JP5538834B2 - Liquid crystal optical modulator - Google Patents

Liquid crystal optical modulator Download PDF

Info

Publication number
JP5538834B2
JP5538834B2 JP2009262930A JP2009262930A JP5538834B2 JP 5538834 B2 JP5538834 B2 JP 5538834B2 JP 2009262930 A JP2009262930 A JP 2009262930A JP 2009262930 A JP2009262930 A JP 2009262930A JP 5538834 B2 JP5538834 B2 JP 5538834B2
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal optical
optical modulation
modulation element
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009262930A
Other languages
Japanese (ja)
Other versions
JP2011107452A (en
Inventor
関口  金孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Finetech Miyota Co Ltd
Original Assignee
Citizen Finetech Miyota Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Finetech Miyota Co Ltd filed Critical Citizen Finetech Miyota Co Ltd
Priority to JP2009262930A priority Critical patent/JP5538834B2/en
Publication of JP2011107452A publication Critical patent/JP2011107452A/en
Application granted granted Critical
Publication of JP5538834B2 publication Critical patent/JP5538834B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は液晶光学変調素子に関するものである。   The present invention relates to a liquid crystal optical modulation element.

一般に、液晶光学変調素子は、複数の画素電極を有する第1電極基板と、該第1電極基板に相対する対向電極を有する第2電極基板を備え、前記第1電極基板と前記第2電極基板をシール材を介し所定の位置及び間隔で貼りあわせた後に前記所定の間隔に液晶を封入し、前記画素電極と前記対向電極間に電位差を与え、液晶の配向を制御することにより各種光学変調を得るものである。   In general, the liquid crystal optical modulation element includes a first electrode substrate having a plurality of pixel electrodes and a second electrode substrate having a counter electrode facing the first electrode substrate, and the first electrode substrate and the second electrode substrate. Are bonded at predetermined positions and intervals through a sealing material, liquid crystal is sealed at the predetermined intervals, a potential difference is applied between the pixel electrode and the counter electrode, and various optical modulations are performed by controlling the alignment of the liquid crystals. To get.

図6は従来技術による液晶光学変調素子を示す図であり、(A)は上面図、(B)はa−a断面図である。1は複数の画素電極3を有する第1電極基板1で、例えばシリコン基板である。2は前記第1電極基板1に相対する対向電極4(例えばITO)を有する第2電極基板2で、例えばガラス基板である。第1電極基板1と第2電極基板2はシール材5により所定の位置および間隔を有して貼り合わされており、前記所定の間隔に液晶8を封入してなる液晶光学変調素子を構成している。   6A and 6B are diagrams showing a liquid crystal optical modulation element according to the prior art, in which FIG. 6A is a top view and FIG. 6B is a cross-sectional view along line aa. Reference numeral 1 denotes a first electrode substrate 1 having a plurality of pixel electrodes 3, for example, a silicon substrate. Reference numeral 2 denotes a second electrode substrate 2 having a counter electrode 4 (for example, ITO) facing the first electrode substrate 1, and is a glass substrate, for example. The first electrode substrate 1 and the second electrode substrate 2 are bonded to each other with a predetermined position and interval by a sealing material 5 to constitute a liquid crystal optical modulation element in which liquid crystal 8 is sealed at the predetermined interval. Yes.

一般的な液晶光学変調素子に使用される前記対向電極4は可視光領域の透過に重点を置いており、低消費電力化を行うためには、前記対向電極4の抵抗値は低いことが好ましい。(例えばITOの場合の抵抗値は200〜300Ω程度になる膜厚にして用いられている。)また、前記対向電極4が低抵抗であることは前記液晶光学変調素子への電圧印加時の発熱を抑制することも出来る。   The counter electrode 4 used in a general liquid crystal optical modulation element focuses on transmission in the visible light region, and in order to reduce power consumption, the resistance value of the counter electrode 4 is preferably low. . (For example, the resistance value in the case of ITO is used with a film thickness of about 200 to 300 Ω.) The low resistance of the counter electrode 4 means that heat is generated when a voltage is applied to the liquid crystal optical modulation element. Can also be suppressed.

