JP5541098B2 - Surface plasmon resonance fluorescence analyzer and surface plasmon resonance fluorescence analysis method - Google Patents

Surface plasmon resonance fluorescence analyzer and surface plasmon resonance fluorescence analysis method Download PDF

Info

Publication number
JP5541098B2
JP5541098B2 JP2010248560A JP2010248560A JP5541098B2 JP 5541098 B2 JP5541098 B2 JP 5541098B2 JP 2010248560 A JP2010248560 A JP 2010248560A JP 2010248560 A JP2010248560 A JP 2010248560A JP 5541098 B2 JP5541098 B2 JP 5541098B2
Authority
JP
Japan
Prior art keywords
light
amount
unit
excitation light
excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010248560A
Other languages
Japanese (ja)
Other versions
JP2012098256A (en
Inventor
正利 米山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2010248560A priority Critical patent/JP5541098B2/en
Publication of JP2012098256A publication Critical patent/JP2012098256A/en
Application granted granted Critical
Publication of JP5541098B2 publication Critical patent/JP5541098B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/648Specially adapted constructive features of fluorimeters using evanescent coupling or surface plasmon coupling for the excitation of fluorescence

Description

本発明は、表面プラズモン共鳴(Surface Plasmon Resonance:SPR)を利用して試料液中に含まれる検体の検出を行う表面プラズモン共鳴蛍光分析装置及び表面プラズモン共鳴蛍光分析方法に関する。   The present invention relates to a surface plasmon resonance fluorescence analysis apparatus and a surface plasmon resonance fluorescence analysis method for detecting an analyte contained in a sample liquid using surface plasmon resonance (SPR).

従来、タンパク質やDNA等を検出するバイオ測定において、検体(被検出物質)を高感度に検出する方法として、表面プラズモン共鳴蛍光分析(表面プラズモン励起増強蛍光分光:SPFS)法が知られている。   Conventionally, surface plasmon resonance fluorescence analysis (surface plasmon excitation enhanced fluorescence spectroscopy: SPFS) method is known as a method for detecting a sample (a substance to be detected) with high sensitivity in bioassay for detecting protein, DNA, and the like.

SPFS法は、金や銀等からなる金属膜が所定の面上に形成されたプリズムにおいて、全反射条件でプリズム側から金属膜に励起光を入射させ、屈折率の異なるプリズムと金属膜との界面で励起光が全反射する際にこの界面からしみ出す光(エバネッセント波)を利用する。具体的に、SPFS法は、励起光が全反射する際にしみ出すエバネッセント波によって、金属膜の表面上の試料液中に含まれる検体又はこの検体に標識された蛍光物質(標識物質)が励起されて発する蛍光(励起蛍光)を分析することにより、上記検体の存在又はその量を検出することができる。   In the SPFS method, in a prism in which a metal film made of gold, silver, or the like is formed on a predetermined surface, excitation light is incident on the metal film from the prism side under total reflection conditions, and the prism and the metal film having different refractive indexes are made to enter. Light (evanescent wave) that exudes from the interface when the excitation light is totally reflected at the interface is used. Specifically, in the SPFS method, the specimen contained in the sample liquid on the surface of the metal film or the fluorescent substance (labeling substance) labeled on the specimen is excited by the evanescent wave that is oozed out when the excitation light is totally reflected. The presence or amount of the specimen can be detected by analyzing the fluorescence emitted (excitation fluorescence).

このようなSPFS法を利用する光学測定では、表面プラズモン共鳴により増強された増強電場(エバネッセント波)の強度が大きいほど高感度且つ高精度に検体を検出することができる。   In the optical measurement using the SPFS method, the specimen can be detected with higher sensitivity and higher accuracy as the intensity of the enhanced electric field (evanescent wave) enhanced by the surface plasmon resonance is larger.

そこで、表面プラズモン共鳴の発生条件を最適化して増強電場の強度を向上させるために、特許文献1に記載の分析装置では、励起光光源からプリズムの間における励起光の光路上に、励起光の偏光状態を調整可能することができる偏光素子を配置している。詳しくは、励起光にはP波成分とS波成分とが含まれ、金属膜とプリズムとの界面で励起光が全反射された際に、P波成分は表面プラズモンの励起に有効に寄与するが、S波成分は表面プラズモンの励起に寄与しない。そこで、上記の分析装置では、金属膜で反射される際の励起光の全光量に占めるP波成分の光量(強度)が最大となるように、プリズムに入射する前の励起光の偏光状態を調整している。このように、励起光の全光量に占めるP波成分の光量を最大にした状態の励起光を金属膜で反射させることにより、金属膜における表面プラズモンの励起が好適に行われ、その結果、表面プラズモン共鳴に基づく増強電場の強度の向上を図ることができる。   Therefore, in order to optimize the generation condition of the surface plasmon resonance and improve the intensity of the enhanced electric field, the analyzer described in Patent Document 1 includes the excitation light on the optical path of the excitation light between the excitation light source and the prism. A polarizing element capable of adjusting the polarization state is disposed. Specifically, the excitation light includes a P wave component and an S wave component, and when the excitation light is totally reflected at the interface between the metal film and the prism, the P wave component effectively contributes to the excitation of the surface plasmon. However, the S wave component does not contribute to the excitation of the surface plasmon. Therefore, in the above analyzer, the polarization state of the excitation light before entering the prism is set so that the light amount (intensity) of the P-wave component in the total amount of excitation light reflected by the metal film is maximized. It is adjusted. Thus, the excitation of the surface plasmon in the metal film is suitably performed by reflecting the excitation light in the state in which the light quantity of the P wave component occupying the total light quantity of the excitation light is maximized by the metal film. The strength of the enhanced electric field based on plasmon resonance can be improved.

特開2009−236709号公報JP 2009-236709 A

しかし、上記の分析装置において所定の面上に金属膜が形成されたプリズムを交換すると、同一の試料液に含まれる検体の検出を行っても、プリズム毎に測定結果がばらつく場合があった。   However, if the prism in which the metal film is formed on a predetermined surface is replaced in the above-described analyzer, the measurement result may vary from prism to prism even if the specimen contained in the same sample solution is detected.

そこで、本発明は、上記問題点に鑑み、プリズム毎の測定精度のばらつきを抑えることが可能な表面プラズモン共鳴蛍光分析装置、及び表面プラズモン共鳴蛍光分析方法を提供することを課題とする。   In view of the above problems, an object of the present invention is to provide a surface plasmon resonance fluorescence analyzer and a surface plasmon resonance fluorescence analysis method capable of suppressing variations in measurement accuracy for each prism.

本発明者らは、上記課題を解消すべく鋭意研究を行った結果、上記の分析装置において所定の面上に金属膜が形成されたプリズムを交換すると、プリズム毎に金属膜に入射する励起光における当該励起光の全光量に占めるP波成分の光量のばらつきが生じ、これにより、上記の測定結果のばらつきが生じることを見出した。即ち、上記の分析装置では、プリズムが交換されると、各プリズムにおいて金属膜に入射する励起光における当該励起光の全光量に占めるP波成分の光量は最大となるが、各プリズムにおいて金属膜に入射する励起光のP波成分の光量が一定とならない場合があった。   As a result of diligent research to solve the above problems, the present inventors have found that when the prism in which the metal film is formed on a predetermined surface is replaced in the above-described analyzer, the excitation light incident on the metal film for each prism. It was found that the variation in the light amount of the P wave component in the total light amount of the excitation light occurs in FIG. That is, in the above analysis apparatus, when the prism is replaced, the amount of the P wave component in the total amount of the excitation light in the excitation light incident on the metal film in each prism is maximized. In some cases, the amount of the P wave component of the excitation light incident on the light beam is not constant.

本発明は、このような知見によりなされたものであり、検体又は検体に付された蛍光物質が表面プラズモン共鳴に基づく電場により励起されて発した蛍光を測定する表面プラズモン共鳴蛍光分析装置であって、所定の面上に金属膜が形成されたプリズムを含む分析チップを着脱できるように保持可能なチップ保持部と、励起光を射出し、前記チップ保持部で保持された状態の前記分析チップに含まれるプリズムの金属膜で反射されるように当該プリズム内に前記励起光を入射させる光源部と、前記金属膜で反射された励起光である反射励起光の光量を測定する反射光測定部と、前記光源部から射出される励起光の光量と前記反射光測定部で測定された反射励起光の光量とに基づいて前記金属膜に入射する励起光のP波成分の光量を特定の光量に調整するP波光量調整部と、を備え、前記光源部は、供給される電流量に応じて射出する励起光の光量を変化させ、前記P波光量調整部は、前記光源部と前記プリズムとの間において当該光源部から射出される励起光の光路上に配置される1/2波長板と、前記金属膜に対する励起光の偏光方向が変わるように前記1/2波長板を回転させる回転駆動部と、前記光源部に電流を供給する光源電流供給部と、前記光源部が射出する励起光の光量と前記反射光測定部によって測定される反射励起光の光量とに基づいて前記回転駆動部を駆動すると共に前記光源電流供給部が供給する電流量を制御する制御部とを有し、前記制御部は、前記光源部が射出する励起光の光量と前記反射光測定部によって測定される反射励起光の光量とに基づいて金属膜に入射する励起光の全光量に占めるP波成分の光量が最大となるように前記回転駆動部を制御して前記1/2波長板の回転量を調整する回転量調整部と、前記励起光の全光量に占めるP波成分の光量が最大となった状態で、前記光源部が射出する励起光の光量と前記反射光測定部によって測定される反射励起光の光量とに基づいて前記光源電流供給部を制御して前記光源部に供給する電流量を調整する電流量調整部と、を有するものである。 The present invention has been made based on such knowledge, and is a surface plasmon resonance fluorescence analyzer that measures fluorescence emitted by excitation of an analyte or a fluorescent substance attached to the sample by an electric field based on surface plasmon resonance. A chip holding unit capable of holding an analysis chip including a prism having a metal film formed on a predetermined surface so that the analysis chip can be attached and detached; and an excitation light is emitted to the analysis chip held by the chip holding unit A light source unit that causes the excitation light to enter the prism so as to be reflected by the metal film of the included prism, and a reflected light measurement unit that measures the amount of reflected excitation light that is the excitation light reflected by the metal film; The light amount of the P wave component of the excitation light incident on the metal film is determined based on the light amount of the excitation light emitted from the light source unit and the light amount of the reflected excitation light measured by the reflected light measurement unit. And a P-wave light quantity adjusting unit for adjusting the light source unit changes the amount of excitation light emitted in response to the amount of current supplied, the P-wave light quantity adjusting portion includes a said light source and said portion prism And a half-wave plate disposed on the optical path of the excitation light emitted from the light source section, and a rotational drive that rotates the half-wave plate so that the polarization direction of the excitation light with respect to the metal film changes And a light source current supply unit that supplies current to the light source unit, and the rotational drive unit based on the amount of excitation light emitted from the light source unit and the amount of reflected excitation light measured by the reflected light measurement unit And a control unit that controls the amount of current supplied by the light source current supply unit. The control unit reflects the amount of excitation light emitted from the light source unit and the reflection light measured by the reflected light measurement unit. Metal based on the amount of excitation light A rotation amount adjustment unit for adjusting the rotation amount of the half-wave plate by controlling the rotation drive unit so that the light amount of the P wave component in the total light amount of the excitation light incident on the light beam is maximized; and the excitation light The light source current is based on the light amount of the excitation light emitted by the light source unit and the light amount of the reflected excitation light measured by the reflected light measurement unit in a state where the light amount of the P-wave component in the total light amount is maximum. A current amount adjusting unit that controls the supply unit to adjust the amount of current supplied to the light source unit .

また、検体又は検体に付された蛍光物質が表面プラズモン共鳴に基づく電場により励起されて発した蛍光を測定する表面プラズモン共鳴蛍光分析装置であって、所定の面上に金属膜が形成されたプリズムと、励起光を射出し、前記プリズムの金属膜で反射されるように当該プリズム内に前記励起光を入射させる光源部と、前記金属膜で反射された励起光である反射励起光の光量を測定する反射光測定部と、前記光源部から射出される励起光の光量と前記反射光測定部で測定された反射励起光の光量とに基づいて前記金属膜に入射する励起光のP波成分の光量を特定の光量に調整するP波光量調整部と、を備え、前記光源部は、供給される電流量に応じて射出する励起光の光量を変化させ、前記P波光量調整部は、前記光源部と前記プリズムとの間において当該光源部から射出される励起光の光路上に配置される1/2波長板と、前記金属膜に対する励起光の偏光方向が変わるように前記1/2波長板を回転させる回転駆動部と、前記光源部に電流を供給する光源電流供給部と、前記光源部が射出する励起光の光量と前記反射光測定部によって測定される反射励起光の光量とに基づいて前記回転駆動部を駆動すると共に前記光源電流供給部が供給する電流量を制御する制御部とを有し、前記制御部は、前記光源部が射出する励起光の光量と前記反射光測定部によって測定される反射励起光の光量とに基づいて金属膜に入射する励起光の全光量に占めるP波成分の光量が最大となるように前記回転駆動部を制御して前記1/2波長板の回転量を調整する回転量調整部と、前記励起光の全光量に占めるP波成分の光量が最大となった状態で、前記光源部が射出する励起光の光量と前記反射光測定部によって測定される反射励起光の光量とに基づいて前記光源電流供給部を制御して前記光源部に供給する電流量を調整する電流量調整部と、を有するものである。 Also, a surface plasmon resonance fluorescence analyzer for measuring fluorescence emitted by excitation of an analyte or a fluorescent substance attached to the sample by an electric field based on surface plasmon resonance, wherein a prism is formed with a metal film on a predetermined surface And a light source unit that emits excitation light and makes the excitation light enter the prism so as to be reflected by the metal film of the prism, and a light amount of reflected excitation light that is excitation light reflected by the metal film. A reflected wave measuring unit to be measured, and a P wave component of excitation light incident on the metal film based on the amount of excitation light emitted from the light source unit and the amount of reflected excitation light measured by the reflected light measurement unit A P-wave light amount adjusting unit that adjusts the light amount of the light source to a specific light amount, the light source unit changes the light amount of the excitation light emitted according to the amount of current supplied, The light source unit and the prism; A half-wave plate disposed on the optical path of the excitation light emitted from the light source unit, and a rotation drive unit that rotates the half-wave plate so that the polarization direction of the excitation light with respect to the metal film changes And a light source current supply unit that supplies current to the light source unit, and the rotational drive unit based on the amount of excitation light emitted by the light source unit and the amount of reflected excitation light measured by the reflected light measurement unit. A control unit that drives and controls the amount of current supplied by the light source current supply unit. The control unit reflects the amount of excitation light emitted from the light source unit and the reflected excitation measured by the reflected light measurement unit. Based on the amount of light, the rotation drive unit is controlled to adjust the amount of rotation of the half-wave plate so that the amount of P-wave component in the total amount of excitation light incident on the metal film is maximized. A rotation amount adjustment unit, and all of the excitation light The light source current supply unit based on the light amount of the excitation light emitted by the light source unit and the light amount of the reflected excitation light measured by the reflected light measurement unit in a state where the light amount of the P wave component occupying the quantity is maximized And a current amount adjusting unit that adjusts the amount of current supplied to the light source unit .

本発明によれば、所定の面上に金属膜が形成されたプリズムを交換しても金属膜に入射する励起光のP波成分の光量を一定にすることができ、これにより、プリズム毎の測定結果のばらつきが抑えられる。   According to the present invention, the amount of the P wave component of the excitation light incident on the metal film can be made constant even when the prism having the metal film formed on the predetermined surface is replaced. Variation in measurement results is suppressed.

詳しくは、プリズム内に向けて照射する励起光においてP波成分の光量を一定にしても、プリズムを交換すると、例えば、プリズム毎の複屈折率の違い等によって金属膜に入射する励起光のP波成分の光量が一定にならない場合がある。そのため、プリズムに入射する前の励起光の光量と金属膜で反射された後の反射励起光の光量とに基づいて金属膜に入射するP波成分の光量を求め、この光量がプリズムを交換しても一定となるように調整することで、プリズム毎の測定精度のばらつきが抑えられる。
金属膜に入射する励起光の偏光方向と光量とをそれぞれ調整可能とすることで、金属膜に入射する励起光のP波成分の光量を目標とする光量に確実に調整することができる共に、S/Nの向上を図ることが可能となる。
詳しくは、1/2波長板を回転させて金属膜に入射する励起光の全光量に占めるP波成分の光量を最大にしても、金属膜に入射する励起光のP波成分の光量が目標とする光量に達しない場合でも、光源部から射出される励起光の光量を大きくして金属膜に入射する励起光のP波成分の光量を目標とする光量とすることができる。
また、プリズム内に入射する励起光の光量は小さいほどプリズム内での自家蛍光等の不要光(ノイズ)を小さくすることができる。そのため、金属膜に入射する励起光の全光量に占めるP波成分の光量を最大とし且つ光源部が射出する励起光の光量を最小とした状態で、金属膜に入射する励起光のP波成分の光量を目標とする光量とすることにより、プリズム毎の測定結果のばらつきを抑えると共に、プリズム内等で生じるノイズを減らしてS/Nを向上させることができる。その結果、高精度且つ高感度な検体の検出が可能となる。
Specifically, even if the amount of the P wave component is constant in the excitation light irradiated into the prism, if the prism is replaced, for example, the P of the excitation light incident on the metal film due to the difference in birefringence of each prism, etc. The amount of wave component may not be constant. Therefore, the amount of P wave component incident on the metal film is obtained based on the amount of excitation light before entering the prism and the amount of reflected excitation light after being reflected by the metal film, and this amount of light replaces the prism. Even if it adjusts so that it may become constant, the dispersion | variation in the measurement accuracy for every prism is suppressed.
By making it possible to adjust the polarization direction and the light amount of the excitation light incident on the metal film, the light amount of the P wave component of the excitation light incident on the metal film can be reliably adjusted to the target light amount, It is possible to improve the S / N.
Specifically, even when the half-wave plate is rotated to maximize the amount of P-wave component in the total amount of excitation light incident on the metal film, the amount of P-wave component of excitation light incident on the metal film is the target. Even if the amount of light does not reach the light amount, the light amount of the excitation light emitted from the light source unit can be increased and the light amount of the P wave component of the excitation light incident on the metal film can be set as the target light amount.
In addition, unnecessary light (noise) such as autofluorescence in the prism can be reduced as the amount of excitation light incident on the prism is reduced. Therefore, the P wave component of the excitation light incident on the metal film is maximized while the light amount of the P wave component in the total light amount of the excitation light incident on the metal film is maximized and the light amount of the excitation light emitted from the light source unit is minimized. By setting the target light amount as the target light amount, it is possible to suppress variations in measurement results for each prism and to reduce noise generated in the prism and improve the S / N. As a result, it is possible to detect the sample with high accuracy and high sensitivity.

具体的には、光源部から射出された励起光に含まれるP波成分は金属膜で反射されるときに表面プラズモンの励起に用いられ、反射励起光にはS波成分しか含まれなくなる。そこで、前記P波光量調整部は、前記光源部が射出する励起光の光量と前記反射光測定部によって測定される反射励起光の光量との差から前記金属膜に入射するP波成分の光量を求め、この光量に基づいて前記励起光の状態を調整する。尚、励起光の状態とは、励起光の出力や偏向方向等のことをいう。   Specifically, the P wave component included in the excitation light emitted from the light source unit is used for excitation of surface plasmon when reflected by the metal film, and the reflected excitation light includes only the S wave component. Therefore, the P-wave light amount adjustment unit is configured to detect the light amount of the P-wave component incident on the metal film from the difference between the light amount of the excitation light emitted from the light source unit and the light amount of the reflected excitation light measured by the reflected light measurement unit. And the state of the excitation light is adjusted based on the amount of light. The state of the excitation light means the output of the excitation light, the deflection direction, and the like.

例えば、前記P波光量調整部は、前記光源部と前記プリズムとの間において当該光源部から射出される励起光の光路上に配置される1/2波長板と、前記金属膜に対する励起光の偏光方向が変わるように前記1/2波長板を回転させる回転駆動部と、前記光源部が射出する励起光の光量と前記反射光測定部によって測定される反射励起光の光量とに基づいて前記回転駆動部を駆動する制御部とを有してもよい。   For example, the P-wave light amount adjusting unit includes a half-wave plate disposed on an optical path of excitation light emitted from the light source unit between the light source unit and the prism, and excitation light for the metal film. Based on the rotational drive unit that rotates the half-wave plate so that the polarization direction changes, the amount of excitation light emitted by the light source unit, and the amount of reflected excitation light measured by the reflected light measurement unit You may have a control part which drives a rotation drive part.

このように光源部とプリズムとの間に1/2波長板を設けてこの1/2波長板を回転させると、励起光の偏向方向が回転して金属膜に入射する励起光のP波成分の光量が変化する。そのため、金属膜に入射する励起光のP波成分の光量を検出しつつ1/2波長板を回転させることで、金属膜に入射する励起光のP波成分の光量を目標とする光量に調整することができる。   As described above, when the half-wave plate is provided between the light source unit and the prism and the half-wave plate is rotated, the P-wave component of the excitation light incident on the metal film is rotated by rotating the deflection direction of the excitation light. The amount of light changes. Therefore, the light amount of the P wave component of the excitation light incident on the metal film is adjusted to the target light amount by rotating the half-wave plate while detecting the light amount of the P wave component of the excitation light incident on the metal film. can do.

しかも、1/2波長板を回転させることによって金属膜に入射する励起光のP波成分の光量を目標とする光量とすることで、励起光の光量の変化に伴った波長変動による測定結果への影響を抑えることができる。即ち、光源部の射出する励起光の光量を変化させると、励起光の波長が変化してこの波長変化が検体の測定結果に影響を及ぼす場合があるが、1/2波長板を回転させて金属膜に入射する励起光のP波成分の光量を目標とする光量とすることで、光源部の射出する励起光の光量を一定にすることができ、その結果、前記励起光の波長変化に伴う測定結果への影響を抑えることが可能となる。   In addition, by rotating the half-wave plate to set the light amount of the P wave component of the excitation light incident on the metal film as a target light amount, the measurement result due to the wavelength variation accompanying the change in the light amount of the excitation light is obtained. The influence of can be suppressed. That is, if the amount of excitation light emitted from the light source unit is changed, the wavelength of the excitation light may change and this wavelength change may affect the measurement result of the specimen. By setting the light amount of the P wave component of the excitation light incident on the metal film as a target light amount, the light amount of the excitation light emitted from the light source unit can be made constant, and as a result, the wavelength change of the excitation light can be reduced. It is possible to suppress the influence on the measurement result.

また、前記光源部は、供給される電流量に応じて射出する励起光の光量を変化させ、前記P波光量調整部は、前記光源部に電流を供給する電流供給部と、前記光源部が射出する励起光の光量と前記反射光測定部によって測定される反射励起光の光量とに基づいて前記電流供給部が供給する電流量を制御する制御部とを有してもよい。   The light source unit changes the amount of excitation light emitted according to the amount of current supplied, the P-wave light amount adjustment unit includes a current supply unit that supplies current to the light source unit, and the light source unit You may have a control part which controls the electric current amount which the said electric current supply part supplies based on the light quantity of the excitation light to inject | emits, and the light quantity of the reflected excitation light measured by the said reflected light measurement part.

このように金属膜に入射する励起光の光量を変化させても金属膜に入射する励起光のP波成分の光量が変化する。そのため、金属膜に入射する励起光のP波成分の光量を検出しつつ光源部が射出する励起光の光量を調整することで、金属膜に入射する励起光のP波成分の光量を目標とする光量に調整することができる。   Thus, even if the amount of excitation light incident on the metal film is changed, the amount of P wave component of the excitation light incident on the metal film changes. Therefore, by adjusting the light amount of the excitation light emitted from the light source unit while detecting the light amount of the P wave component of the excitation light incident on the metal film, the light amount of the P wave component of the excitation light incident on the metal film is targeted. The amount of light to be adjusted can be adjusted.

詳しくは、1/2波長板を回転させて金属膜に入射する励起光の全光量に占めるP波成分の光量を最大にしても、金属膜に入射する励起光のP波成分の光量が目標とする光量に達しない場合でも、光源部から射出される励起光の光量を大きくして金属膜に入射する励起光のP波成分の光量を目標とする光量とすることができる。   Specifically, even when the half-wave plate is rotated to maximize the amount of P-wave component in the total amount of excitation light incident on the metal film, the amount of P-wave component of excitation light incident on the metal film is the target. Even if the amount of light does not reach the light amount, the light amount of the excitation light emitted from the light source unit can be increased and the light amount of the P wave component of the excitation light incident on the metal film can be set as the target light amount.

また、プリズム内に入射する励起光の光量は小さいほどプリズム内での自家蛍光等の不要光(ノイズ)を小さくすることができる。そのため、金属膜に入射する励起光の全光量に占めるP波成分の光量を最大とし且つ光源部が射出する励起光の光量を最小とした状態で、金属膜に入射する励起光のP波成分の光量を目標とする光量とすることにより、プリズム毎の測定結果のばらつきを抑えると共に、プリズム内等で生じるノイズを減らしてS/Nを向上させることができる。その結果、高精度且つ高感度な検体の検出が可能となる。   In addition, unnecessary light (noise) such as autofluorescence in the prism can be reduced as the amount of excitation light incident on the prism is reduced. Therefore, the P wave component of the excitation light incident on the metal film is maximized while the light amount of the P wave component in the total light amount of the excitation light incident on the metal film is maximized and the light amount of the excitation light emitted from the light source unit is minimized. By setting the target light amount as the target light amount, it is possible to suppress variations in measurement results for each prism and to reduce noise generated in the prism and improve the S / N. As a result, it is possible to detect the sample with high accuracy and high sensitivity.

本発明に係る表面プラズモン共鳴蛍光分析装置は、前記励起光が前記金属膜で反射されることにより当該金属膜における前記プリズムと反対の面側で生じる前記蛍光の強度を測定可能な蛍光測定部と、前記蛍光測定部によって測定される蛍光の光量に基づいて前記プリズム内に入射する励起光の強度を変更する強度変更部と、前記強度変更部による励起光の強度変更に基づいて前記蛍光測定部による蛍光の測定結果を補正する補正部と、を備えることが好ましい。   The surface plasmon resonance fluorescence analyzer according to the present invention includes a fluorescence measurement unit capable of measuring the intensity of the fluorescence generated on the surface of the metal film opposite to the prism by reflecting the excitation light on the metal film. An intensity changing unit that changes the intensity of the excitation light that enters the prism based on the amount of fluorescent light measured by the fluorescence measuring unit, and the fluorescence measuring unit that is based on the intensity change of the excitation light by the intensity changing unit It is preferable to include a correction unit that corrects the fluorescence measurement result obtained by the above.

かかる構成によれば、蛍光測定部の測定可能な光量の範囲よりも広い測定レンジを得ることができる。具体的に、最大検出量以上の検体が金属膜上に在る場合には、金属膜で生じた表面プラズモン共鳴に基づく増強電場で励起される蛍光の光量が蛍光測定部の測定可能な光量の上限を超え測定できない。しかし、金属膜に入射する励起光の光量(詳しくは、金属膜に入射する励起光のP波成分の光量)を下げることで増強電場の強度が小さくなるため、この増強電場で励起される蛍光の光量も小さくなって蛍光測定部の測定可能な光量の上限よりも小さくなり測定可能となる。この場合、金属膜に入射する励起光の光量が変化(即ち、蛍光を励起する増強電場の強度が変化)しているため、この変化に合わせて蛍光測定部での測定結果を補正する(例えば、励起光の光量を1/10にしたときは蛍光測定部で得られた測定結果(光量)を10倍にし、励起光の光量を1/100にしたときは蛍光測定部で得られた測定結果(光量)を100倍する)ことが必要となる。   According to such a configuration, it is possible to obtain a measurement range that is wider than the range of light intensity that can be measured by the fluorescence measurement unit. Specifically, when a specimen having a maximum detection amount or more is present on the metal film, the amount of fluorescence excited by the enhanced electric field based on the surface plasmon resonance generated in the metal film is the amount of light that can be measured by the fluorescence measurement unit. Cannot measure beyond the upper limit. However, since the intensity of the enhanced electric field is reduced by lowering the light amount of the excitation light incident on the metal film (specifically, the light amount of the P wave component of the excitation light incident on the metal film), the fluorescence excited by this enhanced electric field. Becomes smaller than the upper limit of the measurable amount of light of the fluorescence measuring unit, and can be measured. In this case, since the amount of the excitation light incident on the metal film has changed (that is, the intensity of the enhanced electric field that excites the fluorescence has changed), the measurement result in the fluorescence measurement unit is corrected in accordance with this change (for example, When the light quantity of the excitation light is reduced to 1/10, the measurement result (light quantity) obtained by the fluorescence measurement part is multiplied by 10 times, and when the light quantity of the excitation light is reduced to 1/100, the measurement obtained by the fluorescence measurement part. It is necessary to multiply the result (light quantity) by 100).

前記励起光が前記金属膜で反射されることにより当該金属膜における前記プリズムと反対の面側で生じる前記蛍光の強度を測定可能な蛍光測定部を備え、前記特定の光量は、励起光が金属膜で反射することにより前記検体又は前記検体に付された蛍光物質から生じた蛍光の光量が前記光測定部で測定可能な光量の下限以上であることが好ましく、さらに、前記特定の光量は、励起光が金属膜で反射することにより前記検体又は前記検体に付された蛍光物質から生じた蛍光の光量が前記光測定部で測定可能な光量の上限以下であることが好ましい。これにより、蛍光測定部によって検体又は検体に付された蛍光物質が発する蛍光を確実に測定することができる。   A fluorescence measurement unit capable of measuring the intensity of the fluorescence generated on the surface of the metal film opposite to the prism as a result of the excitation light being reflected by the metal film, wherein the specific amount of light is obtained when the excitation light is a metal It is preferable that the amount of fluorescent light generated from the specimen or the fluorescent substance attached to the specimen by reflection on the film is not less than the lower limit of the amount of light that can be measured by the light measuring unit, and the specific light amount is It is preferable that the amount of fluorescent light generated from the sample or the fluorescent material attached to the sample by reflecting the excitation light on the metal film is equal to or less than the upper limit of the amount of light that can be measured by the light measurement unit. Thereby, the fluorescence emitted from the specimen or the fluorescent substance attached to the specimen can be reliably measured by the fluorescence measuring section.

また、本発明は、検体又は検体に付された蛍光物質が表面プラズモン共鳴に基づく電場により励起されて発した光を測定する表面プラズモン共鳴蛍光分析方法であって、所定の面上に金属膜が形成されたプリズムを用意し、前記金属膜上に前記検体を含む試料液を流す準備工程と、前記金属膜で反射して当該金属膜に表面プラズモン共鳴が生じるように前記準備工程後のプリズム内に励起光を入射させる励起光照射工程と、前記金属膜に表面プラズモン共鳴が生じている状態で、前記プリズム内に入射する励起光の光量と前記金属膜で反射された励起光である反射励起光の光量とから当該金属膜に入射した励起光のP波光量を測定する測定工程と、前記プリズム内に前記励起光を入射させる光源部が射出する励起光の光量と前記金属膜で反射され反射光測定部によって測定される反射励起光の光量とに基づいて前記金属膜に入射する励起光の全光量に占めるP波成分の光量が最大となるように、前記光源部と前記プリズムとの間において当該光源部から射出される励起光の光路上に配置される1/2波長板の回転量を制御部によって調整するとともに、励起光の全光量に占めるP波成分の光量が最大となった状態で、前記光源部が射出する励起光の光量と前記反射光測定部によって測定される反射励起光の光量とに基づいて前記光源部に供給する電流量を前記制御部によって調整するP波光量調整工程と、前記測定工程でのP波光量の測定に基づいて前記励起光照射光程で照射される励起光の光量及び偏向方向の少なくとも一方を調整する調整工程と、を備える方法である。 The present invention also relates to a surface plasmon resonance fluorescence analysis method for measuring light emitted from a specimen or a fluorescent substance attached to the specimen by being excited by an electric field based on surface plasmon resonance, wherein a metal film is formed on a predetermined surface. Preparing a formed prism and flowing a sample solution containing the specimen onto the metal film; and reflecting the light from the metal film to cause surface plasmon resonance in the metal film, A step of irradiating excitation light to the light source, and a state of surface plasmon resonance occurring in the metal film, and the amount of excitation light incident on the prism and reflection excitation that is reflected by the metal film reflected light amount and the metal film of the excitation light source unit to be incident and measurement step of measuring P-wave light amount of excitation light from the light amount of the light incident on the metal film, the excitation light into said prism is emitted The light source unit and the prism are configured so that the light amount of the P-wave component in the total amount of excitation light incident on the metal film is maximized based on the amount of reflected excitation light measured by the reflected light measurement unit. The amount of rotation of the half-wave plate arranged on the optical path of the excitation light emitted from the light source unit is adjusted by the control unit, and the light quantity of the P wave component in the total light quantity of the excitation light is maximized In this state, the control unit adjusts the amount of current supplied to the light source unit based on the amount of excitation light emitted from the light source unit and the amount of reflected excitation light measured by the reflected light measurement unit. A method for adjusting a light quantity of light and an adjustment process for adjusting at least one of the light quantity and the deflection direction of the excitation light irradiated in the excitation light irradiation light range based on the measurement of the P-wave light quantity in the measurement process. .

本発明によれば、所定の面上に金属膜が形成されたプリズムを交換しても金属膜に入射する励起光のP波成分の光量を一定にすることができ、これにより、プリズム毎の測定結果のばらつきが抑えられる。   According to the present invention, the amount of the P wave component of the excitation light incident on the metal film can be made constant even when the prism having the metal film formed on the predetermined surface is replaced. Variation in measurement results is suppressed.

以上より、本発明によれば、プリズム毎の測定精度のばらつきを抑えることが可能な表面プラズモン共鳴蛍光分析装置、及び表面プラズモン共鳴蛍光分析方法を提供することができる。   As described above, according to the present invention, it is possible to provide a surface plasmon resonance fluorescence analysis apparatus and a surface plasmon resonance fluorescence analysis method capable of suppressing variation in measurement accuracy for each prism.

本実施形態に係る表面プラズモン共鳴蛍光分析装置において分析チップが設置された状態の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the state by which the analysis chip was installed in the surface plasmon resonance fluorescence analyzer which concerns on this embodiment. 前記表面プラズモン共鳴蛍光分析装置におけるチップ保持部及びこのチップ保持部に保持された状態の分析チップの構成を示す拡大図である。It is an enlarged view showing a configuration of a chip holding unit and an analysis chip held by the chip holding unit in the surface plasmon resonance fluorescence analyzer. 前記表面プラズモン共鳴蛍光分析装置の制御処理部の機能ブロック図である。It is a functional block diagram of the control processing part of the surface plasmon resonance fluorescence analyzer. 前記表面プラズモン共鳴蛍光分析装置において検体の検出を行うときのフローチャートである。It is a flowchart when detecting a specimen in the surface plasmon resonance fluorescence analyzer. 共鳴角と励起入射角(増強電場が最大になる角)との関係を示す図である。It is a figure which shows the relationship between a resonance angle and an excitation incident angle (angle which an enhancement electric field becomes the maximum). 他実施形態に係る表面プラズモン共鳴蛍光分析装置であって、(A)は励起光射出部の機能ブロック図であり、(B)は制御処理部の機能ブロック図である。In the surface plasmon resonance fluorescence analyzer according to another embodiment, (A) is a functional block diagram of an excitation light emitting unit, and (B) is a functional block diagram of a control processing unit. 他実施形態に係る表面プラズモン共鳴蛍光分析装置での検体の測定における光測定部の出力及び測定レンジと、検出される検体量(励起蛍光の光量)との関係を示す図である。It is a figure which shows the relationship between the output and measurement range of the optical measurement part in the measurement of the sample in the surface plasmon resonance fluorescence analyzer which concerns on other embodiment, and the detected sample amount (light quantity of excitation fluorescence).

以下、本発明の一実施形態について、添付図面を参照しつつ説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.

本実施形態に係る表面プラズモン共鳴蛍光分析装置(以下、単に「分析装置」とも称する。)は、プリズムに全反射条件で入射した励起光の反射界面からしみ出すエバネッセント波(増強電場)を利用して被検出物質(以下、単に「検体」とも称する。)又は検体に標識された(付された)蛍光物質を励起させ、これにより生じた蛍光(励起蛍光)の光量を検出することによって検体の検出を行う装置である。   The surface plasmon resonance fluorescence analyzer (hereinafter also simply referred to as “analyzer”) according to the present embodiment uses an evanescent wave (enhanced electric field) that exudes from the reflection interface of excitation light incident on the prism under total reflection conditions. The substance to be detected (hereinafter also simply referred to as “specimen”) or a fluorescent substance labeled (attached) to the specimen is excited, and the amount of fluorescence (excitation fluorescence) generated thereby is detected, thereby detecting the amount of the specimen. It is a device that performs detection.

分析装置は、図1に示されるように、分析チップ50を保持するチップ保持部12と、チップ保持部12に保持された状態の分析チップ50に励起光αを出射する励起光射出部20と、分析チップ50から射出される光(反射励起光α)の光量を測定する反射光測定部30と、分析チップ50で生じた光(励起蛍光)の強度を測定する光測定部(蛍光測定部)32と、これらチップ保持部12、励起光射出部20、反射光測定部30及び光測定部32等の分析装置10の各構成要素の制御を行うと共に各種演算処理を行う制御処理部(制御部)40と、演算結果等の各種情報を表示する表示部16とを備える。また、分析装置10は、患者からの血液等の前処理を行う前処理部(図示省略)も備える。この前処理部は、試薬チップ(図略)を受け入れ、この試薬チップに注入されている血液等の前処理(血球分離や希釈、混合等)を行って試料液を生成し、この試料液を分析チップ50に注入する部位である。試薬チップには、複数の収納部が設けられ、各収納部には血液等の他に、試薬、希釈液、洗浄液等が個別に封入されている。 As shown in FIG. 1, the analyzer includes a chip holding unit 12 that holds an analysis chip 50, an excitation light emitting unit 20 that emits excitation light α to the analysis chip 50 that is held by the chip holding unit 12, and The reflected light measurement unit 30 that measures the amount of light emitted from the analysis chip 50 (reflected excitation light α s ) and the light measurement unit that measures the intensity of light (excitation fluorescence) generated by the analysis chip 50 (fluorescence measurement) Unit) 32 and a control processing unit (not shown) that controls each component of the analyzer 10 such as the chip holding unit 12, the excitation light emitting unit 20, the reflected light measuring unit 30, and the light measuring unit 32 and performs various arithmetic processes. (Control part) 40 and the display part 16 which displays various information, such as a calculation result. The analyzer 10 also includes a preprocessing unit (not shown) that performs preprocessing of blood from the patient. The pretreatment unit accepts a reagent chip (not shown), performs pretreatment (blood cell separation, dilution, mixing, etc.) of blood injected into the reagent chip to generate a sample liquid, This is a portion to be injected into the analysis chip 50. The reagent chip is provided with a plurality of storage units, and each storage unit is individually sealed with a reagent, a diluent, a cleaning solution, and the like in addition to blood.

分析チップ50は、図2にも示されるように、プリズム51と、プリズム51の表面に形成される金属膜55と、金属膜55上を当該金属膜55に接しつつ検体を含む試料液や洗浄液等が流れる流路58を形成する流路部材57とを備える。本実施形態の分析チップ50は、検体の検出(分析)毎に交換される。   As shown in FIG. 2, the analysis chip 50 includes a prism 51, a metal film 55 formed on the surface of the prism 51, and a sample liquid and a cleaning liquid containing a specimen while contacting the metal film 55 on the metal film 55. And a flow path member 57 that forms a flow path 58 through which and the like flow. The analysis chip 50 of this embodiment is replaced every time a sample is detected (analyzed).

プリズム51は、励起光射出部20からの励起光αを内部に入射させる入射面52と、この内部に入射した励起光αが反射される金属膜55が形成される成膜面(所定の面)53と、金属膜55で反射された励起光(反射励起光)αがプリズム51の外部に射出される射出面54とをその表面に含み、透明なガラス又は樹脂により形成されている。射出面54は、励起光αが金属膜55(詳細には、金属膜55と成膜面53との界面)で反射した後に最初に当る面であり、金属膜55で反射した反射励起光αのS波成分の光がプリズム51の内部で留まらないように、入射面52と同様に、光学面に形成される。尚、プリズム51は、入射面52と成膜面53と射出面54とをその表面に含み、入射面52から内部に入射した励起光αが成膜面53上の金属膜55で全反射され、この反射励起光α(詳しくは、励起光αのS波成分)が内部で乱反射して留まらずに射出面54から外部に射出されるような形状であればよい。 The prism 51 includes an incident surface 52 on which the excitation light α from the excitation light emitting unit 20 is incident, and a film formation surface (predetermined surface) on which the metal film 55 on which the excitation light α incident on the inside is reflected is formed. ) 53 and the exit surface 54 on which the excitation light (reflected excitation light) α s reflected by the metal film 55 is emitted to the outside of the prism 51, and is made of transparent glass or resin. The emission surface 54 is a surface that first strikes after the excitation light α is reflected by the metal film 55 (specifically, the interface between the metal film 55 and the film formation surface 53), and the reflected excitation light α reflected by the metal film 55. as the light of S-wave component of the s it does not remain inside the prism 51, similarly to the incident surface 52, is formed on the optical surface. The prism 51 includes an incident surface 52, a film formation surface 53, and an emission surface 54, and the excitation light α incident on the inside from the incident surface 52 is totally reflected by the metal film 55 on the film formation surface 53. The reflection excitation light α s (specifically, the S wave component of the excitation light α) may be shaped so as to be emitted outside from the emission surface 54 without being irregularly reflected inside.

金属膜55は、プリズム51の成膜面53上に成膜(形成)された金属製の薄膜であり、本実施形態では、金により形成されている。この金属膜55は、全反射条件でプリズム51内に入射した励起光αが金属膜55と成膜面53との界面で全反射することにより生じるエバネッセント波(増強電場)を増幅するための部材である。即ち、成膜面53上に金属膜55を設けてこの金属膜55に表面プラズモン共鳴を生じさせることにより、金属膜55のない面(成膜面53)で励起光αを全反射させてエバネッセント波を生じさせる場合に比べ、形成されるエバネッセント波を増幅させる(即ち、金属膜55の表面55a近傍に増強電場を形成する)ことができる。   The metal film 55 is a metal thin film formed (formed) on the film formation surface 53 of the prism 51, and is formed of gold in this embodiment. The metal film 55 is a member for amplifying an evanescent wave (enhanced electric field) generated when the excitation light α incident on the prism 51 under total reflection conditions is totally reflected at the interface between the metal film 55 and the film formation surface 53. It is. That is, by providing the metal film 55 on the film formation surface 53 and causing surface plasmon resonance in the metal film 55, the excitation light α is totally reflected on the surface without the metal film 55 (film formation surface 53), and evanescent. Compared with the case of generating a wave, the formed evanescent wave can be amplified (that is, an enhanced electric field can be formed in the vicinity of the surface 55a of the metal film 55).

尚、金属膜55の素材は、金に限定されず、表面プラズモン共鳴を生じさせる金属であればよく、例えば、銀、銅、アルミ等(合金を含む)であってもよい。   The material of the metal film 55 is not limited to gold, and may be any metal that causes surface plasmon resonance, and may be, for example, silver, copper, aluminum, or the like (including an alloy).

また、金属膜55の表面(プリズム51と反対側の面)55aには、特定の抗原を捕捉するための捕捉体56が固定されている。この捕捉体56は、表面処理によって金属膜55の表面55aに固定される。   A capturing body 56 for capturing a specific antigen is fixed on the surface (surface opposite to the prism 51) 55a of the metal film 55. The capturing body 56 is fixed to the surface 55a of the metal film 55 by surface treatment.

流路部材57は、プリズム51の成膜面53上に設けられ、この成膜面53と共に試料液が流れる流路58を形成する。この流路部材57は、透明な樹脂により形成され、接着剤、レーザ溶着や超音波溶着、クランプ部材を用いた圧着等によってプリズム51に接合されている。   The flow path member 57 is provided on the film formation surface 53 of the prism 51, and forms a flow path 58 through which the sample liquid flows together with the film formation surface 53. The flow path member 57 is formed of a transparent resin, and is joined to the prism 51 by an adhesive, laser welding, ultrasonic welding, pressure bonding using a clamp member, or the like.

このように構成される分析チップ50は、分析装置10の前処理部に設置されると、この前処理部において前処理が終わった試料液が流路58内に注入(供給)される。そして、試料液が注入された分析チップ50は、金属膜55上に固定された捕捉体56と検体(特定の抗原)との反応が終了するとチップ保持部12まで搬送され、このチップ保持部12に所定の姿勢で保持される。   When the analysis chip 50 configured as described above is installed in the pretreatment unit of the analyzer 10, the sample liquid that has been pretreated in the pretreatment unit is injected (supplied) into the flow path 58. The analysis chip 50 into which the sample liquid has been injected is transported to the chip holding unit 12 when the reaction between the capturing body 56 fixed on the metal film 55 and the specimen (specific antigen) is completed. Are held in a predetermined posture.

チップ保持部12は、検体の検出のときに分析チップ50を保持する。具体的に、このチップ保持部12は、励起光射出部20から射出された励起光αが全反射条件で入射面52からプリズム51の内部に入射してこの入射した励起光αが金属膜55で反射されるような姿勢で分析チップ50を着脱可能に保持する。   The chip holding unit 12 holds the analysis chip 50 when detecting the specimen. Specifically, in the chip holding unit 12, the excitation light α emitted from the excitation light emitting unit 20 enters the prism 51 from the incident surface 52 under total reflection conditions, and the incident excitation light α is converted into the metal film 55. The analysis chip 50 is detachably held in such a posture as to be reflected by the lens.

励起光射出部20は、チップ保持部12で保持された状態の分析チップ50に含まれるプリズム51の金属膜55で反射されるように当該プリズム51内に励起光αを入射させる。具体的に、励起光射出部20は、光源部21と、光源部21が射出した励起光αを直線偏光にする直線偏光部22と、励起光αの金属膜55に対する偏光方向を調整する偏光方向調整部26と、を有する。この励起光射出部20は、射出した励起光αが入射面52からプリズム51の内部に入射して金属膜55で全反射している状態でこの励起光αの金属膜55に対する入射角θを変更するように、チップ保持部12に保持された状態の分析チップ50(詳しくは、プリズム51の金属膜55)に対する姿勢を変更できる(図1の矢印A参照)。詳しくは、励起光射出部20は、金属膜55における励起光αの反射される位置を変えることなく金属膜55への励起光αの入射角θを変更するように、チップ保持部12に保持された状態の分析チップ50に対する姿勢を変更可能に構成される。本実施形態の励起光射出部20は、制御処理部40に接続され、この制御処理部40からの指示信号に従って分析チップ50に対する姿勢を変更する。   The excitation light emitting unit 20 makes the excitation light α enter the prism 51 so as to be reflected by the metal film 55 of the prism 51 included in the analysis chip 50 held by the chip holding unit 12. Specifically, the excitation light emitting unit 20 includes a light source unit 21, a linear polarization unit 22 that converts the excitation light α emitted from the light source unit 21 into linearly polarized light, and polarization that adjusts the polarization direction of the excitation light α with respect to the metal film 55. A direction adjusting unit 26. The excitation light emitting unit 20 sets the incident angle θ of the excitation light α with respect to the metal film 55 in a state where the emitted excitation light α enters the prism 51 from the incident surface 52 and is totally reflected by the metal film 55. As can be changed, the attitude of the analysis chip 50 (specifically, the metal film 55 of the prism 51) held by the chip holding unit 12 can be changed (see arrow A in FIG. 1). Specifically, the excitation light emitting unit 20 is held by the chip holding unit 12 so as to change the incident angle θ of the excitation light α to the metal film 55 without changing the position where the excitation light α is reflected on the metal film 55. The posture with respect to the analysis chip 50 in such a state can be changed. The excitation light emitting unit 20 of the present embodiment is connected to the control processing unit 40, and changes the posture with respect to the analysis chip 50 in accordance with an instruction signal from the control processing unit 40.

光源部21は、励起光αを射出する励起光源(図示省略)と温調回路(図示省略)とを有し、供給される電流量に応じて射出する励起光αの光量を変化させる。この光源部21は、制御処理部40に接続され、当該制御処理部40の電流供給部43から電流を供給される(図3参照)。本実施形態では、励起光源としてレーザーダイオードが用いられる。この励起光源は、波長変動の少ない安定的な波長の出力光を出力させるために、温調回路によって常に温調されて定温に維持される。   The light source unit 21 includes an excitation light source (not shown) that emits excitation light α and a temperature control circuit (not shown), and changes the amount of the excitation light α that is emitted according to the amount of current supplied. The light source unit 21 is connected to the control processing unit 40 and supplied with a current from a current supply unit 43 of the control processing unit 40 (see FIG. 3). In this embodiment, a laser diode is used as an excitation light source. This excitation light source is constantly temperature-controlled by a temperature control circuit and maintained at a constant temperature in order to output output light having a stable wavelength with little wavelength fluctuation.

直線偏光部22は、光源部21が射出する励起光αの光路上に配置され、励起光αを偏光方向が一意な直線偏光となるようにろ波する。具体的に、直線偏光部22は、チップ保持部12に保持された分析チップ50のプリズム51の金属膜55に対してP偏光光が入射するような偏光方向となるように、光源部21が射出する励起光αをろ波する。   The linear polarization unit 22 is disposed on the optical path of the excitation light α emitted from the light source unit 21, and filters the excitation light α so that the polarization direction becomes a linear polarization with a unique polarization direction. Specifically, the light source unit 21 is arranged so that the linear polarization unit 22 has a polarization direction in which P-polarized light is incident on the metal film 55 of the prism 51 of the analysis chip 50 held by the chip holding unit 12. Filter the exiting excitation light α.

偏光方向調整部26は、1/2波長板27と、この1/2波長板27を回転させる回転駆動部28と、を有する。   The polarization direction adjusting unit 26 includes a half-wave plate 27 and a rotation driving unit 28 that rotates the half-wave plate 27.

1/2波長板27は、光源部21が射出する励起光αの光路上に配置され、励起光αの偏光方向を連続的に回転させる偏光回転子として用いられる。   The half-wave plate 27 is disposed on the optical path of the excitation light α emitted from the light source unit 21 and is used as a polarization rotator that continuously rotates the polarization direction of the excitation light α.

回転駆動部28は、1/2波長板27を回転させることにより、金属膜55に対する励起光αの偏光方向を回転させる。本実施形態の回転駆動部28は、ステップモーターを有する。そして、回転駆動部28は、制御処理部40からの指示信号に基づいてステップモーターにより1/2波長板27を回転させる。このように1/2波長板27を回転させると、直線偏光部22において直線偏光された励起光αの偏光方向が回転し、これにより、金属膜55に入射する励起光αにおけるP波成分の光量とS波成分の光量とが変化する。即ち、回転駆動部28が1/2波長板27を回転させることにより、金属膜55においてエバネッセント波が最大限しみ出す条件(即ち、金属膜55の表面55a近傍に形成される増強電場の電場増強度が最大となる条件)から全くしみ出さない条件(即ち、金属膜55の表面55a近傍に増強電場が全く形成されない条件)まで偏光方向を自在に変化させることが可能となる。   The rotation driving unit 28 rotates the polarization direction of the excitation light α with respect to the metal film 55 by rotating the half-wave plate 27. The rotation drive unit 28 of the present embodiment has a step motor. Then, the rotation drive unit 28 rotates the half-wave plate 27 by the step motor based on the instruction signal from the control processing unit 40. When the half-wave plate 27 is rotated in this way, the polarization direction of the excitation light α linearly polarized in the linear polarization unit 22 is rotated, and thereby the P wave component of the excitation light α incident on the metal film 55 is changed. The amount of light and the amount of S wave component change. That is, the rotation drive unit 28 rotates the half-wave plate 27 to maximize the evanescent wave in the metal film 55 (that is, the electric field enhancement of the enhanced electric field formed in the vicinity of the surface 55a of the metal film 55). It is possible to freely change the polarization direction from the condition where the degree is the maximum) to the condition where no exudation occurs (that is, the condition where no enhanced electric field is formed near the surface 55a of the metal film 55).

反射光測定部30は、金属膜55で反射されて射出面54から射出される反射励起光αの光量を測定する。具体的に、反射光測定部30は、分析チップ50のプリズム51から射出される反射励起光αを受光してその強度(光量)に応じた強度信号を出力する。反射光測定部30は、制御処理部40に接続され、前記強度信号を制御処理部40に出力する。この反射光測定部30は、プリズム51から射出された反射励起光αを受光できるように、チップ保持部12に保持された状態の分析チップ50プリズム51の射出面54と対向する位置に配置されている。本実施形態の反射光測定部30は、例えば、フォトダイオード(PD)で構成されているが、これに限定されない。即ち、反射光測定部30は、光エネルギーを電気エネルギーへ変換する光電変換素子を備えて構成されていればよい。 The reflected light measurement unit 30 measures the amount of reflected excitation light α s reflected from the metal film 55 and emitted from the emission surface 54. Specifically, the reflected light measurement unit 30 receives the reflected excitation light α s emitted from the prism 51 of the analysis chip 50 and outputs an intensity signal corresponding to the intensity (light quantity). The reflected light measurement unit 30 is connected to the control processing unit 40 and outputs the intensity signal to the control processing unit 40. The reflected light measurement unit 30 is disposed at a position facing the emission surface 54 of the analysis chip 50 prism 51 held by the chip holding unit 12 so that the reflected excitation light α s emitted from the prism 51 can be received. Has been. The reflected light measurement unit 30 of the present embodiment is configured by, for example, a photodiode (PD), but is not limited thereto. That is, the reflected light measurement unit 30 may be configured to include a photoelectric conversion element that converts light energy into electrical energy.

光測定部32は、分析チップ50内で生じた蛍光の強度を測定する。具体的に、光測定部32は、分析チップ50の金属膜55の近傍で生じる蛍光(励起蛍光)を受光してその強度(光量)に応じた強度信号を出力する。光測定部32は、制御処理部40に接続され、前記強度信号を制御処理部40に出力する。本実施形態では、検体に標識された蛍光物質が励起されて発する蛍光(励起蛍光)等の微弱な光を検出するため、光測定部32として感度とS/Nの高い光電子倍増管(Photomultiplier Tube:PMT)が用いられる。尚、光測定部32は、PMTに限定されず、冷却CCD型イメージセンサ等の光エネルギーを電気エネルギーへ変換する光電変換素子を備えているものであればよい。   The light measurement unit 32 measures the intensity of fluorescence generated in the analysis chip 50. Specifically, the light measuring unit 32 receives fluorescence (excitation fluorescence) generated in the vicinity of the metal film 55 of the analysis chip 50 and outputs an intensity signal corresponding to the intensity (light quantity). The light measurement unit 32 is connected to the control processing unit 40 and outputs the intensity signal to the control processing unit 40. In this embodiment, in order to detect weak light such as fluorescence (excitation fluorescence) emitted when a fluorescent substance labeled on the specimen is excited, the photometric multiplier 32 (Photomultiplier Tube) having high sensitivity and high S / N : PMT) is used. The light measurement unit 32 is not limited to the PMT, and may be any device including a photoelectric conversion element that converts light energy into electrical energy, such as a cooled CCD image sensor.

制御処理部40は、当該分析装置10を構成する各構成要素に指示信号を出力して制御を行うと共に、各構成要素からの出力信号に基づいて演算を行う。この制御処理部40は、図3にも示されるように、例えば、P波光量導出部41と、偏光方向調整部26の回転駆動部28を制御する回転量調整部42と、光源部21に電流を供給する電流供給部(光源電流供給部)43と、電流供給部43を制御する電流量調整部44と、演算部45とを有する。本実施形態では、これらP波光量導出部41と回転量調整部42と電流供給部43と電流量調整部44とは、偏光方向調整部26と共にP波光量調整部を構成する。このP波光量調整部は、励起光射出部20(詳しくは光源部21)から射出される励起光αの光量と反射光測定部30で測定された反射励起光αの光量とに基づいて金属膜55に入射する励起光αのP波成分の光量を目標とする光量(目標光量)に調整する。 The control processing unit 40 outputs an instruction signal to each component constituting the analysis apparatus 10 to perform control, and performs a calculation based on an output signal from each component. As shown in FIG. 3, the control processing unit 40 includes, for example, a P-wave light quantity deriving unit 41, a rotation amount adjusting unit 42 that controls the rotation driving unit 28 of the polarization direction adjusting unit 26, and the light source unit 21. A current supply unit (light source current supply unit) 43 that supplies current, a current amount adjustment unit 44 that controls the current supply unit 43, and a calculation unit 45 are included. In the present embodiment, the P-wave light amount deriving unit 41, the rotation amount adjusting unit 42, the current supply unit 43, and the current amount adjusting unit 44 together with the polarization direction adjusting unit 26 constitute a P-wave light amount adjusting unit. The P-wave light amount adjusting unit is based on the light amount of the excitation light α emitted from the excitation light emitting unit 20 (specifically, the light source unit 21) and the light amount of the reflected excitation light α s measured by the reflected light measuring unit 30. The light quantity of the P wave component of the excitation light α incident on the metal film 55 is adjusted to a target light quantity (target light quantity).

P波光量導出部41は、光源部21が射出する励起光αの光量と反射光測定部30により測定される反射励起光αの光量とから金属膜55に入射する励起光αのP波成分の光量を求める。具体的に、P波光量導出部41は、光源部21が射出する励起光αの光量Pと、反射光測定部30により測定される反射励起光αの光量Pとの差(即ち、P−P)から金属膜55に入射するP波成分の光量Pを求める。これは、光源部21から射出された励起光αに含まれるP波成分は金属膜55で反射されるときに表面プラズモンの励起に用いられ、反射励起光αにはP波成分が殆んど含まれず、ほぼS波成分しか含まれなくなるからである。即ち、当該分析装置10においては、反射励起光αに含まれるP波成分の光量は無視できる程度である。 The P-wave light quantity deriving unit 41 uses the light quantity of the excitation light α emitted from the light source unit 21 and the light quantity of the reflected excitation light α s measured by the reflected light measurement unit 30 to generate a P wave of the excitation light α incident on the metal film 55. Obtain the light intensity of the component. Specifically, P-wave light amount derivation unit 41, the difference between the light intensity P a of the excitation light alpha to the light source unit 21 is emitted, the light amount P s of the reflected excitation light alpha s as measured by the reflected light measuring unit 30 (i.e. , P−P s ), the light amount P p of the P wave component incident on the metal film 55 is obtained. This is because the P wave component contained in the excitation light α emitted from the light source unit 21 is used to excite surface plasmons when reflected by the metal film 55, and the reflected excitation light α s has almost no P wave component. This is because only the S wave component is included. That is, in the analyzer 10, the amount of P wave component contained in the reflected excitation light α s is negligible.

尚、P波光量導出部41は、電流供給部43から光源部21に供給される電流量を電流量調整部44から取得し、この電流量から光源部21が射出する励起光αの光量を導出する。   The P-wave light amount deriving unit 41 obtains the amount of current supplied from the current supply unit 43 to the light source unit 21 from the current amount adjustment unit 44, and calculates the amount of excitation light α emitted from the light source unit 21 from this current amount. To derive.

回転量調整部42は、金属膜に入射する励起光の全光量に占めるP波成分の光量が最大になるように、1/2波長板27の回転量を調整する。具体的に、回転量調整部42は、反射光測定部30により測定された反射励起光αの光量Pが最小になる回転位置まで1/2波長板27を回転駆動部28により回転させる。即ち、励起光αに含まれるP波成分は、励起光αが金属膜55で反射されるときに表面プラズモンの励起に寄与して反射励起光αには殆んど含まれない状態となるため、偏光方向を回転させて励起光α中のP波成分とS波成分との割合を変化させると、励起光αの全光量に占めるP波成分の光量が最大のときに反射励起光αの光量が最小になる。 The rotation amount adjustment unit 42 adjusts the rotation amount of the half-wave plate 27 so that the light amount of the P wave component in the total light amount of the excitation light incident on the metal film is maximized. Specifically, the rotation amount adjustment unit 42 causes the rotation driving unit 28 to rotate the half-wave plate 27 to a rotation position where the light amount P s of the reflected excitation light α s measured by the reflected light measurement unit 30 is minimized. . That is, the P wave component included in the excitation light α contributes to the excitation of the surface plasmon when the excitation light α is reflected by the metal film 55 and is hardly included in the reflected excitation light α s. Therefore, when the polarization direction is rotated to change the ratio of the P wave component and the S wave component in the excitation light α, the reflected excitation light α is obtained when the amount of the P wave component in the total amount of the excitation light α is maximum. The light quantity of s is minimized.

尚、回転量調整部42は、P波光量導出部41が求めたP波成分の光量Pに基づいて回転駆動部28を駆動して1/2波長板27の回転量を調整してもよい。具体的に、回転量調整部42は、P波光量導出部41により求められたP波成分の光量Pに基づいて金属膜55に入射する励起光αの全光量に占めるP波成分の光量Pが最大となるように1/2波長板27の回転量を調整してもよい。即ち、回転量調整部42は、P波光量導出部41により求められたP波成分の光量Pが最大になる位置まで1/2波長板27を回転させる。 The rotation amount adjustment unit 42 may adjust the rotation amount of the half-wave plate 27 by driving the rotation drive unit 28 based on the P wave component light amount P p obtained by the P wave light amount deriving unit 41. Good. Specifically, the rotation amount adjusting unit 42 is based on the P wave component light amount P p obtained by the P wave light amount deriving unit 41, and the light amount of the P wave component in the total light amount of the excitation light α incident on the metal film 55. P p may adjust the amount of rotation of the half wave plate 27 so as to maximize. In other words, the rotation amount adjustment unit 42 rotates the half-wave plate 27 to a position where the light amount P p of the P wave component obtained by the P wave light amount deriving unit 41 is maximized.

電流量調整部44は、P波光量導出部41が求めたP波成分の光量Pに基づいて電流供給部43を制御することによって光源部21に供給される電流量を調整する。具体的に、電流量調整部44は、P波光量導出部41により求められたP波成分の光量Pが目標とするP波成分の光量Pとなるように光源部21に供給される電流量を調整する。 The current amount adjustment unit 44 adjusts the amount of current supplied to the light source unit 21 by controlling the current supply unit 43 based on the light amount P s of the P wave component obtained by the P wave light amount deriving unit 41. Specifically, the current amount adjusting unit 44 is supplied to the light source unit 21 such that the light intensity P t of P-wave component light amount P s of P-wave component determined by the P-wave light quantity deriving part 41 is a target Adjust the amount of current.

演算部45は、検体を分析するときに、光測定部32から送られてきた出力信号に基づいて演算し、この光測定部32により測定された励起蛍光に関する分析を行う。例えば、演算部45は、光測定部32により検出した単位面積あたりの励起蛍光の数のカウントや時間の経過に伴う励起蛍光の増加量の算出等を行う。そして、演算部45は、この演算結果を制御処理部40に接続される表示部16に出力する。   When analyzing the sample, the calculation unit 45 performs calculation based on the output signal sent from the light measurement unit 32 and performs analysis on the excitation fluorescence measured by the light measurement unit 32. For example, the calculation unit 45 performs counting of the number of excitation fluorescences per unit area detected by the light measurement unit 32, calculation of an increase amount of excitation fluorescence over time, and the like. Then, the calculation unit 45 outputs the calculation result to the display unit 16 connected to the control processing unit 40.

このように構成される制御処理部40が、例えば、当該分析装置10が検体を分析するときに、前処理部、光源部21、偏光方向調整部26、反射光測定部30、及び光測定部32等を制御することによって、当該分析装置10では、前処理工程、共鳴角走査工程、P波光量調整工程、励起蛍光測定工程等が行われる。   When the control processing unit 40 configured in this way, for example, when the analysis apparatus 10 analyzes a sample, the preprocessing unit, the light source unit 21, the polarization direction adjustment unit 26, the reflected light measurement unit 30, and the light measurement unit. By controlling 32 and the like, the analyzer 10 performs a pretreatment process, a resonance angle scanning process, a P-wave light quantity adjustment process, an excitation fluorescence measurement process, and the like.

尚、制御処理部40による具体的な制御等についての詳細は後述する。   Details of specific control by the control processing unit 40 will be described later.

表示部16は、制御処理部40からの出力信号に基づき、演算結果を表示する。表示部16は、液晶ディスプレイ等のように演算結果等を画面に表示するものでもよく、プリンター等のように演算結果等をプリントアウトするものであってもよい。また、これらを組み合わせたものでもよい。   The display unit 16 displays the calculation result based on the output signal from the control processing unit 40. The display unit 16 may display a calculation result or the like on a screen like a liquid crystal display, or may print out the calculation result or the like like a printer. A combination of these may also be used.

このように構成される分析装置10における検体の分析について、図4も参照しつつ以下に説明する。尚、制御処理部40による分析装置10の各構成要素の制御等についての詳細も併せて説明する。   The analysis of the sample in the analyzer 10 configured as described above will be described below with reference to FIG. Details of control of each component of the analyzer 10 by the control processing unit 40 will also be described.

<前処理工程>
患者から血液等が採取され、この採取された血液等が試薬チップに注入される。この血液等が注入された試薬チップが分析装置10の前処理部にセットされる。制御処理部40は、前処理部により、このセットされた試薬チップの血液等の前処理(血球分離や希釈、混合等)を行い試料液を生成する。この状態で、分析チップ50が前処理部に設置されると、制御処理部40は、前処理部により、前処理の終わった試料液を分析チップ50の流路58内に注入し、金属膜55の表面に固定された捕捉体56に検体(特定の抗原)を捕捉させる(即ち、捕捉体56と検体とを反応させる)。本実施形態では、蛍光物質(本実施形態では、蛍光色素)が標識された検体を捕捉体56に捕捉させているが、これに限定されず、捕捉体56に検体を捕捉させた後に分析チップ50に蛍光物質を注入し、捕捉体56に捕捉された状態の検体に対して蛍光物質を標識してもよい。また、金属膜55で生じた表面プラズモン共鳴に基づく増強電場によって検体自身が励起されて蛍光を発する場合には、この検体に蛍光物質を標識しなくてもよい。
<Pretreatment process>
Blood or the like is collected from the patient, and the collected blood or the like is injected into the reagent chip. The reagent chip into which the blood or the like has been injected is set in the pretreatment unit of the analyzer 10. The control processing unit 40 performs preprocessing (blood cell separation, dilution, mixing, etc.) of the set reagent chip blood and the like by the preprocessing unit to generate a sample solution. In this state, when the analysis chip 50 is installed in the preprocessing unit, the control processing unit 40 injects the pretreated sample solution into the flow path 58 of the analysis chip 50 by the preprocessing unit, and the metal film. The specimen (specific antigen) is captured by the capturing body 56 fixed to the surface of 55 (that is, the capturing body 56 and the specimen are reacted). In this embodiment, the sample labeled with a fluorescent substance (in this embodiment, a fluorescent dye) is captured by the capture body 56, but the present invention is not limited to this, and the analysis chip is captured after the capture body 56 captures the sample. The fluorescent substance may be injected into the fluorescent substance 50 and labeled with respect to the specimen captured by the capturing body 56. In addition, when the specimen itself is excited by the enhanced electric field based on the surface plasmon resonance generated in the metal film 55 and emits fluorescence, the specimen need not be labeled with a fluorescent substance.

このように反応が行われた分析チップ50は、チップ保持部12まで搬送され、チップ保持部12に保持される(ステップS1)。   The analysis chip 50 subjected to the reaction in this way is transported to the chip holding unit 12 and held by the chip holding unit 12 (step S1).

<共鳴角走査工程>
分析チップ50がチップ保持部12に保持されると、制御処理部40は、当該分析チップ50における最適な表面プラズモン共鳴条件の走査(共鳴角走査)を行う。そして、この走査の結果に基づき、制御処理部40は、金属膜55で生じる増強電場の電場強度が最も大きくなる入射角である励起入射角θで励起光αが金属膜55に入射するように、励起光射出部20の金属膜55に対する姿勢を変更する。
<Resonance angle scanning process>
When the analysis chip 50 is held by the chip holding unit 12, the control processing unit 40 performs scanning (resonance angle scanning) under the optimum surface plasmon resonance condition in the analysis chip 50. Based on the result of this scanning, the control processing unit 40 causes the excitation light α to be incident on the metal film 55 at the excitation incident angle θ 1 that is the incident angle at which the electric field strength of the enhanced electric field generated in the metal film 55 is the largest. Further, the posture of the excitation light emitting unit 20 with respect to the metal film 55 is changed.

具体的に、制御処理部40は、励起光射出部20(光源部21)から励起光αを射出させた状態で当該励起光射出部20の姿勢を変更しながら反射光測定部30により反射励起光αの光量Pを測定することにより、分析チップ50に含まれるプリズム51の金属膜55への励起光αの入射条件(励起入射角θ)の走査を行う。 Specifically, the control processing unit 40 reflects and excites the reflected light measurement unit 30 while changing the posture of the excitation light emitting unit 20 in a state where the excitation light α is emitted from the excitation light emitting unit 20 (light source unit 21). by measuring the amount of light P s of light alpha s, to scan the incident conditions of the excitation light alpha to the metal film 55 of the prism 51 included in the analysis chip 50 (excitation incident angle theta 1).

このようにして測定された反射励起光αの光量Pは、図5に示されるように、金属膜55への励起光αの入射角θが所定の角度になったときに急激に落ち込む。この反射励起光αの光量Pが最も小さくなった金属膜55への励起光αの入射角(即ち、金属膜55における反射率が最も小さくなった入射角)が共鳴角θとなる。ここで、金属膜55において表面プラズモン共鳴が生じる共鳴角θと、この表面プラズモン共鳴に基づき金属膜55近傍に形成される増強電場の強度が最大となる金属膜55への励起光αの入射角(励起入射角)θとの間には、ズレが生じる、即ち、共鳴角θと励起入射角θとは一致しない。そのため、制御処理部40は、求めた共鳴角θから所定の角度を加減(例えば、±0.5°)して、励起入射角θを決定する(ステップS2)。 The light amount P s of the reflected excitation light α s measured in this manner rapidly falls when the incident angle θ of the excitation light α to the metal film 55 becomes a predetermined angle, as shown in FIG. . The incident angle of the excitation light alpha to the metal film 55 the light amount P s of the reflected excitation light alpha s is the smallest (i.e., the incident angle of reflectance in the metal film 55 is smallest) is the resonance angle theta 2 . Here, the resonance angle θ 2 at which surface plasmon resonance occurs in the metal film 55 and the incidence of the excitation light α on the metal film 55 where the intensity of the enhanced electric field formed near the metal film 55 based on the surface plasmon resonance is maximized. There is a deviation between the angle (excitation incident angle) θ 1 , that is, the resonance angle θ 2 and the excitation incident angle θ 1 do not match. Therefore, the control processing unit 40 adds or subtracts a predetermined angle from the obtained resonance angle θ 2 (for example, ± 0.5 °) to determine the excitation incident angle θ 1 (step S2).

制御処理部40は、励起入射角θを決定すると、金属膜55への励起光αの入射角θが励起入射角θとなるように、励起光射出部20の金属膜55に対する姿勢を変更する(ステップS3)。 When the control processing unit 40 determines the excitation incident angle θ 1 , the control processing unit 40 changes the posture of the excitation light emitting unit 20 with respect to the metal film 55 so that the incident angle θ of the excitation light α on the metal film 55 becomes the excitation incident angle θ 1. Change (step S3).

<P波光量調整工程>
次に、制御処理部40は、金属膜55に入射する励起光αのP波成分の光量Pが目標とする光量(目標光量)Pとなるように調整する。
<P-wave light intensity adjustment process>
Next, the control processing unit 40 adjusts the light amount P p of the P wave component of the excitation light α incident on the metal film 55 to be a target light amount (target light amount) P t .

具体的に、制御処理部40は、金属膜55に入射する励起光αのP波成分の光量Pを目標とする光量Pにするために、金属膜55に入射する励起光αの全光量Pに占めるP波成分の光量Pを調整する。そして、これによりP波成分の光量Pが目標とする光量Pにならなければ、制御処理部40は、励起光αの光量Pを調整する。 Specifically, the control processing unit 40 sets all of the excitation light α incident on the metal film 55 so that the light amount P p of the P wave component of the excitation light α incident on the metal film 55 becomes the target light amount P t. adjusting the light intensity P p P-wave component occupying in light amount P a. Then, if not thereby the light amount P t of the light amount P p P-wave component is the target, the control unit 40 adjusts the light amount P a of the excitation light alpha.

詳しくは、先ず、制御処理部40は、回転量調整部42により1/2波長板27を回転させて励起光αの偏光方向を回転させて、金属膜55に入射する励起光αの全光量Pに占めるP波成分の光量Pを変更する。そして、制御処理部40は、1/2波長板27の回転により金属膜55に入射する励起光αのP波成分の光量Pが目標とする光量Pになれば、1/2波長板27の回転を止めてこの工程を終了し、目標とする光量Pにならなければ次のステップに進む(ステップS4)。このとき、制御処理部40は、P波光量導出部41で求めた金属膜55に入射する励起光αのP波成分の光量Pに基づき、P波成分の光量Pが目標とする光量Pになったか否かを判断する。 Specifically, first, the control processing unit 40 rotates the half-wave plate 27 by the rotation amount adjustment unit 42 to rotate the polarization direction of the excitation light α, so that the total amount of excitation light α incident on the metal film 55 is increased. to change the light intensity P p P-wave component occupying in P a. Then, if the light quantity P p of the P wave component of the excitation light α incident on the metal film 55 by the rotation of the half-wave plate 27 becomes the target light quantity P t , the control processing unit 40 performs the half-wave plate. This process is terminated by stopping the rotation of step 27. If the target light quantity Pt is not reached, the process proceeds to the next step (step S4). Amount this time, the control unit 40, based on the amount P p P-wave component of the excitation light α incident on the metal film 55 obtained in P-wave light amount derivation unit 41, the light amount P p P-wave component is the target It is determined whether or not Pt has been reached.

制御処理部40は、反射光測定部30により測定される反射励起光αの光量が最小になる位置まで1/2波長板27を回転させる(ステップS5)。このようにして金属膜55に入射する励起光αの全光量Pに占めるP波成分の光量Pが最大となったときに、P波成分の光量Pが目標とする光量Pになっていなければ、次に、制御処理部40は、励起光αの光量Pを変更する。 The control processing unit 40 rotates the half-wave plate 27 to a position where the amount of the reflected excitation light α s measured by the reflected light measuring unit 30 is minimized (step S5). When the light amount P p P-wave component to the total light quantity P a of the excitation light α this manner is incident to the metal film 55 is maximized, the light amount P t of the light amount P p P-wave component is the target if not turned, the next control processing unit 40 changes the light quantity P a of the excitation light alpha.

具体的に、制御処理部40は、光源部21に供給される電流量を増加させて当該光源部21が射出する励起光αの光量を増加させることにより、金属膜55に入射する励起光のP波成分の光量Pを目標とする光量Pまで増加させる(ステップS6)。即ち、制御処理部40は、金属膜55に入射する励起光αのP波成分の光量Pが目標とする光量Pとなるように、電流量調整部44により電流供給部43から光源部21に供給される電流量を調整する。 Specifically, the control processing unit 40 increases the amount of excitation light α emitted from the light source unit 21 by increasing the amount of current supplied to the light source unit 21, thereby increasing the amount of excitation light incident on the metal film 55. increasing the light amount P p P-wave components up to the light quantity P t to the target (step S6). That is, the control processing unit 40 causes the current amount adjustment unit 44 to change the light source unit from the current supply unit 43 so that the light amount P p of the P wave component of the excitation light α incident on the metal film 55 becomes the target light amount P t. The amount of current supplied to 21 is adjusted.

<励起蛍光測定工程>
制御処理部40は、以上のようにして設定した励起光αを金属膜55に入射させ、検体の検出を行う。具体的に、制御処理部40は、金属膜55におけるP波成分の光量Pが調整された励起光αを励起光射出部20から射出させる。これにより、励起光αが金属膜55に表面プラズモン共鳴を生じさせ、これに基づく増強電場によって金属膜55の捕捉体56に捕捉された検体に標識された蛍光物質が励起して励起蛍光を発する。そして、制御処理部40は、光測定部32により励起蛍光の測定を行う(ステップS7)。
<Excitation fluorescence measurement process>
The control processing unit 40 causes the excitation light α set as described above to enter the metal film 55 to detect the specimen. Specifically, the control processing unit 40 causes the excitation light emission unit 20 to emit the excitation light α in which the light amount P p of the P wave component in the metal film 55 is adjusted. As a result, the excitation light α causes surface plasmon resonance in the metal film 55, and the fluorescent substance labeled on the specimen captured by the capturing body 56 of the metal film 55 is excited by the enhanced electric field based on this to emit excitation fluorescence. . And the control processing part 40 measures excitation fluorescence by the light measurement part 32 (step S7).

詳しくは、制御処理部40は、演算部45により、光測定部32から送られてきた出力信号に基づいて単位面積あたりの励起蛍光の数のカウント等を行い、励起蛍光の光量を求める。   Specifically, the control processing unit 40 counts the number of excitation fluorescence per unit area based on the output signal sent from the light measurement unit 32 by the calculation unit 45, and obtains the amount of excitation fluorescence.

<記憶・表示工程>
以上のようにして制御処理部40は、励起蛍光の光量を求めた後、これを検体番号と関連付けて記憶し、その他の記憶を消去する(ステップS8)。また、制御処理部40は、この検体番号と関連付けて記憶した励起蛍光の光量に基づく情報を表示部16に出力し、表示部16はこれを表示する。
<Memory / display process>
As described above, the control processing unit 40 obtains the amount of excitation fluorescence, stores it in association with the specimen number, and erases the other storage (step S8). In addition, the control processing unit 40 outputs information based on the amount of excitation fluorescence stored in association with the specimen number to the display unit 16, and the display unit 16 displays the information.

最後に、制御処理部40は、励起光射出部20を初期姿勢に復帰させて(ステップS9)一連の測定を終了する。   Finally, the control processing unit 40 returns the excitation light emitting unit 20 to the initial posture (step S9) and ends a series of measurements.

本実施形態の分析装置10によれば、分析チップ50(所定の面53上に金属膜55が形成されたプリズム51)を交換しても金属膜55に入射する励起光αのP波成分の光量Pを一定にすることができ、これにより、プリズム51毎の測定結果のばらつきが抑えられる。 According to the analyzer 10 of the present embodiment, the P wave component of the excitation light α incident on the metal film 55 even if the analysis chip 50 (the prism 51 having the metal film 55 formed on the predetermined surface 53) is replaced. The amount of light P p can be made constant, thereby suppressing variations in measurement results for each prism 51.

詳しくは、プリズム51内に向けて照射する励起光αにおいてP波成分の光量Pを一定にしても、プリズム51を交換すると、例えば、プリズム51毎の複屈折率の違い等によって金属膜55に入射する励起光αのP波成分の光量Pが一定にならない場合がある。そのため、プリズム51に入射する前の励起光αの光量Pと金属膜55で反射された後の反射励起光αの光量Pとに基づいて金属膜55に入射するP波成分の光量Pを求め、この光量Pがプリズム51を交換しても一定(即ち、目標とする光量P)となるように調整することで、プリズム51毎の測定精度のばらつきが抑えられる。 More specifically, when the amount of light P p of the P wave component is constant in the excitation light α irradiated into the prism 51, if the prism 51 is replaced, for example, the metal film 55 due to a difference in birefringence for each prism 51 or the like. In some cases, the amount of light P p of the P wave component of the excitation light α incident on the light does not become constant. Therefore, the light quantity of the light quantity P a and P-wave components incident on the metal film 55 on the basis of the light amount P s of the reflected excitation light alpha s after being reflected by the metal film 55 of the excitation light alpha before entering the prism 51 seeking P p, the light amount P p is constant by replacing the prism 51 (i.e., the light amount P t to the target) by adjusting so that the variation in the measurement accuracy of each prism 51 is suppressed.

また、本実施形態によれば、金属膜55に入射する励起光αの偏光方向と光量とをそれぞれ調整可能であるため、金属膜55に入射する励起光αのP波成分の光量Pが目標とする光量Pとなるように確実に調整することができる共に、S/Nの向上を図ることが可能となる。 Further, according to the present embodiment, since the polarization direction and the light amount of the excitation light α incident on the metal film 55 can be adjusted, the light amount P p of the P wave component of the excitation light α incident on the metal film 55 is both can be reliably adjusted to be the light amount P t to the target, it is possible to improve the S / N.

詳しくは、1/2波長板27を回転させて金属膜55に入射する励起光αの全光量Pに占めるP波成分の光量Pを最大にしても、金属膜55に入射する励起光αのP波成分の光量Pが目標とする光量Ptに達しない場合でも、光源部21から射出される励起光αの光量を大きくすることにより金属膜55に入射する励起光αのP波成分の光量Pを目標とする光量Pとすることができる。 For more information, even if the maximum light amount P p P-wave component to the total light quantity P a of the excitation light α to rotate the 1/2-wavelength plate 27 and enters the metal film 55, the excitation light incident on the metal film 55 Even when the light amount P p of the P wave component of α does not reach the target light amount Pt, the P wave of the excitation light α incident on the metal film 55 by increasing the light amount of the excitation light α emitted from the light source unit 21. it can be a quantity P t to the target light amount P p components.

また、プリズム51内に入射する励起光αの光量は小さいほどプリズム51内での自家蛍光等の不要光(ノイズ)を小さくすることができる。そのため、金属膜55に入射する励起光αの全光量Pに占めるP波成分の光量Pを最大とし且つ光源部21が射出する励起光αの光量Pを最小とした状態で、金属膜55に入射する励起光αのP波成分の光量Pを目標とする光量Pとすることにより、プリズム51毎の測定結果のばらつきを抑えると共に、プリズム51内等で生じるノイズを減らしてS/Nを向上させることができる。その結果、高精度且つ高感度な検体の検出が可能となる。 Further, unnecessary light (noise) such as autofluorescence in the prism 51 can be reduced as the amount of the excitation light α incident on the prism 51 is smaller. Therefore, in a state where a light amount P a and the minimum of the excitation light α of light intensity P p up and to and the light source unit 21 of the P-wave component to the total light quantity P a is emitted excitation light α incident on the metal film 55, a metal By setting the light quantity P p of the P wave component of the excitation light α incident on the film 55 as the target light quantity P t , variation in measurement results for each prism 51 is suppressed, and noise generated in the prism 51 and the like is reduced. S / N can be improved. As a result, it is possible to detect the sample with high accuracy and high sensitivity.

尚、本発明の表面プラズモン共鳴蛍光分析装置及び表面プラズモン共鳴蛍光分析方法は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   The surface plasmon resonance fluorescence analysis apparatus and the surface plasmon resonance fluorescence analysis method of the present invention are not limited to the above-described embodiments, and various changes can be made without departing from the scope of the present invention. is there.

上記実施形態に係る分析装置10では、金属膜55に入射する励起光αのP波成分の光量Pを目標とする光量Pにするために、制御処理部40は、励起光αの全光量Pに占めるP波成分の光量P(全光量Pに占めるP波成分の割合)を最大にした後、励起光αの光量自体を変更することにより調整しているが、これに限定されない。 In the analysis apparatus 10 according to the above-described embodiment, the control processing unit 40 controls the entire excitation light α in order to set the light amount P p of the P wave component of the excitation light α incident on the metal film 55 to the target light amount P t. after the light amount P a occupying the P-wave component of the light intensity P p (the ratio of P-wave component to the total light quantity P a) to a maximum, but is adjusted by changing the amount itself of the pumping light alpha, thereto It is not limited.

例えば、制御処理部は、光源部21が射出する励起光αの光量を一定にした状態で、金属膜55に入射する励起光αの偏光方向を回転させる、即ち、1/2波長板27の回転量を調整することによって金属膜55に入射する励起光αのP波成分の光量Pを調整してもよい。 For example, the control processing unit rotates the polarization direction of the excitation light α incident on the metal film 55 in a state where the light amount of the excitation light α emitted from the light source unit 21 is constant. The light amount P p of the P wave component of the excitation light α incident on the metal film 55 may be adjusted by adjusting the rotation amount.

このように、光源部21が射出する励起光αの光量を一定にした状態で1/2波長板27の回転によりP波成分の光量Pを目標とする光量Pとすることで、励起光αの光量を変更することに起因した波長変化による測定結果への影響を抑えることができる。即ち、光源部21の射出する励起光αの光量を変化させると、励起光αの波長が変化してこの波長変化が検体の測定結果に影響を及ぼす場合があるが、1/2波長板27を回転させて励起光αのP波成分の光量Pを目標とする光量Pとすることで、光源部21の射出する励起光αの光量を一定にすることができ、その結果、前記励起光αの波長変化に起因する測定結果への悪影響を抑えることが可能となる。 As described above, the excitation light α emitted from the light source unit 21 is kept constant, and the half-wave plate 27 is rotated to set the P-wave component light quantity P p to the target light quantity P t. The influence on the measurement result due to the wavelength change caused by changing the light quantity of the light α can be suppressed. That is, if the amount of the excitation light α emitted from the light source unit 21 is changed, the wavelength of the excitation light α may change and this wavelength change may affect the measurement result of the specimen. , And the light amount P p of the P wave component of the excitation light α is set to the target light amount P t , the light amount of the excitation light α emitted from the light source unit 21 can be made constant. It is possible to suppress an adverse effect on the measurement result due to the wavelength change of the excitation light α.

また、光源部21が射出する励起光αの光量を一定にした状態で、P波成分の光量Pを調整する分析装置では、図6(A)及び図6(B)に示されるように、励起光射出部20Aに減光部23を設けると共に制御処理部40Aに光量調整部46を設け、励起光射出部20Aから射出される励起光αの光量を減光可能に構成することが好ましい。このような構成とすることにより、金属膜55に入射する励起光αのP波成分の光量Pが大きすぎて励起蛍光を光測定部32で測定できない場合に、光源部21が射出する励起光αの光量を変えることなく、金属膜55に入射する励起光αの光量を小さくすることができる。即ち、光源部21が出射する励起光αの光量を一定にして当該励起光αの波長変化を抑えつつ、金属膜55に入射する励起光αの光量Pを小さくすることができる。 Further, in the analyzer that adjusts the light amount P p of the P wave component in a state where the light amount of the excitation light α emitted from the light source unit 21 is constant, as shown in FIGS. 6 (A) and 6 (B). Preferably, the excitation light emitting unit 20A is provided with the light reducing unit 23 and the control processing unit 40A is provided with the light amount adjusting unit 46 so that the light amount of the excitation light α emitted from the excitation light emitting unit 20A can be reduced. . By adopting such a configuration, the excitation emitted by the light source unit 21 when the light intensity P p of the P wave component of the excitation light α incident on the metal film 55 is too large to measure the excitation fluorescence by the light measurement unit 32. The amount of excitation light α incident on the metal film 55 can be reduced without changing the amount of light α. That is, while suppressing the wavelength change of the excitation light α and the amount of excitation light α of the light source unit 21 emits a constant, it is possible to reduce the amount of light P a of the excitation light α incident on the metal film 55.

具体的には、減光部23は、NDフィルター24と位置切換部25とを有し、光源部21が射出する励起光αの光量を調整する。NDフィルター24は、いわゆる減光フィルターであり、入射した光を所定の光量だけ減衰させて出射する。位置切換部25は、NDフィルター24の位置をフィルタリング位置と退避位置との間で切り換える。この位置切換部25は、制御処理部40からの指示信号に従ってNDフィルター24の位置の切り換えを行う。尚、フィルタリング位置とは励起光αの光路上の位置であり、退避位置とは励起光αの光路から外れた位置である。また、NDフィルター24の初期位置は、退避位置であり、金属膜55に入射する励起光αを減光する必要があるときに位置切換部25によってフィルタリング位置に切り換えられる。   Specifically, the light reduction unit 23 includes an ND filter 24 and a position switching unit 25 and adjusts the amount of excitation light α emitted from the light source unit 21. The ND filter 24 is a so-called attenuating filter, which attenuates incident light by a predetermined amount and emits it. The position switching unit 25 switches the position of the ND filter 24 between a filtering position and a retracted position. The position switching unit 25 switches the position of the ND filter 24 in accordance with an instruction signal from the control processing unit 40. The filtering position is a position on the optical path of the excitation light α, and the retracted position is a position deviating from the optical path of the excitation light α. The initial position of the ND filter 24 is a retracted position, and is switched to the filtering position by the position switching unit 25 when the excitation light α incident on the metal film 55 needs to be reduced.

また、制御処理部40Aは、P波光量導出部41と、回転量調整部42と、光量調整部46と、演算部45とを備える。光量調整部46は、P波光量導出部41で求めたP波成分の光量Pに基づいて、励起光αの光量Pを下げる必要があると判断した場合には、位置切換部25を駆動してNDフィルター24をフィルタリング位置に切り換え、金属膜55に入射する励起光αのP波成分の光量Pを所定の量だけ減光する。一方、光量調整部46は、P波光量導出部41で求めたP波成分の光量Pに基づいて、励起光αの光量Pを下げる必要がないと判断した場合には、位置切換部25を駆動せずにNDフィルター24を初期位置のままにする。 The control processing unit 40 </ b> A includes a P-wave light amount deriving unit 41, a rotation amount adjusting unit 42, a light amount adjusting unit 46, and a calculating unit 45. Light amount adjusting unit 46, based on the amount P p P-wave component determined by the P-wave light amount derivation unit 41, when it is determined that it is necessary to lower the amount of light P a of the excitation light α is the position switching unit 25 Driven to switch the ND filter 24 to the filtering position, the light amount P p of the P wave component of the excitation light α incident on the metal film 55 is reduced by a predetermined amount. On the other hand, the light amount adjustment unit 46, if it is determined that based on the amount P p P-wave component determined by the P-wave light amount derivation unit 41, there is no need to reduce the amount of light P a of the excitation light α is located switching unit The ND filter 24 is left in the initial position without driving 25.

また、例えば、制御処理部40は、励起光射出部20が射出する励起光αの光量Paを変更することにより、金属膜55に入射する励起光αのP波成分の光量Pを増減させて目標とする光量Pにしてもよい。この場合、直線偏光部22や偏光方向調整部26(1/2波長板27及び回転駆動部28)等がなくてもよく、装置の簡素化、小コスト化を図ることができる。 In addition, for example, the control processing unit 40 increases or decreases the light amount P p of the P wave component of the excitation light α incident on the metal film 55 by changing the light amount Pa of the excitation light α emitted by the excitation light emitting unit 20. it may be to the amount of light P t of the target Te. In this case, the linear polarization unit 22 and the polarization direction adjustment unit 26 (the half-wave plate 27 and the rotation drive unit 28) may be omitted, and the apparatus can be simplified and the cost can be reduced.

上記実施形態では、光源部21とプリズム51との間に直線偏光部22と1/2波長板27とを配置し、1/2波長板27を回転させることにより、金属膜55に入射する励起光αのP波成分の光量Pを調整しているが、これに限定されない。例えば、光源21とプリズム51との間に直線偏光板等で構成される直線偏光部22と1/4波長板とを配置し、直線偏光部(直線偏光板)を回転させることにより、金属膜55に入射する励起光αのP波成分の光量Pを調整してもよい。 In the above embodiment, the linearly polarized light portion 22 and the half-wave plate 27 are disposed between the light source portion 21 and the prism 51, and the half-wave plate 27 is rotated, thereby exciting the light incident on the metal film 55. Although the light quantity P p of the P wave component of the light α is adjusted, the present invention is not limited to this. For example, by arranging a linearly polarizing portion 22 and a quarter wavelength plate composed of a linearly polarizing plate or the like between the light source 21 and the prism 51 and rotating the linearly polarizing portion (linearly polarizing plate), the metal film The light quantity P p of the P wave component of the excitation light α incident on 55 may be adjusted.

上記実施形態では、分析装置10における励起蛍光(検体に標識された蛍光物資からの蛍光)の光量の測定レンジ(測定範囲の広さ)は、光測定部32の測定レンジと同じであるが、励起光射出部20が射出する励起光αの光量を段階的に切り換え可能にして、分析装置10における励起蛍光の光量の測定レンジを光測定部32の測定レンジより広くしてもよい。このような分析装置10では、例えば、制御処理部40は、光測定部32によって測定される励起蛍光の光量に基づいて励起光射出部20が射出する励起光αの強度を変更する強度変更部47と、この強度変更部47による励起光αの強度変更に基づいて光測定部32による励起蛍光の測定結果を補正する補正部48とを備える。尚、上記実施形態では、電流供給部43と電流量調整部44とが強度変更部47としても機能し、演算部45が補正部48としても機能する(図3参照)。   In the embodiment described above, the measurement range (the range of the measurement range) of the amount of excitation fluorescence (fluorescence from the fluorescent substance labeled on the specimen) in the analyzer 10 is the same as the measurement range of the light measurement unit 32. The light amount of the excitation light α emitted by the excitation light emitting unit 20 may be switched stepwise so that the measurement range of the light amount of excitation fluorescence in the analyzer 10 may be wider than the measurement range of the light measurement unit 32. In such an analyzer 10, for example, the control processing unit 40 changes the intensity of the excitation light α emitted by the excitation light emitting unit 20 based on the amount of excitation fluorescence measured by the light measurement unit 32. 47 and a correction unit 48 that corrects the measurement result of the excitation fluorescence by the light measurement unit 32 based on the intensity change of the excitation light α by the intensity change unit 47. In the above embodiment, the current supply unit 43 and the current amount adjustment unit 44 also function as the intensity changing unit 47, and the calculation unit 45 also functions as the correction unit 48 (see FIG. 3).

この分析装置では、例えば、以下のようにして検体の測定を行う。   In this analyzer, for example, a sample is measured as follows.

制御処理部40は、励起光射出部20が射出する励起光αの出力(光量)を光測定部32の最低検出感度を達成する100μWにする。この最低検出感度とは、検体に標識された蛍光物質を表面プラズモン共鳴に基づく増強電場で励起させることにより生じる励起蛍光を測定したときに、光測定部32が測定することができる最小光量のことである。一方、最大検出感度とは、励起蛍光を測定したときに、光測定部32が測定することができる最大光量のことである。   The control processing unit 40 sets the output (light amount) of the excitation light α emitted by the excitation light emitting unit 20 to 100 μW that achieves the minimum detection sensitivity of the light measurement unit 32. This minimum detection sensitivity is the minimum amount of light that can be measured by the light measurement unit 32 when measuring the excitation fluorescence generated by exciting the fluorescent substance labeled on the specimen with an enhanced electric field based on surface plasmon resonance. It is. On the other hand, the maximum detection sensitivity is the maximum amount of light that can be measured by the light measurement unit 32 when the excitation fluorescence is measured.

制御処理部40は、上記の出力の励起光αを用いて検体の検出、即ち、増強電場により検体に標識された蛍光物質が発する励起蛍光の測定を光測定部により測定する。このとき、制御処理部40は、励起蛍光の光量が光測定部32の測定レンジ(測定範囲)よりも大きいと判断すると、図7に示されるように、励起光射出部20が射出する励起光αの光量を1μWに調整する。励起光αの光量が下がると、金属膜55近傍に形成される増強電場の強度が下がるため、この増強電場によって励起された蛍光物質が発する蛍光の光量も下がる。これにより、励起蛍光の光量が光測定部32の測定レンジ内に入ると、光測定部32によって励起蛍光の光量が測定され、制御処理部40(演算部45等)において検体の検出が行われる。   The control processing unit 40 measures the detection of the specimen using the above-excited excitation light α, that is, the measurement of the excitation fluorescence emitted from the fluorescent substance labeled on the specimen by the enhanced electric field, by the light measurement section. At this time, if the control processing unit 40 determines that the amount of excitation fluorescence is larger than the measurement range (measurement range) of the light measurement unit 32, the excitation light emitted by the excitation light emitting unit 20 as shown in FIG. The amount of α is adjusted to 1 μW. When the amount of the excitation light α decreases, the intensity of the enhanced electric field formed in the vicinity of the metal film 55 decreases, so that the amount of fluorescence emitted from the fluorescent material excited by the enhanced electric field also decreases. Thus, when the amount of excitation fluorescence falls within the measurement range of the light measurement unit 32, the light measurement unit 32 measures the amount of excitation fluorescence, and the control processing unit 40 (calculation unit 45, etc.) detects the specimen. .

一方、このように励起光αの光量を下げても、励起蛍光の光量が光測定部32の測定レンジよりも大きいときは、制御処理部40は、さらに、励起光射出部20が射出する励起光αの光量を0.01μWに調整する。これにより、励起蛍光の光量が光測定部32の測定レンジ内に入ると、上記同様に、検体の検出が行われる。   On the other hand, even if the light amount of the excitation light α is lowered in this way, when the light amount of the excitation fluorescence is larger than the measurement range of the light measurement unit 32, the control processing unit 40 further performs excitation that the excitation light emitting unit 20 emits. The amount of light α is adjusted to 0.01 μW. Thus, when the amount of excitation fluorescence falls within the measurement range of the light measurement unit 32, the specimen is detected as described above.

このように、制御処理部40は、励起光射出部20が射出する励起光αの光量を段階的に切り換えることで、分析装置10自体の測定レンジを光測定部32の測定レンジよりも広くすることができる。   As described above, the control processing unit 40 switches the light amount of the excitation light α emitted by the excitation light emitting unit 20 in a stepwise manner so that the measurement range of the analyzer 10 itself is wider than the measurement range of the light measurement unit 32. be able to.

尚、この場合、金属膜55に入射する励起光αの光量が変化(即ち、蛍光を励起する増強電場の強度が変化)しているため、この変化に合わせて制御処理部40(詳しくは、補正部48)は光測定部32での測定結果を補正する。例えば、補正部48は、励起光αの光量を1/10にしたときは光測定部32で得られた測定結果(励起蛍光量)を10倍にし、励起光αの光量を1/100にしたときは光測定部32で得られた測定結果(励起蛍光量)を100倍する。   In this case, since the amount of the excitation light α incident on the metal film 55 is changed (that is, the intensity of the enhanced electric field that excites the fluorescence is changed), the control processing unit 40 (in detail, The correction unit 48) corrects the measurement result of the light measurement unit 32. For example, when the light amount of the excitation light α is reduced to 1/10, the correction unit 48 increases the measurement result (excitation fluorescence amount) obtained by the light measurement unit 32 by 10 times, and the light amount of the excitation light α is reduced to 1/100. In this case, the measurement result (excitation fluorescence amount) obtained by the light measurement unit 32 is multiplied by 100.

また、段階的に切り換える光量は、図7に示すように、光量を下げる前の光量での最大検出感度よりも、光量を一段下げた後の光量での最小検出感度の方が、図の横軸方向において僅かに小さくなるように各光量(出力)を設定することが好ましい。図の横軸方向において光量を下げる前の光量での最大検出感度よりも、光量を一段下げた後の光量での最小検出感度の方が大きい場合には、連続した測定レンジが得られない。   Further, as shown in FIG. 7, the light quantity to be switched step by step is lower in the minimum detection sensitivity in the light quantity after the light quantity is lowered by one step than in the maximum detection sensitivity in the light quantity before the light quantity is lowered. It is preferable to set each light quantity (output) so as to be slightly smaller in the axial direction. In the horizontal axis direction in the figure, when the minimum detection sensitivity at the light amount after lowering the light amount by one step is larger than the maximum detection sensitivity at the light amount before lowering the light amount, a continuous measurement range cannot be obtained.

上記実施形態の分析装置10では、検体の検出毎に分析チップ50が交換されるが、これに限定されない。即ち、分析装置10の一部に分析チップが組み込まれ、一つの分析チップを繰り返し利用して検体の検出を行う分析装置10であってもよい。   In the analysis apparatus 10 of the above embodiment, the analysis chip 50 is replaced every time the sample is detected, but the present invention is not limited to this. That is, the analyzer 10 may be an analyzer that incorporates an analysis chip in a part of the analyzer 10 and detects a sample by repeatedly using one analysis chip.

10 表面プラズモン共鳴蛍光分析装置
12 チップ保持部
21 光源部
27 1/2波長板
28 回転駆動部
30 反射光測定部
32 光測定部(蛍光測定部)
40,40A 制御処理部(制御部)
50 分析チップ
51 プリズム
53 成膜面(所定の面)
55 金属膜
励起光の光量
励起光のP波成分の光量
反射励起光の光量
目標とする光量
α 励起光
α 反射励起光
θ 金属膜への励起光の入射角
DESCRIPTION OF SYMBOLS 10 Surface plasmon resonance fluorescence analyzer 12 Chip holding part 21 Light source part 27 1/2 wavelength plate 28 Rotation drive part 30 Reflected light measurement part 32 Light measurement part (fluorescence measurement part)
40, 40A Control processing unit (control unit)
50 Analysis chip 51 Prism 53 Deposition surface (predetermined surface)
55 incident angle of the excitation light to the metal film P a pumping light quantity P p the pumping light quantity alpha excitation light alpha s reflected excitation light θ metal film to light intensity P t target light amount P s reflected excitation light of a P-wave component of the

Claims (9)

検体又は検体に付された蛍光物質が表面プラズモン共鳴に基づく電場により励起されて発した蛍光を測定する表面プラズモン共鳴蛍光分析装置であって、
所定の面上に金属膜が形成されたプリズムを含む分析チップを着脱できるように保持可能なチップ保持部と、
励起光を射出し、前記チップ保持部で保持された状態の前記分析チップに含まれるプリズムの金属膜で反射されるように当該プリズム内に前記励起光を入射させる光源部と、
前記金属膜で反射された励起光である反射励起光の光量を測定する反射光測定部と、
前記光源部から射出される励起光の光量と前記反射光測定部で測定された反射励起光の光量とに基づいて前記金属膜に入射する励起光のP波成分の光量を特定の光量に調整するP波光量調整部と、を備え、
前記光源部は、供給される電流量に応じて射出する励起光の光量を変化させ、
前記P波光量調整部は、前記光源部と前記プリズムとの間において当該光源部から射出される励起光の光路上に配置される1/2波長板と、前記金属膜に対する励起光の偏光方向が変わるように前記1/2波長板を回転させる回転駆動部と、前記光源部に電流を供給する光源電流供給部と、前記光源部が射出する励起光の光量と前記反射光測定部によって測定される反射励起光の光量とに基づいて前記回転駆動部を駆動すると共に前記光源電流供給部が供給する電流量を制御する制御部とを有し、
前記制御部は、前記光源部が射出する励起光の光量と前記反射光測定部によって測定される反射励起光の光量とに基づいて金属膜に入射する励起光の全光量に占めるP波成分の光量が最大となるように前記回転駆動部を制御して前記1/2波長板の回転量を調整する回転量調整部と、
前記励起光の全光量に占めるP波成分の光量が最大となった状態で、前記光源部が射出する励起光の光量と前記反射光測定部によって測定される反射励起光の光量とに基づいて前記光源電流供給部を制御して前記光源部に供給する電流量を調整する電流量調整部と、を有することを特徴とする表面プラズモン共鳴蛍光分析装置。
A surface plasmon resonance fluorescence analyzer that measures fluorescence emitted by excitation of an electric field based on surface plasmon resonance by a fluorescent substance attached to the sample or the sample,
A chip holder that can hold an analysis chip including a prism having a metal film formed on a predetermined surface so as to be detachable;
A light source unit that emits excitation light and causes the excitation light to enter the prism so as to be reflected by the metal film of the prism included in the analysis chip held by the chip holding unit;
A reflected light measurement unit that measures the amount of reflected excitation light that is excitation light reflected by the metal film;
Based on the amount of excitation light emitted from the light source unit and the amount of reflected excitation light measured by the reflected light measurement unit, the amount of P wave component of the excitation light incident on the metal film is adjusted to a specific amount of light. A P-wave light amount adjustment unit that
The light source unit changes the amount of excitation light emitted according to the amount of current supplied,
The P-wave light amount adjusting unit includes a half-wave plate disposed on an optical path of excitation light emitted from the light source unit between the light source unit and the prism, and a polarization direction of excitation light with respect to the metal film Measured by a rotation drive unit that rotates the half-wave plate so that the wavelength changes, a light source current supply unit that supplies current to the light source unit, and the amount of excitation light emitted from the light source unit and the reflected light measurement unit And a controller that controls the amount of current supplied by the light source current supply unit and drives the rotation drive unit based on the amount of reflected excitation light that is
The control unit includes a P-wave component of the total amount of excitation light incident on the metal film based on the amount of excitation light emitted from the light source unit and the amount of reflected excitation light measured by the reflected light measurement unit. A rotation amount adjustment unit for adjusting the rotation amount of the half-wave plate by controlling the rotation drive unit so that the amount of light is maximized;
Based on the amount of excitation light emitted by the light source unit and the amount of reflected excitation light measured by the reflected light measurement unit in a state where the amount of P wave component in the total amount of excitation light is maximized. A surface plasmon resonance fluorescence analyzer , comprising: a current amount adjustment unit that controls the light source current supply unit to adjust an amount of current supplied to the light source unit .
検体又は検体に付された蛍光物質が表面プラズモン共鳴に基づく電場により励起されて発した蛍光を測定する表面プラズモン共鳴蛍光分析装置であって、
所定の面上に金属膜が形成されたプリズムと、
励起光を射出し、前記プリズムの金属膜で反射されるように当該プリズム内に前記励起光を入射させる光源部と、
前記金属膜で反射された励起光である反射励起光の光量を測定する反射光測定部と、
前記光源部から射出される励起光の光量と前記反射光測定部で測定された反射励起光の光量とに基づいて前記金属膜に入射する励起光のP波成分の光量を特定の光量に調整するP波光量調整部と、を備え,
前記光源部は、供給される電流量に応じて射出する励起光の光量を変化させ、
前記P波光量調整部は、前記光源部と前記プリズムとの間において当該光源部から射出される励起光の光路上に配置される1/2波長板と、前記金属膜に対する励起光の偏光方向が変わるように前記1/2波長板を回転させる回転駆動部と、前記光源部に電流を供給する光源電流供給部と、前記光源部が射出する励起光の光量と前記反射光測定部によって測定される反射励起光の光量とに基づいて前記回転駆動部を駆動すると共に前記光源電流供給部が供給する電流量を制御する制御部とを有し、
前記制御部は、前記光源部が射出する励起光の光量と前記反射光測定部によって測定される反射励起光の光量とに基づいて金属膜に入射する励起光の全光量に占めるP波成分の光量が最大となるように前記回転駆動部を制御して前記1/2波長板の回転量を調整する回転量調整部と、
前記励起光の全光量に占めるP波成分の光量が最大となった状態で、前記光源部が射出する励起光の光量と前記反射光測定部によって測定される反射励起光の光量とに基づいて前記光源電流供給部を制御して前記光源部に供給する電流量を調整する電流量調整部と、を有することを特徴とする表面プラズモン共鳴蛍光分析装置。
A surface plasmon resonance fluorescence analyzer that measures fluorescence emitted by excitation of an electric field based on surface plasmon resonance by a fluorescent substance attached to the sample or the sample,
A prism having a metal film formed on a predetermined surface;
A light source unit that emits excitation light and causes the excitation light to enter the prism so as to be reflected by the metal film of the prism;
A reflected light measurement unit that measures the amount of reflected excitation light that is excitation light reflected by the metal film;
Based on the amount of excitation light emitted from the light source unit and the amount of reflected excitation light measured by the reflected light measurement unit, the amount of P wave component of the excitation light incident on the metal film is adjusted to a specific amount of light. A P-wave light quantity adjustment unit that
The light source unit changes the amount of excitation light emitted according to the amount of current supplied,
The P-wave light amount adjusting unit includes a half-wave plate disposed on an optical path of excitation light emitted from the light source unit between the light source unit and the prism, and a polarization direction of excitation light with respect to the metal film Measured by a rotation drive unit that rotates the half-wave plate so that the wavelength changes, a light source current supply unit that supplies current to the light source unit, and the amount of excitation light emitted from the light source unit and the reflected light measurement unit And a controller that controls the amount of current supplied by the light source current supply unit and drives the rotation drive unit based on the amount of reflected excitation light that is
The control unit includes a P-wave component of the total amount of excitation light incident on the metal film based on the amount of excitation light emitted from the light source unit and the amount of reflected excitation light measured by the reflected light measurement unit. A rotation amount adjustment unit for adjusting the rotation amount of the half-wave plate by controlling the rotation drive unit so that the amount of light is maximized;
Based on the amount of excitation light emitted by the light source unit and the amount of reflected excitation light measured by the reflected light measurement unit in a state where the amount of P wave component in the total amount of excitation light is maximized. A surface plasmon resonance fluorescence analyzer , comprising: a current amount adjustment unit that controls the light source current supply unit to adjust an amount of current supplied to the light source unit .
前記P波光量調整部は、前記光源部が射出する励起光の光量と前記反射光測定部によって測定される反射励起光の光量との差から前記P波成分の光量を求め、この光量に基づいて前記励起光の状態を調整することを特徴とする請求項1又は2に記載の表面プラズモン共鳴蛍光分析装置。   The P wave light amount adjustment unit obtains the light amount of the P wave component from the difference between the light amount of the excitation light emitted from the light source unit and the light amount of the reflected excitation light measured by the reflected light measurement unit, and based on the light amount The surface plasmon resonance fluorescence analyzer according to claim 1 or 2, wherein the state of the excitation light is adjusted. 前記P波光量調整部は、前記光源部と前記プリズムとの間において当該光源部から射出される励起光の光路上に配置される1/2波長板と、前記金属膜に対する励起光の偏光方向が変わるように前記1/2波長板を回転させる回転駆動部と、前記光源部が射出する励起光の光量と前記反射光測定部によって測定される反射励起光の光量とに基づいて前記回転駆動部を駆動する制御部とを有することを特徴とする請求項1乃至3のいずれか1項に記載の表面プラズモン共鳴蛍光分析装置。   The P-wave light amount adjusting unit includes a half-wave plate disposed on an optical path of excitation light emitted from the light source unit between the light source unit and the prism, and a polarization direction of excitation light with respect to the metal film The rotational drive unit that rotates the half-wave plate so that the light source changes, and the rotational drive based on the amount of excitation light emitted from the light source unit and the amount of reflected excitation light measured by the reflected light measurement unit The surface plasmon resonance fluorescence analyzer according to any one of claims 1 to 3, further comprising a control unit that drives the unit. 前記光源部は、供給される電流量に応じて射出する励起光の光量を変化させ、
前記P波光量調整部は、前記光源部に電流を供給する光源電流供給部と、前記光源部が射出する励起光の光量と前記反射光測定部によって測定される反射励起光の光量とに基づいて前記光源電流供給部が供給する電流量を制御する制御部とを有することを特徴とする請求項1乃至3のいずれか1項に記載の表面プラズモン共鳴蛍光分析装置。
The light source unit changes the amount of excitation light emitted according to the amount of current supplied,
The P-wave light amount adjustment unit is based on a light source current supply unit that supplies current to the light source unit, a light amount of excitation light emitted from the light source unit, and a light amount of reflected excitation light measured by the reflected light measurement unit. 4. The surface plasmon resonance fluorescence analyzer according to claim 1, further comprising a control unit that controls an amount of current supplied by the light source current supply unit. 5.
前記励起光が前記金属膜で反射されることにより当該金属膜における前記プリズムと反対の面側で生じる前記蛍光の強度を測定可能な蛍光測定部と、
前記蛍光測定部によって測定される蛍光の光量に基づいて前記プリズム内に入射する励起光の強度を変更する強度変更部と、
前記強度変更部による励起光の強度変更に基づいて前記蛍光測定部による蛍光の測定結果を補正する補正部と、を備えることを特徴とする請求項1乃至のいずれか1項に記載の表面プラズモン共鳴蛍光分析装置。
A fluorescence measuring unit capable of measuring the intensity of the fluorescence generated on the surface of the metal film opposite to the prism by reflecting the excitation light on the metal film;
An intensity changing unit that changes the intensity of the excitation light that enters the prism based on the amount of fluorescent light measured by the fluorescence measuring unit;
Surface according to any one of claims 1 to 5, characterized in that and a correcting unit for correcting the fluorescence measurement result by the fluorescence measurement unit based on the intensity change of the excitation light by the intensity changing portion Plasmon resonance fluorescence analyzer.
前記励起光が前記金属膜で反射されることにより当該金属膜における前記プリズムと反対の面側で生じる前記蛍光の強度を測定可能な蛍光測定部を備え、
前記特定の光量は、励起光が金属膜で反射することにより前記検体又は前記検体に付された蛍光物質から生じた蛍光の光量が前記光測定部で測定可能な光量の下限以上であることを特徴とする請求項1乃至6のいずれか1項に記載の表面プラズモン共鳴蛍光分析装置。
A fluorescence measurement unit capable of measuring the intensity of the fluorescence generated on the surface of the metal film opposite to the prism by reflecting the excitation light on the metal film;
The specific light amount is such that the amount of fluorescent light generated from the fluorescent material attached to the specimen or the specimen by reflecting the excitation light on the metal film is equal to or greater than the lower limit of the quantity of light that can be measured by the light measurement unit. The surface plasmon resonance fluorescence analyzer according to any one of claims 1 to 6, wherein
前記特定の光量は、励起光が金属膜で反射することにより前記検体又は前記検体に付された蛍光物質から生じた蛍光の光量が前記光測定部で測定可能な光量の上限以下であることを特徴とする請求項に記載の表面プラズモン共鳴蛍光分析装置。 The specific amount of light is such that the amount of fluorescent light generated from the specimen or a fluorescent substance attached to the specimen by reflecting the excitation light on the metal film is less than or equal to the upper limit of the quantity of light that can be measured by the light measuring unit. 8. The surface plasmon resonance fluorescence analyzer according to claim 7 , 検体又は検体に付された蛍光物質が表面プラズモン共鳴に基づく電場により励起されて発した光を測定する表面プラズモン共鳴蛍光分析方法であって、A surface plasmon resonance fluorescence analysis method for measuring light emitted when a specimen or a fluorescent substance attached to the specimen is excited by an electric field based on surface plasmon resonance,
所定の面上に金属膜が形成されたプリズムを用意し、前記金属膜上に前記検体を含む試料液を流す準備工程と、  Preparing a prism in which a metal film is formed on a predetermined surface, and a step of flowing a sample solution containing the specimen on the metal film;
前記金属膜で反射して当該金属膜に表面プラズモン共鳴が生じるように前記準備工程後のプリズム内に励起光を入射させる励起光照射工程と、  An excitation light irradiation step for causing excitation light to enter the prism after the preparation step so that surface plasmon resonance occurs in the metal film by being reflected by the metal film;
前記金属膜に表面プラズモン共鳴が生じている状態で、前記プリズム内に入射する励起光の光量と前記金属膜で反射された励起光である反射励起光の光量とから当該金属膜に入射した励起光のP波光量を測定する測定工程と、  Excitation incident on the metal film from the amount of excitation light incident on the prism and the amount of reflected excitation light reflected by the metal film in a state where surface plasmon resonance occurs in the metal film A measurement process for measuring the amount of P wave light;
前記プリズム内に前記励起光を入射させる光源部が射出する励起光の光量と前記金属膜で反射され反射光測定部によって測定される反射励起光の光量とに基づいて前記金属膜に入射する励起光の全光量に占めるP波成分の光量が最大となるように、前記光源部と前記プリズムとの間において当該光源部から射出される励起光の光路上に配置される1/2波長板の回転量を制御部によって調整するとともに、励起光の全光量に占めるP波成分の光量が最大となった状態で、前記光源部が射出する励起光の光量と前記反射光測定部によって測定される反射励起光の光量とに基づいて前記光源部に供給する電流量を前記制御部によって調整するP波光量調整工程と、  Excitation incident on the metal film based on the amount of excitation light emitted from the light source unit that causes the excitation light to enter the prism and the amount of reflected excitation light reflected by the metal film and measured by the reflected light measurement unit A half-wave plate arranged on the optical path of the excitation light emitted from the light source unit between the light source unit and the prism so that the light amount of the P wave component in the total light amount is maximized. The amount of rotation is adjusted by the control unit, and the light amount of the excitation light emitted by the light source unit and the reflected light measurement unit are measured with the light amount of the P wave component occupying the total light amount of the excitation light being maximized. A P-wave light amount adjustment step of adjusting the amount of current supplied to the light source unit by the control unit based on the amount of reflected excitation light;
前記測定工程でのP波光量の測定に基づいて前記励起光照射光程で照射される励起光の光量及び偏向方向の少なくとも一方を調整する調整工程と、を備えることを特徴とする表面プラズモン共鳴蛍光分析方法。  A surface plasmon resonance fluorescence characterized by comprising: an adjustment step of adjusting at least one of the light amount and the deflection direction of the excitation light irradiated in the excitation light irradiation range based on the measurement of the P-wave light amount in the measurement step. Analysis method.
JP2010248560A 2010-11-05 2010-11-05 Surface plasmon resonance fluorescence analyzer and surface plasmon resonance fluorescence analysis method Expired - Fee Related JP5541098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010248560A JP5541098B2 (en) 2010-11-05 2010-11-05 Surface plasmon resonance fluorescence analyzer and surface plasmon resonance fluorescence analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010248560A JP5541098B2 (en) 2010-11-05 2010-11-05 Surface plasmon resonance fluorescence analyzer and surface plasmon resonance fluorescence analysis method

Publications (2)

Publication Number Publication Date
JP2012098256A JP2012098256A (en) 2012-05-24
JP5541098B2 true JP5541098B2 (en) 2014-07-09

Family

ID=46390315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010248560A Expired - Fee Related JP5541098B2 (en) 2010-11-05 2010-11-05 Surface plasmon resonance fluorescence analyzer and surface plasmon resonance fluorescence analysis method

Country Status (1)

Country Link
JP (1) JP5541098B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014007134A1 (en) * 2012-07-05 2016-06-02 コニカミノルタ株式会社 Sensor chip
WO2014017433A1 (en) * 2012-07-23 2014-01-30 コニカミノルタ株式会社 Optical specimen detection device
JPWO2014021171A1 (en) * 2012-07-30 2016-07-21 コニカミノルタ株式会社 Method for manufacturing sensor member, method for manufacturing sensor chip, and method for using sensor member
JP6477470B2 (en) * 2013-07-18 2019-03-06 コニカミノルタ株式会社 Surface plasmon resonance fluorescence analyzer and surface plasmon resonance fluorescence analysis method
JP2016011844A (en) * 2014-06-27 2016-01-21 セイコーエプソン株式会社 Spectral image capture system and control method of the same
US20180313756A1 (en) 2015-11-13 2018-11-01 Konica Minolta, Inc. Method for surface plasmon resonance fluorescence analysis and device for surface plasmon resonance fluorescence analysis

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2564941B2 (en) * 1989-08-11 1996-12-18 ダイキン工業株式会社 Optical measuring aid and optical measuring device
JP3974157B2 (en) * 2005-08-30 2007-09-12 シャープ株式会社 Surface plasmon sensor
JP2009162578A (en) * 2007-12-28 2009-07-23 Japan Science & Technology Agency Method and instrument for measuring intercellular interaction
JP2010038624A (en) * 2008-08-01 2010-02-18 Fujifilm Corp Detection method and detector

Also Published As

Publication number Publication date
JP2012098256A (en) 2012-05-24

Similar Documents

Publication Publication Date Title
JP5861640B2 (en) Surface plasmon resonance fluorescence analyzer and surface plasmon resonance fluorescence analysis method
JP5541098B2 (en) Surface plasmon resonance fluorescence analyzer and surface plasmon resonance fluorescence analysis method
JP6369533B2 (en) Measuring method and measuring device
JP5094484B2 (en) Fluorescence detection method and fluorescence detection apparatus
JP6536413B2 (en) Surface plasmon resonance fluorescence analyzer and surface plasmon resonance fluorescence analysis method
JP6777090B2 (en) Surface plasmon resonance fluorescence analysis method and surface plasmon resonance fluorescence analyzer
JP2019032342A (en) Detection method and detection device
JP5807645B2 (en) Surface plasmon excitation fluorescence measurement apparatus and surface plasmon excitation fluorescence measurement method
JP6856074B2 (en) Measuring method, measuring device and measuring system
JP5636921B2 (en) Analysis support apparatus and surface plasmon resonance fluorescence analysis apparatus provided with the analysis support apparatus
JP6848975B2 (en) Measuring method
JP6372186B2 (en) Detection device, detection method, detection chip and kit
JP5472033B2 (en) Surface plasmon resonance fluorescence analyzer and surface plasmon resonance fluorescence analysis method
WO2012093437A1 (en) Surface plasmon resonance fluorescence analytical device, and analysis chip used in the analytical device
JP5807641B2 (en) Surface plasmon resonance fluorescence analyzer and surface plasmon resonance fluorescence analysis method
JP6460104B2 (en) Measuring chip, measuring method and measuring device
JPWO2018051863A1 (en) Measuring method
JP5835223B2 (en) Surface plasmon resonance fluorescence analyzer and surface plasmon resonance fluorescence analysis method
JP6171775B2 (en) Immunoassay analysis method and immunoassay analyzer
JP2015059898A (en) Immunoassay analysis method and device
JP6634784B2 (en) Measuring method and measuring device
JP7405846B2 (en) Measuring method and measuring device
JP6241163B2 (en) Surface plasmon resonance fluorescence analyzer and surface plasmon resonance fluorescence analysis method
WO2016147774A1 (en) Measuring method and measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140421

R150 Certificate of patent or registration of utility model

Ref document number: 5541098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees