description 12
- 239000012159 carrier gas Substances 0.000 claims description 12
- 238000002156 mixing Methods 0.000 claims description 12
- 239000011261 inert gas Substances 0.000 claims description 11
- 239000012298 atmosphere Substances 0.000 claims description 10
- 238000001816 cooling Methods 0.000 claims description 10
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 10
- 239000011707 mineral Substances 0.000 claims description 10
- 235000010755 mineral Nutrition 0.000 claims description 10
- 239000007787 solid Substances 0.000 claims description 10
- 238000003756 stirring Methods 0.000 claims description 9
- 239000002253 acid Substances 0.000 claims description 7
- -1 uranium peroxide Chemical class 0.000 claims description 7
- 238000001556 precipitation Methods 0.000 claims description 5
- 235000011121 sodium hydroxide Nutrition 0.000 claims description 5
- 238000000638 solvent extraction Methods 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 238000005342 ion exchange Methods 0.000 claims description 4
- 230000015271 coagulation Effects 0.000 claims 2
- 238000005345 coagulation Methods 0.000 claims 2
- 238000000926 separation method Methods 0.000 description 22
- 239000000243 solution Substances 0.000 description 17
- 239000002699 waste material Substances 0.000 description 15
- 238000011084 recovery Methods 0.000 description 13
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 7
- 238000010828 elution Methods 0.000 description 7
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 6
- 229910017604 nitric acid Inorganic materials 0.000 description 6
- 239000007788 liquid Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- 229920002472 Starch Polymers 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 235000019698 starch Nutrition 0.000 description 4
- 239000008107 starch Substances 0.000 description 4
- 150000001450 anions Chemical class 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 229910020177 SiOF Inorganic materials 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005202 decontamination Methods 0.000 description 2
- 230000003588 decontaminative effect Effects 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000010808 liquid waste Substances 0.000 description 2
- 239000003758 nuclear fuel Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- WZECUPJJEIXUKY-UHFFFAOYSA-N [O-2].[O-2].[O-2].[U+6] Chemical compound [O-2].[O-2].[O-2].[U+6] WZECUPJJEIXUKY-UHFFFAOYSA-N 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 238000009933 burial Methods 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002901 radioactive waste Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910000439 uranium oxide Inorganic materials 0.000 description 1
- 229910002007 uranyl nitrate Inorganic materials 0.000 description 1
- 210000004885 white matter Anatomy 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
Landscapes
- Processing Of Solid Wastes (AREA)
Description
本発明は、シリカ成分を主成分とし、少なくともウランが数百ppmから数%の割合で含まれる放射性固体廃棄物からシリカ成分とウランとを分離、回収するとともに、ウランを精製する処理方法に関するものである。 The present invention relates to a treatment method for separating and recovering a silica component and uranium from a radioactive solid waste containing a silica component as a main component and containing at least hundreds of ppm to several percent of uranium and purifying uranium. It is.
核燃料加工施設では、ウランを含有する様々な種類の放射性固体廃棄物が保管されている。放射性固体廃棄物については埋設処分することで検討が行われているが、廃棄物中に含有するウラン濃度によって地下埋設施設の規模が異なり、ウラン濃度が高いものに対しては莫大な処分費用が必要になると予測されている。従って、経済的な負担を軽減する為に、廃棄物中に含有するウラン濃度を可能な限り低減することが好ましいと考えられている。 Nuclear fuel processing facilities store various types of radioactive solid waste containing uranium. Radioactive solid waste is being examined by burying it, but the scale of underground burial facilities differs depending on the concentration of uranium contained in the waste. Expected to be needed. Therefore, in order to reduce the economic burden, it is considered preferable to reduce the concentration of uranium contained in the waste as much as possible.
核燃料加工施設では、50〜200ppmのウランを含有する放射性廃液に工業用水ガラスを添加してシリカ成分とウランとの凝集沈澱物を生成させ、固液分離装置により廃液から凝集沈澱物をスラリー状態で分離し、この分離したスラリー状態の凝集沈澱物に硝酸に代表される鉱酸を添加して固形分中のウランをウラニルイオンとして溶液側に溶出し、更に固液分離することで放射性廃液に含有していたウランの大部分を回収している。ここで回収したウランは、精製処理などを経て、ウラン資源として再利用される。そして、溶出処理の際に固形分として残ったシリカ残渣中には、数質量%のウランが残っており、このシリカ残渣が放射性固体廃棄物として保管されている(例えば、特許文献1参照。)。 In nuclear fuel processing facilities, industrial water glass is added to radioactive waste liquid containing 50 to 200 ppm of uranium to produce agglomerated precipitates of silica components and uranium, and the agglomerated precipitates are slurried from the waste liquid by a solid-liquid separator. Separation, mineral acid represented by nitric acid is added to the aggregated precipitate in the slurry state, uranium in the solid content is eluted as uranyl ions to the solution side, and further contained in radioactive liquid waste by solid-liquid separation Most of the uranium that had been collected is recovered. The uranium recovered here is reused as a uranium resource through a purification process and the like. And in the silica residue which remained as solid content in the elution process, several mass% uranium remains, and this silica residue is stored as radioactive solid waste (for example, refer patent document 1). .
また、50〜200ppmの希薄ウラン濃度の放射性廃液に苛性ソーダやアンモニア水に代表されるアルカリ水溶液を添加して重ウラン酸ソーダや重ウラン酸アンモニウムを生成させ、これを回転胴式の遠心ろ過機等を用いて固液分離することで放射性廃液に含有していたウランを回収している。ここで、凝集沈澱物濃度は希薄である為、ろ過操作時にろ過漏れを起こし易いことから、シリカを主成分とする珪藻土をろ過助剤として用いてろ過し、回収された固形分が放射性固体廃棄物として保管されている。 In addition, caustic soda and aqueous alkaline solutions such as ammonia water are added to radioactive effluent with a dilute uranium concentration of 50 to 200 ppm to produce sodium heavy uranate and ammonium heavy uranate, which are used for rotary drum centrifugal filters, etc. The uranium contained in the radioactive liquid waste is recovered by solid-liquid separation using Here, since the concentration of the aggregated precipitate is dilute, it is easy to cause filtration leakage during the filtration operation, so filtration is performed using diatomaceous earth mainly composed of silica as a filter aid, and the recovered solid content is radioactive solid waste. It is stored as a thing.
このようなシリカ成分を主成分とし、少なくともウランが数百ppmから数%の割合で含まれる放射性固体廃棄物からウランを分離する方法としては、溶液濃度で3規定以上の硝酸溶液に2mm以下に微粉砕した放射性固体廃棄物を添加し、溶液を60℃以上に加熱して溶出を促進させてウランを分離する方法が用いられている。上記方法を用いて放射性固体廃棄物からのウラン溶出処理を行った場合には、固形分中に含有するウランの8〜9割程度までは溶出することができるが、シリカ残渣中にはなお不溶出のウランが、数百ppm〜数千ppm程度残ってしまい完全な分離をすることが出来ない。そのため、ウランの完全な分離を達成する為には、同じ溶出操作を複数回繰返す必要があった。 As a method of separating uranium from radioactive solid waste containing such a silica component as a main component and containing uranium at a rate of several hundred ppm to several percent, the concentration of the solution should be 2 mm or less in a nitric acid solution of 3N or more. A method is used in which finely pulverized radioactive solid waste is added, and the solution is heated to 60 ° C. or more to promote elution to separate uranium. When uranium elution is performed from radioactive solid waste using the above method, it can be eluted up to about 80 to 90% of uranium contained in the solid content, but it is still undissolved in the silica residue. Eluted uranium remains on the order of several hundred ppm to several thousand ppm and cannot be completely separated. Therefore, in order to achieve complete separation of uranium, the same elution operation has to be repeated several times.
しかしながら、複数回の溶出操作を繰り返すとウランの溶出割合は低下していき、逆に溶出液中のシリカ濃度は溶出回数が増えるたびに増大して数千ppm〜数%濃度にまで達することから効率が悪く、かつシリカ濃度が高くなるに従い後に続く溶媒抽出法によって分離精製する際に、溶液と溶媒接触界面にエマルジョンと呼ばれる第三相を生成し易く、これが分離精製を阻害する原因となり、新たなウラン濃度の高い二次放射性固体廃棄物を発生させる課題があった。 However, the elution ratio of uranium decreases as the elution procedure is repeated multiple times, and conversely, the silica concentration in the eluate increases as the number of elutions increases, reaching several thousand ppm to several percent. When separation and purification is carried out by the subsequent solvent extraction method as the silica concentration increases and the silica concentration increases, a third phase called an emulsion is likely to be formed at the interface between the solution and the solvent, which causes a hindrance to the separation and purification. There was a problem of generating secondary radioactive solid waste with high uranium concentration.
上記課題を解決する方策としては、シリカ成分を主成分とし、少なくともウランが数百ppmから数%の割合で含まれる放射性固体廃棄物にフッ酸水溶液を添加して、シリカ成分とウランとをともに完全に溶解し、イオン状態として分離する方法が考えられる。 As a measure to solve the above problems, an aqueous hydrofluoric acid solution is added to a radioactive solid waste containing a silica component as a main component and containing at least several hundred ppm to several percent of uranium, and both the silica component and uranium are combined. A method of completely dissolving and separating as an ionic state is conceivable.
しかし、この方策では、シリカ成分の反応当量に対して数倍〜10倍等量近い過剰なフッ酸を必要とし、また、溶解を促進する為には加熱処理が必要となることから、安全対策上の設備負担が課題となる。また、この方法により溶解されたシリカ成分並びにウランは、いずれも溶液中では陰イオン性であることから、ウランに対して選択性の高い陰イオン交換体などを用いての分離操作が必要となる。陰イオン交換体は高価であり、かつ使用済みの陰イオン交換体がウラン濃度の高い二次放射性固体廃棄物を発生させるという課題がある。 However, this measure requires an excess of hydrofluoric acid that is several times to 10 times the equivalent of the reaction equivalent of the silica component, and heat treatment is required to promote dissolution. The above equipment burden becomes a problem. In addition, since the silica component and uranium dissolved by this method are both anionic in the solution, a separation operation using an anion exchanger having high selectivity for uranium is required. . Anion exchangers are expensive, and there is a problem that used anion exchangers generate secondary radioactive solid waste having a high uranium concentration.
また上記課題を解決する別の方策として、シリカ成分を主成分とし、少なくともウランが数百ppmから数%の割合で含まれる放射性固体廃棄物に、廃棄物中に含まれるシリカ成分と適量の鉄及びカルシウムの酸化物を添加し、一旦、1400℃以上の高温加熱状態にした後に急冷して鉱物結晶体を生成させ、これを鉱酸で完全に溶解して分離する方法が考えられる。 In addition, as another measure for solving the above-mentioned problems, a radioactive solid waste containing a silica component as a main component and containing at least uranium in a ratio of several hundred ppm to several percent, a silica component contained in the waste and an appropriate amount of iron And an oxide of calcium, once heated to a high temperature of 1400 ° C. or higher, rapidly cooled to form a mineral crystal, which is completely dissolved with a mineral acid and separated.
しかし、この方策では、SiO2−CaO−Fe2O3三成分系の鉱物結晶体とすることにより溶解性は向上するが、三元素の配合バランスで結晶化する領域が狭いため、部分的には非晶質な鉱物が発生してしまい、未溶解残渣が発生しこれが結果として二次放射性固体廃棄物になるという課題が残る。また、高温炉で処理することから設備投資費用負担が大きいという課題がある。 However, in this measure, the solubility is improved by using a SiO 2 —CaO—Fe 2 O 3 ternary mineral crystal, but the crystallization region is narrow due to the blend balance of the three elements. An amorphous mineral is generated, and an undissolved residue is generated, resulting in a secondary radioactive solid waste. Moreover, since it processes in a high temperature furnace, there exists a subject that the capital investment expense burden is large.
本発明の目的は、放射性固体廃棄物のうち、シリカ成分を主成分とし、少なくともウランが数百ppmから数%の割合で含まれる放射性固体廃棄物から、シリカ成分とウランとを高効率で分離、回収することにより、シリカ成分側へのウラン移行率を極めて低い割合に抑え、廃棄物処分に係る費用を大幅に軽減することができる、放射性固体廃棄物の処理方法を提供にするものである。 The object of the present invention is to separate silica component and uranium with high efficiency from radioactive solid waste, which contains silica component as the main component of radioactive solid waste and contains uranium at a ratio of several hundred ppm to several percent. It is intended to provide a method for treating radioactive solid waste, which can suppress the uranium transfer rate to the silica component side to a very low ratio by collecting and greatly reduce the cost for waste disposal. .
本方法の別の目的は、同じく放射性固体廃棄物から、シリカ成分とウランとを高効率で分離、回収することにより、ウラン側へのシリカ成分移行率を極めて低い割合に抑え、放射性固体廃棄物に含有され、従来利用できない状態にあったウランを精製可能とし、再利用可能なクリーンなウランとして回収することができる、放射性固体廃棄物の分離、回収、及び、処理方法を提案するものである。
Another purpose of this method is to separate and recover silica component and uranium from radioactive solid waste with high efficiency, thereby reducing the rate of silica component transfer to the uranium side to a very low rate. It proposes a method for separating, recovering, and treating radioactive solid waste that can be refined and can be recovered as reusable clean uranium. .
本発明の第1の観点は、シリカ成分を主成分とし、少なくともウランが数百ppmから数%の割合で含まれる放射性固体廃棄物を処理する方法であって、放射性固体廃棄物の粉末に対してNH4F・HF粉末を、放射性固体廃棄物粉末に含まれるシリカ成分とNH4F・HF粉末とのモル反応当量比率が1:1.5以上の比率となるように混合する工程と、密封型容器内に混合粉末を投入し、密封型容器内に不活性ガスをキャリアガスとして導入して容器内部を不活性ガス雰囲気としながら、混合粉末を270〜370℃の温度で30分〜2時間加熱することにより、混合粉末に含まれるシリカ成分とNH4F・HFとを反応させてシリカ成分を(NH4)2・SiF6として揮発化させる工程と、密封型容器から排出される(NH4)2・SiF6を含むキャリアガスを冷却手段に通過させてガスを50℃以下にまで冷却し、ガスに含まれる(NH4)2・SiF6の大部分を固形化し、続いて、冷却手段を通過させたガスをスクラバーに送り込み、ガスをスクラバーに備えられた吸収剤と接触させてガスに残存する(NH4)2・SiF6を吸収剤に吸収させることにより、密封型容器から排出される(NH4)2・SiF6の全量を回収する工程と、加熱工程後の密封型容器内に残留する不揮発性粉末を容器冷却後に固形分のまま回収し、回収した不揮発性粉末に鉱酸溶液を添加して溶解させ、イオン交換法、溶媒抽出法及び過酸化ウラン凝集沈澱法からなる群より選ばれた少なくとも1種の方法を用いて、溶解液中に含まれるウランを精製処理する工程とを含むことを特徴とする。 A first aspect of the present invention is a method for treating a radioactive solid waste containing a silica component as a main component and containing at least uranium in a proportion of several hundred ppm to several percent, wherein the radioactive solid waste powder is and mixing such that 1.5 or more ratio: the NH 4 F · HF powder, molar reaction equivalent ratio of the silica component and the NH 4 F · HF powder contained in the radioactive solid waste powder 1 Te The mixed powder is put into a sealed container, and an inert gas is introduced into the sealed container as a carrier gas to make the inside of the container an inert gas atmosphere, and the mixed powder is heated at a temperature of 270 to 370 ° C. for 30 minutes to 2 minutes. By heating for a period of time, the silica component contained in the mixed powder reacts with NH 4 F · HF to volatilize the silica component as (NH 4 ) 2 · SiF 6 , and is discharged from the sealed container ( NH 4) 2 · SiF 6 The carrier gas is passed through a cooling means to cool to the gas to 50 ° C. or less, including the majority of the contained in the gas (NH 4) 2 · SiF 6 to solidify, followed by passing through a cooling means gas The gas is brought into contact with the absorbent provided in the scrubber and brought into contact with the absorbent provided in the scrubber so that (NH 4 ) 2 .SiF 6 remaining in the gas is absorbed by the absorbent, thereby being discharged from the sealed container (NH 4 ) 2.・ Recover the entire amount of SiF 6 and the non-volatile powder remaining in the sealed container after the heating process, recover the solid content after cooling the container, add the mineral acid solution to the recovered non-volatile powder and dissolve it And a step of purifying uranium contained in the solution using at least one method selected from the group consisting of an ion exchange method, a solvent extraction method, and a uranium peroxide aggregation precipitation method. And
本発明の第2の観点は、第1の観点に基づく発明であって、更に放射性固体廃棄物粉末とNH4F・HF粉末との混合が、攪拌翼を有する混合装置を用いて行われ、この攪拌翼による攪拌によって粗粉砕を伴いながら混合される方法である。 The second aspect of the present invention is an invention based on the first aspect, wherein the mixing of the radioactive solid waste powder and the NH 4 F · HF powder is performed using a mixing device having a stirring blade, It is a method of mixing with coarse pulverization by stirring with this stirring blade.
本発明の第3の観点は、第1の観点に基づく発明であって、更にスクラバーの吸収剤が苛性ソーダ或いは水である方法である。 A third aspect of the present invention is an invention based on the first aspect, wherein the scrubber absorbent is caustic soda or water.
本発明の放射性固体廃棄物の処理方法では、放射性固体廃棄物のうち、シリカ成分を主成分とし、少なくともウランが数百ppmから数%の割合で含まれる放射性固体廃棄物から、シリカ成分とウランとを高効率で分離、回収することにより、シリカ成分側へのウラン移行率を極めて低い割合に抑え、廃棄物処分に係る費用を大幅に軽減することができる。また、ウラン側へのシリカ成分移行率を極めて低い割合に抑え、放射性固体廃棄物に含有され、従来利用できない状態にあったウランを精製可能とし、再利用可能なクリーンなウランとして回収することができる。 In the method for treating radioactive solid waste according to the present invention, the silica component and uranium are separated from the radioactive solid waste containing the silica component as a main component and containing at least a few hundred ppm to several percent of uranium. Can be separated and recovered with high efficiency, the uranium transfer rate to the silica component side can be suppressed to a very low rate, and the cost for waste disposal can be greatly reduced. In addition, the silica component transfer rate to the uranium side is suppressed to a very low rate, and uranium contained in radioactive solid waste, which has been unusable in the past, can be purified and recovered as reusable clean uranium. it can.
本発明を実施するための形態を図面に基づいて説明する。 DESCRIPTION OF EMBODIMENTS Embodiments for carrying out the present invention will be described with reference to the drawings.
本発明の処理対象となる放射性固体廃棄物は、シリカ成分を主成分とし、少なくともウランが数百ppmから数%の割合で含まれる廃棄物粉末である。なお、混合前の廃棄物粉末は特に粉砕して粒度を整えておく必要はない。 The radioactive solid waste to be treated in the present invention is a waste powder containing a silica component as a main component and containing at least uranium in a proportion of several hundred ppm to several percent. The waste powder before mixing does not need to be pulverized to adjust the particle size.
本発明の処理方法では、先ず、この放射性固体廃棄物の粉末に対して、試薬品として比較的低価であり、他のフッ素系試薬よりも取扱いが容易なNH4F・HF粉末を添加混合して混合粉末を調製する。ここでの混合比率は、廃棄物粉末に含まれるシリカ成分とNH4HF・HF粉末とのモル反応当量比率が1:1.5以上の比率となるように廃棄物粉末とNH4F・HFとを混合する。 In the treatment method of the present invention, first, NH 4 F · HF powder, which is relatively inexpensive as a reagent product and easier to handle than other fluorine-based reagents, is added to and mixed with this radioactive solid waste powder. To prepare a mixed powder. The mixing ratio here is such that the molar reaction equivalent ratio between the silica component contained in the waste powder and the NH 4 HF · HF powder is a ratio of 1: 1.5 or more, and the waste powder and NH 4 F · HF. And mix.
モル反応当量式は次の式(1)に示す通りである。 The molar reaction equivalent formula is as shown in the following formula (1).
SiO2 + 4NH4F・HF →
(NH4)2SiF6(g) + 2NH4F(g) + 2H2O(g) ……(1)
上記モル反応当量比率が1:1.5未満では、反応が進行し難く、廃棄物粉末に含まれる全てのシリカ成分を反応させることができない不具合を生じる。このうち、上記モル反応当量比率が1:1.5〜1:2.0の比率となるように廃棄物粉末とNH4F・HF粉末とを混合することが上記式(1)に示す反応の進み易さや揮発回収系に移行する過剰のフッ化アンモニウム発生量を抑える等の技術的な点から特に好ましい。なお、上記モル反応当量比率を1:2.0を越える比率としても本発明の効果は変わらないが、NH4HF・HF粉末が必要以上に使用され、処理コストを押し上げることになるため好ましくない。
SiO 2 + 4NH 4 F · HF →
(NH 4 ) 2 SiF 6 (g) + 2NH 4 F (g) + 2H 2 O (g) (1)
When the molar reaction equivalent ratio is less than 1: 1.5, the reaction is difficult to proceed, and all the silica components contained in the waste powder cannot be reacted. Among these, mixing the waste powder and the NH 4 F · HF powder so that the molar reaction equivalent ratio is a ratio of 1: 1.5 to 1: 2.0 is a reaction represented by the above formula (1). It is particularly preferable from the technical point of view, for example, that the amount of excess ammonium fluoride generated in the volatile recovery system is suppressed. The effect of the present invention does not change even if the molar reaction equivalent ratio exceeds 1: 2.0, but it is not preferable because NH 4 HF · HF powder is used more than necessary and increases the processing cost. .
廃棄物粉末とNH4F・HF粉末との混合は、回転胴を有する混合装置により混合するか、或いは、攪拌翼を有する混合装置を用い、この攪拌翼による攪拌によって粗粉砕を伴いながら混合することが好ましい。 The waste powder and the NH 4 F / HF powder are mixed by a mixing device having a rotating drum, or by using a mixing device having a stirring blade and mixing with coarse pulverization by stirring with the stirring blade. It is preferable.
次に、密封型容器内に混合粉末を投入し、密封型容器内に不活性ガスをキャリアガスとして導入して容器内部を不活性ガス雰囲気としながら、一定条件で加熱することで、混合粉末に含まれるシリカ成分とNH4F・HFとを反応させてシリカ成分を(NH4)2・SiF6として揮発化させる。 Next, the mixed powder is put into a sealed container, and an inert gas is introduced into the sealed container as a carrier gas, and the container is heated to an inert gas atmosphere under a certain condition. The silica component contained is reacted with NH 4 F · HF to volatilize the silica component as (NH 4 ) 2 · SiF 6 .
上記式(1)に示す反応を進行させ、混合粉末中のシリカ成分をNH4F・HFと反応させて揮発性の(NH4)2SiF6ガスに変換することで、シリカ成分を不揮発性のウランから分離する。この加熱工程によって、シリカ成分側へのウラン移行率を極めて低い割合に抑えられ、また、ウラン側へのシリカ成分移行率を極めて低い割合に抑えられるため、シリカ成分とウランとを高効率に分離することができる。 The reaction shown in the above formula (1) is advanced, and the silica component in the mixed powder is reacted with NH 4 F · HF to convert it into volatile (NH 4 ) 2 SiF 6 gas. Separate from uranium. By this heating process, the uranium transfer rate to the silica component side can be kept to a very low rate, and the silica component transfer rate to the uranium side can be kept to a very low rate, so the silica component and uranium can be separated with high efficiency. can do.
この加熱工程では、例えば、図1に示すような、加熱炉10内部に密封性の高い密封型容器11を備え、この密封型容器11にドライ窒素などの不活性ガスをキャリアガスとして供給することが可能なガス供給管12と、容器11内部からガスを排出するガス排出管13とが接続された構造を有する加熱手段14を用いることが好ましい。加熱手段14には、容器内部の温度を測定する熱電対15が設けられている。
In this heating process, for example, as shown in FIG. 1, a sealed container 11 having a high sealing property is provided inside the
なお、この図1に示す処理装置では、密封型容器11内に混合粉末16を投入し、ガス供給管12から容器11内に不活性ガスをキャリアガスとして供給し続けて、容器11内を不活性ガス雰囲気としながら混合粉末16を一定条件で加熱して(NH4)2SiF6ガスを生じさせ、ガス排出管13からキャリアガスとともに排出された(NH4)2SiF6ガスを回収手段17のコールドトラップ18やスクラバー19により回収する構成を有する。
In the processing apparatus shown in FIG. 1, the
このような密封型容器11を用い、かつ容器11内部に不活性ガスをキャリアガスとして導入し続けて加熱雰囲気を不活性ガス雰囲気とするのは、容器11内へ酸素分を有する空気などが入り込むと、酸素や水分の影響で上記式(1)の右辺に示される化合物群の中に、(NH4)2SiOF2やその他の中間化合物を生成し易くなり、これらが生成されると、後に続く回収手段17では回収できない不安定な化合物として処理系統から排出されてしまうことがあり得る他、回収途中の配管部分への白色物の蓄積等により配管閉塞に陥る危険性があるためである。従って、加熱する前には必ず容器11内から空気を追い出しておく必要性がある。 The reason for using such a sealed container 11 and continuing to introduce an inert gas as a carrier gas into the container 11 to make the heating atmosphere an inert gas atmosphere is that air having an oxygen content or the like enters the container 11. And (NH 4 ) 2 SiOF 2 and other intermediate compounds are easily produced in the compound group shown on the right side of the above formula (1) due to the influence of oxygen and moisture. This is because, in addition to being able to be discharged from the processing system as an unstable compound that cannot be recovered by the subsequent recovery means 17, there is a risk that the pipe will be clogged due to accumulation of white matter in the piping portion during recovery. Therefore, it is necessary to expel air from the container 11 before heating.
なお、容器11内に導入するガスが混合粉末16に直接当たると、混合粉末16中の微粉末状態のウランが飛散して、気流により排気系統に飛び出すおそれが高いため、ガス供給管12から導入されるガスが、出来るだけ混合粉末16に直接当たらないように、ガス供給管12先端の向きや装置の形状等を考慮する必要がある。
If the gas introduced into the container 11 directly hits the
混合粉末16の加熱は、270〜370℃の温度で30分〜2時間保持することにより行われる。加熱温度が270℃未満では上記式(1)に示す反応が促進されず、シリカ成分が不揮発残渣側(ウラン側)に残るようになる。また加熱温度が370℃を越えると上記式(1)に示す反応が速く進み過ぎてしまって、(NH4)2SiF6ガスが過剰に生じ、この過剰な(NH4)2SiF6ガスが容器11内に導入されるキャリアガス量に応じてガス排出管13から排出されるため、(NH4)2SiF6ガスの全量を確実に回収するためには、加熱手段14の後に続く回収手段17の設備容量を必要以上に大きくする必要があり、設備負担が増加してしまう問題を生じる。また、揮発ガスの発生速度が過剰に早くなり過ぎてしまい、過剰な揮発ガスが生じる際に、混合粉末16中の微粉末状態(粒子径がサブミクロン)のウランを巻き込んで、回収系統に飛び出させたりしてしまう不具合を生じる。この場合、シリカ成分とウランとの分離精度が大幅に低下してしまう。従って、この加熱工程では、混合粉末に対して必要以上に過剰な熱を加えないことがシリカ成分とウランとの分離精度を高める為に必要となる。
The
加熱保持時間は、設備容量や加熱温度に依存するため多少変動するが、およそ30分〜2時間の反応時間で分離操作が行われる。 The heating and holding time varies somewhat because it depends on the equipment capacity and the heating temperature, but the separation operation is performed in a reaction time of about 30 minutes to 2 hours.
次に、密封型容器11から排出される(NH4)2・SiF6を含むキャリアガスを回収手段17の冷却手段(コールドトラップ)18に通過させてガスを50℃以下にまで冷却し、排出されたガスに含まれる(NH4)2・SiF6の大部分を固形化し、続いて、冷却手段18を通過させたガスをスクラバー19に送り込み、ガスをスクラバー19に備えられた吸収剤19aと接触させてガスに残存する(NH4)2・SiF6を吸収剤に吸収させることにより、密封型容器11から排出される(NH4)2・SiF6の全量を回収する。
Next, the carrier gas containing (NH 4 ) 2 .SiF 6 discharged from the sealed container 11 is passed through the cooling means (cold trap) 18 of the recovery means 17 to cool the gas to 50 ° C. or lower and discharge. Most of (NH 4 ) 2 .SiF 6 contained in the gas thus formed is solidified, then the gas passed through the cooling means 18 is sent to the
密封型容器11内で生じた(NH4)2SiF6は、160℃以上の温度で揮発し、常温では固体状態であって、水への溶解度が50g/100gH2O(17.5℃)と高い等の性質を有する。 (NH 4 ) 2 SiF 6 generated in the sealed container 11 is volatilized at a temperature of 160 ° C. or higher, and is in a solid state at room temperature, and has a solubility in water of 50 g / 100 g H 2 O (17.5 ° C.). And high properties.
このような性質を有する(NH4)2SiF6ガスは、密封型容器から排出された後は、コールドトラップやスクラバー等の方法によって容易にその全量を回収することができる。 After the (NH 4 ) 2 SiF 6 gas having such properties is exhausted from the sealed container, the entire amount can be easily recovered by a method such as a cold trap or a scrubber.
但し、排出された(NH4)2SiF6ガスをスクラバーのみで回収しようとすると、ガス成分を直接スクラバーに導入する配管途中で(NH4)2SiF6が固形化して蓄積してしまい、配管閉塞を引き起こす可能性がある。従って、スクラバーに通じる前に、一旦、コールドトラップ等で大部分の(NH4)2SiF6を固形化し、固形物20として回収し分離回収しておく方が工業上有利である。 However, if the exhausted (NH 4 ) 2 SiF 6 gas is collected only by the scrubber, the (NH 4 ) 2 SiF 6 solidifies and accumulates in the middle of the piping for introducing the gas component directly into the scrubber, and the piping May cause occlusion. Therefore, it is industrially advantageous to solidify most of the (NH 4 ) 2 SiF 6 once with a cold trap or the like and collect it as a solid 20 and separate and collect it before reaching the scrubber.
スクラバーに備えられる吸収剤には、酸性溶液を用いるとフリーのフッ素イオンが発生して腐食等を引き起こす原因となることから、苛性ソーダ或いは水を用いることがよく、可能であればスクラバーを2段として、前段の吸収剤に苛性ソーダを、後段の吸収剤に水を用いることが好ましい。 For the absorbent provided in the scrubber, if an acidic solution is used, free fluorine ions are generated and cause corrosion, etc., so caustic soda or water is often used. If possible, the scrubber is divided into two stages. It is preferable to use caustic soda for the former absorbent and water for the latter absorbent.
上記方法により回収された(NH4)2SiF6中のウラン濃度は数ppm程度と非常に低く、除染効率として1000以上の除染係数が得られる。 The uranium concentration in (NH 4 ) 2 SiF 6 recovered by the above method is as low as several ppm, and a decontamination factor of 1000 or more is obtained as the decontamination efficiency.
更に、加熱工程後の密封型容器内に残留する不揮発性粉末を容器冷却後に固形分のまま回収し、回収した不揮発性粉末に鉱酸溶液を添加して溶解させ、イオン交換法、溶媒抽出法及び過酸化ウラン凝集沈澱法からなる群より選ばれた少なくとも1種の方法を用いて、溶解液中に含まれるウランを精製処理する。 Furthermore, the non-volatile powder remaining in the sealed container after the heating process is recovered as a solid after cooling the container, and a mineral acid solution is added to the recovered non-volatile powder to dissolve it, and the ion exchange method, solvent extraction method And uranium contained in the solution is purified using at least one method selected from the group consisting of uranium peroxide flocculation and precipitation.
加熱工程を終えた容器11内にはウランや鉄などの不揮発性金属元素が微細な粉末状態で残留している。この不揮発性粉末は、容器11を冷却後に固形分のまま回収する。そして回収した不揮発性粉末に鉱酸溶液、好ましくは3規定程度の硝酸溶液を添加すると、60℃程度の加熱加温を行わなくても容易に溶解することができる。 Nonvolatile metal elements such as uranium and iron remain in a fine powder state in the container 11 after the heating process. This non-volatile powder is recovered in the solid state after cooling the container 11. When a mineral acid solution, preferably about 3N nitric acid solution is added to the recovered non-volatile powder, it can be easily dissolved without heating and heating at about 60 ° C.
これは、放射性固体廃棄物中では、ウランや不揮発性金属元素は一般的には酸化物として存在し、その周りにシリカ成分が存在しているものと思われるが、前述した加熱工程でシリカ成分がNH4F・HFと反応し、(NH4)2・SiF6の形態で揮発して抜け出した際に、上記酸化物が疎密な状態として取り残され、硝酸等の鉱酸溶液と反応し易い状態で存在していることが主因であると考えられる。 This is because, in radioactive solid waste, uranium and non-volatile metal elements generally exist as oxides, and it appears that there is a silica component around them. There reacted with NH 4 F · HF, when the exit was volatilized in the form of (NH 4) 2 · SiF 6 , the oxide is left behind as a sparse state, easily react with mineral acid solution such as nitric acid It is thought that the main cause is that it exists in a state.
硝酸溶解した硝酸ウラニル溶液中には、鉄等の金属元素が存在する為、イオン交換法、溶媒抽出法或いは過酸化ウラン沈澱法などにより精製分離処理を行うことによりクリーンなウラン資源として再利用することが可能である。 Since there is a metal element such as iron in the nitric acid-dissolved uranyl nitrate solution, it can be reused as a clean uranium resource by performing purification and separation by ion exchange, solvent extraction or uranium peroxide precipitation. It is possible.
次に本発明の実施例を比較例とともに詳しく説明する。 Next, examples of the present invention will be described in detail together with comparative examples.
<実施例1>
ウラン濃度が約1質量%のシリカ澱物乾燥体を用意し、このシリカ澱物乾燥体にNH4F・HF粉末をシリカ澱物乾燥体粉末に含まれるシリカ成分とNH4F・HF粉末とのモル反応当量比率が1:1.0、1:1.5及び1:2.0の比率となるようにそれぞれ混合して、3種類の原料混合粉末を調製した。更に、調製した3種類の混合粉末をそれぞれ5等分した。
<Example 1>
A dried silica starch having a uranium concentration of about 1% by mass is prepared. NH 4 F · HF powder is added to the dried silica starch, the silica component contained in the dried silica starch powder, NH 4 F · HF powder, Were mixed so that the molar reaction equivalent ratios were 1: 1.0, 1: 1.5 and 1: 2.0, respectively, to prepare three kinds of raw material mixed powders. Further, the three kinds of prepared mixed powders were each divided into 5 equal parts.
そして、図1に示す、加熱炉内に設けられた密封型容器に混合粉末約7gを投入し、ドライ窒素ガスをキャリアガスとして0.5L/min程度の流量で密封型容器内に供給しながら、密閉型容器内を5℃/minの昇温速度で、200℃、230℃、270℃、320℃及び370℃の温度にまで加熱し、これらの温度に到達後、温度を一定に維持しながら40分間保持する試験をそれぞれ行った。 Then, about 7 g of the mixed powder is put into a sealed container provided in the heating furnace shown in FIG. 1, and dry nitrogen gas is used as a carrier gas while being supplied into the sealed container at a flow rate of about 0.5 L / min. The inside of the sealed container is heated to a temperature of 200 ° C., 230 ° C., 270 ° C., 320 ° C. and 370 ° C. at a rate of temperature increase of 5 ° C./min. After reaching these temperatures, the temperature is kept constant. Each test was held for 40 minutes.
加熱後の密封型容器を冷却し、容器内に残留している不揮発残渣と初期重量とを比較して、揮発しなかったシリカ成分を定性的に評価することにより分離効率を確認した。次の表1に分離効率結果を示す。 The sealed container after heating was cooled, the non-volatile residue remaining in the container was compared with the initial weight, and the silica component that did not volatilize was qualitatively evaluated to confirm the separation efficiency. Table 1 below shows the separation efficiency results.
また、分離効率が1.0%未満と極めて良好な分離特性が得られた例については、排気系へのめだった蓄積はなく、回収された化合物はほぼ(NH4)2SiF6であった。 In addition, in the example where the separation efficiency was less than 1.0% and very good separation characteristics were obtained, there was no significant accumulation in the exhaust system, and the recovered compound was almost (NH 4 ) 2 SiF 6. It was.
回収された(NH4)2SiF6中のウラン濃度は、全サンプルとも数ppm以下で、廃棄スクラバー液中のウラン濃度も数十ppb以下であり、ウランはサブミクロンサイズの飛沫が極微少量移行したものと考えられ、揮発側ではいずれもウランとシリカについて高い分離効果が得られた。 The uranium concentration in the recovered (NH 4 ) 2 SiF 6 is several ppm or less for all samples, and the uranium concentration in the waste scrubber solution is tens of ppb or less. As a result, high separation effects were obtained for uranium and silica on the volatile side.
更に、加熱工程後の密封型容器内に残留している粉末状の物質を容器冷却後に回収し、3規定硝酸溶液で溶解したところ、分離効率が1.0%未満と極めて良好な分離特性が得られた例についてはいずれもきれいに溶解できることが確認されたが、分離効率が数%以上の不揮発分が残った例については溶解残渣が残り、ウランが完全に溶解しきれないことが確認された。 Furthermore, when the powdery substance remaining in the sealed container after the heating process is recovered after cooling the container and dissolved in a 3N nitric acid solution, the separation efficiency is less than 1.0% and very good separation characteristics are obtained. It was confirmed that all of the obtained examples were able to dissolve neatly, but in the case where the non-volatile content with a separation efficiency of several percent or more remained, the dissolution residue remained and uranium could not be completely dissolved. .
なお、加熱雰囲気をドライ窒素ガスから空気に代えて同様の試験を行ったところ、分離効率については、ドライ窒素雰囲気下で行った試験とほぼ同様の傾向が見られたが、空気雰囲気中で加熱した為か、加熱手段から回収手段に至る途中の配管部分に白色の蓄積物が多く観察された。回収手段側に移行した化合物並びに蓄積物の組成について調べたところ、(NH4)2SiOF4と(NH4)2SiF6とが存在しており、揮発した(NH4)2SiF6が空気中の酸素と反応して中間化合物を生成したものと推察される。 When the same test was performed with the heating atmosphere changed from dry nitrogen gas to air, the separation efficiency showed almost the same tendency as the test performed in the dry nitrogen atmosphere. Because of this, many white deposits were observed in the piping part on the way from the heating means to the recovery means. The composition transferred to the recovery means and the composition of the accumulation were examined. As a result, (NH 4 ) 2 SiOF 4 and (NH 4 ) 2 SiF 6 were present, and the volatilized (NH 4 ) 2 SiF 6 was air. It is presumed that the intermediate compound was produced by reacting with the oxygen contained therein.
続いて、シリカ澱物乾燥体約30gを用いて混合粉末を調製し、図1に示す処理装置に混合粉末を約75g投入して、加熱保持時間を2時間とした以外は上記と同様の試験を行ったが、分離効率は上記試験と同様の傾向が見られ、また回収手段で回収された化合物はほぼ(NH4)2SiF6であった。この結果から処理量を増やしても、同様の効果が得られることを確認した。 Subsequently, a mixed powder was prepared using about 30 g of the dried silica starch, and about 75 g of the mixed powder was put into the processing apparatus shown in FIG. 1, and the heating and holding time was set to 2 hours. The separation efficiency showed the same tendency as in the above test, and the compound recovered by the recovery means was almost (NH 4 ) 2 SiF 6 . From this result, it was confirmed that the same effect could be obtained even if the amount of treatment was increased.
以上の結果から、シリカ成分とNH4F・HF粉末とのモル反応当量比率が1:1.5以上となるように廃棄物粉末とNH4F・HF粉末とを混合し、かつ加熱工程で不活性雰囲気下、270℃以上の温度で加熱保持することにより、シリカ成分を(NH4)2・SiF6の化合物形態で揮発分離させることにより、不揮発性のウラン(ウラン酸化物)と高効率に分離することができ、また、加熱雰囲気を不活性ガス雰囲気にすることにより、揮発した(NH4)2・SiF6ガスが酸素と反応して不安定な中間化合物を形成し、回収手段に至る途中の配管などへの蓄積を防ぐことが可能であることを確認した。更に、加熱工程後の密封型容器側に残留する不揮発のウランは硝酸などにより容易に溶解され、精製回収可能な溶液にできることを確認した。 From the above results, the waste powder and the NH 4 F · HF powder are mixed so that the molar reaction equivalent ratio of the silica component and the NH 4 F · HF powder is 1: 1.5 or more, and the heating step High efficiency with non-volatile uranium (uranium oxide) by volatilizing and separating silica components in the form of (NH 4 ) 2 · SiF 6 by holding at 270 ° C or higher in an inert atmosphere In addition, by making the heating atmosphere an inert gas atmosphere, the volatilized (NH 4 ) 2 .SiF 6 gas reacts with oxygen to form an unstable intermediate compound, which is used as a recovery means. It was confirmed that accumulation in piping along the way can be prevented. Furthermore, it was confirmed that the non-volatile uranium remaining on the sealed container side after the heating step was easily dissolved by nitric acid or the like, and could be purified and recovered.
10 加熱炉
11 密封型容器
12 ガス供給管
13 ガス排出管
14 加熱手段
15 熱電対
16 混合粉末
17 回収手段
18 コールドトラップ
19 スクラバー
DESCRIPTION OF
Claims (3)
前記放射性固体廃棄物の粉末に対してNH4F・HF粉末を、前記放射性固体廃棄物粉末に含まれるシリカ成分とNH4F・HF粉末とのモル反応当量比率が1:1.5以上の比率となるように混合する工程と、
密封型容器内に前記混合粉末を投入し、前記密封型容器内に不活性ガスをキャリアガスとして導入して前記容器内部を不活性ガス雰囲気としながら、前記混合粉末を270〜370℃の温度で30分〜2時間加熱することにより、前記混合粉末に含まれるシリカ成分とNH4F・HFとを反応させて前記シリカ成分を(NH4)2・SiF6として揮発化させる工程と、
前記密封型容器から排出される(NH4)2・SiF6を含むキャリアガスを冷却手段に通過させて前記ガスを50℃以下にまで冷却し、前記ガスに含まれる(NH4)2・SiF6の大部分を固形化し、続いて、前記冷却手段を通過させたガスをスクラバーに送り込み、前記ガスを前記スクラバーに備えられた吸収剤と接触させて前記ガスに残存する(NH4)2・SiF6を前記吸収剤に吸収させることにより、前記密封型容器から排出される(NH4)2・SiF6の全量を回収する工程と、
加熱工程後の前記密封型容器内に残留する不揮発性粉末を前記容器冷却後に固形分のまま回収し、前記回収した不揮発性粉末に鉱酸溶液を添加して溶解させ、イオン交換法、溶媒抽出法及び過酸化ウラン凝集沈澱法からなる群より選ばれた少なくとも1種の方法を用いて、前記溶解液中に含まれるウランを精製処理する工程と
を含むことを特徴とするシリカ成分を主成分とする放射性固体廃棄物の分離、回収、及び、処理方法。 A method for separating, recovering, and treating radioactive solid waste mainly composed of a silica component and containing at least uranium in a proportion of several hundred ppm to several percent,
The NH 4 F · HF powder is used for the radioactive solid waste powder, and the molar reaction equivalent ratio of the silica component contained in the radioactive solid waste powder and the NH 4 F · HF powder is 1: 1.5 or more. Mixing to a ratio;
The mixed powder is put into a sealed container, and an inert gas is introduced into the sealed container as a carrier gas so that the inside of the container is an inert gas atmosphere, and the mixed powder is heated at a temperature of 270 to 370 ° C. A step of reacting the silica component contained in the mixed powder with NH 4 F · HF by heating for 30 minutes to 2 hours to volatilize the silica component as (NH 4 ) 2 · SiF 6 ;
A carrier gas containing (NH 4 ) 2 .SiF 6 discharged from the sealed container is passed through a cooling means to cool the gas to 50 ° C. or less, and (NH 4 ) 2 .SiF contained in the gas Most of 6 is solidified, and then the gas passed through the cooling means is sent to the scrubber, and the gas is brought into contact with the absorbent provided in the scrubber to remain in the gas (NH 4 ) 2 Recovering the total amount of (NH 4 ) 2 .SiF 6 discharged from the sealed container by absorbing the SiF 6 into the absorbent;
The non-volatile powder remaining in the sealed container after the heating step is recovered as a solid content after the container is cooled, and a mineral acid solution is added to the recovered non-volatile powder to dissolve it, ion exchange method, solvent extraction And a step of purifying uranium contained in the solution using at least one method selected from the group consisting of a uranium peroxide coagulation precipitation method and a uranium peroxide coagulation precipitation method. Separating, recovering and treating radioactive solid waste.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009099775A JP5544111B2 (en) | 2009-04-16 | 2009-04-16 | Method for separating, recovering and treating radioactive solid waste mainly composed of silica component |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009099775A JP5544111B2 (en) | 2009-04-16 | 2009-04-16 | Method for separating, recovering and treating radioactive solid waste mainly composed of silica component |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010249680A JP2010249680A (en) | 2010-11-04 |
JP5544111B2 true JP5544111B2 (en) | 2014-07-09 |
Family
ID=43312178
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009099775A Expired - Fee Related JP5544111B2 (en) | 2009-04-16 | 2009-04-16 | Method for separating, recovering and treating radioactive solid waste mainly composed of silica component |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5544111B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101989910B1 (en) * | 2017-07-14 | 2019-06-18 | 한국원자력연구원 | Volume reduction treatment method of spent uranium catalyst |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0648314B2 (en) * | 1987-02-13 | 1994-06-22 | 動力炉・核燃料開発事業団 | Treatment method of radioactive waste liquid |
US6241800B1 (en) * | 1999-09-02 | 2001-06-05 | Westinghouse Electric Company Llc | Acid fluxes for metal reclamation from contaminated solids |
JP4069709B2 (en) * | 2002-09-02 | 2008-04-02 | 株式会社Ihi | Waste volume reduction method |
-
2009
- 2009-04-16 JP JP2009099775A patent/JP5544111B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2010249680A (en) | 2010-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104263946B (en) | A kind of method reclaiming tungsten, vanadium, titanium from SCR denitration dead catalyst | |
JP5800436B2 (en) | Boric acid recovery method and recovery apparatus | |
KR102094398B1 (en) | Method of recycling chlorine bypass dust generated in cement manufacturing process | |
JP2017179562A (en) | Method of recovering vanadium from denitration catalyst | |
JPH10510924A (en) | Radioactive material decontamination method | |
JPWO2007083588A1 (en) | Sodium salt recycling system in wet reprocessing of spent nuclear fuel | |
JP5103541B2 (en) | Niobium separation and purification method and production method | |
JP5431780B2 (en) | A processing method for obtaining a niobium raw material or a tantalum raw material, a method for separating and purifying niobium or tantalum, and a method for producing niobium oxide or tantalum oxide. | |
JP6938813B1 (en) | A method for producing a gadolinium compound having a reduced content of radioactive elements, and a gadolinium compound. | |
JP5544111B2 (en) | Method for separating, recovering and treating radioactive solid waste mainly composed of silica component | |
US9624561B2 (en) | Method for producing aqueous solution of perrhenic acid from rhenium sulfide | |
US6241800B1 (en) | Acid fluxes for metal reclamation from contaminated solids | |
JP2013007107A (en) | Recovering method of molybdenum and extraction solvent of molybdenum | |
KR101207339B1 (en) | Treatments of Exhausted Silica-Based-Catalysts containing Depleted Uranium | |
JP6844600B2 (en) | Method and device for removing selenium from slag, reuse method for slag, and manufacturing method for recycled slag | |
JP2017179563A (en) | Method for treating denitration catalyst | |
US9631259B2 (en) | Method for producing aqueous solution of perrhenic acid from rhenium sulfide | |
JP6035617B2 (en) | Metal separation and recovery method | |
KR101514570B1 (en) | Separation method of hazardous component and non-hazardous component from highly concentrated metal salts in radioactive waste | |
JP6638071B2 (en) | Zirconium separation method and spent fuel treatment method | |
JP2017023912A (en) | Oxidant for ruthenium and removal method of ruthenium ion | |
EA045674B1 (en) | METHOD FOR SELECTIVE SEPARATION OF THORIUM AND CERIUM FROM SOLID CONCENTRATE CONTAINING COMPOUNDS OF THESE METALS AND ONE OR MORE OTHER RARE EARTH METALS, AND A CORRESPONDING ACID SOLUTION OF RARE EARTH COMPOUNDS | |
JPH0461320B2 (en) | ||
JP2003021697A (en) | Dissolving method and dissolving device for slightly soluble compound | |
EP0433860B1 (en) | Waterglass precipitate recovery process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20111216 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130625 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130723 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130917 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140430 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140512 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5544111 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |