JP5540249B1 - Vibration device and electronic device - Google Patents

Vibration device and electronic device Download PDF

Info

Publication number
JP5540249B1
JP5540249B1 JP2013086934A JP2013086934A JP5540249B1 JP 5540249 B1 JP5540249 B1 JP 5540249B1 JP 2013086934 A JP2013086934 A JP 2013086934A JP 2013086934 A JP2013086934 A JP 2013086934A JP 5540249 B1 JP5540249 B1 JP 5540249B1
Authority
JP
Japan
Prior art keywords
collision
drive shaft
vibration
collision member
vibration device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013086934A
Other languages
Japanese (ja)
Other versions
JP2014200783A (en
Inventor
白木  学
純一 多田
信一郎 笹田
Original Assignee
新シコー科技株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新シコー科技株式会社 filed Critical 新シコー科技株式会社
Priority to JP2013086934A priority Critical patent/JP5540249B1/en
Priority to CN201610058207.3A priority patent/CN105743458B/en
Priority to CN201420096211.5U priority patent/CN203883780U/en
Priority to CN201410076612.9A priority patent/CN104104353B/en
Application granted granted Critical
Publication of JP5540249B1 publication Critical patent/JP5540249B1/en
Publication of JP2014200783A publication Critical patent/JP2014200783A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/13Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/19Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator consisting of quartz

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Refuge Islands, Traffic Blockers, Or Guard Fence (AREA)

Abstract

【課題】平面視における小型化を図ることができる振動装置及び振動装置を用いた電子機器を提供することを目的とする。
【解決手段】往復非対称に軸方向に微振動する駆動軸22と、一端を連結した駆動軸22を往復非対称に軸方向に微振動させる微振動発生部材20と、駆動軸22または微振動発生部材20の少なくとも一方を駆動軸22が軸方向に微振動自在となるように支持する筐体12と、駆動軸22の往復非対称の微振動によって駆動軸22の軸方向に移動可能に駆動軸22と結合する衝突部材24と、を備え、衝突部材24が駆動軸22上を移動して筐体12に設けた被衝突部26に衝突することで筐体26に振動を発生させる。
【選択図】図1
An object of the present invention is to provide a vibration device that can be miniaturized in a plan view and an electronic apparatus using the vibration device.
A drive shaft 22 that slightly vibrates in the axial direction in a reciprocating asymmetric manner, a fine vibration generating member 20 that finely vibrates the drive shaft 22 having one end connected in a reciprocating asymmetric manner in the axial direction, and the drive shaft 22 or the fine vibration generating member. A housing 12 that supports at least one of 20 so that the drive shaft 22 can freely vibrate in the axial direction, and the drive shaft 22 that can move in the axial direction of the drive shaft 22 by reciprocating asymmetrical fine vibration of the drive shaft 22. A collision member 24 to be coupled, and the collision member 24 moves on the drive shaft 22 to collide with a collision target 26 provided in the housing 12, thereby generating vibration in the housing 26.
[Selection] Figure 1

Description

本発明は、タッチパネル等の入力機器等に用いられる振動装置及び振動装置を用いた電子機器に関する。  The present invention relates to a vibration device used for input devices such as a touch panel and an electronic device using the vibration device.

従来、表示装置にタッチパネル機能を組み込んだものや操作キーを用いた入力装置が導入されている。これらの中には、予め振動装置を内蔵しておき、操作者が指やペンで押圧して情報を入力したときに、振動を指やペンに返して確実に操作を行ったという感触を操作者に与えるものがある。このような振動装置として、例えば、特許文献1では、一端部を台座に固定した圧電アクチュエータと、圧電アクチュエータの他端部にダンパを介して錘と、を有するようにした。これにより振動装置の薄型化を実現することができた。  Conventionally, a display device incorporating a touch panel function and an input device using operation keys have been introduced. Among these, the vibration device is built in beforehand, and when the operator inputs information by pressing with a finger or a pen, the feeling that the vibration is returned to the finger or the pen and the operation is performed reliably is operated. There is something to give to the person. As such a vibration device, for example, in Patent Document 1, a piezoelectric actuator having one end fixed to a pedestal and a weight at the other end of the piezoelectric actuator via a damper are provided. As a result, the vibration device can be thinned.

特開2011−245437号公報JP 2011-245437 A

しかし、特許文献1の振動装置では、確かに厚さは薄くできたが、所定の振動を得るために数十mmという長さの錘が必要であり、平面視における小型化することは困難であった。
本発明は、上記従来の課題を解決するものであり、平面視における小型化を図ることができる振動装置及び振動装置を用いた電子機器を提供することを目的とする。
However, although the thickness of the vibration device of Patent Document 1 is certainly thin, a weight with a length of several tens of mm is necessary to obtain a predetermined vibration, and it is difficult to reduce the size in plan view. there were.
The present invention solves the above-described conventional problems, and an object thereof is to provide a vibration device and an electronic device using the vibration device that can be reduced in size in plan view.

上記目的を達成するために、本発明は、往復非対称に軸方向に微振動する駆動軸と、一端を連結した前記駆動軸を往復非対称に軸方向に微振動させる微振動発生部材と、前記駆動軸が前記軸方向に微振動自在となるように前記駆動軸または前記微振動発生部材の少なくとも一方を支持する筐体と、前記駆動軸の往復非対称の微振動によって前記駆動軸の軸方向に移動可能に前記駆動軸と結合する衝突部材と、を備え、前記衝突部材が前記駆動軸上を移動して前記筐体に設けた被衝突部に衝突することで前記筐体に振動を発生させることを特徴とする。
この構成により、所期の目的が達成できる。
In order to achieve the above object, the present invention provides a drive shaft that slightly vibrates axially in a reciprocating asymmetric manner, a fine vibration generating member that finely vibrates the drive shaft in a reciprocating asymmetric manner in the axial direction, and the drive A housing that supports at least one of the drive shaft or the fine vibration generating member so that the shaft can freely vibrate in the axial direction, and moves in the axial direction of the drive shaft by a reciprocating asymmetrical fine vibration of the drive shaft. A collision member that can be coupled to the drive shaft, and the collision member moves on the drive shaft and collides with a collision target provided on the housing, thereby generating vibration in the housing. It is characterized by.
With this configuration, the intended purpose can be achieved.

本発明によれば、往復非対称に軸方向に微振動する駆動軸と、一端を連結した前記駆動軸を往復非対称に軸方向に微振動させる微振動発生部材と、前記駆動軸が前記軸方向に微振動自在となるように前記駆動軸または前記微振動発生部材の少なくとも一方を支持する筐体と、前記駆動軸の往復非対称の微振動によって前記駆動軸の軸方向に移動可能に前記駆動軸と結合する衝突部材と、を備え、前記衝突部材が前記駆動軸上を移動して前記筐体に設けた被衝突部に衝突することで前記筐体に振動を発生させる構成にしたことにより、衝突部材は筐体に設けた被衝突部に高速度で衝突するので筐体に大きな振動を発生させることができる。筐体に発生した振動は振動装置を備えた電子機器に伝達される。そのため、衝突部材を大きくしなくても大きな振動を得ることができ、平面視における振動装置の小型化を図れるという効果が得られる。  According to the present invention, the drive shaft that slightly vibrates in the axial direction in a reciprocating asymmetric manner, the fine vibration generating member that finely vibrates in the axial direction in the axial direction the reciprocating asymmetric drive shaft, and the drive shaft in the axial direction. A housing that supports at least one of the drive shaft or the micro-vibration generating member so as to be free to vibrate; and the drive shaft that is movable in the axial direction of the drive shaft by reciprocating asymmetrical micro-vibration of the drive shaft; A collision member to be coupled, and the collision member moves on the drive shaft and collides with a colliding portion provided in the casing, thereby generating vibration in the casing. Since the member collides at high speed with a collision target provided in the casing, it is possible to generate a large vibration in the casing. The vibration generated in the housing is transmitted to an electronic device equipped with a vibration device. Therefore, a large vibration can be obtained without increasing the size of the collision member, and the effect of reducing the size of the vibration device in plan view can be obtained.

本発明の実施の形態1の振動装置の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the vibration apparatus of Embodiment 1 of this invention. 本発明の実施の形態1の振動装置の駆動電圧波形と衝突部材の位置の例を示す図である。It is a figure which shows the example of the drive voltage waveform of the vibration apparatus of Embodiment 1 of this invention, and the position of a collision member. 本発明の実施の形態2の振動装置の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the vibration apparatus of Embodiment 2 of this invention. 本発明の実施の形態2の振動装置の駆動電圧波形と衝突部材の位置の例を示す図である。It is a figure which shows the example of the drive voltage waveform of the vibration apparatus of Embodiment 2 of this invention, and the position of a collision member. 本発明の実施の形態3の振動装置の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the vibration apparatus of Embodiment 3 of this invention. 本発明の実施の形態3の振動装置の駆動電圧波形と衝突部材の位置の例を示す図である。It is a figure which shows the example of the drive voltage waveform of the vibration apparatus of Embodiment 3 of this invention, and the position of a collision member. 本発明の実施の形態1〜3の振動装置の筐体の他の形状1を示す透視斜視図である。It is a see-through | perspective perspective view which shows the other shape 1 of the housing | casing of the vibration apparatus of Embodiment 1-3 of this invention. 本発明の実施の形態1〜3の振動装置の筐体の他の形状2を示す透視斜視図である。It is a see-through | perspective perspective view which shows the other shape 2 of the housing | casing of the vibration apparatus of Embodiment 1-3 of this invention. 本発明の実施の形態4の振動装置の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the vibration apparatus of Embodiment 4 of this invention. 本発明の実施の形態4の振動装置の筐体と微振動発生部材との形状関係の例を示す下方から見た図である。It is the figure seen from the lower part which shows the example of the shape relationship between the housing | casing of the vibration apparatus of Embodiment 4 of this invention, and a fine vibration generation member.

本発明の請求項1記載の発明は、 方向に微振動する駆動軸と、
一端を連結した前記駆動軸を軸方向に微振動させる微振動発生部材と、
前記駆動軸が前記軸方向に微振動自在となるように前記駆動軸または前記微振動発生部材の少なくとも一方を支持する筐体と、
前記駆動軸の微振動によって前記駆動軸の軸方向に移動可能に前記駆動軸と結合する衝突部材と、を備え、
前記衝突部材が前記駆動軸上を移動して前記筐体に設けた被衝突部に衝突することで前記筐体に振動を発生させる振動装置である。
衝突部材は筐体に設けた被衝突部に高速度で衝突するので筐体に大きな振動を発生させることができる。筐体に発生した振動は振動装置を備えた電子機器に伝達される。そのため、衝突部材を大きくしなくても大きな振動を得ることができ、平面視における振動装置の小型化を図れるという効果が得られる。


The invention according to claim 1 of the present invention includes a drive shaft that vibrates slightly in the axial direction,
A fine vibration generating member that finely vibrates the drive shaft connected at one end in the axial direction;
A housing that supports at least one of the drive shaft or the fine vibration generating member such that the drive shaft is capable of fine vibration in the axial direction;
A collision member coupled to the drive shaft so as to be movable in the axial direction of the drive shaft by a slight vibration of the drive shaft;
It is a vibration device that generates vibration in the casing when the collision member moves on the drive shaft and collides with a collision target provided in the casing.
Since the collision member collides with a collision target provided in the housing at a high speed, a large vibration can be generated in the housing. The vibration generated in the housing is transmitted to an electronic device equipped with a vibration device. Therefore, a large vibration can be obtained without increasing the size of the collision member, and the effect of reducing the size of the vibration device in plan view can be obtained.


請求項2記載の発明は、請求項1記載の発明において、前記微振動発生部材は、弾性薄板の少なくとも一面に配置した伸縮薄板に駆動電圧を印加することで前記伸縮薄板が伸縮して中央部と周縁部とが前記弾性薄板の法線方向に相対変位するように変形する薄板である振動装置である。
微振動発生部材が薄板なので、振動装置自体も厚みを薄くできる。
According to a second aspect of the present invention, in the first aspect of the invention, the fine vibration generating member is configured such that the elastic thin plate is expanded and contracted by applying a driving voltage to the elastic thin plate disposed on at least one surface of the elastic thin plate, so that the central portion And the peripheral portion are vibration devices that are thin plates that are deformed so as to be relatively displaced in the normal direction of the elastic thin plate.
Since the fine vibration generating member is a thin plate, the vibration device itself can be thinned.

請求項3記載の発明は、請求項2記載の発明において、前記微振動発生部材は前記駆動軸を介してのみ前記筐体に支持された振動装置である。
微振動発生部材の微振動が他の部材に吸収されること無く駆動軸に伝達されるので駆動軸の微振動量を大きくできる。
According to a third aspect of the present invention, in the second aspect of the present invention, the fine vibration generating member is a vibration device supported by the casing only through the drive shaft.
Since the fine vibration of the fine vibration generating member is transmitted to the drive shaft without being absorbed by other members, the amount of fine vibration of the drive shaft can be increased.

請求項4記載の発明は、請求項2記載の発明において、前記微振動発生部材は周縁部が点で周方向に等間隔に前記筐体に固定された振動装置である。
微振動発生部材が直接筐体に固定されるので、安定した駆動が得られる。
According to a fourth aspect of the present invention, in the second aspect of the present invention, the fine vibration generating member is a vibration device in which a peripheral portion is fixed to the housing at equal intervals in the circumferential direction with points.
Since the fine vibration generating member is directly fixed to the casing, stable driving can be obtained.

請求項5記載の発明は、請求項1記載の発明において、前記衝突部材または前記被衝突部の少なくとも一方は、対面する相手側に向けて突出している振動装置である。
衝突部材の移動距離が短いので、衝突部材の駆動が楽になる。また、衝突部材が突出している場合は、衝突部材が重いのでより大きい振動を筐体に与えることができる。
A fifth aspect of the present invention is the vibration device according to the first aspect of the present invention, wherein at least one of the collision member or the collided portion protrudes toward a facing counterpart.
Since the moving distance of the collision member is short, the driving of the collision member becomes easy. Further, when the collision member protrudes, a larger vibration can be given to the casing because the collision member is heavy.

請求項6記載の発明は、請求項1記載の発明において、前記筐体は前記衝突部材の両面それぞれに対面する壁面を有し、前記被衝突部は前記壁面のそれぞれに設けて前記衝突部材は往復ともに前記被衝突部に衝突する振動装置である。
往復で衝突するので、効率良く振動を発生できる。
According to a sixth aspect of the present invention, in the first aspect of the present invention, the housing includes wall surfaces facing both surfaces of the collision member, and the collision target portion is provided on each of the wall surfaces, and the collision member is It is a vibration device that collides with the colliding part in both reciprocation.
Since it collides with reciprocation, vibration can be generated efficiently.

請求項7記載の発明は、請求項1記載の発明において、前記衝突部材は前記駆動軸が挿通する貫通孔を有し、前記貫通孔と前記駆動軸との隙間は熱収縮した熱収縮性樹脂が充填されて前記熱収縮性樹脂の熱収縮力で前記衝突部材が前記駆動軸に係合されている振動装置である。
構造が簡単であり、部品点数を減らすことができる。また、駆動軸の周囲全体を均一な構造にできるので、衝突部材の中央に駆動軸を配置することができ、対称な形状に仕上げることができる。
The invention according to claim 7 is the heat shrinkable resin according to claim 1, wherein the collision member has a through hole through which the drive shaft is inserted, and a gap between the through hole and the drive shaft is thermally contracted. And the collision member is engaged with the drive shaft by the heat shrinkage force of the heat shrinkable resin.
The structure is simple and the number of parts can be reduced. Further, since the entire periphery of the drive shaft can be made uniform, the drive shaft can be arranged at the center of the collision member, and can be finished in a symmetrical shape.

請求項8記載の発明は、請求項1記載の発明において、前記衝突部材を前記駆動軸の軸方向に移動させる駆動電圧波形は、前記衝突部材を基準位置から前記被衝突部に近づく方向に移動させる時間が、前記基準位置における前記衝突部材と前記被衝突部との間の距離よりも長い第一距離を移動するように設定し、前記衝突部材は、設定された前記第一距離を移動することなく前記被衝突部に衝突する振動装置である。
確実に衝突部材を被衝突部に衝突させることができる。
According to an eighth aspect of the present invention, in the first aspect of the present invention, the driving voltage waveform for moving the collision member in the axial direction of the drive shaft moves the collision member from a reference position toward the collision target. The time to be set is set to move a first distance that is longer than the distance between the collision member and the colliding part at the reference position, and the collision member moves the set first distance. It is a vibration apparatus which collides with the said to-be-collised part without.
A collision member can be made to collide with a to-be-collised part reliably.

請求項9記載の発明は、請求項6記載の発明において、前記衝突部材を前記駆動軸の軸方向に移動させる駆動電圧波形は、前記衝突部材を一方の前記被衝突部に当接する位置から他方の前記被衝突部に向けて移動させる時間が、前記一方の被衝突部に当接する前記衝突部材と前記他方の被衝突部との間の距離よりも長い第二距離を移動するように設定し、前記衝突部材は設定された前記第二距離を移動することなく前記他方の被衝突部に衝突する振動装置である。
確実に衝突部材を被衝突部に衝突させることができる。
According to a ninth aspect of the present invention, in the sixth aspect of the present invention, the drive voltage waveform for moving the collision member in the axial direction of the drive shaft is different from the position where the collision member is brought into contact with one of the collision target portions. The time for moving toward the collided portion is set to move a second distance longer than the distance between the colliding member that contacts the one collided portion and the other collided portion. The collision member is a vibration device that collides with the other colliding part without moving the set second distance.
A collision member can be made to collide with a to-be-collised part reliably.

請求項10記載の発明は、請求項1記載の発明において、前記衝突部材を前記駆動軸の軸方向に移動させる駆動電圧波形は、前記衝突部材の前記被衝突部への衝突を検知したセンサの信号に基づいて前記衝突部材の移動方向が反転するように設定された振動装置である。
衝突を検知して移動方向を反転させるので、確実に衝突部材を被衝突部に衝突させることができる。
According to a tenth aspect of the present invention, in the first aspect of the present invention, the driving voltage waveform for moving the collision member in the axial direction of the drive shaft is a sensor that detects a collision of the collision member with the collision target portion. The vibration device is set such that the moving direction of the collision member is reversed based on the signal.
Since the collision direction is detected and the moving direction is reversed, the collision member can be reliably collided with the colliding part.

請求項11記載の発明は、請求項1記載の振動装置を備えた電子機器である。
衝突部材は筐体に設けた被衝突部に高速度で衝突するので筐体に大きな振動を発生させることができる。筐体に発生した振動は振動装置を備えた電子機器に伝達される。そのため、衝突部材を大きくしなくても大きな振動を得ることができ、平面視における振動装置の小型化を図れるため、電子機器の小型化を図ることができるという効果が得られる。
An eleventh aspect of the invention is an electronic apparatus including the vibration device according to the first aspect.
Since the collision member collides with a collision target provided in the housing at a high speed, a large vibration can be generated in the housing. The vibration generated in the housing is transmitted to an electronic device equipped with a vibration device. Therefore, a large vibration can be obtained without enlarging the collision member, and the size of the vibration device in a plan view can be reduced, so that the electronic device can be reduced in size.

(実施の形態1)
以下、本発明の実施の形態1における振動装置について、図面を参照しながら説明する。図面において、紙面の上方を上、下方を下として説明する。図1に示す振動装置10は、表示装置にタッチパネル機能を組み込んだ電子機器や操作キーを用いた入力装置といった電子機器に用いられる。これらの電子機器の中には、予め振動装置10を内蔵しておき、操作者が指やペンで押圧して情報を入力したときに、振動を指やペンに返して確実に操作を行ったという感触を操作者に与えるものがある。
(Embodiment 1)
Hereinafter, the vibration device according to the first embodiment of the present invention will be described with reference to the drawings. In the drawings, description will be made with the upper side of the paper as the upper side and the lower side as the lower side. A vibration device 10 shown in FIG. 1 is used in an electronic device such as an electronic device in which a touch panel function is incorporated in a display device or an input device using operation keys. In these electronic devices, the vibration device 10 is incorporated in advance, and when the operator inputs information by pressing with a finger or a pen, the vibration is returned to the finger or the pen and the operation is performed reliably. There is something that gives the operator a feeling.

図1に示すように、本実施の形態1の振動装置10は、往復非対称に軸方向に微振動する駆動軸22と、一端を連結した駆動軸22を往復非対称に軸方向に微振動させる微振動発生部材20と、駆動軸22が軸方向に微振動自在となるように駆動軸22を支持する筐体12と、駆動軸22の往復非対称の微振動によって駆動軸22の軸方向に移動可能に駆動軸22と結合する衝突部材24と、を備える。振動装置10は、衝突部材24が駆動軸22上を移動して筐体12に設けた被衝突部26に衝突することで筐体12に振動を発生させる。  As shown in FIG. 1, the vibration device 10 according to the first embodiment includes a driving shaft 22 that vibrates in a reciprocating asymmetric manner in the axial direction and a driving shaft 22 that is connected at one end. The vibration generating member 20, the housing 12 that supports the drive shaft 22 so that the drive shaft 22 can freely vibrate in the axial direction, and the reciprocating asymmetrical fine vibration of the drive shaft 22 can move in the axial direction of the drive shaft 22. And a collision member 24 coupled to the drive shaft 22. The vibration device 10 causes the housing 12 to vibrate when the collision member 24 moves on the drive shaft 22 and collides with a collision target 26 provided in the housing 12.

後述するように、所定の駆動電圧を微振動発生部材20に印加すると、駆動軸22が往復非対称に微振動し、その微振動の1ストローク毎に衝突部材24が上昇し、筐体12に設けた被衝突部26に高速度で衝突する。この衝突により筐体12に大きな振動が発生し、この振動が前記の電子機器に伝達され、さらに操作者に伝わることで、確実に操作を行ったという感触を操作者に与えることができる。  As will be described later, when a predetermined drive voltage is applied to the fine vibration generating member 20, the drive shaft 22 slightly vibrates in a reciprocating asymmetric manner, and the collision member 24 rises for each stroke of the fine vibration and is provided in the housing 12. It collides at a high speed with the hit part 26. Due to this collision, a large vibration is generated in the housing 12, and this vibration is transmitted to the electronic device and further transmitted to the operator, so that the operator can feel that the operation has been performed reliably.

振動装置10は、数mm角〜1cm角×数mm高さという大きさで構成することができ、衝突部材24を大きくしなくても大きな振動を得ることができる。そのため平面視における振動装置10の小型化を図れるという効果が得られる。  The vibration device 10 can be configured to have a size of several mm square to 1 cm square × several mm height, and a large vibration can be obtained without enlarging the collision member 24. Therefore, the effect that the vibration device 10 in a plan view can be reduced in size is obtained.

以下、本実施の形態1の振動装置10の構成を詳細に説明する。
図1に示すように、筐体12は、振動・衝撃を伝達しやすいように金属や合金等の材料で形成される。筐体12は、側壁12aの上端から上壁12bが突出し側壁12aの下端から上壁12bと対向する下壁12cが突出して形成される。上壁12bには貫通孔12dが、下壁12cには貫通孔12eが形成され、貫通孔12d、12eにはゴムブッシュ28、28を介して駆動軸22が挿入される。そのため、貫通孔12d、12eの中心を結ぶ線は上壁12b及び下壁12cと垂直になるように設けられる。また、上壁12bの下面に周囲より突出した被衝突部26を設ける。被衝突部26は、下壁12cの上面に設けても良いし、後述するように、別体で設けても構わない。また、被衝突部26は突出させなくても構わない。
Hereinafter, the configuration of the vibration device 10 according to the first embodiment will be described in detail.
As shown in FIG. 1, the housing 12 is formed of a material such as a metal or an alloy so that vibration and impact can be easily transmitted. The housing 12 is formed such that the upper wall 12b protrudes from the upper end of the side wall 12a and the lower wall 12c opposite to the upper wall 12b protrudes from the lower end of the side wall 12a. A through hole 12d is formed in the upper wall 12b, and a through hole 12e is formed in the lower wall 12c. The drive shaft 22 is inserted into the through holes 12d and 12e via rubber bushes 28 and 28. Therefore, a line connecting the centers of the through holes 12d and 12e is provided so as to be perpendicular to the upper wall 12b and the lower wall 12c. Further, a collision target portion 26 protruding from the periphery is provided on the lower surface of the upper wall 12b. The colliding part 26 may be provided on the upper surface of the lower wall 12c, or may be provided separately as will be described later. Moreover, the colliding part 26 does not need to protrude.

衝突部材24を移動させる駆動部材14は、微振動発生部材20と駆動軸22とで構成される。微振動発生部材20は、弾性薄板18の少なくとも一面に配置した伸縮薄板16に駆動電圧を印加することで伸縮薄板16が伸縮して中央部と周縁部とが弾性薄板18の法線方向に相対変位するように変形する薄板である。本実施の形態1において、微振動発生部材20は、伸縮薄板16を弾性薄板18の一面に配置した、いわゆるユニモルフ型とした。  The drive member 14 that moves the collision member 24 includes a fine vibration generating member 20 and a drive shaft 22. The fine vibration generating member 20 applies a driving voltage to the stretchable thin plate 16 disposed on at least one surface of the elastic thin plate 18 so that the stretchable thin plate 16 expands and contracts so that the central portion and the peripheral portion are relative to the normal direction of the elastic thin plate 18. It is a thin plate that deforms so as to be displaced. In the first embodiment, the fine vibration generating member 20 is a so-called unimorph type in which the elastic thin plate 16 is disposed on one surface of the elastic thin plate 18.

伸縮薄板16は両面に電極材料を付着させた圧電材料、電歪材料で構成される。電極材料としては例えば銅や銅合金等が用いられる。圧電材料、電歪材料としては、例えばチタン酸ジルコン酸鉛、チタン酸バリウム、鉛ニオブ酸マグネシウム等がある。伸縮薄板16は円形状や多角形状に形成される。  The stretchable thin plate 16 is composed of a piezoelectric material or an electrostrictive material in which electrode materials are attached to both surfaces. For example, copper or copper alloy is used as the electrode material. Examples of piezoelectric materials and electrostrictive materials include lead zirconate titanate, barium titanate, and lead magnesium niobate. The stretchable thin plate 16 is formed in a circular shape or a polygonal shape.

弾性薄板18は例えば銅や銅合金等の弾性材料が用いられる。弾性薄板18は、図1に示すような伸縮薄板16を弾性薄板18の片面に設ける場合は、伸縮薄板16に対応した外形を持つことが好ましいが、対応させなくても構わない。伸縮薄板16は弾性薄板18に例えば導電性接着剤で固着され、微振動発生部材20の両面の各々に伸縮薄板16に電圧を印加するための配線が設けられる。配線は駆動制御部30に接続される。  The elastic thin plate 18 is made of an elastic material such as copper or copper alloy. The elastic thin plate 18 preferably has an outer shape corresponding to the elastic thin plate 16 when the elastic thin plate 16 as shown in FIG. 1 is provided on one side of the elastic thin plate 18, but it does not need to correspond. The elastic thin plate 16 is fixed to the elastic thin plate 18 with, for example, a conductive adhesive, and wiring for applying a voltage to the elastic thin plate 16 is provided on each of both surfaces of the fine vibration generating member 20. The wiring is connected to the drive control unit 30.

駆動軸22は軽量で剛性が高い例えば炭素系の材料が用いられ、柱状に形成される。駆動軸22は、軸先端部が微振動発生部材20に固定される。本実施の形態1において、軸先端部は軸中央部と同じ太さとしたが、軸先端部を軸中央部よりも小径としても良い。また、駆動軸22は軸先端部の先端面を微振動発生部材20の表面に(接着剤で)固定する構成としたが、微振動発生部材20に貫通孔を設け、軸先端部の側面部を固定する構成としても良い。  The drive shaft 22 is made of, for example, a carbon-based material that is lightweight and has high rigidity, and is formed in a column shape. The drive shaft 22 is fixed to the fine vibration generating member 20 at the shaft tip. In the first embodiment, the shaft tip portion has the same thickness as the shaft center portion, but the shaft tip portion may have a smaller diameter than the shaft center portion. In addition, the drive shaft 22 is configured to fix the tip surface of the shaft tip portion to the surface of the fine vibration generating member 20 (with an adhesive). However, the through hole is provided in the fine vibration generating member 20 and the side surface portion of the shaft tip portion is provided. It is good also as a structure which fixes.

駆動軸22はゴムブッシュ28で微振動自在に支持される。ゴムブッシュ28は、駆動軸22を支持するための弾性部材であり、駆動軸22を挿通するための中心孔を有している。貫通孔12dに配置されるゴムブッシュ28は、微振動発生部材20に固定した側と反対側の駆動軸22の先端部を中心孔の内面で接着固定する。しかし、貫通孔12eに配置されるゴムブッシュ28は、中心孔の内面で駆動軸22を接着固定せずに、外側から加圧支持するのみである。この構成により、駆動軸22は軸方向に微振動するが、その微振動によって駆動軸22自身が衝突部材24のように長い距離を移動することはない。  The drive shaft 22 is supported by a rubber bush 28 so as to be freely vibrated. The rubber bush 28 is an elastic member for supporting the drive shaft 22 and has a center hole for inserting the drive shaft 22. The rubber bush 28 disposed in the through hole 12d adheres and fixes the tip of the drive shaft 22 opposite to the side fixed to the fine vibration generating member 20 on the inner surface of the center hole. However, the rubber bush 28 disposed in the through-hole 12e does not fix the drive shaft 22 on the inner surface of the center hole, but only supports the pressure from the outside. With this configuration, the drive shaft 22 slightly vibrates in the axial direction, but the drive shaft 22 itself does not move a long distance like the collision member 24 due to the fine vibration.

衝突部材24は、衝突によって筐体12に振動エネルギーを与えるために、比較的大きな質量を有する。小型化するために、振動部材24は、例えばタングステン合金のような密度が大きい材料が使われる。振動部材24は円形状や多角形状の外形を持ち、中央に駆動軸22が挿通する貫通孔24aを有する。貫通孔24aと駆動軸22との隙間は、駆動軸22との摩擦結合部としての熱収縮した熱収縮性樹脂25が充填されて、熱収縮性樹脂25の熱収縮力(駆動軸22を外側から加圧する摩擦力)で衝突部材24が駆動軸22に係合されている。  The collision member 24 has a relatively large mass in order to give vibration energy to the housing 12 by the collision. In order to reduce the size, the vibrating member 24 is made of a material having a high density, such as a tungsten alloy. The vibration member 24 has a circular or polygonal outer shape, and has a through hole 24a through which the drive shaft 22 is inserted at the center. The clearance between the through-hole 24a and the drive shaft 22 is filled with a heat-shrinkable heat-shrinkable resin 25 as a friction coupling portion with the drive shaft 22, and the heat-shrink force of the heat-shrinkable resin 25 (the drive shaft 22 is placed outside). The collision member 24 is engaged with the drive shaft 22 by the friction force applied from the first to the second shaft.

駆動制御部30は、伸縮薄板16に所定波形の駆動電圧を印加する。駆動制御部30は数十kHz程度の周波数の矩形波、鋸歯状波、立ち上がり時間と立ち下がり時間が異なる三角波等を伸縮薄板16に印加して振動部材24を被衝突部26に向けて移動させる。そして、振動部材24が被衝突部26に衝突したら振動部材24の移動方向が反転するように駆動電圧の波形を変更して伸縮薄板16に印加する。本実施の形態1では、図2に示すような立ち上がり時間と立ち下がり時間が異なる三角波を用いた。  The drive control unit 30 applies a drive voltage having a predetermined waveform to the stretchable thin plate 16. The drive control unit 30 applies a rectangular wave having a frequency of about several tens of kHz, a sawtooth wave, a triangular wave having a rising time and a falling time differently to the telescopic thin plate 16, and moves the vibrating member 24 toward the collision target 26. . Then, when the vibration member 24 collides with the colliding part 26, the drive voltage waveform is changed and applied to the stretchable thin plate 16 so that the moving direction of the vibration member 24 is reversed. In the first embodiment, triangular waves having different rise times and fall times as shown in FIG. 2 are used.

次に本実施の形態1の振動装置10の製造方法について説明する。まず、弾性薄板18に電極を両面に形成した伸縮薄板16を導電性接着剤等で固着して微振動発生部材20を製造する。次に微振動発生部材20に駆動軸22を固定して駆動部材14とする。次に駆動軸22を筐体12の貫通孔12e、衝突部材24の貫通孔24a、筐体12の貫通孔12dに挿通し、ゴムブッシュ28で支持させるとともに、熱収縮性樹脂25で衝突部材24を駆動軸22に係合させる。また、微振動発生部材20の両面から配線を設けて駆動制御部30と接続する。  Next, a method for manufacturing the vibration device 10 according to the first embodiment will be described. First, the fine vibration generating member 20 is manufactured by fixing the stretchable thin plate 16 having electrodes formed on both sides thereof to the elastic thin plate 18 with a conductive adhesive or the like. Next, the drive shaft 22 is fixed to the fine vibration generating member 20 to obtain the drive member 14. Next, the drive shaft 22 is inserted into the through hole 12 e of the housing 12, the through hole 24 a of the collision member 24, and the through hole 12 d of the housing 12 and supported by the rubber bush 28, and the collision member 24 is made of the heat-shrinkable resin 25. Is engaged with the drive shaft 22. In addition, wiring is provided from both surfaces of the fine vibration generating member 20 and connected to the drive control unit 30.

次に本実施の形態1の振動装置10の動作について説明する。
駆動電圧が立ち上がると伸縮薄板16は厚さ方向が伸び、面内方向が縮むが、弾性薄板18はそのような伸縮はしないので、微振動発生部材20は中央部が上方へ変位し周縁部が下方へ変位するように変形する。微振動発生部材20の中央部に固定されている駆動軸22も上方へ移動し、駆動軸22に係合している衝突部材24も上方へ移動する。駆動電圧が所定の電圧Vdに達すると、駆動電圧は急激に立ち下がり、微振動発生部材20の変形も急激に元に戻る。それに伴い駆動軸22も元の位置に戻るが、衝突部材24は、駆動軸24の下方への移動には追随せず、その位置に留まる。結果として、衝突部材24はわずかに上方へ移動する。駆動軸22のこの往復非対称な軸方向の移動によって、衝突部材24は1往復当たり上方へ1〜数μm移動する。前述のようにこの動作を数十kHzの周波数で繰り返す。
Next, the operation of the vibration device 10 according to the first embodiment will be described.
When the drive voltage rises, the stretchable thin plate 16 extends in the thickness direction and shrinks in the in-plane direction. However, since the elastic thin plate 18 does not expand and contract in such a manner, the fine vibration generating member 20 is displaced upward in the center portion and the peripheral edge portion is expanded. Deforms to displace downward. The drive shaft 22 fixed to the central portion of the fine vibration generating member 20 also moves upward, and the collision member 24 engaged with the drive shaft 22 also moves upward. When the drive voltage reaches the predetermined voltage Vd, the drive voltage rapidly falls, and the deformation of the microvibration generating member 20 also rapidly returns. As a result, the drive shaft 22 also returns to its original position, but the collision member 24 does not follow the downward movement of the drive shaft 24 and remains in that position. As a result, the collision member 24 moves slightly upward. The reciprocating asymmetric axial movement of the drive shaft 22 causes the collision member 24 to move upward by 1 to several μm per reciprocation. As described above, this operation is repeated at a frequency of several tens of kHz.

図2に示すように、衝突部材24を駆動軸22の軸方向に移動させる駆動電圧波形は、衝突部材24を基準位置から被衝突部26に近づく方向に移動させる時間が、基準位置における衝突部材24と被衝突部26との間の距離D1よりも長い第一距離L1を移動するように設定した。衝突部材24は、設定された第一距離L1を移動することなく被衝突部26に衝突する。  As shown in FIG. 2, the drive voltage waveform for moving the collision member 24 in the axial direction of the drive shaft 22 indicates that the time for moving the collision member 24 from the reference position in the direction approaching the collision target 26 is equal to the collision member at the reference position. The first distance L1 longer than the distance D1 between 24 and the colliding part 26 is set to move. The collision member 24 collides with the colliding part 26 without moving the set first distance L1.

すなわち、衝突部材24は、基準位置から距離D1だけ移動すると被衝突部26に衝突するが、駆動電圧波形はそのままの波形を維持したまま、第一距離L1を移動するのに要する時間が来るまで印加し続ける。そして、第一距離L1を移動するのに要する時間が来ると、衝突部材24が下方に移動するように駆動電圧波形を変え、衝突部材24が距離D1を戻る時間だけ印加する。衝突部材24が距離D1を戻る時間が来ると再び衝突部材24が上方に第一距離L1を移動するような時間だけ印加する。衝突部材24が被衝突部26に衝突した後、衝突部材24が下方に移動するように駆動電圧波形を変えるまでは、衝突部材24は被衝突部26に当接したままである。これを繰り返すことで衝突部材24が被衝突部26に繰返し衝突し、操作者に振動として感じるものになる。  That is, the collision member 24 collides with the colliding part 26 when it moves by the distance D1 from the reference position, but it takes time to move the first distance L1 while maintaining the drive voltage waveform as it is. Continue to apply. Then, when the time required to move the first distance L1 is reached, the drive voltage waveform is changed so that the collision member 24 moves downward, and the collision member 24 is applied only for the time to return the distance D1. When the time for the collision member 24 to return to the distance D1 comes, the application is performed for such a time that the collision member 24 again moves the first distance L1 upward. After the collision member 24 collides with the colliding part 26, the collision member 24 remains in contact with the colliding part 26 until the drive voltage waveform is changed so that the collision member 24 moves downward. By repeating this, the collision member 24 repeatedly collides with the colliding part 26, and feels as vibration to the operator.

このように本実施の形態1の振動装置10は、衝突部材24を大きくしなくても大きな振動を得ることができ、平面視における振動装置10の小型化を図れるという効果が得られる。また、微振動発生部材20が薄板なので、振動装置10自体も厚みを薄くできる。微振動発生部材20は駆動軸22を介してのみ筐体12に支持されている。そのため、微振動発生部材20の微振動が筐体12のような他の部材に吸収されること無く駆動軸22に伝達されるので駆動軸22の微振動量を大きくできる。また、被衝突部26は、対面する相手側である衝突部材24に向けて突出している。そのため、突出している分だけ衝突部材24の移動距離が短い。すると、例えば、駆動軸22の往復非対称な軸方向の移動量を減らすことができ、その分駆動電圧Vdを下げることができるので、衝突部材24の駆動が楽になる。  As described above, the vibration device 10 according to the first embodiment can obtain a large vibration without increasing the size of the collision member 24, and the effect that the vibration device 10 can be downsized in a plan view is obtained. Moreover, since the fine vibration generating member 20 is a thin plate, the vibration device 10 itself can also be thin. The fine vibration generating member 20 is supported by the housing 12 only via the drive shaft 22. Therefore, the minute vibration of the minute vibration generating member 20 is transmitted to the drive shaft 22 without being absorbed by other members such as the housing 12, so that the amount of minute vibration of the drive shaft 22 can be increased. Moreover, the colliding part 26 protrudes toward the collision member 24 which is the other party facing. Therefore, the movement distance of the collision member 24 is short by the amount of protrusion. Then, for example, the amount of axial movement of the drive shaft 22 that is asymmetrical in the reciprocal direction can be reduced, and the drive voltage Vd can be lowered accordingly, so that the collision member 24 can be driven easily.

また、衝突部材24は駆動軸22が挿通する貫通孔24aを有し、貫通孔24aと駆動軸22との隙間は熱収縮した熱収縮性樹脂25が充填されて熱収縮性樹脂25の熱収縮力で衝突部材24が駆動軸22に摩擦係合されている。そのため、構造が簡単であり、部品点数を減らすことができる。また、駆動軸22の周囲全体を均一な構造にできるので、衝突部材24の中央に駆動軸22を配置することができ、対称な形状に仕上げることができる。  Further, the collision member 24 has a through hole 24a through which the drive shaft 22 is inserted, and a gap between the through hole 24a and the drive shaft 22 is filled with a heat-shrinkable heat-shrinkable resin 25 so that the heat-shrinkable resin 25 is thermally shrunk. The collision member 24 is frictionally engaged with the drive shaft 22 by force. Therefore, the structure is simple and the number of parts can be reduced. Moreover, since the whole periphery of the drive shaft 22 can be made into a uniform structure, the drive shaft 22 can be arranged in the center of the collision member 24 and can be finished in a symmetrical shape.

衝突部材24を駆動軸22の軸方向に移動させる駆動電圧波形は、衝突部材24が基準位置から被衝突部26に近づく方向に移動させる時間が、基準位置における衝突部材24と被衝突部26との間の距離D1よりも長い第一距離L1を移動するように設定した。そのため衝突部材24は、設定された第一距離L1を移動することなく被衝突部26に衝突する。したがって、確実に衝突部材24を被衝突部26に衝突させることができる。  The drive voltage waveform for moving the collision member 24 in the axial direction of the drive shaft 22 is such that the time during which the collision member 24 moves from the reference position in the direction approaching the collision target 26 is equal to the collision member 24 and the collision target 26 at the reference position. The first distance L1 that is longer than the distance D1 is set to move. Therefore, the collision member 24 collides with the colliding part 26 without moving the set first distance L1. Therefore, the collision member 24 can be made to collide with the colliding part 26 reliably.

(実施の形態2)
次に、本発明の実施の形態2における振動装置について図面を参照しながら説明する。なお、実施の形態1と同様の構成を有する部分については、同一符号を付してその説明を省略する。
(Embodiment 2)
Next, a vibration device according to Embodiment 2 of the present invention will be described with reference to the drawings. In addition, about the part which has the structure similar to Embodiment 1, the same code | symbol is attached | subjected and the description is abbreviate | omitted.

本実施の形態2の振動装置10は、図3に示すように、筐体12が衝突部材24の両面それぞれに対面する壁面を有するようにした。被衝突部26は上壁12bの下側の壁面及び下壁12cの上側の壁面のそれぞれに設けて衝突部材24は往復ともに被衝突部26に衝突するようにした。  As shown in FIG. 3, the vibration device 10 according to the second embodiment is configured such that the housing 12 has wall surfaces facing both surfaces of the collision member 24. The impacted portion 26 is provided on each of the lower wall surface of the upper wall 12b and the upper wall surface of the lower wall 12c, so that the collision member 24 collides with the impacted portion 26 in both reciprocations.

また、実施の形態1では、被衝突部26が衝突部材24に向けて突出するようにしたが、本実施の形態2では、衝突部材24の外周部が対面する相手側である被衝突部26に向けて突出しているようにした。その突出部分は、被衝突部26が衝突部材24の両面にあるので、衝突部材24の両面に設けた。  In the first embodiment, the collided portion 26 protrudes toward the colliding member 24. However, in the second embodiment, the collided portion 26 that is the opposite side that the outer peripheral portion of the colliding member 24 faces. It protruded toward. The protruding portions are provided on both surfaces of the collision member 24 because the colliding portions 26 are on both surfaces of the collision member 24.

図4に示すように、本実施の形態2において、衝突部材24を駆動軸22の軸方向に移動させる駆動電圧波形は、衝突部材24を一方の被衝突部26に当接する位置から他方の被衝突部26に向けて移動させる時間が、一方の被衝突部26に当接する衝突部材24と他方の被衝突部26との間の距離D2よりも長い第二距離L2を移動するように設定した。衝突部材24は設定された第二距離L2を移動することなく他方の被衝突部26に衝突する。  As shown in FIG. 4, in the second embodiment, the driving voltage waveform for moving the collision member 24 in the axial direction of the drive shaft 22 is different from the position where the collision member 24 is in contact with one collision target portion 26. The time to move toward the collision part 26 is set to move a second distance L2 that is longer than the distance D2 between the collision member 24 that abuts the one collision target part 26 and the other collision target part 26. . The collision member 24 collides with the other colliding part 26 without moving the set second distance L2.

距離D2は、基準位置にある衝突部材24と被衝突部26との距離でもある。この場合の基準位置は衝突部材24が一方の被衝突部材26に当接している位置である。すなわち、衝突部材24は、基準位置から距離D2だけ移動すると他方の被衝突部26に衝突するが、駆動電圧波形はそのままの波形を維持したまま、第二距離L2を移動するのに要する時間が来るまで印加し続ける。衝突部材24が他方の被衝突部26に衝突した後、衝突部材24が下方に移動するように駆動電圧波形を変えるまでは、衝突部材24は他方の被衝突部26に当接したままである。  The distance D2 is also the distance between the collision member 24 and the colliding part 26 at the reference position. In this case, the reference position is a position where the collision member 24 is in contact with one of the collision target members 26. That is, when the collision member 24 moves from the reference position by the distance D2, the collision member 24 collides with the other collision target portion 26, but the time required to move the second distance L2 while maintaining the drive voltage waveform as it is. Continue applying until it comes. After the collision member 24 collides with the other colliding part 26, the collision member 24 remains in contact with the other colliding part 26 until the driving voltage waveform is changed so that the collision member 24 moves downward. .

そして、第二距離L2を移動するのに要する時間が来ると、衝突部材24が下方に移動するように駆動電圧波形を変え、衝突部材24が第二距離L2を戻る時間だけ印加する。衝突部材24は下方に距離D2だけ移動すると一方の被衝突部26に衝突するが駆動電圧波形はそのままの波形を維持したまま、第二距離L2を移動するのに要する時間が来るまで印加し続ける。衝突部材24が一方の被衝突部26に衝突した後、衝突部材24が上方に移動するように駆動電圧波形を変えるまでは、衝突部材24は一方の被衝突部26に当接したままである。  When the time required to move the second distance L2 is reached, the drive voltage waveform is changed so that the collision member 24 moves downward, and the collision member 24 is applied only for the time when the collision member 24 returns the second distance L2. When the collision member 24 moves downward by a distance D2, it collides with one colliding part 26, but the drive voltage waveform is maintained as it is, and the application is continued until the time required to move the second distance L2 is reached. . After the collision member 24 collides with one collided portion 26, the colliding member 24 remains in contact with one collided portion 26 until the drive voltage waveform is changed so that the colliding member 24 moves upward. .

衝突部材24が第二距離L2を戻る時間が来ると再び上方に移動するように駆動電圧波形を変え、衝突部材24が上方に第二距離L2を移動するような時間だけ印加する。これを繰り返すことで衝突部材24が一方及び他方の被衝突部26に繰返し衝突し、操作者に振動として感じるものになる。  When the time for the collision member 24 to return to the second distance L2 is reached, the drive voltage waveform is changed so that the collision member 24 moves upward again, and the collision member 24 is applied for such a time as to move the second distance L2 upward. By repeating this, the collision member 24 repeatedly collides with the one and the other collided portions 26, and the operator feels vibration.

本実施の形態2の振動装置10は、衝突部材24が被衝突部26に往復で衝突するので、効率良く振動を発生できる。そして、駆動電圧波形は、衝突部材24を一方の被衝突部26に当接する位置から他方の被衝突部26に向けて移動させる時間が、一方の被衝突部26に当接する衝突部材24と他方の被衝突部26との間の距離D2よりも長い第二距離L2を移動するように設定した。そのため、衝突部材24は設定された第二距離L2を移動することなく他方の被衝突部26に衝突する。したがって、確実に衝突部材24を被衝突部26に衝突させることができる。  In the vibration device 10 according to the second embodiment, since the collision member 24 reciprocally collides with the collision target portion 26, vibration can be generated efficiently. The driving voltage waveform is determined based on the time when the collision member 24 is moved from the position where the collision member 24 is in contact with the one collision target portion 26 toward the other collision target portion 26 and the collision member 24 which is in contact with the one collision target portion 26 and the other. The second distance L2 that is longer than the distance D2 between the first and second collision parts 26 is set to move. Therefore, the collision member 24 collides with the other colliding part 26 without moving the set second distance L2. Therefore, the collision member 24 can be made to collide with the colliding part 26 reliably.

また、衝突部材24は、対面する相手側である被衝突部26に向けて突出しているので、衝突部材24の移動距離が短く、衝突部材24の駆動が楽になる。また、単なる平板状の場合に比べて衝突部材24が重いのでより強い振動を筐体12に与えることができる。特に本実施の形態2の場合、両面に突出部分を設けているので衝突部材24がより重く、より強い振動を筐体12に与えることができる。また、衝突部材24の周縁部を突出部分としているので効率良く衝突部材24の重さを重くすることができるが、より中心部に近い位置を突出部分としても構わない。また、衝突部材24は鋳造、焼結等で製造され突出部分も同時に製造できるので、筐体12に突出部分を設けるよりも容易に製造することができる。  Moreover, since the collision member 24 protrudes toward the colliding part 26 which is the opposite party that faces, the movement distance of the collision member 24 is short and the driving of the collision member 24 becomes easy. Further, since the collision member 24 is heavier than in the case of a simple flat plate shape, stronger vibration can be applied to the housing 12. Particularly in the case of the second embodiment, since the projecting portions are provided on both surfaces, the collision member 24 is heavier and stronger vibration can be applied to the housing 12. Moreover, since the peripheral part of the collision member 24 is a protruding part, the weight of the collision member 24 can be increased efficiently, but a position closer to the center part may be used as the protruding part. Moreover, since the collision member 24 is manufactured by casting, sintering, etc., and the protruding portion can be manufactured at the same time, it can be manufactured more easily than providing the protruding portion on the housing 12.

(実施の形態3)
次に、本発明の実施の形態3における振動装置について図面を参照しながら説明する。なお、実施の形態1、2と同様の構成を有する部分については、同一符号を付してその説明を省略する。本実施の形態3の振動装置10は、変形例を組み合わせた例である。
(Embodiment 3)
Next, a vibration device according to Embodiment 3 of the present invention will be described with reference to the drawings. In addition, about the part which has the structure similar to Embodiment 1, 2, the same code | symbol is attached | subjected and the description is abbreviate | omitted. The vibration device 10 according to the third embodiment is an example in which modifications are combined.

図5に示すように、本実施の形態3の振動装置10において、衝突部材24を駆動軸22の軸方向に移動させる駆動電圧波形は、衝突部材24の被衝突部26への衝突を検知したセンサ32の信号に基づいて衝突部材24の移動方向が反転するように設定されたものである。  As shown in FIG. 5, in the vibration device 10 according to the third embodiment, the driving voltage waveform for moving the collision member 24 in the axial direction of the drive shaft 22 detected the collision of the collision member 24 with the collision target portion 26. The moving direction of the collision member 24 is set to be reversed based on the signal from the sensor 32.

本実施の形態2においてセンサ32は、衝突を検知できる圧電センサ等を被衝突部26の一部に配置した。
また、被衝突部26を、筐体12とは別体で設けた。例えば、筐体12の本体は所望の形状に形成しやすい材料とし、被衝突部26は衝突部材24からの衝撃を筐体12に良く伝達できる材料とするという使い分けをすることができる。
また、微振動発生部材20はいわゆるバイモルフ型とした。すなわち、微振動発生部材20は、弾性薄板18の両面に配置した伸縮薄板16に駆動電圧を印加することで伸縮薄板16が伸縮して中央部と周縁部とが弾性薄板18の法線方向に相対変位するように変形する薄板である。
また、駆動軸22は微振動発生部材20に固定した方と反対側の先端面を筐体12の上壁12bの貫通孔12dに設けたゴムブッシュ28の下面に接着固定した。本実施の形態3においてゴムブッシュ28は中心孔を有さない。さらに、下壁12cにはゴムブッシュ28を設けず、駆動軸22は貫通孔12eを貫通するのみとした。
本実施の形態3の振動装置10における衝突部材24を駆動軸22の軸方向に移動させる駆動電圧波形は、衝突部材24の被衝突部26への衝突を検知したセンサ32の信号に基づいて衝突部材24の移動方向が反転するように設定した。
In the second embodiment, the sensor 32 includes a piezoelectric sensor or the like that can detect a collision in a part of the colliding part 26.
Further, the colliding part 26 is provided separately from the housing 12. For example, the main body of the housing 12 can be made of a material that can be easily formed into a desired shape, and the impacted portion 26 can be selectively used as a material that can well transmit the impact from the collision member 24 to the housing 12.
The fine vibration generating member 20 is a so-called bimorph type. That is, the fine vibration generating member 20 applies a driving voltage to the stretchable thin plate 16 disposed on both surfaces of the elastic thin plate 18 so that the stretchable thin plate 16 expands and contracts so that the central portion and the peripheral portion are in the normal direction of the elastic thin plate 18. It is a thin plate that is deformed so as to be relatively displaced.
Further, the drive shaft 22 is bonded and fixed to the lower surface of the rubber bush 28 provided in the through hole 12d of the upper wall 12b of the housing 12 on the end surface opposite to the side fixed to the fine vibration generating member 20. In the third embodiment, the rubber bush 28 does not have a center hole. Further, the rubber bush 28 is not provided on the lower wall 12c, and the drive shaft 22 only passes through the through hole 12e.
The drive voltage waveform for moving the collision member 24 in the axial direction of the drive shaft 22 in the vibration device 10 of the third embodiment is based on the signal of the sensor 32 that detects the collision of the collision member 24 with the collision target 26. The moving direction of the member 24 was set to be reversed.

図6に示すように、駆動制御部30は、まず図5の下側の伸縮薄板16に第一駆動電圧を印加する。すると、基準位置にあった衝突部材24は上昇して距離D3を移動して上側の被衝突部26に衝突する。衝突部材24が上側の被衝突部26の位置に来ると上側のセンサ32が検知し、第一トリガを生成する。第一トリガにより第一駆動電圧は停止し、上側の伸縮薄板16を駆動する第二駆動電圧を印加する。第二駆動電圧は第一駆動電圧と同じ波形であるため、上側の伸縮薄板16は、第一駆動電圧が印加された下側の伸縮薄板16を同じ伸縮をするので、微振動発生部材20は、第一駆動電圧が印加された場合と逆向きの変形をする。そのため、衝突部材24は下降して距離D3を移動して下側の被衝突部26に衝突する。衝突部材24が下側の被衝突部26の位置に来ると下側のセンサ32が検知し、第二トリガを生成する。第二トリガにより第二駆動電圧は停止し、下側の伸縮薄板16を駆動する第一駆動電圧を印加する。そのため、衝突部材24は再び上昇する。
衝突を検知して移動方向を反転させるので、確実に衝突部材24を被衝突部26に衝突させることができる。
As shown in FIG. 6, the drive control unit 30 first applies a first drive voltage to the lower telescopic thin plate 16 in FIG. Then, the collision member 24 at the reference position rises, moves the distance D3, and collides with the upper collision target portion 26. When the collision member 24 comes to the position of the upper collision target 26, the upper sensor 32 detects the first trigger. The first driving voltage is stopped by the first trigger, and the second driving voltage for driving the upper telescopic thin plate 16 is applied. Since the second drive voltage has the same waveform as the first drive voltage, the upper telescopic thin plate 16 expands and contracts the same as the lower telescopic thin plate 16 to which the first drive voltage is applied. Then, deformation is performed in the opposite direction to the case where the first drive voltage is applied. Therefore, the collision member 24 descends, moves the distance D3, and collides with the lower collision target portion 26. When the collision member 24 comes to the position of the lower collision target 26, the lower sensor 32 detects it and generates a second trigger. The second drive voltage is stopped by the second trigger, and the first drive voltage for driving the lower stretchable thin plate 16 is applied. Therefore, the collision member 24 rises again.
Since the collision is detected and the moving direction is reversed, the collision member 24 can be reliably caused to collide with the colliding part 26.

なお、実施の形態1や実施の形態2のように、衝突を検知後、所定の時間や微振動の回数等をさらに同方向に印加してから、移動の方向を反転させるようにしても良い。さらに確実に衝突部材24を被衝突部26に衝突させることができる。  As in the first and second embodiments, after the collision is detected, a predetermined time, the number of micro vibrations, and the like may be further applied in the same direction, and then the direction of movement may be reversed. . Furthermore, the collision member 24 can be made to collide with the colliding part 26 reliably.

本実施の形態3では、センサ32は圧電センサとしたが、例えばMRセンサやホールセンサ等の磁気センサとし、被衝突部26に対応した筐体12の所定の位置に配置しても構わない。センサ32に対応するスケール34は、二つの磁極を駆動軸22の軸方向に並べた磁気スケールを、衝突部材24が被衝突部26に衝突したときにセンサ32と対向するように衝突部材24の側部に配置する。また、光学的な位置センサとしても良い。  In the third embodiment, the sensor 32 is a piezoelectric sensor, but may be a magnetic sensor such as an MR sensor or a Hall sensor, and may be disposed at a predetermined position of the housing 12 corresponding to the collision target 26. The scale 34 corresponding to the sensor 32 has a magnetic scale in which two magnetic poles are arranged in the axial direction of the drive shaft 22 so that the collision member 24 faces the sensor 32 when the collision member 24 collides with the colliding part 26. Place on the side. An optical position sensor may be used.

なお、実施の形態1〜3における筐体12は、一枚の板を折り曲げて形成することができる。その際、貫通孔12d、12eは予め設けておいても良いし、筐体12の形状を形成した後で設けても良い。しかし、筐体12は他の形状に形成することができる。
例えば、図7に示すように筐体12を底部が無い箱型に形成し、一つの側壁12aを切り開き、上壁12bと平行になるように折り曲げて下壁12cとしても良い。また、別途貫通孔12d、12eを設ける。このような形状にすると、筐体12の剛性を実施の形態1〜3で説明してきた筐体12よりも大きくすることができるので、振動装置10から電子機器に伝達される振動を大きくすることができる。その際、破線で示すように不要な部分は切り欠いて開口12fとすることが好ましい。振動装置10を軽量にすることができるとともに筐体12内に衝突部材24等の部品を容易に収容できるので組み立てしやすい。
Note that the housing 12 in the first to third embodiments can be formed by bending a single plate. At this time, the through holes 12d and 12e may be provided in advance, or may be provided after the shape of the housing 12 is formed. However, the housing 12 can be formed in other shapes.
For example, as shown in FIG. 7, the casing 12 may be formed in a box shape without a bottom, and one side wall 12a may be cut open and bent to be parallel to the upper wall 12b to form the lower wall 12c. Separate through holes 12d and 12e are provided. With such a shape, the rigidity of the housing 12 can be made larger than that of the housing 12 described in the first to third embodiments. Therefore, the vibration transmitted from the vibration device 10 to the electronic device can be increased. Can do. At that time, it is preferable to cut away unnecessary portions as shown by broken lines to form openings 12f. Since the vibration device 10 can be reduced in weight and components such as the collision member 24 can be easily accommodated in the housing 12, it is easy to assemble.

また、例えば、図8に示すように筐体12を図7と同様な箱型とし、対向する側壁12aを切り開き、それぞれを上壁12bと平行になるように折り曲げて下壁12cとしても良い。その際、それぞれの下壁12cは切り開く前の下端部同士がほぼ突き当たるようにする。また、それぞれの下壁12cの切り開く前の下端部を切り欠いておき折り曲げた際に貫通孔12eとなるようにしても良い。貫通孔12dは別途形成する。また図7と同様に開口12fを設けることが好ましい。箱型を製造する際に側壁12aの端部を切り欠いておき、折り曲げると貫通孔12eも同時にできるので製造が容易である。  Further, for example, as shown in FIG. 8, the housing 12 may have a box shape similar to that of FIG. 7, the opposing side walls 12a may be cut open, and each may be bent to be parallel to the upper wall 12b to form the lower wall 12c. At that time, the lower walls 12c of the respective lower walls 12c are made to substantially come into contact with each other before being opened. Alternatively, the lower wall 12c of each lower wall 12c before opening may be cut out and bent to form the through hole 12e. The through hole 12d is formed separately. Moreover, it is preferable to provide the opening 12f as in FIG. When the box shape is manufactured, the end of the side wall 12a is cut out and bent, so that the through hole 12e can be formed at the same time, so that the manufacturing is easy.

(実施の形態4)
次に、本発明の実施の形態4における振動装置について図面を参照しながら説明する。なお、実施の形態1と同様の構成を有する部分については、同一符号を付してその説明を省略する。図9に示すように、本実施の形態4の振動装置10において、微振動発生部材20は周縁部が点で周方向に等間隔に筐体12に固定されている。
(Embodiment 4)
Next, a vibration device according to Embodiment 4 of the present invention will be described with reference to the drawings. In addition, about the part which has the structure similar to Embodiment 1, the same code | symbol is attached | subjected and the description is abbreviate | omitted. As shown in FIG. 9, in the vibration device 10 according to the fourth embodiment, the fine vibration generating member 20 is fixed to the housing 12 at equal intervals in the circumferential direction at the periphery.

筐体12は底部が無い箱型をしており、上壁12bにゴムブッシュ28を配置して駆動軸22を微振動自在に支持する貫通孔12dが形成されている。また、側壁12aの下端部12gは外周側の縁よりも内周側の縁の方を一段上方に設け、微振動発生部材20の固定部12hとした。  The housing 12 has a box shape without a bottom portion, and a through hole 12d is formed on the upper wall 12b to support the drive shaft 22 so that the drive shaft 22 can be finely oscillated by arranging a rubber bush 28. Further, the lower end portion 12g of the side wall 12a is provided with the inner peripheral edge one step higher than the outer peripheral edge, and serves as a fixing portion 12h of the fine vibration generating member 20.

微振動発生部材20は周縁部20aを筐体12の固定部12hに点(小面積)で固定した。本実施の形態4においては、図10(a)に示すように筐体12が下方向から見て四角形とし、微振動発生部材20は筐体12の固定部12hに周縁部20aの四箇所がわずかに載るような円形状とした。また、図9に示すように周縁部20aは弾性薄板18の方を伸縮薄板16よりも外周側に張り出させて形成し、弾性薄板18を上側、伸縮薄板16を下側として筐体12の固定部12hに取付けた。このように伸縮薄板16、弾性薄板18のうち、筐体12の固定部12hに固定する方を外側に張り出させて周縁部20aとし上側に配置することにより、電気配線を容易にすることができる。  The fine vibration generating member 20 has a peripheral edge portion 20a fixed to a fixing portion 12h of the housing 12 at a point (small area). In the fourth embodiment, as shown in FIG. 10A, the casing 12 is rectangular when viewed from below, and the micro-vibration generating member 20 has four portions of the peripheral portion 20a on the fixed portion 12h of the casing 12. It was a circular shape that could be placed slightly. Further, as shown in FIG. 9, the peripheral edge portion 20a is formed by projecting the elastic thin plate 18 to the outer peripheral side of the elastic thin plate 16, and the elastic thin plate 18 is on the upper side and the elastic thin plate 16 is on the lower side. It was attached to the fixed part 12h. Thus, by extending the outer side of the stretchable thin plate 16 and the elastic thin plate 18 fixed to the fixing portion 12h of the housing 12 to the outer side as the peripheral portion 20a, electrical wiring can be facilitated. it can.

微振動発生部材20が直接筐体12に固定されるので、駆動部材14の安定した駆動が得られる。また、周縁部20aの全体ではなく点で固定されているので、微振動発生部材20の発生する微振動が筐体12に吸収される量は大きくなく、駆動部材14の駆動能力は大きい。  Since the fine vibration generating member 20 is directly fixed to the housing 12, the driving member 14 can be driven stably. In addition, since the peripheral portion 20a is fixed not at the whole point but at a point, the amount of the fine vibration generated by the fine vibration generating member 20 is not absorbed by the housing 12, and the driving ability of the driving member 14 is large.

また、図9に示すように、固定部12hの段差を微振動発生部材20の厚さよりも深くすることにより、微振動発生部材20は筐体12の下端部12gからはみ出さずに筐体12に囲まれるので、振動装置10の組立中、組立後に微振動発生部材20は外部からの力によって破壊されにくい。  Further, as shown in FIG. 9, by making the step of the fixing portion 12 h deeper than the thickness of the fine vibration generating member 20, the fine vibration generating member 20 does not protrude from the lower end portion 12 g of the case 12. Therefore, during assembly of the vibration device 10, the fine vibration generating member 20 is not easily broken by an external force after assembly.

また、被衝突部26は、筐体12の上壁12bだけでなく、微振動発生部材20の上面側にも設け、衝突部材24が往復で衝突するようにした。往復で衝突するので、効率良く振動を発生できる。また、微振動発生部材20の周縁部20aに近い領域の質量が大きいので、微振動発生部材20の発生する駆動能力を大きくすることができる。  Further, the colliding part 26 is provided not only on the upper wall 12b of the housing 12, but also on the upper surface side of the fine vibration generating member 20, so that the collision member 24 collides in a reciprocating manner. Since it collides with reciprocation, vibration can be generated efficiently. Moreover, since the mass of the area | region near the peripheral part 20a of the fine vibration generation member 20 is large, the drive capability which the fine vibration generation member 20 generate | occur | produces can be enlarged.

なお、本実施の形態4の振動装置10の筐体12と微振動発生部材20の形状の組合せは上述以外にもある。例えば、図10(b)は図10(a)とは逆に筐体12が円形状、微振動発生部材20が四角形である。図10(c)は筐体12も微振動発生部材20も四角形である。この場合、微振動発生部材20の四角形の角部の周縁部20aが筐体12の四角形の辺部の固定部12hに載置される。図10(d)は筐体12が八角形で微振動部材20が四角形である。図10(c)の四角形の筐体12の角部が面取りされた形状と考えても良い。したがって、筐体12は八角形でなくて角丸四角形としても良い。図10(e)は図10(d)の微振動発生部材20の形状が円形状としたものである。図10(f)は微振動発生部材20が円形状や四角形ではなく、六角形状としたものである。このような形状でも構わない。このように筐体12と微振動発生部材20の形状は多様な形状を組合せることができる。  There are other combinations of the shapes of the casing 12 and the fine vibration generating member 20 of the vibration device 10 of the fourth embodiment. For example, in FIG. 10B, the housing 12 has a circular shape and the minute vibration generating member 20 has a quadrangular shape, contrary to FIG. 10A. In FIG. 10C, the housing 12 and the minute vibration generating member 20 are both rectangular. In this case, the peripheral edge 20 a of the square corner of the fine vibration generating member 20 is placed on the fixed part 12 h of the square side of the housing 12. In FIG. 10D, the casing 12 is octagonal and the micro-vibration member 20 is quadrangular. You may consider that the corner | angular part of the square housing | casing 12 of FIG.10 (c) was a chamfered shape. Therefore, the housing 12 may not be an octagon but a rounded rectangle. FIG. 10E shows a case where the fine vibration generating member 20 shown in FIG. 10D has a circular shape. FIG. 10 (f) shows a case where the fine vibration generating member 20 has a hexagonal shape instead of a circular shape or a rectangular shape. Such a shape may be used. As described above, the housing 12 and the fine vibration generating member 20 can be combined in various shapes.

また、図9では示していないが、筐体12の側壁12aには、図7や図8で示したような開口12fを設けても良い。また、本実施の形態4の筐体12の形状は箱型としたが、実施の形態1等と同様に一枚の板を折り曲げて形成しても良い。  Although not shown in FIG. 9, an opening 12 f as shown in FIGS. 7 and 8 may be provided in the side wall 12 a of the housing 12. In addition, although the shape of the housing 12 of the fourth embodiment is a box shape, it may be formed by bending a single plate as in the first embodiment.

また、本発明の実施の形態1〜4において、微振動発生部材20はユニモルフやバイモルフ型のものを用いたが、それに限るものではなく、いわゆる積層型のものを用いても良い。小さい駆動電圧で駆動することができるので、駆動制御部30を安価にすることができる。  In the first to fourth embodiments of the present invention, the fine vibration generating member 20 is a unimorph or bimorph type, but is not limited thereto, and a so-called laminated type may be used. Since it can drive with a small drive voltage, the drive control part 30 can be made cheap.

10 振動装置
12 筐体
12a 側壁
12b 上壁
12c 下壁
12d、12e 貫通孔
12f 開口
12g 下端部
12h 固定部
14 駆動部材
16 伸縮薄板
18 弾性薄板
20 微振動発生部材
20a 周縁部
22 駆動軸
24 衝突部材
24a 貫通孔
25 熱収縮性樹脂
26 被衝突部
28 ゴムブッシュ
30 駆動制御部
32 センサ
DESCRIPTION OF SYMBOLS 10 Vibration apparatus 12 Housing | casing 12a Side wall 12b Upper wall 12c Lower wall 12d, 12e Through-hole 12f Opening 12g Lower end part 12h Fixed part 14 Drive member 16 Telescopic thin plate 18 Elastic thin plate 20 Slight vibration generating member 20a Peripheral part 22 Drive shaft 24 Collision member 24a Through-hole 25 Heat-shrinkable resin 26 Collision part 28 Rubber bush 30 Drive control part 32 Sensor

Claims (11)

方向に微振動する駆動軸と、
一端を連結した前記駆動軸を軸方向に微振動させる微振動発生部材と、
前記駆動軸が前記軸方向に微振動自在となるように前記駆動軸または前記微振動発生部材の少なくとも一方を支持する筐体と、
前記駆動軸の微振動によって前記駆動軸の軸方向に移動可能に前記駆動軸と結合する衝突部材と、を備え、
前記衝突部材が前記駆動軸上を移動して前記筐体に設けた被衝突部に衝突することで前記筐体に振動を発生させることを特徴とする振動装置。
A drive shaft that vibrates slightly in the axial direction;
A fine vibration generating member that finely vibrates the drive shaft connected at one end in the axial direction;
A housing that supports at least one of the drive shaft or the fine vibration generating member such that the drive shaft is capable of fine vibration in the axial direction;
A collision member coupled to the drive shaft so as to be movable in the axial direction of the drive shaft by a slight vibration of the drive shaft;
A vibration device, wherein the collision member generates vibration in the casing by moving on the drive shaft and colliding with a collision target provided in the casing.
前記微振動発生部材は、弾性薄板の少なくとも一面に配置した伸縮薄板に駆動電圧を印加することで前記伸縮薄板が伸縮して中央部と周縁部とが前記弾性薄板の法線方向に相対変位するように変形する薄板であることを特徴とする請求項1記載の振動装置。The fine vibration generating member applies a driving voltage to an elastic thin plate disposed on at least one surface of the elastic thin plate, whereby the elastic thin plate expands and contracts, and a central portion and a peripheral portion are relatively displaced in a normal direction of the elastic thin plate. The vibration device according to claim 1, wherein the vibration device is a thin plate that deforms like this. 前記微振動発生部材は前記駆動軸を介してのみ前記筐体に支持されたことを特徴とする請求項2記載の振動装置。The vibration device according to claim 2, wherein the minute vibration generating member is supported by the housing only through the drive shaft. 前記微振動発生部材は周縁部が点で周方向に等間隔に前記筐体に固定されたことを特徴とする請求項2記載の振動装置。The vibration device according to claim 2, wherein the fine vibration generating member is fixed to the housing at a peripheral portion at equal intervals in a circumferential direction. 前記衝突部材または前記被衝突部の少なくとも一方は、対面する相手側に向けて突出していることを特徴とする請求項1記載の振動装置。2. The vibration device according to claim 1, wherein at least one of the collision member and the collision target portion protrudes toward the opposing side. 前記筐体は前記衝突部材の両面それぞれに対面する壁面を有し、前記被衝突部は前記壁面のそれぞれに設けて前記衝突部材は往復ともに前記被衝突部に衝突することを特徴とする請求項1記載の振動装置。The said housing | casing has a wall surface which faces each both surfaces of the said collision member, The said collision part is provided in each of the said wall surface, The said collision member collides with the said collision part both reciprocatingly. 1. The vibration device according to 1. 前記衝突部材は前記駆動軸が挿通する貫通孔を有し、前記貫通孔と前記駆動軸との隙間は熱収縮した熱収縮性樹脂が充填されて前記熱収縮性樹脂の熱収縮力で前記衝突部材が前記駆動軸に係合されていることを特徴とする請求項1記載の振動装置。The collision member has a through-hole through which the drive shaft is inserted, and a gap between the through-hole and the drive shaft is filled with a heat-shrinkable heat-shrinkable resin, and the collision with the heat-shrinkable force of the heat-shrinkable resin. The vibration device according to claim 1, wherein a member is engaged with the drive shaft. 前記衝突部材を前記駆動軸の軸方向に移動させる駆動電圧波形は、前記衝突部材を基準位置から前記被衝突部に近づく方向に移動させる時間が、前記基準位置における前記衝突部材と前記被衝突部との間の距離よりも長い第一距離を移動するように設定し、前記衝突部材は、設定された前記第一距離を移動することなく前記被衝突部に衝突することを特徴とする請求項1記載の振動装置。The driving voltage waveform for moving the collision member in the axial direction of the drive shaft is such that the time for moving the collision member from the reference position in a direction approaching the collision target is the collision member and the collision target at the reference position. And the collision member collides with the colliding part without moving the set first distance. 1. The vibration device according to 1. 前記衝突部材を前記駆動軸の軸方向に移動させる駆動電圧波形は、前記衝突部材を一方の前記被衝突部に当接する位置から他方の前記被衝突部に向けて移動させる時間が、前記一方の被衝突部に当接する前記衝突部材と前記他方の被衝突部との間の距離よりも長い第二距離を移動するように設定し、前記衝突部材は設定された前記第二距離を移動することなく前記他方の被衝突部に衝突することを特徴とする請求項6記載の振動装置。The driving voltage waveform for moving the collision member in the axial direction of the drive shaft is such that the time for moving the collision member from the position in contact with one of the collision target parts toward the other collision target part is It is set to move a second distance that is longer than the distance between the collision member that comes into contact with the collided portion and the other collided portion, and the colliding member moves the set second distance. The vibration device according to claim 6, wherein the vibration device collides with the other collision target portion. 前記衝突部材を前記駆動軸の軸方向に移動させる駆動電圧波形は、前記衝突部材の前記被衝突部への衝突を検知したセンサの信号に基づいて前記衝突部材の移動方向が反転するように設定されたことを特徴とする請求項1記載の振動装置。The drive voltage waveform for moving the collision member in the axial direction of the drive shaft is set so that the movement direction of the collision member is reversed based on a signal of a sensor that detects the collision of the collision member with the collision target portion. The vibration device according to claim 1, wherein 請求項1記載の振動装置を備えたことを特徴とする電子機器。An electronic apparatus comprising the vibration device according to claim 1.
JP2013086934A 2013-04-01 2013-04-01 Vibration device and electronic device Active JP5540249B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013086934A JP5540249B1 (en) 2013-04-01 2013-04-01 Vibration device and electronic device
CN201610058207.3A CN105743458B (en) 2013-04-01 2014-03-04 Vibrating device and electronic equipment
CN201420096211.5U CN203883780U (en) 2013-04-01 2014-03-04 Vibration device and electronic equipment
CN201410076612.9A CN104104353B (en) 2013-04-01 2014-03-04 Vibrating device and electronic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013086934A JP5540249B1 (en) 2013-04-01 2013-04-01 Vibration device and electronic device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014075351A Division JP2014200788A (en) 2014-04-01 2014-04-01 Electronic apparatus

Publications (2)

Publication Number Publication Date
JP5540249B1 true JP5540249B1 (en) 2014-07-02
JP2014200783A JP2014200783A (en) 2014-10-27

Family

ID=51409458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013086934A Active JP5540249B1 (en) 2013-04-01 2013-04-01 Vibration device and electronic device

Country Status (2)

Country Link
JP (1) JP5540249B1 (en)
CN (3) CN104104353B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110869894A (en) * 2017-06-30 2020-03-06 日本电产三协株式会社 Input device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110891105B (en) * 2019-11-20 2021-09-24 Oppo广东移动通信有限公司 Vibration transmission device and electronic equipment

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0271298A (en) * 1988-09-06 1990-03-09 Seiko Electronic Components Ltd Oscillatory buzzer
JPH10145892A (en) * 1996-11-06 1998-05-29 Moritex Corp Supermagnetostrictive actuator and supermagnetostrictive speaker using the same
JPH1119589A (en) * 1997-06-30 1999-01-26 Alps Electric Co Ltd Vibration generating apparatus
JP2004050154A (en) * 2002-07-24 2004-02-19 Fdk Corp Vibration generating device
JP2005176121A (en) * 2003-12-12 2005-06-30 Tdk Corp Apparatus for converting direction of displacement of magnetostriction, and magnetostriction actuator and magnetostriction vibrating apparatus using the same
WO2005083874A1 (en) * 2004-03-02 2005-09-09 Piezoelectric Technology Co., Ltd. Small piezoelectric or electrostrictive linear motor
JP2008259345A (en) * 2007-04-06 2008-10-23 Shicoh Engineering Co Ltd Linear drive unit, lens drive unit, camera, and portable telephone with camera
JP2012240038A (en) * 2011-05-24 2012-12-10 Panasonic Corp Impact actuator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080096854A (en) * 2001-03-09 2008-11-03 임머숀 코퍼레이션 Haptic interface for laptop computers and other portable devices
KR100443638B1 (en) * 2004-03-02 2004-08-11 (주)피에조테크놀리지 small piezoelectric or electrostrictive linear motor
JP2011245437A (en) * 2010-05-28 2011-12-08 Nec Tokin Corp Vibration device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0271298A (en) * 1988-09-06 1990-03-09 Seiko Electronic Components Ltd Oscillatory buzzer
JPH10145892A (en) * 1996-11-06 1998-05-29 Moritex Corp Supermagnetostrictive actuator and supermagnetostrictive speaker using the same
JPH1119589A (en) * 1997-06-30 1999-01-26 Alps Electric Co Ltd Vibration generating apparatus
JP2004050154A (en) * 2002-07-24 2004-02-19 Fdk Corp Vibration generating device
JP2005176121A (en) * 2003-12-12 2005-06-30 Tdk Corp Apparatus for converting direction of displacement of magnetostriction, and magnetostriction actuator and magnetostriction vibrating apparatus using the same
WO2005083874A1 (en) * 2004-03-02 2005-09-09 Piezoelectric Technology Co., Ltd. Small piezoelectric or electrostrictive linear motor
JP2008259345A (en) * 2007-04-06 2008-10-23 Shicoh Engineering Co Ltd Linear drive unit, lens drive unit, camera, and portable telephone with camera
JP2012240038A (en) * 2011-05-24 2012-12-10 Panasonic Corp Impact actuator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110869894A (en) * 2017-06-30 2020-03-06 日本电产三协株式会社 Input device

Also Published As

Publication number Publication date
CN105743458A (en) 2016-07-06
JP2014200783A (en) 2014-10-27
CN104104353A (en) 2014-10-15
CN104104353B (en) 2016-01-06
CN105743458B (en) 2018-07-06
CN203883780U (en) 2014-10-15

Similar Documents

Publication Publication Date Title
JP6301412B2 (en) Haptic actuator, electronic device, and method for generating haptic feedback
JP2019220178A (en) Haptic actuator assembly with spring pre-load device
JP4144171B2 (en) Drive device using electro-mechanical transducer
JP6619532B1 (en) Tactile actuator assembly with magnetic preload device
KR20120078529A (en) Piezoelectric actuator
JP6155460B2 (en) Drive member, linear drive device, camera device, and electronic device
JP2013092513A (en) Method of generating 3d haptic feedback and handheld electronic device
KR20130030704A (en) Transducer and transducer module
JP6273434B2 (en) LINEAR DRIVE DEVICE, ELECTRONIC DEVICE USING LINEAR DRIVE DEVICE AND BODY
JP5540249B1 (en) Vibration device and electronic device
JP5572844B1 (en) Vibration device, electronic device using vibration device, and body-wearable product
US9800179B2 (en) Linear driving device, electronic device and human body fitting article both employing such linear driving device
JP2014200788A (en) Electronic apparatus
JP6330129B2 (en) LINEAR DRIVE DEVICE, ELECTRONIC DEVICE USING LINEAR DRIVE DEVICE AND BODY
JP2009296794A (en) Inertia-driven actuator
JP6155506B2 (en) Vibration device, electronic device using vibration device, and body-wearable product
KR20140073182A (en) Piezoelectric vibration module
KR20130045127A (en) Transducer module
WO2021131680A1 (en) Haptic presenting device
JP3892183B2 (en) Piezoelectric actuator
KR20150053644A (en) vibrator
KR20150059018A (en) vibrator

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140402

R150 Certificate of patent or registration of utility model

Ref document number: 5540249

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250