JP6155506B2 - Vibration device, electronic device using vibration device, and body-wearable product - Google Patents

Vibration device, electronic device using vibration device, and body-wearable product Download PDF

Info

Publication number
JP6155506B2
JP6155506B2 JP2014118295A JP2014118295A JP6155506B2 JP 6155506 B2 JP6155506 B2 JP 6155506B2 JP 2014118295 A JP2014118295 A JP 2014118295A JP 2014118295 A JP2014118295 A JP 2014118295A JP 6155506 B2 JP6155506 B2 JP 6155506B2
Authority
JP
Japan
Prior art keywords
drive shaft
vibration
vibration device
thin plate
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014118295A
Other languages
Japanese (ja)
Other versions
JP2015051425A (en
Inventor
純一 多田
純一 多田
裕貴 成島
裕貴 成島
義能 森
義能 森
Original Assignee
新シコー科技株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新シコー科技株式会社 filed Critical 新シコー科技株式会社
Priority to JP2014118295A priority Critical patent/JP6155506B2/en
Publication of JP2015051425A publication Critical patent/JP2015051425A/en
Application granted granted Critical
Publication of JP6155506B2 publication Critical patent/JP6155506B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Description

本発明は、タッチパネル等の入力機器等に用いられる振動装置、当該振動装置を用いた電子機器及び身体装着品に関する。   The present invention relates to a vibration device used for input devices such as a touch panel, an electronic device using the vibration device, and a body-worn item.

従来、表示装置にタッチパネル機能を組み込んだものや操作キーを用いた入力装置が導入されている。これらの中には、予め振動装置を内蔵しておき、操作者が指やペンで押圧して情報を入力したときに、振動を指やペンに返して確実に操作を行ったという感触を操作者に与えるものがある。このような振動装置として、例えば、特許文献1では、一端部を台座に固定した圧電アクチュエータと、圧電アクチュエータの他端部にダンパを介して錘と、を有するようにした。これにより振動装置の薄型化を実現することができた。   Conventionally, a display device incorporating a touch panel function and an input device using operation keys have been introduced. Among these, the vibration device is built in beforehand, and when the operator inputs information by pressing with a finger or a pen, the feeling that the vibration is returned to the finger or the pen and the operation is performed reliably is operated. There is something to give to the person. As such a vibration device, for example, in Patent Document 1, a piezoelectric actuator having one end fixed to a pedestal and a weight at the other end of the piezoelectric actuator via a damper are provided. As a result, the vibration device can be thinned.

特開2011−245437号公報JP 2011-245437 A

しかし、特許文献1の振動装置では、確かに厚さは薄くできたが、所定の振動を得るために数十mmという長さの錘が必要であり、平面視における小型化することは困難であった。   However, although the thickness of the vibration device of Patent Document 1 is certainly thin, a weight with a length of several tens of mm is necessary to obtain a predetermined vibration, and it is difficult to reduce the size in plan view. there were.

本発明は、上記従来の課題を解決するものであり、平面視における小型化を図ることができる振動装置、当該振動装置を用いた電子機器及び身体装着品を提供することを目的とする。   The present invention solves the above-described conventional problems, and an object thereof is to provide a vibration device that can be miniaturized in a plan view, an electronic device using the vibration device, and a body-worn product.

上記目的を達成するためにこの発明が提案するものは、
軸方向に微振動する駆動軸と、
前記駆動軸の一端に連結されていて前記駆動軸に前記微振動を生じさせる微振動発生部材と、
記駆動軸又は前記微振動発生部材の少なくとも一方を支持する筐体と、
前記駆動軸の前記微振動によって前記駆動軸の軸方向に移動可能に前記駆動軸と結合する錘部材と、を備え、
前記錘部材が前記駆動軸の軸方向に前記駆動軸上を往復移動することで前記筐体に振動を発生させる振動装置
である。
In order to achieve the above object, the present invention proposes
A drive shaft that vibrates slightly in the axial direction;
A fine vibration generating member connected to one end of the drive shaft and generating the fine vibration in the drive shaft;
A housing supporting at least one of the previous SL drive shaft or the micro-vibration generating member,
A weight member coupled to the drive shaft so as to be movable in the axial direction of the drive shaft by the fine vibration of the drive shaft;
The vibration device generates vibration in the housing by reciprocally moving the weight member on the drive shaft in the axial direction of the drive shaft.

更に、この発明が提案するものは、上述した振動装置を備えた電子機器、あるいは身体装着品である。   Furthermore, what this invention proposes is an electronic device provided with the vibration apparatus mentioned above, or a body-worn item.

これらの構成により、所期の目的が達成できる。   With these configurations, the intended purpose can be achieved.

本発明によれば、平面視における小型化を図ることができる振動装置、当該振動装置を用いた電子機器及び身体装着品を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the vibration device which can achieve size reduction in planar view, the electronic device using the said vibration device, and a body wearing article can be provided.

本発明の実施の形態1の振動装置の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the vibration apparatus of Embodiment 1 of this invention. 本発明の実施の形態1の振動装置の筐体の他の形状1を示す透視斜視図である。It is a see-through | perspective perspective view which shows the other shape 1 of the housing | casing of the vibration apparatus of Embodiment 1 of this invention. 本発明の実施の形態1の振動装置の筐体の他の形状2を示す透視斜視図である。It is a see-through | perspective perspective view which shows the other shape 2 of the housing | casing of the vibration apparatus of Embodiment 1 of this invention. 本発明の実施の形態2の振動装置の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the vibration apparatus of Embodiment 2 of this invention. (a)〜(f)は、本発明の実施の形態2の振動装置の筐体と微振動発生部材との形状関係の例を示す下方から見た図である。(A)-(f) is the figure seen from the lower part which shows the example of the shape relationship between the housing | casing of the vibration apparatus of Embodiment 2 of this invention, and a fine vibration generating member. 本発明の実施の形態3の錘部材の実施形態1を示す平面図である。It is a top view which shows Embodiment 1 of the weight member of Embodiment 3 of this invention. (a)本発明の実施の形態3の錘部材の実施形態2を示す一部を省略した縦断面図、(b)はその支持部の平面図である。(A) The longitudinal cross-sectional view which abbreviate | omitted one part which shows Embodiment 2 of the weight member of Embodiment 3 of this invention, (b) is a top view of the support part. 本発明の実施の形態3の錘部材の実施形態3を示す一部を省略した縦断面図である。It is the longitudinal cross-sectional view which abbreviate | omitted one part which shows Embodiment 3 of the weight member of Embodiment 3 of this invention. 本発明の実施の形態4の振動装置の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the vibration apparatus of Embodiment 4 of this invention.

以下、添付図面を参照して本発明の実施の形態を説明するが、本発明はかかる実施の形態に限定されるものではなく、特許請求の範囲の記載から把握される技術的範囲において種々に変更可能である。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. However, the present invention is not limited to the embodiments, and variously within the technical scope grasped from the description of the claims. It can be changed.

(実施の形態1)
本発明の実施の形態1における振動装置について、図面を参照しながら説明する。図面において、紙面の上方を上、下方を下として説明する。
(Embodiment 1)
The vibration device according to Embodiment 1 of the present invention will be described with reference to the drawings. In the drawings, description will be made with the upper side of the paper as the upper side and the lower side as the lower side.

図1に示す振動装置10は、表示装置にタッチパネル機能を組み込んだ電子機器や操作キーを用いた入力装置といった電子機器に用いられる。これらの電子機器本体の中には、予め振動装置10を内蔵しておき、操作者が指やペンで押圧して情報を入力したときに、振動を指やペンに返して確実に操作を行ったという感触を操作者に与えるものがある。   A vibration device 10 shown in FIG. 1 is used in an electronic device such as an electronic device in which a touch panel function is incorporated in a display device or an input device using operation keys. These electronic devices have a built-in vibration device 10 in advance, and when the operator inputs information by pressing it with a finger or pen, the vibration is returned to the finger or pen for reliable operation. There is something that gives the operator a feeling that

図1に示すように、本実施の形態1の振動装置10は、駆動軸22と、微振動発生部材20と、筐体12と、錘部材24とを備えている。   As shown in FIG. 1, the vibration device 10 according to the first embodiment includes a drive shaft 22, a minute vibration generating member 20, a housing 12, and a weight member 24.

駆動軸22は軸方向に微振動する。この軸方向の微振動は、往復非対称の微振動である。   The drive shaft 22 slightly vibrates in the axial direction. This fine vibration in the axial direction is a reciprocating asymmetrical fine vibration.

なお、本発明において、往復非対称の微振動とは、軸方向の一方及び、これに対向する他方に向かう軸方向の往復運動において、一方に向かう移動速度と、他方に向かう移動速度とが異なっている微小振幅の振動のことをいう。   In the present invention, the reciprocating asymmetrical micro-vibration means that the moving speed toward one and the moving speed toward the other are different in the axial reciprocation toward one side in the axial direction and the other facing the other. It means a small amplitude vibration.

駆動軸22の一端は微振動発生部材20に連結されている。微振動発生部材20が駆動軸22に対して前述した軸方向に往復非対称な微振動を発生させる。   One end of the drive shaft 22 is connected to the fine vibration generating member 20. The fine vibration generating member 20 generates the fine vibration that is reciprocally asymmetric with respect to the drive shaft 22 in the axial direction described above.

筐体12は駆動軸22が軸方向に微振動自在となるように駆動軸22又は微振動発生部材20の少なくとも一方を支持するものである。図示の実施形態では、筐体12は、駆動軸22が軸方向に微振動自在となるように駆動軸22を支持している。   The housing 12 supports at least one of the drive shaft 22 and the fine vibration generating member 20 so that the drive shaft 22 can freely vibrate in the axial direction. In the illustrated embodiment, the housing 12 supports the drive shaft 22 so that the drive shaft 22 can be slightly vibrated in the axial direction.

なお、図1の実施形態では、駆動軸22の下端が微振動発生部材20に連結され、微振動発生部材20は駆動軸22を介してのみ筐体12に支持されている構造になっている。   In the embodiment of FIG. 1, the lower end of the drive shaft 22 is connected to the fine vibration generating member 20, and the fine vibration generating member 20 is supported by the housing 12 only via the drive shaft 22. .

錘部材24は、駆動軸22の往復非対称の微振動によって駆動軸22の軸方向に移動可能に駆動軸22と結合しており、駆動軸22の軸方向に駆動軸22上を往復移動する。   The weight member 24 is coupled to the drive shaft 22 so as to be movable in the axial direction of the drive shaft 22 by reciprocal asymmetrical fine vibration of the drive shaft 22, and reciprocates on the drive shaft 22 in the axial direction of the drive shaft 22.

錘部材24が駆動軸22の軸方向に駆動軸22上を往復移動して重心が往復移動することで筐体12に振動を発生させるものである。   The weight member 24 reciprocates on the drive shaft 22 in the axial direction of the drive shaft 22 and the center of gravity reciprocates to generate vibration in the housing 12.

筐体12は、振動を伝達しやすいように金属や合金等の材料で形成することができる。   The housing 12 can be formed of a material such as a metal or an alloy so that vibration can be easily transmitted.

後述するように、所定の駆動電圧を微振動発生部材20に印加すると、駆動軸22が軸方向に往復非対称に微振動する。この微振動の1ストローク毎に錘部材24が図1中で上昇する方向または、下降する方向へ微小移動する。これを高速で繰り返すことにより錘部材24は上昇する方向又は下降する方向へ高速度で移動する。こうして、錘部材24が駆動軸22の軸方向に駆動軸22上を往復移動して重心が往復移動することで筐体12に振動が発生する。   As will be described later, when a predetermined drive voltage is applied to the minute vibration generating member 20, the drive shaft 22 slightly vibrates in a reciprocating asymmetric manner in the axial direction. The weight member 24 slightly moves in the ascending direction or the descending direction in FIG. 1 for each stroke of the minute vibration. By repeating this at a high speed, the weight member 24 moves at a high speed in the ascending direction or the descending direction. In this way, the weight member 24 reciprocates on the drive shaft 22 in the axial direction of the drive shaft 22 and the center of gravity reciprocates, thereby generating vibration in the housing 12.

この振動が前記の電子機器本体に伝達され、さらに操作者に伝わることで、確実に操作を行ったという感触を操作者に与えることができる。   This vibration is transmitted to the electronic device main body and further transmitted to the operator, so that the operator can feel that the operation has been performed reliably.

すなわち、錘部材を大きくしなくても大きな振動を得ることができ、平面視における振動装置10の小型化を図れるという効果が得られる。   That is, a large vibration can be obtained without increasing the weight member, and the effect that the vibration device 10 in a plan view can be reduced in size can be obtained.

振動装置10は、平面視で、数mm角〜1cm角×数mm高さという大きさで構成することができる。そして、錘部材24を大きくしなくても大きな振動を得ることができる。そのため平面視における振動装置10の小型化を図れるという効果が得られる。   The vibration device 10 can be configured to have a size of several mm square to 1 cm square × several mm height in plan view. And even if the weight member 24 is not enlarged, a large vibration can be obtained. Therefore, the effect that the vibration device 10 in a plan view can be reduced in size is obtained.

以下、本実施の形態1の振動装置10の構成を詳細に説明する。   Hereinafter, the configuration of the vibration device 10 according to the first embodiment will be described in detail.

筐体の上壁12bには貫通孔12dが、下壁12cには貫通孔12eが形成されている。貫通孔12d、12eにはブッシュ28、28を介して駆動軸22が挿入される。   A through hole 12d is formed in the upper wall 12b of the housing, and a through hole 12e is formed in the lower wall 12c. The drive shaft 22 is inserted into the through holes 12d and 12e via bushes 28 and 28.

そのため、貫通孔12d、12eの中心を結ぶ線は上壁12b及び下壁12cと垂直になるように設けられる。   Therefore, a line connecting the centers of the through holes 12d and 12e is provided so as to be perpendicular to the upper wall 12b and the lower wall 12c.

錘部材24を移動させる駆動部材14は、微振動発生部材20と駆動軸22とで構成される。   The drive member 14 that moves the weight member 24 includes a fine vibration generating member 20 and a drive shaft 22.

微振動発生部材20は、弾性薄板18と、弾性薄板18の少なくとも一面に配置した伸縮薄板16とを備えている薄板からなる。伸縮薄板16に駆動電圧を印加することで伸縮薄板16が伸縮して伸縮薄板16の中央部と周縁部とが弾性薄板18の法線方向に相対変位することによって微振動発生部材20がおわん型に変形する。   The fine vibration generating member 20 is formed of a thin plate including an elastic thin plate 18 and a stretchable thin plate 16 disposed on at least one surface of the elastic thin plate 18. By applying a driving voltage to the stretchable thin plate 16, the stretchable thin plate 16 expands and contracts, and the central portion and the peripheral portion of the stretchable thin plate 16 are relatively displaced in the normal direction of the elastic thin plate 18, whereby the microvibration generating member 20 is a bowl shape. Transforms into

本実施の形態1において、微振動発生部材20は、伸縮薄板16を弾性薄板18の一面に配置した、いわゆるユニモルフ型とした。   In the first embodiment, the fine vibration generating member 20 is a so-called unimorph type in which the elastic thin plate 16 is disposed on one surface of the elastic thin plate 18.

伸縮薄板16は両面に電極材料を付着させた圧電材料、電歪材料で構成される。電極材料としては、例えば、銅や銅合金等が用いられる。圧電材料、電歪材料としては、例えば、チタン酸ジルコン酸鉛、チタン酸バリウム、鉛ニオブ酸マグネシウム等がある。伸縮薄板16は円形状や多角形状に形成される。   The stretchable thin plate 16 is composed of a piezoelectric material or an electrostrictive material in which electrode materials are attached to both surfaces. For example, copper or a copper alloy is used as the electrode material. Examples of piezoelectric materials and electrostrictive materials include lead zirconate titanate, barium titanate, lead magnesium niobate, and the like. The stretchable thin plate 16 is formed in a circular shape or a polygonal shape.

弾性薄板18は、例えば、銅や銅合金等の弾性材料が用いられる。弾性薄板18は、図1に示すような伸縮薄板16を弾性薄板18の片面に設ける場合は、伸縮薄板16に対応した外形を持つことが好ましいが、対応させなくても構わない。   For the elastic thin plate 18, for example, an elastic material such as copper or copper alloy is used. The elastic thin plate 18 preferably has an outer shape corresponding to the elastic thin plate 16 when the elastic thin plate 16 as shown in FIG. 1 is provided on one side of the elastic thin plate 18, but it does not need to correspond.

伸縮薄板16は弾性薄板18に、例えば、導電性接着剤で固着され、微振動発生部材20の両面の各々に伸縮薄板16に電圧を印加するための配線が設けられる。配線は駆動制御部30に接続される。   The elastic thin plate 16 is fixed to the elastic thin plate 18 with, for example, a conductive adhesive, and wiring for applying a voltage to the elastic thin plate 16 is provided on each of both surfaces of the fine vibration generating member 20. The wiring is connected to the drive control unit 30.

微振動発生部材20が薄板なので、振動装置10自体も厚みを薄くできる。   Since the fine vibration generating member 20 is a thin plate, the vibration device 10 itself can also be reduced in thickness.

駆動軸22は軽量で剛性が高い例えば炭素系の材料が用いられ、柱状に形成される。   The drive shaft 22 is made of, for example, a carbon-based material that is lightweight and has high rigidity, and is formed in a column shape.

駆動軸22は、その一端が微振動発生部材20に連結される。図示の実施形態では、駆動軸22の軸先端部が微振動発生部材20の中心軸に固定されている。固定する形態としては、例えば、軸先端部の先端面を微振動発生部材20の表面に接着剤で固定することができる。   One end of the drive shaft 22 is connected to the fine vibration generating member 20. In the illustrated embodiment, the shaft tip of the drive shaft 22 is fixed to the central shaft of the fine vibration generating member 20. As a form to fix, the front end surface of a shaft front-end | tip part can be fixed to the surface of the fine vibration generating member 20 with an adhesive agent, for example.

本実施の形態1において、駆動軸22の軸先端部は軸中央部と同じ太さとしたが、軸先端部を軸中央部よりも小径としても良い。   In the first embodiment, the shaft tip portion of the drive shaft 22 has the same thickness as the shaft center portion, but the shaft tip portion may have a smaller diameter than the shaft center portion.

なお、駆動軸22の軸先端部を微振動発生部材20に固定する構造に替えて、微振動発生部材20に貫通孔を設け、軸先端部の側面部を固定する構成としても良い。   Instead of the structure in which the shaft tip of the drive shaft 22 is fixed to the fine vibration generating member 20, a configuration may be adopted in which a through hole is provided in the fine vibration generating member 20 and the side surface of the shaft tip is fixed.

上述したように、駆動軸22はブッシュ28を介して、微振動自在に、筐体12に支持される。   As described above, the drive shaft 22 is supported by the housing 12 through the bush 28 so as to be able to slightly vibrate.

ブッシュ28は、駆動軸22を支持するためのゴム等の弾性部材であり、駆動軸22を挿通するための中心孔を有している。   The bush 28 is an elastic member such as rubber for supporting the drive shaft 22, and has a central hole for inserting the drive shaft 22.

貫通孔12dに配置されるブッシュ28は、微振動発生部材20に固定した側と反対側の駆動軸22の先端部を中心孔の内面で接着固定する。   The bush 28 disposed in the through hole 12d adheres and fixes the tip of the drive shaft 22 opposite to the side fixed to the fine vibration generating member 20 on the inner surface of the center hole.

一方、貫通孔12eに配置されるブッシュ28は、中心孔の内面で駆動軸22を接着固定せずに、外側から加圧支持するのみである。   On the other hand, the bush 28 disposed in the through-hole 12e does not fix the drive shaft 22 on the inner surface of the center hole, but only supports the pressure from the outside.

この構成により、駆動軸22は軸方向に微振動するが、その微振動によって駆動軸22自身が錘部材24のように長い距離を移動することはない。   With this configuration, the drive shaft 22 slightly vibrates in the axial direction, but the drive shaft 22 itself does not move over a long distance like the weight member 24 due to the slight vibration.

錘部材24は、駆動軸22の軸方向に駆動軸22上を往復移動することで筐体12に振動を発生させる。錘部材24は、このようにして筐体12に振動エネルギーを与えるので、比較的大きな質量を有することが望ましい。   The weight member 24 reciprocates on the drive shaft 22 in the axial direction of the drive shaft 22 to generate vibration in the housing 12. Since the weight member 24 gives vibration energy to the housing 12 in this manner, it is desirable that the weight member 24 has a relatively large mass.

そこで、錘部材24には、例えば、タングステン合金のような密度が大きい材料が使われる。筐体12により大きな振動エネルギーを与え、なおかつ、振動装置10を小型化する上で、密度が大きい材料が望ましいからである。   Therefore, a material having a high density such as a tungsten alloy is used for the weight member 24, for example. This is because a material having a high density is desirable in order to give large vibration energy to the housing 12 and to reduce the size of the vibration device 10.

錘部材24は、平面視で、円形状や多角形状の外形を持つ。   The weight member 24 has a circular or polygonal outer shape in plan view.

上述したように、錘部材24は、駆動軸22の往復非対称の微振動によって駆動軸22の軸方向に移動可能に駆動軸22と結合している。この結合には、例えば、摩擦結合による結合が採用される。   As described above, the weight member 24 is coupled to the drive shaft 22 so as to be movable in the axial direction of the drive shaft 22 by a reciprocating asymmetrical fine vibration of the drive shaft 22. For this connection, for example, a connection by frictional connection is employed.

図示の実施形態では、錘部材24は、中央に駆動軸22が挿通する貫通孔24aを有する。   In the illustrated embodiment, the weight member 24 has a through hole 24a through which the drive shaft 22 is inserted at the center.

貫通孔24aと駆動軸22との隙間は、熱収縮した熱収縮性樹脂25が充填されて、熱収縮性樹脂25の熱収縮力で錘部材24が駆動軸22に結合されている。こうして、錘部材24と駆動軸22とは摩擦結合によって結合されている。ここでは、熱収縮性樹脂25の熱収縮力が、駆動軸22を外側から加圧する摩擦力となっている。   The gap between the through hole 24 a and the drive shaft 22 is filled with a heat-shrinkable heat-shrinkable resin 25, and the weight member 24 is coupled to the drive shaft 22 by the heat-shrink force of the heat-shrinkable resin 25. Thus, the weight member 24 and the drive shaft 22 are coupled by frictional coupling. Here, the heat shrinkage force of the heat shrinkable resin 25 is a friction force that pressurizes the drive shaft 22 from the outside.

貫通孔24aと駆動軸22との隙間に充填される熱収縮性樹脂25の熱収縮力を利用した上述の摩擦結合を用いると構造が簡単で、部品点数を減らすことができる。また、駆動軸22の周囲全体を均一な構造にできるので、錘部材24の中央に駆動軸22を配置することができ、対称な形状に仕上げることができる。   If the above-described frictional coupling using the heat shrinkage force of the heat shrinkable resin 25 filled in the gap between the through hole 24a and the drive shaft 22 is used, the structure is simple and the number of parts can be reduced. Further, since the entire periphery of the drive shaft 22 can be made uniform, the drive shaft 22 can be arranged in the center of the weight member 24, and can be finished in a symmetrical shape.

駆動制御部30は、伸縮薄板16に所定波形の駆動電圧を印加する。駆動電圧波形は数十kHz程度の周波数の矩形波、鋸歯状波、立ち上がり時間と立ち下がり時間が異なる三角波等である。   The drive control unit 30 applies a drive voltage having a predetermined waveform to the stretchable thin plate 16. The drive voltage waveform is a rectangular wave having a frequency of about several tens of kHz, a sawtooth wave, a triangular wave having a different rise time and fall time, or the like.

こうして、駆動軸22に往復非対称の微振動を発生させ、錘部材24を駆動軸22の軸方向に駆動軸22上で高速に微小移動を繰り返させ、筐体12の上壁12bや、下壁12cの方向に移動させる。   In this way, a reciprocating asymmetrical micro vibration is generated on the drive shaft 22, and the weight member 24 is repeatedly finely moved on the drive shaft 22 in the axial direction of the drive shaft 22. Move in the direction of 12c.

次に本実施の形態1の振動装置10の製造方法について説明する。   Next, a method for manufacturing the vibration device 10 according to the first embodiment will be described.

まず、弾性薄板18に、電極を両面に形成した伸縮薄板16を導電性接着剤等で固着して微振動発生部材20を製造する。   First, the stretchable thin plate 16 having electrodes formed on both sides thereof is fixed to the elastic thin plate 18 with a conductive adhesive or the like to manufacture the fine vibration generating member 20.

次に微振動発生部材20に駆動軸22を固定して駆動部材14とする。   Next, the drive shaft 22 is fixed to the fine vibration generating member 20 to obtain the drive member 14.

次に駆動軸22を筐体12の貫通孔12e、錘部材24の貫通孔24a、筐体12の貫通孔12dに挿通し、ブッシュ28で支持させるとともに、熱収縮性樹脂25で錘部材24を駆動軸22に摩擦結合させる。   Next, the drive shaft 22 is inserted into the through hole 12e of the housing 12, the through hole 24a of the weight member 24, and the through hole 12d of the housing 12, and supported by the bush 28, and the weight member 24 is supported by the heat shrinkable resin 25. The drive shaft 22 is frictionally coupled.

また、微振動発生部材20の両面から配線を設けて駆動制御部30と接続する。   In addition, wiring is provided from both surfaces of the fine vibration generating member 20 and connected to the drive control unit 30.

次に本実施の形態1の振動装置10の動作について説明する。   Next, the operation of the vibration device 10 according to the first embodiment will be described.

駆動電圧が立ち上がると伸縮薄板16は厚さ方向が伸び、面内方向が縮むが、弾性薄板18はそのような伸縮はしない。そこで、微振動発生部材20は中央部が上方へ変位し周縁部が下方へ変位するように変形する。   When the drive voltage rises, the stretchable thin plate 16 extends in the thickness direction and shrinks in the in-plane direction, but the elastic thin plate 18 does not expand and contract. Therefore, the fine vibration generating member 20 is deformed so that the central portion is displaced upward and the peripheral portion is displaced downward.

微振動発生部材20の中央部に一端が固定されている駆動軸22も上方へ移動し、駆動軸22に結合している錘部材24も上方へ移動する。   The drive shaft 22 having one end fixed to the center of the fine vibration generating member 20 also moves upward, and the weight member 24 coupled to the drive shaft 22 also moves upward.

駆動電圧が所定の電圧Vdに達すると、駆動電圧は急激に立ち下がり、微振動発生部材20の変形も急激に元に戻る。   When the drive voltage reaches the predetermined voltage Vd, the drive voltage rapidly falls, and the deformation of the microvibration generating member 20 also rapidly returns.

それに伴い駆動軸22も元の位置に戻るが、錘部材24は、駆動軸22の下方への急激な移動には追随できず、その位置に留まる。   Accordingly, the drive shaft 22 also returns to the original position, but the weight member 24 cannot follow the rapid downward movement of the drive shaft 22 and remains in that position.

結果として、錘部材24はわずかに上方へ移動する。   As a result, the weight member 24 moves slightly upward.

駆動軸22のこの往復非対称な軸方向の移動によって、錘部材24は1往復当たり上方へ1〜数μm移動する。   Due to this reciprocating asymmetric axial movement of the drive shaft 22, the weight member 24 moves upward by 1 to several μm per reciprocation.

前述のようにこの動作を数十kHzの周波数で繰り返す。   As described above, this operation is repeated at a frequency of several tens of kHz.

また、錘部材24を下方へ移動させるときは、駆動軸22の往復非対称な軸方向の移動が上下逆になるように駆動電圧波形を変える。このようにして、錘部材24は、駆動軸22の軸方向に駆動軸22上を往復移動する。   When the weight member 24 is moved downward, the drive voltage waveform is changed so that the reciprocating asymmetric axial movement of the drive shaft 22 is upside down. In this way, the weight member 24 reciprocates on the drive shaft 22 in the axial direction of the drive shaft 22.

このように本実施の形態1の振動装置10は、錘部材24を大きくしなくても大きな振動を得ることができ、平面視における振動装置10の小型化を図れるという効果が得られる。   As described above, the vibration device 10 according to the first embodiment can obtain a large vibration without increasing the weight member 24, and the effect that the vibration device 10 can be reduced in size in plan view is obtained.

この実施の形態では、上述したように、微振動発生部材20は駆動軸22を介してのみ筐体12に支持されている。   In this embodiment, as described above, the fine vibration generating member 20 is supported by the housing 12 only via the drive shaft 22.

このため、微振動発生部材20の微振動が筐体12のような他の部材に吸収されること無く駆動軸22に伝達される。これにより駆動軸22の微振動量を大きくできる。   For this reason, the minute vibration of the minute vibration generating member 20 is transmitted to the drive shaft 22 without being absorbed by other members such as the housing 12. Thereby, the amount of fine vibrations of the drive shaft 22 can be increased.

なお、実施の形態1における筐体12は、一枚の板を折り曲げて形成することができる。その際、貫通孔12d、12eは予め設けておいても良いし、筐体12の形状を形成した後で設けても良い。しかし、筐体12は他の形状に形成することができる。   Note that the housing 12 in Embodiment 1 can be formed by bending a single plate. At this time, the through holes 12d and 12e may be provided in advance, or may be provided after the shape of the housing 12 is formed. However, the housing 12 can be formed in other shapes.

例えば、図2に示すように筐体12を底部が無い箱型に形成し、一つの側壁12aを切り開き、上壁12bと平行になるように折り曲げて下壁12cとしても良い。また、別途貫通孔12d、12eを設ける。   For example, as shown in FIG. 2, the casing 12 may be formed in a box shape having no bottom, and one side wall 12a may be cut open and bent to be parallel to the upper wall 12b to form the lower wall 12c. Separate through holes 12d and 12e are provided.

このような形状にすると、筐体12の剛性を図1を用いて説明してきた筐体12よりも大きくすることができるので、振動装置10から電子機器に伝達される振動を大きくすることができる。   With such a shape, the rigidity of the housing 12 can be made larger than that of the housing 12 described with reference to FIG. 1, so that vibration transmitted from the vibration device 10 to the electronic device can be increased. .

その際、破線で示すように不要な部分は切り欠いて開口12fとすることが好ましい。振動装置10を軽量にすることができるとともに筐体12内に錘部材24等の部品を容易に収容できるので組み立てしやすい。   At that time, it is preferable to cut away unnecessary portions as shown by broken lines to form openings 12f. Since the vibration device 10 can be reduced in weight and components such as the weight member 24 can be easily accommodated in the housing 12, it is easy to assemble.

また、例えば、図3に示すように筐体12を図2と同様な箱型とし、対向する側壁12aを切り開き、それぞれを上壁12bと平行になるように折り曲げて下壁12cとしても良い。その際、それぞれの下壁12cは切り開く前の下端部同士がほぼ突き当たるようにする。また、それぞれの下壁12cの切り開く前の下端部を切り欠いておき折り曲げた際に貫通孔12eとなるようにしても良い。貫通孔12dは別途形成する。   Further, for example, as shown in FIG. 3, the housing 12 may have a box shape similar to that in FIG. 2, the opposing side walls 12a may be cut open, and each may be bent to be parallel to the upper wall 12b to form the lower wall 12c. At that time, the lower walls 12c of the respective lower walls 12c are made to substantially come into contact with each other before being opened. Alternatively, the lower wall 12c of each lower wall 12c before opening may be cut out and bent to form the through hole 12e. The through hole 12d is formed separately.

また図2と同様に開口12fを設けることが好ましい。箱型を製造する際に側壁12aの端部を切り欠いておき、折り曲げると貫通孔12eも同時にできるので製造が容易である。   Further, it is preferable to provide an opening 12f as in FIG. When the box shape is manufactured, the end of the side wall 12a is cut out and bent, so that the through hole 12e can be formed at the same time, so that the manufacturing is easy.

(実施の形態2)
次に、本発明の実施の形態2における振動装置について図面を参照しながら説明する。なお、実施の形態1と同様の構成を有する部分については、同一符号を付してその説明を省略する。
(Embodiment 2)
Next, a vibration device according to Embodiment 2 of the present invention will be described with reference to the drawings. In addition, about the part which has the structure similar to Embodiment 1, the same code | symbol is attached | subjected and the description is abbreviate | omitted.

図4に示すように、本実施の形態2の振動装置10において、微振動発生部材20は周縁部が点で周方向に等間隔に筐体12に固定されている。   As shown in FIG. 4, in the vibration device 10 according to the second embodiment, the fine vibration generating member 20 is fixed to the housing 12 at equal intervals in the circumferential direction at the peripheral edge.

筐体12は底部が無い箱型をしており、上壁12bにブッシュ28を配置して駆動軸22を微振動自在に支持する貫通孔12dが形成されている。   The casing 12 has a box shape without a bottom portion, and a through hole 12d that supports the drive shaft 22 so as to be able to vibrate finely by arranging a bush 28 on the upper wall 12b is formed.

また、側壁12aの下端部12gは外周側の縁よりも内周側の縁の方を一段上方に設け、微振動発生部材20の固定部12hとした。   Further, the lower end portion 12g of the side wall 12a is provided with the inner peripheral edge one step higher than the outer peripheral edge, and serves as a fixing portion 12h of the fine vibration generating member 20.

微振動発生部材20は周縁部20aを筐体12の固定部12hに点(小面積)で固定した。   The fine vibration generating member 20 has a peripheral edge portion 20a fixed to a fixing portion 12h of the housing 12 at a point (small area).

本実施の形態2においては、図5(a)に示すように筐体12が下方向から見て四角形とし、微振動発生部材20は筐体12の固定部12hに周縁部20aの四箇所がわずかに載るような円形状とした。   In the second embodiment, as shown in FIG. 5A, the casing 12 is rectangular when viewed from below, and the micro-vibration generating member 20 has four portions of the peripheral edge 20a on the fixed portion 12h of the casing 12. It was a circular shape that could be placed slightly.

また、図4に示すように周縁部20aは弾性薄板18の方を伸縮薄板16よりも外周側に張り出させて形成し、弾性薄板18を上側、伸縮薄板16を下側として筐体12の固定部12hに取付けた。   Further, as shown in FIG. 4, the peripheral edge portion 20a is formed by protruding the elastic thin plate 18 toward the outer peripheral side of the elastic thin plate 16, and the elastic thin plate 18 is on the upper side and the elastic thin plate 16 is on the lower side. It was attached to the fixed part 12h.

このように伸縮薄板16、弾性薄板18のうち、筐体12の固定部12hに固定する方を外側に張り出させて周縁部20aとし上側に配置することにより、電気配線を容易にすることができる。   Thus, by extending the outer side of the stretchable thin plate 16 and the elastic thin plate 18 fixed to the fixing portion 12h of the housing 12 to the outer side as the peripheral portion 20a, electrical wiring can be facilitated. it can.

微振動発生部材20が直接筐体12に固定されるので、駆動部材14の安定した駆動が得られる。また、周縁部20aの全体ではなく点で固定されているので、微振動発生部材20の発生する微振動が筐体12に吸収されたり、変形が阻害されたりする量は大きくなく、駆動部材14の駆動能力は大きい。また、実施の形態1よりも重い錘部材24を移動させることができる。   Since the fine vibration generating member 20 is directly fixed to the housing 12, the driving member 14 can be driven stably. Further, since the peripheral portion 20a is fixed not at the whole but at a point, the amount by which the fine vibration generated by the fine vibration generating member 20 is absorbed by the housing 12 or the deformation is hindered is not large. The driving ability is large. Further, the weight member 24 heavier than that of the first embodiment can be moved.

また、図4に示すように、固定部12hの段差を微振動発生部材20の厚さよりも深くすることにより、微振動発生部材20は筐体12の下端部12gからはみ出さずに筐体12に囲まれる。そこで、振動装置10の組立中、組立後に微振動発生部材20は外部からの力によって破壊されにくい。   Further, as shown in FIG. 4, by making the step of the fixing portion 12 h deeper than the thickness of the fine vibration generating member 20, the fine vibration generating member 20 does not protrude from the lower end portion 12 g of the housing 12. Surrounded by Therefore, during the assembly of the vibration device 10, the fine vibration generating member 20 is not easily broken by an external force after the assembly.

また、微振動発生部材20の周縁部20aに近い領域の質量が大きいので、微振動発生部材20の発生する駆動能力を大きくすることができる。   Moreover, since the mass of the area | region near the peripheral part 20a of the fine vibration generation member 20 is large, the drive capability which the fine vibration generation member 20 generate | occur | produces can be enlarged.

なお、本実施の形態2の振動装置10の筐体12と微振動発生部材20の形状の組合せは上述以外にもある。   There are other combinations of the shapes of the casing 12 and the fine vibration generating member 20 of the vibration device 10 of the second embodiment.

例えば、図5(b)は図5(a)とは逆に筐体12が円形状、微振動発生部材20が四角形である。   For example, in FIG. 5B, the housing 12 has a circular shape and the minute vibration generating member 20 has a quadrangular shape, contrary to FIG. 5A.

図5(c)は筐体12も微振動発生部材20も四角形である。この場合、微振動発生部材20の四角形の角部の周縁部20aが筐体12の四角形の辺部の固定部12hに載置される。   In FIG. 5C, both the housing 12 and the minute vibration generating member 20 are square. In this case, the peripheral edge 20 a of the square corner of the fine vibration generating member 20 is placed on the fixed part 12 h of the square side of the housing 12.

図5(d)は筐体12が八角形で微振動部材20が四角形である。   In FIG. 5D, the casing 12 is octagonal and the fine vibration member 20 is quadrangular.

この形状は図5(c)の四角形の筐体12の角部が面取りされた形状と考えても良い。したがって、筐体12は八角形でなくて角丸四角形としても良い。   This shape may be considered as a shape in which the corners of the rectangular casing 12 in FIG. Therefore, the housing 12 may not be an octagon but a rounded rectangle.

図5(e)は図5(d)の微振動発生部材20の形状が円形状としたものである。   FIG. 5E shows a case where the fine vibration generating member 20 in FIG. 5D has a circular shape.

図5(f)は微振動発生部材20が円形状や四角形ではなく、六角形状としたものである。このような形状でも構わない。   FIG. 5 (f) shows a case where the fine vibration generating member 20 has a hexagonal shape instead of a circular shape or a rectangular shape. Such a shape may be used.

このように筐体12と微振動発生部材20の形状は多様な形状を組合せることができる。   As described above, the housing 12 and the fine vibration generating member 20 can be combined in various shapes.

また、図4では示していないが、筐体12の側壁12aには、図2や図3で示したような開口12fを設けても良い。   Although not shown in FIG. 4, the side wall 12a of the housing 12 may be provided with an opening 12f as shown in FIGS.

また、本実施の形態2の筐体12の形状は箱型としたが、実施の形態1等と同様に一枚の板を折り曲げて形成しても良い。   In addition, although the shape of the housing 12 of the second embodiment is a box shape, it may be formed by bending a single plate as in the first embodiment.

本発明の実施の形態2によれば、振動装置10を構成する筐体12内で錘部材24が大きく振動する。これにより振動装置10を構成する筐体12に大きな振動を発生させることができる。   According to the second embodiment of the present invention, the weight member 24 vibrates greatly in the housing 12 constituting the vibration device 10. As a result, a large vibration can be generated in the casing 12 constituting the vibration device 10.

筐体12に発生した振動は振動装置10を備えた電子機器本体に伝達される。   The vibration generated in the housing 12 is transmitted to the electronic device main body including the vibration device 10.

そこで、錘部材12を大きくしなくても大きな振動を得ることができ、平面視における振動装置10の小型化を図れる。   Therefore, a large vibration can be obtained without increasing the weight member 12, and the vibration device 10 in a plan view can be reduced in size.

(実施の形態3)
実施の形態1、2で説明した錘部材24の他の実施の形態について図6〜図8を参照して説明する。
(Embodiment 3)
Another embodiment of the weight member 24 described in the first and second embodiments will be described with reference to FIGS.

錘部材以外については、実施の形態1、2で説明したものと同一であるので説明を省略する。   Since the components other than the weight member are the same as those described in the first and second embodiments, description thereof will be omitted.

(錘部材の他の実施形態1)
図6を参照して本発明の実施の形態3における錘部材の実施形態1について説明する。
(Other embodiment 1 of weight member)
With reference to FIG. 6, Embodiment 1 of the weight member in Embodiment 3 of this invention is demonstrated.

図6図示の錘部材24は、駆動軸22に対して移動可能に結合されている環状の支持部40と、支持部40とは別体で構成された環状の錘部41と、支持部40と錘部41とを連結する第一スプリング42とで構成されている。すなわち、支持部40と、駆動軸22を中心とする半径方向で、支持部40の外側に、支持部40とは離れて、別体で形成されている錘部41とが第一スプリング42で連結されている。つまり、錘部41は駆動軸22とともに支持部40を収容する貫通孔を有しており、駆動軸22と直交する方向から見て、支持部40と錘部41とは重なっている。   The weight member 24 illustrated in FIG. 6 includes an annular support portion 40 that is movably coupled to the drive shaft 22, an annular weight portion 41 that is configured separately from the support portion 40, and a support portion 40. And a first spring 42 that connects the weight portion 41. That is, the first spring 42 includes a support portion 40 and a weight portion 41 formed separately from the support portion 40 outside the support portion 40 in the radial direction centered on the drive shaft 22. It is connected. That is, the weight portion 41 has a through hole that accommodates the support portion 40 together with the drive shaft 22, and the support portion 40 and the weight portion 41 overlap each other when viewed from a direction orthogonal to the drive shaft 22.

環状の支持部40の駆動軸22に対する結合は、実施の形態1で説明したものと同様の摩擦結合によるものにすることができる。支持部40は中央に駆動軸22が挿通する貫通孔を備えておりこの貫通孔と駆動軸22との隙間に、熱収縮した熱収縮性樹脂25が充填されている。熱収縮性樹脂25の熱収縮力で錘部材24の支持部40が駆動軸22に結合されている。   The coupling of the annular support portion 40 to the drive shaft 22 can be performed by the same frictional coupling as described in the first embodiment. The support portion 40 has a through hole through which the drive shaft 22 is inserted at the center, and a gap between the through hole and the drive shaft 22 is filled with the heat-shrinkable resin 25 that is thermally contracted. The support portion 40 of the weight member 24 is coupled to the drive shaft 22 by the heat shrinkage force of the heat shrinkable resin 25.

第一スプリング42としては板バネを使用することができる。   A plate spring can be used as the first spring 42.

第一スプリング42は、環状の支持部40の上側面に固定される第一被固定部43と、錘部41に固定される第二被固定部44と、第一被固定部43と第二被固定部44とを弾性的に連結する第一腕部45を備えている。   The first spring 42 includes a first fixed portion 43 fixed to the upper side surface of the annular support portion 40, a second fixed portion 44 fixed to the weight portion 41, the first fixed portion 43, and the second fixed portion 43. A first arm portion 45 that elastically connects the fixed portion 44 is provided.

図11図示の実施形態では、第一腕部45は、腕部45a、腕部45b、腕部45cという複数の腕部によって構成されている。   In the embodiment illustrated in FIG. 11, the first arm portion 45 includes a plurality of arm portions, that is, an arm portion 45a, an arm portion 45b, and an arm portion 45c.

また、図示の実施形態では、第一腕部45を構成する複数の腕部45a、45b、45cのそれぞれは、複数の円周方向部46a、46b、46cと、複数の半径方向部47a、47b、47c、47dとを備えている。円周方向部46a、46b、46cは、駆動軸22を中心として円周方向に伸びている。半径方向部47aは駆動軸22を中心とする半径方向に伸びて、第二被固定部44と、最外周の円周方向部46aとを連結している。半径方向部47b、47cは、複数の円周方向部46a、46b、46cの中の半径方向で隣り合う円周方向部を半径方向で結んでいる。半径方向部47dは半径方向に伸びて、第一被固定部43と、最内周の円周方向部46cとを連結している。   In the illustrated embodiment, each of the plurality of arm portions 45a, 45b, 45c constituting the first arm portion 45 includes a plurality of circumferential direction portions 46a, 46b, 46c and a plurality of radial direction portions 47a, 47b. , 47c, 47d. The circumferential direction portions 46 a, 46 b, 46 c extend in the circumferential direction about the drive shaft 22. The radial direction portion 47a extends in the radial direction around the drive shaft 22, and connects the second fixed portion 44 and the outermost circumferential direction portion 46a. The radial direction portions 47b and 47c connect the circumferential direction portions adjacent in the radial direction among the plurality of circumferential direction portions 46a, 46b and 46c in the radial direction. The radial direction portion 47d extends in the radial direction and connects the first fixed portion 43 and the innermost circumferential direction portion 46c.

支持部40は駆動軸22の往復非対称の微振動によって駆動軸22の軸方向に移動する。   The support portion 40 moves in the axial direction of the drive shaft 22 by a reciprocating asymmetrical fine vibration of the drive shaft 22.

この際、支持部40の半径方向外側に支持部40と離れて存在する錘部41は、第一スプリング42で支持部40と連結されていることにより、図1において上下方向に大きく振動する。この錘部41の振動によって筐体12に振動を発生させることができる。   At this time, the weight portion 41 that is present on the outer side in the radial direction of the support portion 40 and separated from the support portion 40 is vibrated greatly in the vertical direction in FIG. 1 by being connected to the support portion 40 by the first spring 42. The housing 12 can be vibrated by the vibration of the weight portion 41.

図6図示の実施形態の錘部材を使用すれば、駆動軸22の軸方向への往復非対称の微振動により錘部41を大きく振動させることができる。   If the weight member of the embodiment shown in FIG. 6 is used, the weight part 41 can be vibrated greatly by the reciprocating asymmetrical fine vibration in the axial direction of the drive shaft 22.

また、錘部41の貫通孔内に支持部40は収容され、駆動軸22の軸方向と直交する方向から見て支持部40と錘部41とは重なっているので、振動装置10の厚さを薄くすることができる。   Further, the support portion 40 is accommodated in the through hole of the weight portion 41, and the support portion 40 and the weight portion 41 overlap with each other when viewed from a direction orthogonal to the axial direction of the drive shaft 22. Can be made thinner.

(錘部材の他の実施形態2)
図7を参照して本発明の実施の形態3における錘部材の実施形態2について説明するが、図6図示の実施形態で説明した構造・構成と共通する箇所には共通する符号をつけてその説明を省略する。
(Other embodiment 2 of weight member)
With reference to FIG. 7, the second embodiment of the weight member according to the third embodiment of the present invention will be described. The parts common to the structure and configuration described in the embodiment shown in FIG. Description is omitted.

図7(a)図示の錘部材も、支持部48と、駆動軸22を中心とする半径方向で、支持部48の外側に、支持部48とは離れて、別体で形成されている錘部50とが第一スプリング42で連結されているものである。   The weight member shown in FIG. 7A is also a weight that is formed separately from the support portion 48 and outside the support portion 48 in the radial direction centering on the drive shaft 22. The part 50 is connected to the first spring 42.

環状の支持部48は二つの同じ形状の分割体48a、48bを合わせて構成される。各分割体48a、48bの駆動軸22に対応する位置には、駆動軸22を収容する開口48c、48dが形成されている。駆動軸22を間に挟んで分割体48a、48bを合わせたときに、分割体48aの合わせ面48eと、分割体48bの合わせ面48fとの間には隙間が空くように構成しておく。そして、環状の締め付け手段49によって外周側から絞めつけることによって環状の支持部48は駆動軸22に対して摩擦結合される。   The annular support portion 48 is configured by combining two divided bodies 48a and 48b having the same shape. Openings 48c and 48d for accommodating the drive shaft 22 are formed at positions corresponding to the drive shaft 22 of the divided bodies 48a and 48b. When the divided bodies 48a and 48b are combined with the drive shaft 22 interposed therebetween, a gap is formed between the mating surface 48e of the divided body 48a and the mating surface 48f of the divided body 48b. The annular support portion 48 is frictionally coupled to the drive shaft 22 by being tightened from the outer peripheral side by the annular tightening means 49.

支持部48は、例えば、ステンレスなどの金属製にすることができる。これにより、支持部48の耐久性を向上させることができる。   The support part 48 can be made of metal such as stainless steel, for example. Thereby, durability of the support part 48 can be improved.

また、駆動軸22と支持部48の接触は、駆動軸22の軸方向に沿った線接触とすることが望ましい。これにより、駆動軸22と支持部48との安定した摩擦結合が得られる。   Further, the contact between the drive shaft 22 and the support portion 48 is preferably a line contact along the axial direction of the drive shaft 22. Thereby, the stable frictional coupling between the drive shaft 22 and the support portion 48 is obtained.

環状の支持部48の外周に装着されて、支持部48を、駆動軸22を中心とする半径方向で内側方向に向かって外周側から絞めつける環状の締め付け手段49としては、例えば、コイルばねを用いることができる。   As the annular fastening means 49 that is mounted on the outer periphery of the annular support portion 48 and tightens the support portion 48 from the outer peripheral side in the radial direction centering on the drive shaft 22, for example, a coil spring is used. Can be used.

また、分割体48aの合わせ面48eと、分割体48bの合わせ面48fとの間に熱収縮樹脂を塗布、硬化して絞めつけても良い。   Further, the heat shrink resin may be applied and cured between the mating surface 48e of the divided body 48a and the mating surface 48f of the divided body 48b to be squeezed.

図7(b)では分割体48a、48bは同一形状としたが、異なる形状としても良い。また、3つ以上の分割体としても良い。例えば、分割体48a、48bの駆動軸22との線接触はそれぞれ2箇所であるが、一方の線接触は一箇所としてもよい。更に、駆動軸22と支持部48とは線接触ではなく、面接触であっても構わない。   In FIG. 7B, the divided bodies 48a and 48b have the same shape, but may have different shapes. Moreover, it is good also as a 3 or more division body. For example, there are two line contacts with the drive shaft 22 of the divided bodies 48a and 48b, respectively, but one line contact may be one place. Furthermore, the drive shaft 22 and the support portion 48 may be in surface contact instead of line contact.

第一スプリング42としては、図7の実施形態で説明した第一被固定部43と、第二被固定部44と、第一腕部45とを備えている板バネを使用することができる。   As the first spring 42, a leaf spring including the first fixed portion 43, the second fixed portion 44, and the first arm portion 45 described in the embodiment of FIG. 7 can be used.

図7図示の実施形態では、支持部48の軸方向で下側に第一被固定部43が固定されているが、支持部48の軸方向で上側に第一被固定部43を固定してもよい。   In the embodiment shown in FIG. 7, the first fixed portion 43 is fixed to the lower side in the axial direction of the support portion 48, but the first fixed portion 43 is fixed to the upper side in the axial direction of the support portion 48. Also good.

(錘部材の他の実施形態3)
図8を参照して本発明の実施の形態3における錘部材の実施形態3について説明するが、図6、図7図示の実施形態で説明した構造・構成と共通する箇所には共通する符号をつけてその説明を省略する。
(Other embodiment 3 of weight member)
The third embodiment of the weight member according to the third embodiment of the present invention will be described with reference to FIG. 8, but the same reference numerals are used for the parts common to the structure and configuration described in the embodiments illustrated in FIGS. 6 and 7. The explanation is omitted.

環状の支持部48の外周に装着されて、支持部48を、駆動軸22を中心とする半径方向で内側方向に向かって外周側から絞めつける環状の締め付け手段としてコイルばね52を使用している。   A coil spring 52 is used as an annular fastening means that is mounted on the outer periphery of the annular support portion 48 and tightens the support portion 48 from the outer peripheral side toward the inner side in the radial direction around the drive shaft 22. .

図8図示の実施形態では、支持部48の軸方向で上側に第一スプリング42の第一被固定部43が固定されている。   In the embodiment shown in FIG. 8, the first fixed portion 43 of the first spring 42 is fixed on the upper side in the axial direction of the support portion 48.

図8図示の実施形態では錘部51が、駆動軸22の軸方向に2つに分割されている。そして分割された錘部51a、51bによって、第一スプリング42の第二被固定部44が挟持されている。   In the embodiment shown in FIG. 8, the weight portion 51 is divided into two in the axial direction of the drive shaft 22. And the 2nd to-be-fixed part 44 of the 1st spring 42 is clamped by the divided | segmented weight parts 51a and 51b.

錘部51a、51bによって構成され、駆動軸22を中心とする半径方向で支持部48の外側に支持部48と離れて存在する錘部51は、錘部51a、51b単独の場合よりも重量が大きなものになる。   The weight 51, which is configured by the weights 51a and 51b and is located outside the support 48 in the radial direction with the drive shaft 22 as the center, is separated from the support 48 and has a weight more than that of the weights 51a and 51b alone. It will be big.

そこで、駆動軸22の軸方向への往復非対象の微振動により錘部51を大きく振動させることができる。   Therefore, the weight portion 51 can be vibrated greatly by fine vibration that is not subject to reciprocation in the axial direction of the drive shaft 22.

本発明の実施の形態3によれば、振動装置10を構成する筐体12内で錘部材が大きく振動する。これにより振動装置10を構成する筐体12に大きな振動を発生させることができる。   According to the third embodiment of the present invention, the weight member vibrates greatly in the housing 12 constituting the vibration device 10. As a result, a large vibration can be generated in the casing 12 constituting the vibration device 10.

筐体12に発生した振動は振動装置10を備えた電子機器本体に伝達される。   The vibration generated in the housing 12 is transmitted to the electronic device main body including the vibration device 10.

そこで、錘部材12を大きくしなくても大きな振動を得ることができ、平面視における振動装置10の小型化を図れる。   Therefore, a large vibration can be obtained without increasing the weight member 12, and the vibration device 10 in a plan view can be reduced in size.

(実施の形態4)
図9を参照して振動装置10についての他の実施形態を説明する。なお、実施の形態1、2と同様の構成を有する部分については、同一符号を付してその説明を省略する。
(Embodiment 4)
Another embodiment of the vibration device 10 will be described with reference to FIG. In addition, about the part which has the structure similar to Embodiment 1, 2, the same code | symbol is attached | subjected and the description is abbreviate | omitted.

錘部材24は実施の形態1、2で説明した錘部材24と同様のものを用いることができる。   The weight member 24 can be the same as the weight member 24 described in the first and second embodiments.

実施の形態1、2と同じく、錘部材24が、駆動軸22の往復非対称の微振動によって駆動軸22の軸方向に移動可能に駆動軸22と結合している。そして、この実施の形態においては、錘部材24は、第二スプリング60の弾性力により駆動軸22の軸方向の移動のストロークが決定される。   As in the first and second embodiments, the weight member 24 is coupled to the drive shaft 22 so as to be movable in the axial direction of the drive shaft 22 by a reciprocating asymmetrical fine vibration of the drive shaft 22. In this embodiment, the weight member 24 determines the stroke of the axial movement of the drive shaft 22 by the elastic force of the second spring 60.

第二スプリング60は錘部材24に固定される第三被固定部61と、筐体12に固定される第四被固定部62と、第三被固定部61と第四被固定部62とを連結する第二腕部63とを備えている。   The second spring 60 includes a third fixed portion 61 fixed to the weight member 24, a fourth fixed portion 62 fixed to the housing 12, a third fixed portion 61, and a fourth fixed portion 62. And a second arm portion 63 to be connected.

第三被固定部61、第四被固定部62はそれぞれ実施の形態3で説明した第一スプリング42における第一被固定部43、第二被固定部44に対応する構造になる。   The third fixed portion 61 and the fourth fixed portion 62 have structures corresponding to the first fixed portion 43 and the second fixed portion 44 in the first spring 42 described in the third embodiment, respectively.

また、第二スプリング60における第二腕部63の構造・構成は、実施の形態3で説明した第一スプリング42の第一腕部45と同様の構造にすることができる。   The structure and configuration of the second arm portion 63 in the second spring 60 can be the same as that of the first arm portion 45 of the first spring 42 described in the third embodiment.

図示の実施形態では、第二スプリング60を駆動軸22の軸方向において上下で2個採用している。   In the illustrated embodiment, two second springs 60 are employed in the upper and lower directions in the axial direction of the drive shaft 22.

そこで、第二スプリング60の第三被固定部61は、半径方向内側の錘部材24の軸方向上側面と、下側面とに配置されるようになっている。   Therefore, the third fixed portion 61 of the second spring 60 is arranged on the upper side surface and the lower side surface of the weight member 24 on the radially inner side.

第四被固定部62は、半径方向で錘部材24の外側に位置するようにし、筐体12の側壁12aに固定される構造にしている。   The fourth fixed portion 62 is configured to be positioned outside the weight member 24 in the radial direction and fixed to the side wall 12a of the housing 12.

このような構造にしたので、図示の実施形態では、第二スプリング60が振動する際のストローク確保のため、錘部材24の上下両面にそれぞれ凹部64を形成している。   Because of such a structure, in the illustrated embodiment, in order to secure a stroke when the second spring 60 vibrates, the concave portions 64 are respectively formed on the upper and lower surfaces of the weight member 24.

本発明の実施の形態4によれば、駆動軸22の微振動により錘部材24を軸方向上方または下方に移動させても、錘部材24は、第二スプリング60の付勢力と駆動部材14の駆動力とが釣り合った点までしか移動できない。そのため、錘部材24は筐体に衝突しない。そして、振動装置10を構成する筐体12内で錘部材24が大きく振動する。これにより振動装置10を構成する筐体12に大きな振動を発生させることができる。   According to the fourth embodiment of the present invention, even if the weight member 24 is moved upward or downward in the axial direction due to the slight vibration of the drive shaft 22, the weight member 24 is applied to the urging force of the second spring 60 and the drive member 14. It can move only to the point where the driving force is balanced. Therefore, the weight member 24 does not collide with the housing. Then, the weight member 24 vibrates greatly in the housing 12 constituting the vibration device 10. As a result, a large vibration can be generated in the casing 12 constituting the vibration device 10.

筐体12に発生した振動は振動装置10を備えた電子機器本体に伝達される。   The vibration generated in the housing 12 is transmitted to the electronic device main body including the vibration device 10.

そこで、錘部材12を大きくしなくても大きな振動を得ることができ、平面視における振動装置10の小型化を図れる。   Therefore, a large vibration can be obtained without increasing the weight member 12, and the vibration device 10 in a plan view can be reduced in size.

本発明の実施の形態3において、第一スプリング42を用いて支持部40、48と錘部41、50、51とを連結したが、単なる平板を用いて連結しても構わない。   In Embodiment 3 of the present invention, the support portions 40, 48 and the weight portions 41, 50, 51 are connected using the first spring 42, but may be connected using a simple flat plate.

また、支持部48を複数の分割体に分割したものを採用したが、錘部材24の支持部と錘部とを一体に形成し、それを支持体48のように複数に分割し、駆動軸22を内部に挟んで外周側から締め付けても良い。   Further, the support portion 48 is divided into a plurality of divided bodies, but the support portion and the weight portion of the weight member 24 are integrally formed, and the support member 48 is divided into a plurality of portions like the support body 48, and the drive shaft You may clamp | tighten 22 from the outer peripheral side on both sides.

また、上述した本発明の実施の形態1〜4において、微振動発生部材20はユニモルフやバイモルフ型のものを用いたが、それに限るものではなく、いわゆる積層型のものを用いても良い。小さい駆動電圧で駆動することができるので、駆動制御部30を安価にすることができる。   In the first to fourth embodiments of the present invention described above, the fine vibration generating member 20 is a unimorph or bimorph type, but is not limited thereto, and a so-called laminated type may be used. Since it can drive with a small drive voltage, the drive control part 30 can be made cheap.

また、本実施の形態で説明してきた振動装置を備える電子機器は、表示装置にタッチパネル機能を組み込んだ電子機器や操作キーを用いた入力装置といった電子機器に限るものではない。例えば、タッチパネルに入力するためのタッチペンに内蔵しても構わないし、腕時計に内蔵しても良い。   Further, an electronic device including the vibration device described in this embodiment is not limited to an electronic device such as an electronic device in which a touch panel function is incorporated in a display device or an input device using operation keys. For example, it may be built in a touch pen for inputting to the touch panel, or may be built in a wristwatch.

また、電子機器だけでなく、指輪やブローチ、バンダナといった身体装着品に組み込んでも構わない。   Moreover, you may incorporate not only in an electronic device but in body-wearing goods, such as a ring, a broach, and a bandana.

10 振動装置
12 筐体
12a 側壁
12b 上壁
12c 下壁
12d、12e 貫通孔
12f 開口
12g 下端部
12h 固定部
14 駆動部材
16 伸縮薄板
18 弾性薄板
20 微振動発生部材
20a 周縁部
22 駆動軸
24 錘部材
24a 貫通孔
25 熱収縮性樹脂
28 ブッシュ
30 駆動制御部
40 支持部
41 錘部
42 第一スプリング
43 第一被固定部
44 第二被固定部
45 第一腕部
48 支持部
50 錘部
49 締め付け手段
52 コイルばね
51、51a、51b 錘部
60 第二スプリング
61 第三被固定部
62 第四被固定部
63 第二腕部
DESCRIPTION OF SYMBOLS 10 Vibration apparatus 12 Housing | casing 12a Side wall 12b Upper wall 12c Lower wall 12d, 12e Through-hole 12f Opening 12g Lower end part 12h Fixed part 14 Drive member 16 Telescopic thin plate 18 Elastic thin plate 20 Slight vibration generating member 20a Peripheral part 22 Drive shaft 24 Weight member 24a Through-hole 25 Heat-shrinkable resin 28 Bush 30 Drive control part 40 Support part 41 Weight part 42 First spring 43 First fixed part 44 Second fixed part 45 First arm part 48 Support part 50 Weight part 49 Tightening means 52 Coil springs 51, 51a, 51b Weight portion 60 Second spring 61 Third fixed portion 62 Fourth fixed portion 63 Second arm portion

Claims (9)

軸方向に微振動する駆動軸と、
前記駆動軸の一端に連結されていて前記駆動軸に前記微振動を生じさせる微振動発生部材と、
記駆動軸又は前記微振動発生部材の少なくとも一方を支持する筐体と、
前記駆動軸の前記微振動によって前記駆動軸の軸方向に移動可能に前記駆動軸と結合する錘部材と、を備え、
前記錘部材が前記駆動軸の軸方向に前記駆動軸上を往復移動することで前記筐体に振動を発生させる振動装置。
A drive shaft that vibrates slightly in the axial direction;
A fine vibration generating member connected to one end of the drive shaft and generating the fine vibration in the drive shaft;
A housing supporting at least one of the previous SL drive shaft or the micro-vibration generating member,
A weight member coupled to the drive shaft so as to be movable in the axial direction of the drive shaft by the fine vibration of the drive shaft;
A vibration device that generates vibration in the casing by the weight member reciprocatingly moving on the drive shaft in the axial direction of the drive shaft.
前記駆動軸は、弾性部材のブッシュを介して前記筐体に支持されることを特徴とする請求項1記載の振動装置。 The vibration device according to claim 1 , wherein the drive shaft is supported by the housing via a bush of an elastic member . 前記ブッシュは、前記駆動軸の前記一端とは反対側の端部及び前記駆動軸の前記一端と前記錘部材との間に配置したことを特徴とする請求項2記載の振動装置。 3. The vibration device according to claim 2 , wherein the bush is disposed between an end portion of the drive shaft opposite to the one end and between the one end of the drive shaft and the weight member . 前記駆動軸の前記一端とは反対側の端部と前記ブッシュとは接着固定したことを特徴とする請求項2又は3記載の振動装置。 4. The vibration device according to claim 2 , wherein an end of the drive shaft opposite to the one end and the bush are bonded and fixed . 前記錘部材は、前記駆動軸と結合する支持部と、前記支持部とは別体で構成された錘部と、前記支持部と前記錘部とを連結する部材と、を備えることを特徴とする請求項乃至4のいずれか一項記載の振動装置。 The weight member includes a support part coupled to the drive shaft, a weight part formed separately from the support part, and a member connecting the support part and the weight part. The vibration device according to any one of claims 1 to 4. 前記支持部は前記駆動軸と結合する複数の分割体と前記複数の分割体を外周側から締め付ける締め付け手段とを有することを特徴とする請求項5記載の振動装置。 Said support vibration device according to claim 5 Symbol mounting and having a clamping means clamping the plurality of divided bodies and the plurality of split bodies that binds to said drive shaft from the outer peripheral side. 前記微振動発生部材は、弾性薄板の少なくとも一面に配置した伸縮薄板に駆動電圧を印加することで前記伸縮薄板が伸縮して前記伸縮薄板の中央部と周縁部とが前記弾性薄板の法線方向に相対変位するように変形する薄板であることを特徴とする請求項1乃至請求項6のいずれか一項記載の振動装置。 The fine vibration generating member applies a driving voltage to an elastic thin plate disposed on at least one surface of the elastic thin plate so that the elastic thin plate expands and contracts so that a central portion and a peripheral portion of the elastic thin plate are in a normal direction of the elastic thin plate. 7. The vibration device according to claim 1, wherein the vibration device is a thin plate that is deformed so as to be relatively displaced . 請求項1乃至請求項7のいずれか一項記載の振動装置を備えたことを特徴とする電子機器 An electronic apparatus comprising the vibration device according to any one of claims 1 to 7 . 請求項1乃至請求項7のいずれか一項記載の振動装置を備えたことを特徴とする身体装着品 A body-worn product comprising the vibration device according to any one of claims 1 to 7 .
JP2014118295A 2014-06-09 2014-06-09 Vibration device, electronic device using vibration device, and body-wearable product Active JP6155506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014118295A JP6155506B2 (en) 2014-06-09 2014-06-09 Vibration device, electronic device using vibration device, and body-wearable product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014118295A JP6155506B2 (en) 2014-06-09 2014-06-09 Vibration device, electronic device using vibration device, and body-wearable product

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013184036A Division JP5572844B1 (en) 2013-09-05 2013-09-05 Vibration device, electronic device using vibration device, and body-wearable product

Publications (2)

Publication Number Publication Date
JP2015051425A JP2015051425A (en) 2015-03-19
JP6155506B2 true JP6155506B2 (en) 2017-07-05

Family

ID=52700865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014118295A Active JP6155506B2 (en) 2014-06-09 2014-06-09 Vibration device, electronic device using vibration device, and body-wearable product

Country Status (1)

Country Link
JP (1) JP6155506B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0271298A (en) * 1988-09-06 1990-03-09 Seiko Electronic Components Ltd Oscillatory buzzer
JP2003210496A (en) * 2002-01-18 2003-07-29 Matsushita Electric Works Ltd Electric toothbrush
JP3906713B2 (en) * 2002-02-28 2007-04-18 松下電工株式会社 Vibration device
JP4039359B2 (en) * 2002-11-26 2008-01-30 松下電工株式会社 Actuator
JP5124920B2 (en) * 2005-08-16 2013-01-23 コニカミノルタアドバンストレイヤー株式会社 Drive device
JP5754596B2 (en) * 2011-12-27 2015-07-29 アイシン・エィ・ダブリュ株式会社 Operation input device

Also Published As

Publication number Publication date
JP2015051425A (en) 2015-03-19

Similar Documents

Publication Publication Date Title
US10770991B2 (en) Vibrator manufacturing method
JP2019220178A (en) Haptic actuator assembly with spring pre-load device
US10580963B2 (en) Method for manufacturing a vibration actuator
JP5572844B1 (en) Vibration device, electronic device using vibration device, and body-wearable product
JP2014239575A (en) Driving member, linear drive unit, camera device and electronic apparatus
JP2014104463A (en) Piezoelectric vibration module
JP6273434B2 (en) LINEAR DRIVE DEVICE, ELECTRONIC DEVICE USING LINEAR DRIVE DEVICE AND BODY
US9800179B2 (en) Linear driving device, electronic device and human body fitting article both employing such linear driving device
KR101601871B1 (en) Displacement member, driving member, actuator, and driving apparatus
JP6155506B2 (en) Vibration device, electronic device using vibration device, and body-wearable product
JP5540249B1 (en) Vibration device and electronic device
WO2021005922A1 (en) Vibrating device
JP6330129B2 (en) LINEAR DRIVE DEVICE, ELECTRONIC DEVICE USING LINEAR DRIVE DEVICE AND BODY
JP2014200788A (en) Electronic apparatus
KR20140142799A (en) piezo-electric vibrator
JP5724452B2 (en) Piezoelectric generator
JP2013093817A (en) Stacked energy transducer module
KR101633363B1 (en) Piezo Actuator
JP2007060346A (en) Ultrasonic vibrator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170517

R150 Certificate of patent or registration of utility model

Ref document number: 6155506

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250