赤外光波長領域を使用する際は、前記対向電極4の膜厚では前記赤外光波長領域の吸収は避けられない。前記赤外光波長領域を使用する際は、前記赤外光波長領域を透過可能とする膜厚(例えばITOの場合、抵抗値が1kΩ程度になる膜厚が用いられている。)にしている。即ち、前記対向電極4の厚みを薄くし、赤外光波長領域の吸収を少なくしている。   When the infrared light wavelength region is used, absorption of the infrared light wavelength region is inevitable with the thickness of the counter electrode 4. When the infrared light wavelength region is used, the film thickness is such that the infrared light wavelength region can be transmitted (for example, in the case of ITO, a film thickness with a resistance value of about 1 kΩ is used). . That is, the counter electrode 4 is thinned to reduce absorption in the infrared wavelength region.

前記対向電極4の膜厚を前記赤外光波長が透過可能にすることは、前記対向電極4の抵抗値は高抵抗となり、前記対向電極4への電圧印加時に発熱が生じるため、前記液晶光学変調素子内の前記液晶の温度が上昇し、前記液晶光学変調素子の温度特性が変化する。   Making the film thickness of the counter electrode 4 transparent to the infrared light wavelength means that the resistance value of the counter electrode 4 becomes high and heat is generated when a voltage is applied to the counter electrode 4. The temperature of the liquid crystal in the modulation element rises, and the temperature characteristics of the liquid crystal optical modulation element change.

前記液晶の温度変化は、液晶光学変調素子をレーザー光の波長変換・選択素子として使用する場合に、液晶の僅かな屈折率変化により、特に常光(no)と異常光(ne)との差である屈折率差(Δn)が変化し、波長選択する波長が目的の波長と異なり、レーザー光の波長変換・選択素子としての目的を達成しなくなってしまう。そのため、液晶の温度を均一に保つことが非常に重要である。   When the liquid crystal optical modulation element is used as a wavelength conversion / selection element for laser light, the temperature change of the liquid crystal is caused by a slight change in the refractive index of the liquid crystal, particularly the difference between ordinary light (no) and extraordinary light (ne). A certain refractive index difference (Δn) changes, and the wavelength to be selected is different from the target wavelength, so that the purpose as a wavelength conversion / selection element for laser light cannot be achieved. Therefore, it is very important to keep the temperature of the liquid crystal uniform.

また、レーザーとして高出力を簡単に達成できるレーザーは、赤外線レーザーであるため、また、すでに光ファイバー通信には、赤外線が利用されているため、赤外線レーザーの光ファイバーシステムに、液晶光学変調素子を利用することは有効であるが、前記対向電極の赤外線透過率が低いと液晶光学変調素子により、エネルギー損失が発生し、レーザー光の光を減衰し、長距離通信ができなくなり、アンプを設けなくてはいけない等の弊害が発生してしまう。   Also, since lasers that can easily achieve high output as lasers are infrared lasers, and because infrared rays are already used for optical fiber communications, liquid crystal optical modulation elements are used in optical fiber systems for infrared lasers. Although it is effective, if the infrared transmittance of the counter electrode is low, the liquid crystal optical modulation element causes energy loss, attenuates the light of the laser beam, long distance communication becomes impossible, and an amplifier must be provided Bad effects such as dont occur.

複数の画素電極を有する第1電極基板と該第1電極基板に相対する透明導電膜から成る対向電極を有する第2電極基板を備え、前記第1電極基板と前記第2電極基板をシール材を介し所定の位置及び間隔で貼りあわせた後に前記所定の間隔に液晶を封入してなる液晶光学変調素子において、前記対向電極の前記画素電極に対向する領域外に、前記シール材の形成領域全体を覆い、且つ、外周部が前記シール材の形成領域の外側へ延在するように、金属膜を形成した液晶光学変調素子とする。
A first electrode substrate having a plurality of pixel electrodes; and a second electrode substrate having a counter electrode made of a transparent conductive film opposite to the first electrode substrate, wherein the first electrode substrate and the second electrode substrate are sealed with a sealing material. In the liquid crystal optical modulation element in which liquid crystal is sealed at the predetermined interval after being bonded at a predetermined position and interval, the entire region where the sealing material is formed is outside the region facing the pixel electrode of the counter electrode. A liquid crystal optical modulation element in which a metal film is formed so as to cover and have an outer peripheral portion extending outside the formation region of the sealing material .

前記シール材の形成領域の外側へ延在した前記金属膜の外周部ペルチェ素子を熱的に接続した液晶光学変調素子とする。
A liquid crystal optical modulation element in which a Peltier element is thermally connected to the outer peripheral portion of the metal film extending to the outside of the sealing material formation region .

前記対向電極の前記画素電極に対向する領域を赤外光波長領域が透過する厚みまで薄くした液晶光学変調素子とする。   A liquid crystal optical modulation element in which a region facing the pixel electrode of the counter electrode is thinned to a thickness through which an infrared light wavelength region is transmitted.

前記金属膜は、20nm以上の膜厚のCr、30nm以上の膜厚のNi、及び50nm以上の膜厚のAuの積層膜である液晶光学変調素子とする。 The metal film is a liquid crystal optical modulation element that is a laminated film of Cr having a thickness of 20 nm or more, Ni having a thickness of 30 nm or more, and Au having a thickness of 50 nm or more .

本発明によると、赤外光波長領域で使用時の、対向電極の膜厚を前記赤外光波長領域が透過可能にすること、対向電極を高抵抗化すること、周囲に金属膜を設けることより、前記液晶の温度変化を低下させると同時に、制御することが可能となり、液晶の屈折率変化を大きく低減することが可能となる。   According to the present invention, when used in the infrared light wavelength region, the thickness of the counter electrode can be transmitted through the infrared light wavelength region, the resistance of the counter electrode can be increased, and a metal film can be provided around the electrode. As a result, it is possible to control the temperature change of the liquid crystal at the same time, and to greatly reduce the change in the refractive index of the liquid crystal.

前記対向電極の前記画素電極に対向する領域外に金属膜を形成することにより、前記対向する領域外での放熱性を高め、対向電極の発熱により液晶温度が上昇するのを抑制できる。また、前記金属膜に温度制御素子を接続することにより、温度制御素子の温度制御で、金属膜を介して対向電極の光変調部の温度を短時間で、確実に制御できるため、前記液晶部の温度変化を抑制することが可能となる。よって、液晶の屈折率変化の微弱変化を低減し、安定化でき、高性能な液晶光学変調素子の提供が可能となる。   By forming the metal film outside the region facing the pixel electrode of the counter electrode, the heat radiation performance outside the facing region can be improved, and the rise of the liquid crystal temperature due to the heat generation of the counter electrode can be suppressed. In addition, since the temperature control element is connected to the metal film, the temperature of the light modulation unit of the counter electrode can be reliably controlled in a short time through the metal film by controlling the temperature of the temperature control element. It becomes possible to suppress the temperature change. Therefore, it is possible to provide a high-performance liquid crystal optical modulation element that can reduce and stabilize a weak change in the refractive index change of the liquid crystal.

前記対向電極の前記画素電極に対向する領域の膜厚を赤外光波長領域が透過する厚みまで薄くにすることで、赤外光波長領域での使用が可能となる。   By reducing the film thickness of the region of the counter electrode facing the pixel electrode to a thickness that allows the infrared light wavelength region to pass through, the use in the infrared light wavelength region becomes possible.

一般に金属膜とシール材は密着強度が低く、シール部でのトラブルが発生し易いが、前記金属膜の前記シール材領域の少なくとも一部はアンカー効果を有する表面形状にすることで、前記金属膜と前記シール材の密着強度を保つことが可能となり、信頼性の高い液晶光学変調素子の提供が可能となる。   In general, the metal film and the sealing material have low adhesion strength, and troubles are likely to occur at the seal portion. However, at least a part of the sealing material region of the metal film has a surface shape having an anchor effect, so that the metal film It is possible to maintain the adhesion strength between the sealing material and the liquid crystal optical modulation element with high reliability.

本発明を利用することにより、安定で、長寿命の液晶光学変調素子の提供が可能となる。   By utilizing the present invention, it is possible to provide a stable and long-life liquid crystal optical modulation element.

本発明による液晶光学変調素子の実施例1を示す図で(A)は上面図、(B)はa−a断面図BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows Example 1 of the liquid crystal optical modulation element by this invention, (A) is a top view, (B) is aa sectional drawing. 本発明による液晶光学変調素子の実施例2を示す図で(A)は上面図、(B)はa−a断面図8A and 8B are diagrams showing a second embodiment of the liquid crystal optical modulation element according to the present invention, in which FIG. 本発明による液晶光学変調素子の実施例3を示す断面図Sectional drawing which shows Example 3 of the liquid crystal optical modulation element by this invention 本発明の製膜工程を示した断面図Sectional drawing which showed the film forming process of this invention 本発明の別の製膜工程を示した断面図Sectional drawing which showed another film forming process of this invention 従来技術による液晶光学変調素子を示す図で(A)は上面図、(B)はa−a断面図2A and 2B are diagrams showing a liquid crystal optical modulation element according to the prior art, in which FIG.

複数の画素電極を有する第1電極基板と該第1電極基板に相対する対向電極を有する第2電極基板を備え、前記第1電極基板と前記第2電極基板をシール材を介し所定の位置及び間隔で貼りあわせた後に前記所定の間隔に液晶を封入してなる液晶光学変調素子において、前記対向電極の前記画素電極に対向する領域外に金属膜を形成した液晶光学変調素子とする。   A first electrode substrate having a plurality of pixel electrodes and a second electrode substrate having a counter electrode opposite to the first electrode substrate, wherein the first electrode substrate and the second electrode substrate are placed at a predetermined position via a sealing material; In the liquid crystal optical modulation element in which liquid crystal is sealed at the predetermined interval after being bonded at intervals, a liquid crystal optical modulation element in which a metal film is formed outside the region of the counter electrode facing the pixel electrode is used.

図1は本発明による液晶光学変調素子の実施例1を示す図であり、(A)は上面図、(B)はa−a断面図である。なお従来技術との重複部分に関して符号は同一とする。1は複数の画素電極3を有する第1電極基板で、例えばシリコン基板(以下同様)である。2は前記シリコン基板1に相対する対向電極(例えばITO)4を有する第2電極基板で、例えばガラス基板(以下同様)である。5はシール材で、例えば協立化学社製のWorldLock798Lである。6は金属膜で、例えばCr−Ni−Auである。シリコン基板1とガラス基板2はシール材5により所定の位置および間隔を有して貼り合わされており、前記所定の間隔に液晶8を封入してなる液晶光学変調素子を構成している。   1A and 1B are diagrams showing Embodiment 1 of a liquid crystal optical modulation element according to the present invention. FIG. 1A is a top view and FIG. In addition, the code | symbol shall be the same regarding the overlap part with a prior art. Reference numeral 1 denotes a first electrode substrate having a plurality of pixel electrodes 3, for example, a silicon substrate (hereinafter the same). Reference numeral 2 denotes a second electrode substrate having a counter electrode (for example, ITO) 4 facing the silicon substrate 1, for example, a glass substrate (the same applies hereinafter). 5 is a sealing material, for example, WorldLock 798L manufactured by Kyoritsu Chemical Co., Ltd. 6 is a metal film, for example, Cr-Ni-Au. The silicon substrate 1 and the glass substrate 2 are bonded to each other with a predetermined position and interval by a sealing material 5 to constitute a liquid crystal optical modulation element in which liquid crystal 8 is sealed at the predetermined interval.

前記対向電極4には、前記画素電極3に対向する領域外に金属膜6を形成されている。金属膜6の膜厚は200nm(ナノメーター)を使用する。Cr:20nm以上、Ni:30nm以上、Au:50nm以上(合計で200nm)が密着力、低抵抗化、パターニング性、熱伝導性の観点から良い。前記金属膜6は前記液晶光学変調素子駆動時に前記シリコン基板1と対向電極4に電圧印加時の発熱を放熱する役割を果たしている。金属膜6の膜厚分は、液晶層の厚さが厚くなるため、シール材5に入れるスペーサー(図示せず)の大きさを金属膜6の膜厚分小さくしている。   A metal film 6 is formed on the counter electrode 4 outside a region facing the pixel electrode 3. The film thickness of the metal film 6 is 200 nm (nanometer). Cr: 20 nm or more, Ni: 30 nm or more, and Au: 50 nm or more (total of 200 nm) are preferable from the viewpoints of adhesion, low resistance, patternability, and thermal conductivity. The metal film 6 serves to dissipate heat generated when a voltage is applied to the silicon substrate 1 and the counter electrode 4 when the liquid crystal optical modulation element is driven. Since the thickness of the metal film 6 increases the thickness of the liquid crystal layer, the size of the spacer (not shown) inserted into the sealing material 5 is reduced by the thickness of the metal film 6.

図2は本発明による液晶光学変調素子の実施例2を示す図であり、(A)は上面図、(B)はa−a断面図である。7は温度制御素子で例えばペルチェ素子である。
前記対向電極4へ電圧印加時に発熱が生じ、前記液晶光学変調素子内の前記液晶8の温度変化が生じる。そのため前記金属膜6と温度制御素子7を接続することにより、前記対向電極4への駆動電圧印加時の発熱による前記液晶光学素子の前記液晶部の温度変化を抑制する役割を果たしている。
2A and 2B are diagrams showing Embodiment 2 of the liquid crystal optical modulation element according to the present invention, in which FIG. 2A is a top view and FIG. 2B is a cross-sectional view along line aa. Reference numeral 7 denotes a temperature control element, for example, a Peltier element.
Heat is generated when a voltage is applied to the counter electrode 4, and the temperature of the liquid crystal 8 in the liquid crystal optical modulation element changes. Therefore, by connecting the metal film 6 and the temperature control element 7, the temperature of the liquid crystal part of the liquid crystal optical element due to heat generation when a driving voltage is applied to the counter electrode 4 is suppressed.

図3は本発明による液晶光学変調素子の実施例3を示す断面図である。シール材5と金属膜6との密着強度が弱くなる為、前記シール材領域の少なくとも一部にアンカー効果を有する凹凸のある表面形状にすることで、シール材5の密着強度を保つ役割を果たしている。   FIG. 3 is a sectional view showing Embodiment 3 of the liquid crystal optical modulation element according to the present invention. Since the adhesion strength between the sealing material 5 and the metal film 6 is weakened, the surface of the sealing material region having an unevenness having an anchor effect is used to maintain the adhesion strength of the sealing material 5 at least in part. Yes.

図4は本発明の製膜工程を示した断面図であり、(a)は対向電極4を酸化インジウムスズ(ITO)膜を赤外線をなるべく透過し、金属膜のエッチング除去の際に、ITO膜が劣化、ピンホールが発生することがなく、さらにITO膜を均一に膜厚方向にエッチングを行い、ITOの抵抗値を低くするのに適する膜厚にするためITO膜を30nm(ナノメートル)の膜厚に形成した基板状態を示す断面図、(b)は金属膜6をCr:40nm、Ni:60nm、Au:100nmを同一真空槽内で連続スパッタ蒸着法にて積層形成した基板状態を示す断面図、(c)は金属膜6の画素電極3に対向する領域の金属膜6を全て除去し、赤外線の透過率を大きくする為に対向電極4のITO膜をもとの30nmから残り10nmまで除去した基板状態を示す断面図、(d)は第1電極基板1と第2電極基板2とを貼り合せ時の断面図である。説明の都合上(b)から説明を行う。
(b)はガラス基板2の対向電極4にCr−Ni−Auの積層金属膜6を膜厚200nm(ナノメーター)に形成する
(c)は(b)で形成した金属膜6の画素電極3に対向する領域をサムコ社製RIE10NRで除去する。またその際に対向電極4の膜厚を赤外光波長領域が透過する厚みまで薄くする。
(d)はシリコン基板1とガラス基板2をシール材5により所定の位置および間隔で貼り合わせる。
FIG. 4 is a cross-sectional view showing the film forming process of the present invention. FIG. 4 (a) shows that an indium tin oxide (ITO) film passes through the counter electrode 4 through infrared rays as much as possible, and the ITO film is removed when the metal film is etched away. In order to make the ITO film 30 nm (nanometer) in order to make the film thickness suitable for lowering the resistance value of ITO by further etching the ITO film uniformly in the film thickness direction without causing deterioration and pinholes. FIG. 4B is a cross-sectional view showing a substrate state formed in a film thickness, and FIG. 5B shows a substrate state in which the metal film 6 is formed by laminating Cr: 40 nm, Ni: 60 nm, and Au: 100 nm in the same vacuum chamber by continuous sputter deposition. In the cross-sectional view, (c) removes all of the metal film 6 in the region facing the pixel electrode 3 of the metal film 6 and increases the ITO film of the counter electrode 4 from the original 30 nm to the remaining 10 nm in order to increase the infrared transmittance. Removed until Sectional view showing a plate state, a cross-sectional view at (d) of bonding the first electrode substrate 1 and the second electrode substrate 2. For convenience of explanation, explanation will be made from (b).
(B) forms a laminated metal film 6 of Cr—Ni—Au with a film thickness of 200 nm (nanometer) on the counter electrode 4 of the glass substrate 2 (c) shows the pixel electrode 3 of the metal film 6 formed in (b). The area opposite to is removed with RIE10NR manufactured by Samco. At this time, the thickness of the counter electrode 4 is reduced to a thickness that allows transmission of the infrared wavelength region.
In (d), the silicon substrate 1 and the glass substrate 2 are bonded together with a seal material 5 at a predetermined position and interval.

図5は金属膜6形成時の別の製膜工程を示した断面図であり、(a)は対向電極4形成時、(b)は対向電極4除去時、(c)は金属膜6の形成時(d)画素電極3に対向する領域の金属膜6除去時、(e)は貼り合せ時の図である。説明の都合上(b)から説明を行う。
(b)は対向電極4の膜厚を赤外光波長領域が透過する厚みまで薄くする。
(c)は対向電極4に金属膜6を形成する。
(d)は金属膜6を画素電極2に対向する領域をサムコ社製RIE10NRで除去する。
(e)はシリコン基板1とガラス基板2をシール材5により所定の位置および間隔で貼り合わせる。
なお金属膜Cr−Ni−Auは一例であり、他にCr−AuやAlがある。対向電極のITOは一例であり、他にIn(酸化インジウム)にZnO(酸化亜鉛)、ZrO(酸化ジルコニア)、TiO(酸化チタン)を添加する透明導電膜がある。シール材の協立化学社製のWorldLock798Lは一例であり、同等のシール材を使用することが出来る。
FIG. 5 is a cross-sectional view showing another film forming process when the metal film 6 is formed. (A) is when the counter electrode 4 is formed, (b) is when the counter electrode 4 is removed, and (c) is the metal film 6. At the time of formation (d) At the time of removing the metal film 6 in the region facing the pixel electrode 3, (e) is a view at the time of bonding. For convenience of explanation, explanation will be made from (b).
In (b), the thickness of the counter electrode 4 is reduced to a thickness that allows transmission of the infrared wavelength region.
(C) forms a metal film 6 on the counter electrode 4.
(D) removes the area | region which opposes the metal film 6 to the pixel electrode 2 by RIE10NR by Samco.
In (e), the silicon substrate 1 and the glass substrate 2 are bonded together with a sealant 5 at predetermined positions and intervals.
Note that the metal film Cr—Ni—Au is an example, and other examples include Cr—Au and Al. ITO of the counter electrode is an example, and there is a transparent conductive film in which ZnO (zinc oxide), ZrO (zirconia oxide), and TiO (titanium oxide) are added to In 2 O 3 (indium oxide). WorldLock 798L manufactured by Kyoritsu Chemical Co., Ltd. is an example, and an equivalent seal material can be used.

1 第1電極基板
2 第2電極基板
3 画素電極
4 対向電極
5 シール材
6 金属膜
7 温度制御素子
8 液晶
DESCRIPTION OF SYMBOLS 1 1st electrode substrate 2 2nd electrode substrate 3 Pixel electrode 4 Counter electrode 5 Seal material 6 Metal film 7 Temperature control element 8 Liquid crystal

Claims (4)

複数の画素電極を有する第1電極基板と該第1電極基板に相対する透明導電膜から成る対向電極を有する第2電極基板を備え、前記第1電極基板と前記第2電極基板をシール材を介し所定の位置及び間隔で貼りあわせた後に前記所定の間隔に液晶を封入してなる液晶光学変調素子において、
前記対向電極の前記画素電極に対向する領域外に、前記シール材の形成領域全体を覆い、且つ、外周部が前記シール材の形成領域の外側へ延在するように、金属膜を形成することを特徴とした液晶光学変調素子。
A first electrode substrate having a plurality of pixel electrodes; and a second electrode substrate having a counter electrode made of a transparent conductive film opposite to the first electrode substrate, wherein the first electrode substrate and the second electrode substrate are sealed with a sealing material. In a liquid crystal optical modulation element in which liquid crystal is sealed at the predetermined interval after being bonded at a predetermined position and interval,
A metal film is formed outside the region of the counter electrode facing the pixel electrode so as to cover the entire region where the sealing material is formed and the outer peripheral portion extends outside the region where the sealing material is formed. A liquid crystal optical modulation element characterized by the above.
前記シール材の形成領域の外側へ延在した前記金属膜の外周部ペルチェ素子を熱的に接続することを特徴とした請求項1記載の液晶光学変調素子。 The liquid crystal optical modulation element according to claim 1 , wherein a Peltier element is thermally connected to an outer peripheral portion of the metal film extending to the outside of the sealing material forming region . 前記対向電極の前記画素電極に対向する領域を赤外光波長領域が透過する厚みまで薄くする事を特徴とした請求項1または請求項2記載の液晶光学変調素子。   3. The liquid crystal optical modulation element according to claim 1, wherein a region facing the pixel electrode of the counter electrode is thinned to a thickness that allows an infrared wavelength region to pass therethrough. 前記金属膜は、20nm以上の膜厚のCr、30nm以上の膜厚のNi、及び50nm以上の膜厚のAuの積層膜である事を特徴とした請求項1〜3のいずれかに記載の液晶光学変調素子。
The metal film is a laminated film of Cr having a thickness of 20 nm or more, Ni having a thickness of 30 nm or more, and Au having a thickness of 50 nm or more . Liquid crystal optical modulation element.
JP2009262930A 2009-11-18 2009-11-18 Liquid crystal optical modulator Expired - Fee Related JP5538834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009262930A JP5538834B2 (en) 2009-11-18 2009-11-18 Liquid crystal optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009262930A JP5538834B2 (en) 2009-11-18 2009-11-18 Liquid crystal optical modulator

Publications (2)

Publication Number Publication Date
JP2011107452A JP2011107452A (en) 2011-06-02
JP5538834B2 true JP5538834B2 (en) 2014-07-02

Family

ID=44230978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009262930A Expired - Fee Related JP5538834B2 (en) 2009-11-18 2009-11-18 Liquid crystal optical modulator

Country Status (1)

Country Link
JP (1) JP5538834B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5759876B2 (en) * 2011-11-22 2015-08-05 日本電気硝子株式会社 Liquid crystal element
CN116540453A (en) * 2023-03-30 2023-08-04 惠科股份有限公司 Liquid crystal display panel having a light shielding layer

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2771661B2 (en) * 1990-02-16 1998-07-02 三洋電機株式会社 Liquid crystal display
JPH04220618A (en) * 1990-12-21 1992-08-11 Nippon Telegr & Teleph Corp <Ntt> Variable wavelength filter
JP2002122878A (en) * 2000-10-17 2002-04-26 Seiko Epson Corp Substrate for display panel, its production method, liquid crystal device and electronic equipment
JP2005215334A (en) * 2004-01-29 2005-08-11 Optrex Corp Liquid crystal display device
JP2008249832A (en) * 2007-03-29 2008-10-16 Citizen Finetech Miyota Co Ltd Electrooptical element
JP2009128473A (en) * 2007-11-21 2009-06-11 Toshiba Matsushita Display Technology Co Ltd Substrate device

Also Published As

Publication number Publication date
JP2011107452A (en) 2011-06-02

Similar Documents

Publication Publication Date Title
JP4623722B2 (en) Liquid crystal lens device
JP4671341B2 (en) Liquid crystal lens device
JP5655440B2 (en) Waveguide type electro-optical element and method for manufacturing the same
US20110280512A1 (en) Optical device
JP2006201357A (en) Liquid crystal display
JP5538834B2 (en) Liquid crystal optical modulator
JP2009042255A (en) Liquid crystal display device
US20120328237A1 (en) Optical device and method for manufacturing optical device
CN112596281B (en) Spatial light modulator and method of making the same
WO2013121865A1 (en) Glass cell, liquid crystal element, glass cell manufacturing method, and liquid crystal element manufacturing method
WO2016185684A1 (en) Optical device
JP2006301343A (en) Liquid crystal display element and its manufacturing method
JP4789572B2 (en) Liquid crystal lens device
JP2010039231A (en) Optical filter
JP2848741B2 (en) Liquid crystal spatial light modulator
TW201500824A (en) Liquid crystal lens
JP4513258B2 (en) Tunable filter
JP2018022051A (en) Liquid crystal lens
JP5187396B2 (en) Light switch
JP2007114231A (en) Liquid crystal lens
JP4269836B2 (en) Liquid crystal element and optical head device
JP5187395B2 (en) Light switch
JP4822504B2 (en) Liquid crystal lens device
KR101938038B1 (en) Liquid crystal display element
KR102145396B1 (en) Light modulator device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140409

R150 Certificate of patent or registration of utility model

Ref document number: 5538834

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140430

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees