JP5538647B2 - Method and apparatus for phasing eccentric workpiece, and method and apparatus for supplying workpiece to cylindrical grinder using the same - Google Patents

Method and apparatus for phasing eccentric workpiece, and method and apparatus for supplying workpiece to cylindrical grinder using the same Download PDF

Info

Publication number
JP5538647B2
JP5538647B2 JP2010124249A JP2010124249A JP5538647B2 JP 5538647 B2 JP5538647 B2 JP 5538647B2 JP 2010124249 A JP2010124249 A JP 2010124249A JP 2010124249 A JP2010124249 A JP 2010124249A JP 5538647 B2 JP5538647 B2 JP 5538647B2
Authority
JP
Japan
Prior art keywords
eccentric
workpiece
displacement
phase
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010124249A
Other languages
Japanese (ja)
Other versions
JP2011245608A (en
Inventor
真紀 岡田
毅司 井沢
昌幸 田中
俊明 岩崎
継雄 朴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010124249A priority Critical patent/JP5538647B2/en
Priority to CN201010530462.6A priority patent/CN102259291B/en
Publication of JP2011245608A publication Critical patent/JP2011245608A/en
Application granted granted Critical
Publication of JP5538647B2 publication Critical patent/JP5538647B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Description

この発明は、偏芯ワークの偏心部外形を研削加工する円筒研削盤において、偏芯ワークの位相出し方法およびその装置、ならびに、それらを用いた円筒研削盤へのワーク供給方法およびその装置に関するものである。   BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an eccentric workpiece phasing method and apparatus, and a workpiece supply method and apparatus to a cylindrical grinder using the same in a cylindrical grinder for grinding an eccentric part outline of an eccentric workpiece. It is.

偏心ワークの偏心部外形を研削加工する円筒研削盤においては、偏心ワークの軸部をチャック装置で固定した状態で偏心部を加工するが、その際、予めチャック装置の部分において偏心部の芯出しや位相出しを行ってから加工工程に入るのが一般的である。
従来、偏芯部の芯出しや位相出しは、コの字形の治具や馬蹄形の治具を偏芯部に当てて機械的に加圧することによって偏芯部をわずかに回転させ、その芯出しと位相出しを行っていた。(特許文献1の(0002)〜(0006)欄を参照)
In a cylindrical grinding machine that grinds the outer shape of the eccentric part of the eccentric work, the eccentric part is processed with the shaft part of the eccentric work fixed by the chuck device. In general, the machining process is started after phase setting.
Conventionally, the eccentric part is centered and phased by rotating the eccentric part slightly by applying a U-shaped jig or horseshoe-shaped jig to the eccentric part and mechanically pressing it. And phased out. (See columns (0002) to (0006) of Patent Document 1)

これに対し、偏心ワークの偏心部の芯出しと位相出しを自動的に行う方法として、円筒研削盤のスピンドルの軸心から偏芯方向と直行する2箇所の接触部分の距離を測定し、その差が所定のしきい値を超えないようにワークの軸を回転させて、円筒研削盤のスピンドル軸心に対して偏芯ワークの偏芯部の軸心を合わせて芯出しと位相出しを同時に行うものが提案されている。(特許文献1の(0007)〜(0019)欄を参照)
更に、同軸ワークの同心度・同軸度を測定する方法として、ワークを回転させて接触式センサを用いて2箇所円周面外周の変位データを得ることでそれぞれの中心座標の距離から同心度を算出する方法が知られている。(特許文献2を参照)
On the other hand, as a method of automatically centering and phasing the eccentric part of the eccentric workpiece, the distance between the two contact parts perpendicular to the eccentric direction from the spindle center of the cylindrical grinding machine is measured. Rotate the workpiece axis so that the difference does not exceed the specified threshold, and align the center of the eccentric part of the eccentric workpiece with the spindle axis of the cylindrical grinding machine. What to do is proposed. (See columns (0007) to (0019) of Patent Document 1)
Furthermore, as a method of measuring the concentricity / coaxiality of a coaxial work, the concentricity can be calculated from the distance of each central coordinate by rotating the work and obtaining displacement data of the outer circumference of two locations using a contact sensor. A method of calculating is known. (See Patent Document 2)

特開平5−245741号公報Japanese Patent Laid-Open No. 5-245541 特開昭57−187610号公報JP-A-57-187610

偏芯部を有するワークについて、円筒研削盤の偏芯部を研削する際の芯出しと位相出しにおいて、特許文献1のようなコの字形や馬蹄形の位置決め治具等をワークに接触させて機械的に位相出しを行う構造では、ワークの径のばらつきや治具と接触する表面の状態によって芯出しと位相出しにばらつきが生じる。さらに、位置決め治具の取付け位置は微調整が必要なため調整作業に熟練を要する他、円筒研削盤内の位相決め精度は悪く、加工面の取り残し不良が発生していた。そのため、偏芯部の荒加工工程にて加工面の取代を多くすることにより、位相決めの許容角度を広げて、研削加工時の加工面の取り残し不良をなくしていたが、研削加工時の取代が多くなることで加工時間が増加し、ラインのサイクルタイムが増加するという課題があった。   For a workpiece having an eccentric portion, a U-shaped or horseshoe-shaped positioning jig as in Patent Document 1 is brought into contact with the workpiece in centering and phasing when the eccentric portion of a cylindrical grinder is ground. In a structure in which phase alignment is performed in an automatic manner, variations in centering and phase alignment occur due to variations in the workpiece diameter and the state of the surface in contact with the jig. Further, since the adjustment position of the positioning jig needs to be finely adjusted, skill is required for the adjustment work, and the phasing accuracy in the cylindrical grinder is poor, resulting in a defect that the processed surface is left behind. For this reason, by increasing the machining allowance of the machining surface in the rough machining process of the eccentric part, the allowable angle for phasing was widened to eliminate defects in the machining surface during grinding. There is a problem that the processing time increases due to the increase in the number of lines, and the cycle time of the line increases.

また、上記特許文献1のような研削盤内に設けた測定器による計測式位相出し方法では、円筒研削盤内に新たに芯出し機構を設けなければならず、また、円筒研削盤のスピンドル中心と芯出し機構の軸心ずれによる振れ回りや、接触子が接触する表面の形状により測定精度が低下し、位相出し角度にばらつきが生じるという課題や、接触子によるワークの傷つき、接触子の磨耗による測定精度の悪化という課題があった。さらに円筒研削盤内に位相出し機構を追加するため、研削盤内にスペースがなければ対応できず、また、円筒研削盤内での位相出し時間の増加により設備のサイクルタイムが増加するという課題があった。   Further, in the measurement type phase adjusting method using a measuring instrument provided in the grinding machine as in Patent Document 1, a new centering mechanism must be provided in the cylindrical grinding machine, and the spindle center of the cylindrical grinding machine is also provided. The centering mechanism swings around due to the misalignment of the centering mechanism and the shape of the surface that the contact makes contact with, resulting in a decrease in measurement accuracy and variations in the phase alignment angle, as well as workpiece damage and contact wear due to the contact. There was a problem of deterioration in measurement accuracy. In addition, since a phase out mechanism is added to the cylindrical grinder, it cannot be handled if there is no space in the grinder, and the cycle time of the equipment increases due to an increase in the phase out time in the cylindrical grinder. there were.

一方、特許文献2のような接触式センサにて最大値と最小値から測定箇所の同軸度を求める方法では、最大値と最小値付近でのノイズの発生による計測精度の低下や、最大値と最小値付近での真円度が悪い場合、検出角度にずれが発生するため測定精度が低下するという課題や、測定箇所の全周に対して最大値と最小値を得るために、ワークを1回転させる必要があり、サイクルタイムが増加するという課題があった。   On the other hand, in the method of obtaining the coaxiality of the measurement location from the maximum value and the minimum value with a contact sensor as in Patent Document 2, the measurement accuracy decreases due to the occurrence of noise near the maximum value and the minimum value, If the roundness near the minimum value is poor, the detection angle will be shifted and the measurement accuracy will be reduced. In addition, to obtain the maximum and minimum values for the entire circumference of the measurement location, 1 There was a problem that it was necessary to rotate and cycle time increased.

この発明は上記課題を解決するためになされたもので、測定対象の面粗度や真円度が悪くても高精度に位相出しができ、また円筒研削盤に位相出し機構を設置するスペースが不要で、円筒研削盤のサイクルタイムを増加させることなく位相出しができる偏芯ワークの位相出し方法およびその装置を提供するものである。
また、この発明は、上記位相出し装置を円筒研削盤の前工程に設置して、位相出し装置と円筒研削盤の搬送部にバネ等により把持部と固定部間に自由度を持たせることで、位相出し装置で決定した姿勢を保持したまま円筒研削盤に移し変え、そのままの姿勢を保ったまま円筒研削盤を動作させることができる円筒研削盤へのワーク供給方法およびその装置を提供するものである。
The present invention has been made to solve the above-described problems, and can phase out with high accuracy even if the surface roughness and roundness of the object to be measured are poor, and there is a space for installing a phase out mechanism in the cylindrical grinding machine. The present invention provides a phasing method and apparatus for an eccentric workpiece that can be phased without increasing the cycle time of a cylindrical grinding machine.
In addition, the present invention provides the above-described phase shifter in a pre-process of the cylindrical grinder, and gives a degree of freedom between the gripping portion and the fixed portion by a spring or the like to the transport portion of the phase shifter and the cylindrical grinder. Provided with a workpiece feeding method to a cylindrical grinder and its apparatus, which can be transferred to a cylindrical grinder while maintaining the posture determined by the phase shifter, and can be operated while maintaining the same posture. It is.

この発明になる偏芯ワークの位相出し方法は、偏芯ワークの研削加工前に偏芯部の位相出しを行う方法において、回転部を備えたチャックで偏芯ワークを把持し、上記偏芯ワークを回転させながら回転角度に対応した上記ワークの偏芯部の変位を非接触で測定し、測定した変位データを三角関数近似により上記偏芯部の位相ずれ量を計算するようにしたものにおいて、上記ワークの偏芯部の変位を測定する際、上記ワークの軸受部の変位も同時に無接触で測定し、上記測定した偏芯部の変位データから軸受部の変位データを差し引くことで偏芯部の測定データからワークの振れ回り成分をキャンセルするようにしたことを特徴とする。 The eccentric workpiece phasing method according to the present invention is a method of phasing the eccentric portion before grinding the eccentric workpiece, wherein the eccentric workpiece is gripped by a chuck having a rotating portion, and the eccentric workpiece is In which the displacement of the eccentric part of the workpiece corresponding to the rotation angle is measured in a non-contact manner while rotating the angle, and the phase displacement amount of the eccentric part is calculated by trigonometric approximation of the measured displacement data . When measuring the displacement of the eccentric part of the workpiece, the displacement of the bearing part of the workpiece is also measured without contact, and the eccentric part is subtracted from the measured displacement data of the eccentric part. This is characterized in that the workpiece swing component is canceled from the measured data .

この発明になる偏芯ワークの位相出し装置は、偏芯部と軸受部とを有する偏芯ワークを研削加工前に位相出しを行う偏芯ワークの位相出し装置において、上記偏芯ワークの偏芯部及び軸受部にそれぞれ対向して設けられた非接触式変位センサと、上記偏芯ワークの一端を把持した状態で回転させるチャックと、上記偏芯ワークを回転させながら上記非接触センサにより回転角度に対応して測定した上記偏芯部変位および軸受部変位を入力し、測定した変位データを三角関数により近似して上記偏芯部の位相ずれ量を計算する制御装置を備え、
偏芯部の変位データX(θ)を下式
X(θ)=A(θ)−α×B(θ) (0≦α≦1)
但し、A(θ)は偏芯部の変位、B(θ)は軸受部の変位、α重み付け係数
により求めるようにしたことを特徴とする。
The eccentric workpiece phase-shifting device according to the present invention is an eccentric workpiece phase-shifting device that phase-shifts an eccentric workpiece having an eccentric portion and a bearing portion before grinding. A non-contact displacement sensor provided to face the bearing part and the bearing part, a chuck that rotates while gripping one end of the eccentric workpiece, and a rotation angle by the non-contact sensor while rotating the eccentric workpiece. A controller for calculating the phase shift amount of the eccentric part by inputting the eccentric part displacement and the bearing part displacement measured according to the above, approximating the measured displacement data by a trigonometric function,
Eccentric displacement data X (θ)
X (θ) = A (θ) −α × B (θ) (0 ≦ α ≦ 1)
Where A (θ) is the displacement of the eccentric part, B (θ) is the displacement of the bearing part, α weighting coefficient
It is characterized in that it is obtained by.

この発明によれば、偏芯部及び軸受部に設けた非接触式変位センサと、偏芯ワークを保持しながら回転する機構とにより、偏芯ワークを回転させながら偏芯部及び軸受部の変位を測定し、それらの変位量を差し引くことにより振れ回りの成分を除き、さらに測定したデータのうち、偏芯部に近い箇所を近似曲線で補間して偏芯部の位相を求めることで測定対象の面粗度や真円度が悪くても高精度に位相出しができ、また円筒研削盤に位相出し機構を設置するスペースが不要で、円筒研削盤のサイクルタイムを増加させることなく位相出しができる効果を奏するものである。   According to the present invention, the displacement of the eccentric part and the bearing part while rotating the eccentric work is achieved by the non-contact displacement sensor provided in the eccentric part and the bearing part and the mechanism that rotates while holding the eccentric work. Measurement object by subtracting the amount of displacement and subtracting the displacement component, and further by interpolating a portion near the eccentric part of the measured data with an approximate curve to obtain the phase of the eccentric part Even if the surface roughness and roundness of the cylinder are poor, phase alignment can be performed with high accuracy, and there is no need for a space for installing a phase alignment mechanism in the cylindrical grinder, and phase alignment can be performed without increasing the cycle time of the cylindrical grinder. This is an effect that can be achieved.

また、この発明によれば、位相出し装置を円筒研削盤の前工程に設置して、位相出し装置と円筒研削盤の搬送部にバネ等により把持部と固定部間に自由度を持たせることで、位相出し装置で決定した姿勢を保持したまま円筒研削盤に移し変えることができるため、円筒研削盤に位相出し機構を設置するスペースが不要で、また円筒研削盤のサイクルタイムを増加させることなく高精度な位相出しができる効果を奏するものである。   Further, according to the present invention, the phase adjusting device is installed in the previous process of the cylindrical grinder, and the conveying portion of the phase adjusting device and the cylindrical grinder is provided with a degree of freedom between the gripping portion and the fixed portion by a spring or the like. Because it can be transferred to a cylindrical grinder while maintaining the posture determined by the phase shifter, there is no need to install a phase shift mechanism on the cylindrical grinder, and the cycle time of the cylindrical grinder is increased. There is an effect that phase can be obtained with high accuracy.

本発明の実施の形態1による位相出し装置を示す概略図である。It is the schematic which shows the phase-shift apparatus by Embodiment 1 of this invention. 上記位相出し装置の測定部分と測定系との関係を示す図である。It is a figure which shows the relationship between the measurement part of the said phase shifter, and a measurement system. 上記位相出し装置による測定動作を説明する操作フロー図である。It is an operation | movement flowchart explaining the measurement operation | movement by the said phase shifter. 上記測定動作における位置決め機構の操作説明図である。It is operation explanatory drawing of the positioning mechanism in the said measurement operation | movement. 上記測定動作におけるチャック装置の操作説明図である。It is operation | movement explanatory drawing of the chuck apparatus in the said measurement operation | movement. 上記位相出し装置の測定データを示す図である。It is a figure which shows the measurement data of the said phase shifter. 本発明の実施の形態2による搬送装置および搬送装置と円筒研削盤との受け渡し動作を説明する概略図である。It is the schematic explaining the delivery operation | movement with the conveying apparatus by Embodiment 2 of this invention and a conveying apparatus and a cylindrical grinder. 本発明の実施の形態3による位相出し装置から円筒研削盤までの加工ラインを示す概略図である。It is the schematic which shows the processing line from the phase-shift apparatus by Embodiment 3 of this invention to a cylindrical grinding machine. 本発明の実施の形態4による円筒研削盤での偏芯部の位相ずれ量の測定方法の一例を説明する図である。It is a figure explaining an example of the measuring method of the phase shift amount of the eccentric part in the cylindrical grinding machine by Embodiment 4 of this invention. 本発明の実施の形態4による円筒研削盤での偏芯部の位相ずれ量の測定方法の他の例を説明する図である。It is a figure explaining the other example of the measuring method of the phase shift amount of the eccentric part in the cylindrical grinding machine by Embodiment 4 of this invention.

実施の形態1.
図1は本発明の実施の形態1による位相出し装置40の概略構成図、図2は上記位相出し装置40の測定部分と測定系との関係を示す図である。
図1において、偏芯ワーク1が架台8上に有する台座9に設置された支え部2上に載置されている。上記台座9上の位置には非接触式変位センサ3が設置される。上記ワーク1の一端はチャック5により把持されたまま回転機構6により回転される。位置決め機構4は偏芯ワーク1の上方に上下移動可能に設けられ、偏芯ワーク1の偏芯方向を機械的におおよそ位置決めする機構である。
Embodiment 1 FIG.
FIG. 1 is a schematic configuration diagram of a phase shifter 40 according to Embodiment 1 of the present invention, and FIG. 2 is a diagram showing a relationship between a measurement part of the phase shifter 40 and a measurement system.
In FIG. 1, the eccentric work 1 is placed on a support portion 2 installed on a pedestal 9 provided on a gantry 8. A non-contact displacement sensor 3 is installed at a position on the pedestal 9. One end of the workpiece 1 is rotated by the rotating mechanism 6 while being held by the chuck 5. The positioning mechanism 4 is a mechanism that is provided above the eccentric work 1 so as to be movable up and down, and mechanically positions the eccentric direction of the eccentric work 1 approximately mechanically.

図2において、偏芯部1aおよび軸受部1bを有する偏芯ワーク1の一端をチャック5により把持した状態で駆動制御器11により回転機構6を回転させると、上記偏芯部1a及び軸受部1bに対向して設けられた非接触式変位センサ3a、3bから測定信号が出力され、AD変換器10にてデジタル信号に変換されて所定の計算処理を行うパソコン等からなる制御装置13に送られる。その際、回転角度を検知するロータリエンコーダ7から出力された信号はカウンタ12にてパルス信号に変換されて同様に制御装置13に送られる。   In FIG. 2, when the rotation mechanism 6 is rotated by the drive controller 11 with one end of the eccentric work 1 having the eccentric portion 1a and the bearing portion 1b held by the chuck 5, the eccentric portion 1a and the bearing portion 1b are rotated. Measurement signals are output from the non-contact displacement sensors 3a and 3b provided opposite to each other, converted into digital signals by the AD converter 10, and sent to the control device 13 including a personal computer or the like for performing predetermined calculation processing. . At that time, the signal output from the rotary encoder 7 for detecting the rotation angle is converted into a pulse signal by the counter 12 and sent to the control device 13 in the same manner.

次に、図3を用いて上記位相出し装置40による測定のための操作フローを説明する。まず、位相出しを実施する品種を選択し、偏芯部の径や偏芯量に応じてセンサ3の位置等を自動で段取り換えする(ステップ100)。次にワーク1が位相出し装置に供給された後(ステップ101)、ワーク軸方向の位置決め(ステップ102)、偏芯部の変位の仮位相決め(ステップ103)を行う。次に回転部を備えたチャック5でワーク1を把持し(ステップ104)、ワーク1を回転させて(ステップ105)、回転角度に対応した偏芯部、軸受部の変位を測定し(ステップ106)、設定した回転範囲を測定するまで回転し測定を続ける(ステップ107)。設定した範囲を全て測定し終えると、角度に対する変位のデータより計算アルゴリズムを用いて偏芯部の位相を計算して(ステップ108)、計算した位相とあらかじめ設定されたオフセット値(追って説明)を合わせた位相にワークを回転させた後(ステップ109)、搬送装置にてワークを搬出する(ステップ110)。   Next, an operation flow for measurement by the phase shifter 40 will be described with reference to FIG. First, the type for phase out is selected, and the position of the sensor 3 is automatically changed according to the diameter of the eccentric portion and the eccentric amount (step 100). Next, after the workpiece 1 is supplied to the phase shifter (step 101), positioning in the workpiece axis direction (step 102) and provisional phasing of the displacement of the eccentric portion (step 103) are performed. Next, the workpiece 1 is gripped by the chuck 5 having a rotating portion (step 104), the workpiece 1 is rotated (step 105), and the displacement of the eccentric portion and the bearing portion corresponding to the rotation angle is measured (step 106). ), The rotation is continued until the set rotation range is measured (step 107). When all the set ranges have been measured, the phase of the eccentric part is calculated using the calculation algorithm from the displacement data with respect to the angle (step 108), and the calculated phase and the preset offset value (explained later) are calculated. After rotating the workpiece to the matched phase (step 109), the workpiece is unloaded by the transfer device (step 110).

図4、図5は上記測定動作における位置決め機構4およびチャック5の動作詳細説明であり、図4は偏芯ワーク1を長軸方向から見た図、図5はワークを把持する際のチャック爪5a〜5cの位相関係を示す図である。図3のステップ101において、前工程から支え部2の上にワーク1が搬送された後、変位を測定する回転範囲を限定するために、V字状の板からなる位置決め機構4を降下させてワーク1の偏芯部1aに当て、機械的にワーク1のおおよその偏芯方向を決める(芯出し)。図4(a)のように、例えばV字状の板4aの中心とワークの軸受部1bの中心を合わせてV字状の板4aを偏芯部1aに当てることで、図4(b)のように偏芯部1aの偏芯方向を鉛直下向きに回転させる(時計方向)ことができる。なお、上記位置決め機構4は上下方向に移動可能に形成されている例を示したが、搬送装置との干渉を考え、前後方向(図1の紙面奥方向)に退避機構を設けても良い。   4 and 5 are detailed explanations of the operation of the positioning mechanism 4 and the chuck 5 in the above measurement operation. FIG. 4 is a view of the eccentric work 1 seen from the long axis direction. FIG. 5 is a chuck claw when gripping the work. It is a figure which shows the phase relationship of 5a-5c. In step 101 of FIG. 3, after the work 1 is transferred from the previous process onto the support portion 2, the positioning mechanism 4 made of a V-shaped plate is lowered to limit the rotation range for measuring the displacement. Contact the eccentric part 1a of the workpiece 1 and mechanically determine the approximate eccentric direction of the workpiece 1 (centering). As shown in FIG. 4A, for example, the center of the V-shaped plate 4a and the center of the bearing portion 1b of the workpiece are aligned and the V-shaped plate 4a is applied to the eccentric portion 1a. Thus, the eccentric direction of the eccentric portion 1a can be rotated vertically downward (clockwise). The positioning mechanism 4 is formed so as to be movable in the vertical direction. However, a retracting mechanism may be provided in the front-rear direction (backward direction in FIG. 1) in consideration of interference with the transport device.

次にステップ104において、位相出し装置側のチャック5(ここでは三つ爪チャック)がワーク1方向に前進し、ワーク1の一端をチャックする。このとき、回転時の振れ回りの影響因子を減らすために、チャックしたときに図2のようにワークが支え部から数ミリ持ち上がる状態にし、チャックした状態でワーク1を回転させたときにチャック5以外の箇所でワークが接触しないように支え部2の高さやチャックの高さを調整する。   Next, at step 104, the chuck 5 (three-jaw chuck in this case) on the phase adjusting device side advances in the direction of the workpiece 1 and chucks one end of the workpiece 1. At this time, in order to reduce the influence factor of the run-out during rotation, the chuck 5 is lifted by several millimeters from the support portion when chucked as shown in FIG. 2, and the chuck 5 is rotated when the workpiece 1 is rotated in the chucked state. The height of the support portion 2 and the height of the chuck are adjusted so that the workpiece does not come into contact with other places.

図5はワークをチャックする際のワーク1とチャック5の位相関係を示しており、偏芯ワーク1の長軸方向から見た断面図である。図5(a)のように、チャック時にチャック5の爪5bが偏芯ワーク1の鉛直下向き(矢印)に対してずれた位置にある場合、ワークをチャックした時に、鉛直下側の箇所でワークの支持が無いため、ワークは自重により下向きに倒れ、ワーク回転時にチャックの片当りによる振れ回りが大きくなる。   FIG. 5 shows the phase relationship between the workpiece 1 and the chuck 5 when chucking the workpiece, and is a cross-sectional view of the eccentric workpiece 1 as seen from the long axis direction. As shown in FIG. 5 (a), when the chuck 5c of the chuck 5 is displaced with respect to the vertical downward direction (arrow) of the eccentric workpiece 1 when chucking, the workpiece is chucked at the position vertically below when the workpiece is chucked. Since the workpiece is not supported, the workpiece falls downward due to its own weight, and the swinging of the chuck per piece increases when the workpiece rotates.

そのため、ワークをチャックする際は、図5(b)のように鉛直下向きにチャック爪5bを配置させてチャックすることで、ワークの下向きの倒れが抑制され、ワークの振れ回りを抑制できる。なお、上記鉛直下向きのチャック爪の配置は、チャック爪が三つの場合に限らず、4、5それ以上の爪数の場合でも同様である。
さらに、チャック爪のワークと接触する部分の形状は、図5(c)のようにチャックする箇所のワーク外径に沿ったR形状かそれと同等なR形状にすることで、チャックのがたつきをチャックのR形状範囲内でのがたつきに抑えることができるため、ワーク回転時の振れ回りを抑制できる。
Therefore, when chucking the workpiece, the chuck claw 5b is arranged vertically downward as shown in FIG. 5B to perform chucking, so that the workpiece can be prevented from falling down and swinging of the workpiece can be suppressed. The arrangement of the vertically downward chuck claws is not limited to the case where there are three chuck claws, but is the same even when the number of claws is four, five or more.
Further, the shape of the portion of the chuck claw that comes into contact with the workpiece is set to an R shape along the outer diameter of the workpiece to be chucked as shown in FIG. Can be suppressed from wobbling within the R-shaped range of the chuck, so that it is possible to suppress the swinging of the workpiece during rotation.

次に、ステップ105、106において、ワークをセットして偏芯部を中心に半周程度ワークを回転させ、偏芯部と軸受部の変位を非接触式の変位センサ3a、3bで測定した場合の測定データを図6に示す。ワークの回転角度ごとに偏芯部の変位15と軸受部の変位19を測定し、横軸に回転角度、縦軸に変位をプロットしたものである。
図2で説明したように、偏芯部と軸受部の変位を測定するとき、回転機構に取付けた回転位相を検出するロータリエンコーダ等のセンサ7から回転角度に対応したパルスを出力し、この回転パルスを一定カウントごとにトリガ信号を出力するデジタルカウンタ12に取込み、上記トリガ信号をパソコン等の制御装置13に出力する。一度デジタルカウンタ等の機器に取込むことで、トリガの間隔を任意に変化させることができ、計測速度、計測精度に合わせた取込みをすることで、計測精度と速度を最適にして設備サイクルタイムを短縮できる。
Next, in steps 105 and 106, when the workpiece is set and the workpiece is rotated about a half circumference around the eccentric portion, the displacement between the eccentric portion and the bearing portion is measured by the non-contact type displacement sensors 3a and 3b. The measurement data is shown in FIG. The displacement 15 of the eccentric part and the displacement 19 of the bearing part are measured for each rotation angle of the workpiece, and the rotation angle is plotted on the horizontal axis and the displacement is plotted on the vertical axis.
As described in FIG. 2, when measuring the displacement of the eccentric portion and the bearing portion, a pulse corresponding to the rotation angle is output from a sensor 7 such as a rotary encoder that detects the rotation phase attached to the rotation mechanism, and this rotation The pulse is taken into a digital counter 12 that outputs a trigger signal at every constant count, and the trigger signal is output to a control device 13 such as a personal computer. Once taken into a device such as a digital counter, the trigger interval can be changed arbitrarily. By taking it in accordance with the measurement speed and measurement accuracy, the measurement accuracy and speed are optimized to reduce the equipment cycle time. Can be shortened.

制御装置13にて上記トリガ信号を受けたときに、例えばマルチADC等の複数点を同時サンプリングできるボードにて、15で示す偏芯部の変位A(θ)と、19で示す軸受部の変位B(θ)を取込み、これらを保存することで、任意の角度ピッチごとの偏芯部及び軸受部の変位データを得ることができる。
ここで得られた偏芯部の変位データA(θ)を元に、偏芯方向の位相を計算し、偏芯部の位相を求める。偏芯部の位相を計算する際、測定データで変位が最小となる点を偏芯部の位相として良いが、測定データのノイズや外乱の影響あるいは角度分解能の制約を抑えて高精度に位相を求めるために、三角関数近似等の近似演算を用いる。
When the control device 13 receives the trigger signal, for example, a board capable of simultaneously sampling a plurality of points such as a multi-ADC, the displacement A (θ) of the eccentric portion indicated by 15 and the displacement of the bearing portion indicated by 19 By taking B (θ) and storing them, displacement data of the eccentric portion and the bearing portion can be obtained for each arbitrary angle pitch.
Based on the displacement data A (θ) of the eccentric portion obtained here, the phase in the eccentric direction is calculated to obtain the phase of the eccentric portion. When calculating the phase of the eccentric part, the point where the displacement is the smallest in the measurement data may be used as the phase of the eccentric part, but the phase of the eccentric part can be accurately controlled by suppressing the influence of noise and disturbance of the measurement data or angular resolution. In order to obtain it, an approximation operation such as trigonometric function approximation is used.

具体的には測定により得られた偏芯部の変位Y=A(θ)を三角関数で近似して下記(1)式に変換し、求められたFが位相ずれ量となる。
Y=D・sinE(X−F)+G (1)
但し、D、E、F、Gは計算結果より得られた数値を示す。
さらに、非接触式変位センサ3として渦電流式センサを用いて回転する偏芯部を測定する場合、上記センサ3の測定原理上、センサ3からの距離が離れると図6の点線17aのように測定される変位が大きくなり、三角関数との整合性が悪くなって計算精度が悪化する。そのため、任意高さ20を設定し、その任意高さ以下のデータを用いて三角関数の近似曲線17で近似することで演算結果の再現性が良くなり、計算結果のばらつきを抑制できて高精度に位相を求めることができる。
Specifically, the displacement Y = A (θ) of the eccentric portion obtained by measurement is approximated by a trigonometric function and converted into the following equation (1), and the obtained F is the phase shift amount.
Y = D · sinE (X−F) + G (1)
However, D, E, F, and G show the numerical value obtained from the calculation result.
Further, when measuring an eccentric portion that rotates using an eddy current sensor as the non-contact type displacement sensor 3, if the distance from the sensor 3 is increased due to the measurement principle of the sensor 3, a dotted line 17a in FIG. The measured displacement is increased, the consistency with the trigonometric function is deteriorated, and the calculation accuracy is deteriorated. Therefore, by setting the arbitrary height 20 and approximating with the approximate curve 17 of the trigonometric function using data less than the arbitrary height, the reproducibility of the calculation result is improved, and the dispersion of the calculation result can be suppressed and high accuracy is achieved. The phase can be obtained.

また、図5にて説明したチャック時のワークの振れ回り防止を施していても、ワークをチャックする際に、チャックとワークの位置ずれやチャック中心と回転中心のずれ等によりワークを回転させた時にどうしても若干の振れ回りが生じてしまい、上記偏芯部の変位に関する測定データに上記振れ回りの変位が足し合わされる。偏芯部の位相を計算する際にそのデータを用いると、計算結果と実際の偏芯方向との間にずれが生じて、位相出し精度が低下することがある。そこで、ワークの偏芯部の変位A(θ)から軸受部の変位B(θ)を差し引きすることで、偏芯部の測定データからワークの振れ回り成分を除くことができる。また、測定した偏芯部の変位から振れ成分をキャンセルする際、軸受部の測定位置や、振れの重み付けを変えるために、軸受部の変位に重み付けの係数αをかけて、
X(θ)=A(θ)−α×B(θ) (2)
但し、 0≦α≦1
として、振れ回り成分を除いた偏芯部の変位データX(θ)を求めても良い。このときの偏芯部の変位の中の振れ回り成分をキャンセルした偏芯部変位データX(θ)は図6において16で表され、その近似曲線を18で表している。
In addition, even when the workpiece swing prevention is performed as described in FIG. 5, when the workpiece is chucked, the workpiece is rotated due to a positional deviation between the chuck and the workpiece or a deviation between the chuck center and the rotation center. Sometimes, a slight swing occurs, and the displacement of the swing is added to the measurement data relating to the displacement of the eccentric portion. If the data is used when calculating the phase of the eccentric portion, a deviation may occur between the calculation result and the actual eccentric direction, and phase output accuracy may be reduced. Therefore, by subtracting the displacement B (θ) of the bearing portion from the displacement A (θ) of the eccentric portion of the workpiece, the swinging component of the workpiece can be removed from the measurement data of the eccentric portion. Also, when canceling the shake component from the measured displacement of the eccentric part, in order to change the measurement position of the bearing part and the weight of the shake, the weighting coefficient α is applied to the displacement of the bearing part,
X (θ) = A (θ) −α × B (θ) (2)
However, 0 ≦ α ≦ 1
As an alternative, the displacement data X (θ) of the eccentric portion excluding the swirl component may be obtained. The eccentric portion displacement data X (θ) in which the swing component in the eccentric portion displacement at this time is canceled is represented by 16 in FIG. 6, and its approximate curve is represented by 18.

なお、非接触の変位センサ3は図2ではワーク1に対して鉛直下向きに配置しているが、ワークの横方向(紙面奥方向)に設置しても測定精度は変わらず、また横方向に設置することで前工程の切削水中に含まれる切粉等がセンサ上に残りにくく、繰り返し計測したときの計測結果のずれ量の変化を抑制できるため、センサの測定方向はワークに対して横方向が望ましい。   Although the non-contact displacement sensor 3 is arranged vertically downward with respect to the workpiece 1 in FIG. 2, the measurement accuracy does not change even if it is installed in the lateral direction of the workpiece (backward direction of the paper), and in the lateral direction. By installing it, it is difficult for chips contained in the cutting water in the previous process to remain on the sensor, and it is possible to suppress changes in the deviation of measurement results when repeatedly measured. Is desirable.

以上のようにこの発明の実施の形態1によれば、ワークの偏芯部を高精度に位相出しできるため、円筒研削盤にて研削代の取り残し不良を抑制することができる。
ちなみに、従来の機械的に位相出しを行う方法ではワーク径のばらつきや治具と接触する表面の状態によって、±1°程度の位相出しばらつきが生じていたのに対し、本発明の位相出し方法を用いることで、±0.1°以下に抑えることができた。
As described above, according to the first embodiment of the present invention, since the eccentric portion of the workpiece can be phased with high accuracy, it is possible to suppress a defective grinding allowance in a cylindrical grinder.
By the way, in the conventional method of performing the phase shift, the phase shift variation of about ± 1 ° occurs due to the variation in the workpiece diameter and the surface state in contact with the jig. By using this, it was possible to suppress it to ± 0.1 ° or less.

実施の形態2.
実施の形態1において高精度に位相出しされたワークは円筒研削盤に搬送されるが、その際に位相出し装置で決定した位相を保ったまま円筒研削盤に搬送することが重要である。このための搬送装置および搬送装置と円筒研削盤との受け渡し動作を図7により説明する。
図7(a)に搬送装置50単体の概略図を示す。図7(a)に示したように、搬送装置50をチャック部側21と固定部側(ベース部側)22に切分け、チャック部側にブッシュ23を、ベース部側にガイドとなる支柱24を設け、ブッシュ23に支柱を通してバネ25でチャック部側を持ち上げることで上下方向に自由度を持たせた構造としている。
図7(b)は搬送装置50から円筒研削盤のチャック27、28にワーク1を受渡ししている状態を示す側面図、図7(c)はその正面図である。
Embodiment 2. FIG.
In the first embodiment, the workpiece phased with high accuracy is conveyed to the cylindrical grinder, but it is important to convey the workpiece to the cylindrical grinder while maintaining the phase determined by the phaser. The transfer device for this purpose and the delivery operation between the transfer device and the cylindrical grinder will be described with reference to FIG.
FIG. 7A shows a schematic diagram of the conveyance device 50 alone. As shown in FIG. 7A, the conveying device 50 is divided into a chuck part side 21 and a fixed part side (base part side) 22, a bush 23 is provided on the chuck part side, and a column 24 serving as a guide on the base part side. Is provided, and a structure having a degree of freedom in the vertical direction is provided by passing the support through the bush 23 and lifting the chuck portion side with the spring 25.
FIG. 7B is a side view showing a state in which the workpiece 1 is being transferred from the conveying device 50 to the chucks 27 and 28 of the cylindrical grinder, and FIG. 7C is a front view thereof.

搬送装置50は上下方向に自由度を設けているため、円筒研削盤のチャック27、28に渡す際に、搬送装置50で送られたワーク1は円筒研削盤の受け側のチャック27より少し上位置で停止させ、円筒研削盤のチャック28でワーク1を掴むことで搬送装置のバネ機構の伸縮によってチャック部側が引き込まれて、搬送装置のチャック26と円筒研削盤のチャック27、28の位置ずれを吸収でき、チャック同士でワークの姿勢を保持したままワークを掴むことができる。
次に搬送装置50のチャック26をはずすことで、搬送装置から円筒研削盤の掴み換えが完了する。位相出し装置から搬送装置の掴み換えも上記と同様に実施できることは言うまでもない。
Since the conveying device 50 has a degree of freedom in the vertical direction, when the workpiece 1 is transferred to the chucks 27 and 28 of the cylindrical grinding machine, the workpiece 1 sent by the conveying device 50 is slightly above the chuck 27 on the receiving side of the cylindrical grinding machine. When the workpiece 1 is stopped at the position and the chuck 1 of the cylindrical grinder grips the workpiece 1, the chuck unit side is pulled in by the expansion and contraction of the spring mechanism of the conveying device, and the positional deviation between the chuck 26 of the conveying device and the chucks 27 and 28 of the cylindrical grinder The workpiece can be gripped while holding the posture of the workpiece between the chucks.
Next, by removing the chuck 26 of the transfer device 50, the gripping of the cylindrical grinder from the transfer device is completed. Needless to say , the repositioning from the phase shifter to the transfer device can be performed in the same manner as described above.

以上のように、搬送装置をバネ等で多方向に自由度を持たせた構造にすることで、位相出し装置と搬送装置、及び搬送装置と円筒研削盤のチャック間で受渡し時にチャック同士でワークの姿勢を保持したまま掴み換えることができるため、掴み換えによるワークの姿勢変化を抑制できる。その結果、位相出し装置で決めた位相を保ったまま円筒研削盤に搬送して偏芯部を研削加工することで、研削加工時の加工面の取り残し不良を抑制することができる。   As described above, the conveyance device is structured to have flexibility in multiple directions with a spring or the like, so that workpieces between chucks can be transferred between the phase shifter and the conveyance device, and between the conveyance device and the chuck of the cylindrical grinder. Therefore, it is possible to suppress the change in the posture of the work due to the gripping. As a result, it is possible to suppress the remaining defect of the processed surface at the time of grinding by conveying to the cylindrical grinder while grinding the eccentric portion while maintaining the phase determined by the phase shifter.

実施の形態3.
上記実施の形態1、2によって位相出し装置で決定された位相を保ったまま円筒研削盤に搬送して偏芯部を研削加工することができるが、位相出し装置にて位相を計算した後、搬送装置や円筒研削盤で掴み換える際に、チャック時の微少ずれ等により、位相出し装置で計算されて回転した位相にずれが生じることがある。その結果、円筒研削盤の回転中心と偏芯部の中心にずれが生じて、研削加工時に研削代の取り残し不良が発生する場合がある。また取り残し不良が発生しなくても、粗加工の研削代の範囲内で偏芯部の位相のずれが生じ、このずれと加工ばらつき等により研削加工時の取り残しが発生する可能性がある。
この実施の形態3は、位相出し装置で計算された結果に任意の角度をオフセットして回転させる機能を設けて、円筒研削盤で研削されたときの角度ずれの結果を元に、位相出し装置で計算された角度にオフセットを追加するようにしたものである。
Embodiment 3 FIG.
While maintaining the phase determined by the phase shifter according to the first and second embodiments, it can be conveyed to a cylindrical grinder to grind the eccentric part, but after calculating the phase with the phase shifter, When gripping with a conveying device or a cylindrical grinder, a phase shift calculated by the phase shifter may be shifted due to a slight shift during chucking. As a result, the center of rotation of the cylindrical grinder and the center of the eccentric portion are displaced, which may cause a defective grinding allowance during grinding. Even if there is no leftover defect, the phase shift of the eccentric portion occurs within the range of the roughing grinding allowance, and there is a possibility that the leftover at the time of grinding may occur due to this deviation and processing variation.
The third embodiment is provided with a function of offsetting and rotating an arbitrary angle to the result calculated by the phase shifter, and based on the result of the angle shift when being ground by the cylindrical grinder An offset is added to the angle calculated in (1).

図8に位相出し装置から円筒研削盤までの加工ラインの流れを示しており、位相出し装置40で位相出しされ、その位相を保ったまま搬送装置50により円筒研削盤60に搬送されたワークについて、円筒研削盤60で偏芯部の位相ずれを測定しておき(検査工程70)、そのずれ量を位相出し装置40にフィードバックするものである。これにより位相出し装置40上で、搬送チャック時等のずれを加味して円筒研削盤の回転中心にワークの偏芯部の方向を合わせることができるため、研削加工時に偏芯部の研削加工面の取り残し不良を抑制できるだけでなく、前工程の粗加工で研削代の削減量を小さくして、研削加工時間を削減することで、円筒研削盤のサイクルタイムを削減できる。   FIG. 8 shows the flow of the machining line from the phase shifter to the cylindrical grinder. The workpiece is phased by the phase shifter 40 and transferred to the cylindrical grinder 60 by the transfer device 50 while maintaining the phase. The phase shift of the eccentric portion is measured by the cylindrical grinding machine 60 (inspection step 70), and the shift amount is fed back to the phase shifter 40. Accordingly, since the direction of the eccentric part of the workpiece can be aligned with the rotation center of the cylindrical grinder on the phase shifter 40 in consideration of the deviation at the time of the conveyance chuck, the grinding surface of the eccentric part during the grinding process. In addition to suppressing unsatisfactory leftovers, the cycle time of the cylindrical grinder can be reduced by reducing the grinding time by reducing the amount of grinding allowance in the roughing of the previous process.

実施の形態4.
円筒研削盤にワークを設置したときに、円筒研削盤の回転中心とワークの偏芯部の中心のずれ角度を測定して、前工程の位相出し装置での偏芯位相の計算角度にオフセットを追加することで、研削加工時の偏芯部の位相ずれ量を低減できることは実施の形態3で説明した。実施の形態4はこのような円筒研削盤での偏芯部の位相のずれ量の測定方法を提案するものである。
Embodiment 4 FIG.
When a workpiece is installed on the cylindrical grinder, measure the deviation angle between the center of rotation of the cylindrical grinder and the center of the eccentric part of the workpiece, and offset the eccentric phase calculation angle in the phase shifter in the previous process. As described in the third embodiment, it is possible to reduce the phase shift amount of the eccentric portion during the grinding process by the addition. The fourth embodiment proposes a method for measuring the amount of phase shift of the eccentric portion in such a cylindrical grinding machine.

図9は円筒研削盤に設置した状態で偏芯部にダイヤルゲージ等の変位計30を当て、偏芯部の振れ量と振れの向きを測定する方法を説明する概略図である。図9(a)は円筒研削盤に設置したときにずれが無い状態を示しており、具体的には円筒研削盤の回転中心32とワークの偏芯部の中心33が一致している状態である。なお、31はワークの軸受部中心を示す。この状態で円筒研削盤を回転させたときの偏芯部外周の変位は、回転角度に関わらず一定である。それに対し、図9(b)のように円筒研削盤の回転中心32とワークの偏芯部の中心33がずれている場合には、この状態で円筒研削盤を回転させると偏芯部外周の変位は回転角度に応じて変化する。偏芯部のずれ量と振れ量は幾何学的な関係で決まるため、変位の振れ幅を測定することで、偏芯部のずれ量βを計算できる。しかし、上記手法では位相ずれ量を測定するためには、円筒研削装置を停止させる必要があるため、ラインの稼働率が低下するという課題があった。   FIG. 9 is a schematic diagram for explaining a method of measuring a deflection amount and a deflection direction of the eccentric portion by applying a displacement gauge 30 such as a dial gauge to the eccentric portion in a state where the eccentric portion is installed. FIG. 9A shows a state in which there is no deviation when installed on the cylindrical grinder. Specifically, the center of rotation 32 of the cylindrical grinder and the center 33 of the eccentric part of the workpiece are coincident with each other. is there. Reference numeral 31 denotes the center of the bearing portion of the workpiece. The displacement of the outer periphery of the eccentric portion when the cylindrical grinder is rotated in this state is constant regardless of the rotation angle. On the other hand, when the rotation center 32 of the cylindrical grinding machine and the center 33 of the eccentric part of the workpiece are shifted as shown in FIG. 9B, if the cylindrical grinding machine is rotated in this state, the outer circumference of the eccentric part The displacement changes according to the rotation angle. Since the deviation amount and the shake amount of the eccentric portion are determined by a geometric relationship, the deviation amount β of the eccentric portion can be calculated by measuring the displacement width of the displacement. However, in the above method, in order to measure the phase shift amount, it is necessary to stop the cylindrical grinding apparatus, which causes a problem that the operation rate of the line decreases.

図10は上記課題を解消するための新たな偏芯部の位相ずれ量の測定方法を説明するものであり、偏芯部外径の荒加工時に面取り加工を実施し、面取り部の中心と偏芯部の荒加工外径の中心を同一にしたワークを研削加工することで、研削加工後の面取り幅の大きさの違いから、偏芯部の位相ずれを計算するようにしたものである。
図10(a)は荒加工を実施したワークを示しており、荒加工時に面取り加工を同時に実施することで、偏芯部の中心と面取り箇所の中心が一致する。図10(b)は面取り加工を施した荒加工の外径34(破線)から円筒研削盤で研削加工の仕上げ径35まで取代を除いたときに、円筒研削盤の回転中心とワークの偏芯部の軸心がずれていると、ワークの偏芯部の偏芯方向を下向きに取ったときの左右の面取り幅b1とb2が異なる。この面取り幅の差と偏芯部のずれ量は幾何学的な関係で決まるため、面取り幅の差(b1-b2)を測定することで、偏芯部のずれ量βを求めることができ、位相出し装置の計算結果にオフセットβを追加する。
FIG. 10 illustrates a new method for measuring the amount of phase shift of the eccentric portion to solve the above-mentioned problem. Chamfering is performed during rough machining of the outer diameter of the eccentric portion, and the center of the chamfered portion is offset. By grinding a workpiece having the same center of the rough outer diameter of the core portion, the phase shift of the eccentric portion is calculated from the difference in the chamfer width after grinding.
FIG. 10A shows a workpiece that has undergone rough machining, and the center of the eccentric portion and the center of the chamfered portion coincide with each other by simultaneously performing chamfering during the rough machining. FIG. 10B shows the center of rotation of the cylindrical grinder and the eccentricity of the workpiece when the machining allowance is removed from the outer diameter 34 (broken line) of the roughing after chamfering to the finishing diameter 35 of the grinding with a cylindrical grinder. When the axis of the part is displaced, the left and right chamfering widths b1 and b2 when the eccentric direction of the eccentric part of the workpiece is taken downward are different. Since the difference between the chamfer width and the deviation amount of the eccentric portion is determined by a geometrical relationship, the deviation amount β of the eccentric portion can be obtained by measuring the difference in the chamfer width (b1-b2). An offset β is added to the calculation result of the phase shifter.

上記のように研削加工後の偏芯部の面取り幅から偏芯部の位相ずれを測定することで、設備やラインを止めることなく研削加工時の位相ずれを測定でき、ラインの稼働率が上がるだけでなく、位相ずれ量を効率的に測定できる。また、位相ずれ量を位相出し装置にフィードバックすることで、高精度に位相出しができるため、加工面の取り残し不良を撲滅できる。更に、量産加工中に位相出し装置の計算角度のオフセットを変更できるため、量産ラインを止めることなく、効率的に角度オフセットの調整ができる。   By measuring the phase shift of the eccentric part from the chamfer width of the eccentric part after grinding as described above, the phase shift at the time of grinding can be measured without stopping the equipment and line, and the line operating rate is increased. In addition, the amount of phase shift can be measured efficiently. In addition, since the phase shift can be performed with high accuracy by feeding back the phase shift amount to the phase shifter, it is possible to eliminate defects on the processed surface. Furthermore, since the offset of the calculation angle of the phase shifter can be changed during mass production processing, the angle offset can be adjusted efficiently without stopping the mass production line.

1 偏芯ワーク、 1a 偏芯部、 1b 軸受部、 2 支え部、
3 変位センサ、 4 位相決め機構、 5 チャック、
6 回転機構、 7 回転位相検出センサ、 8 架台、 9 台座、
21 チャック部側、 22 固定部側、 23 ブッシュ、
24 支柱、 25 バネ、 26 搬送設備側チャック、
27、28 円筒研削盤のチャック、 30 ダイヤルゲージ、
31 軸受部回転中心、 32 円筒研削盤の回転中心、
33 ワーク偏芯部中心、 34 荒加工外径、 35 研削加工外径。
1 eccentric work, 1a eccentric part, 1b bearing part, 2 support part,
3 displacement sensor, 4 phasing mechanism, 5 chuck,
6 rotation mechanism, 7 rotation phase detection sensor, 8 frame, 9 base,
21 Chuck part side, 22 Fixed part side, 23 Bush,
24 struts, 25 springs, 26 transport equipment side chuck,
27, 28 Cylindrical grinding machine chuck, 30 Dial gauge,
31 Bearing center rotation center 32 Cylindrical grinding machine rotation center
33 Center of workpiece eccentric part, 34 Roughing outer diameter, 35 Grinding outer diameter.

Claims (4)

偏芯ワークの研削加工前に偏芯部の位相出しを行う方法において、回転部を備えたチャックで偏芯ワークを把持し、上記偏芯ワークを回転させながら回転角度に対応した上記ワークの偏芯部の変位を非接触で測定し、測定した変位データを三角関数近似により上記偏芯部の位相ずれ量を計算するようにしたものにおいて、上記ワークの偏芯部の変位を測定する際、上記ワークの軸受部の変位も同時に無接触で測定し、上記測定した偏芯部の変位データから軸受部の変位データを差し引くことで偏芯部の測定データからワークの振れ回り成分をキャンセルするようにしたことを特徴とする偏芯ワークの位相出し方法。 In the method of phasing the eccentric portion before grinding the eccentric workpiece, the eccentric workpiece is gripped by a chuck provided with a rotating portion, and the eccentric of the workpiece corresponding to the rotation angle while rotating the eccentric workpiece. When measuring the displacement of the eccentric part of the workpiece in the one in which the displacement of the core part is measured in a non-contact manner, and the displacement data measured is to calculate the amount of phase deviation of the eccentric part by trigonometric approximation . Simultaneously measure the displacement of the bearing part of the workpiece without contact, and subtract the bearing displacement data from the measured displacement data of the eccentric part to cancel the swinging component of the workpiece from the measured data of the eccentric part. phase out the method of the eccentric workpiece, characterized in that the. 測定した偏芯部の変位から振れ回り成分をキャンセルする際、軸受部の変位に重み付け係数αをかけて、
X(θ)=A(θ)−α×B(θ)
但し、 A(θ)は偏芯部の変位、 B(θ)軸受部の変位、 0≦α≦1
として、偏芯部の変位データX(θ)を求めるようにしたことを特徴とする請求項1に記載の偏芯ワークの位相出し方法。
When canceling the whirling component from the measured displacement of the eccentric part, the weighting coefficient α is applied to the displacement of the bearing part,
X (θ) = A (θ) −α × B (θ)
Where A (θ) is the displacement of the eccentric part, B (θ) is the displacement of the bearing part, 0 ≦ α ≦ 1
The eccentric work phase phasing method according to claim 1 , wherein displacement data X (θ) of the eccentric portion is obtained.
測定した偏芯部の変位データのうち、任意高さ以下のデータを用いて三角関数の近似を行うようにしたことを特徴とする請求項1あるいは2に記載の偏芯ワークの位相出し方法。 3. The eccentric work phasing method according to claim 1, wherein a trigonometric function is approximated using data of an arbitrary height or less among the measured displacement data of the eccentric portion. 偏芯部と軸受部とを有する偏芯ワークを研削加工前に位相出しを行う偏芯ワークの位相出し装置において、上記偏芯ワークの偏芯部及び軸受部にそれぞれ対向して設けられた非接触式変位センサと、上記偏芯ワークの一端を把持した状態で回転させるチャックと、上記偏芯ワークを回転させながら上記非接触センサにより回転角度に対応して測定した上記偏芯部変位および軸受部変位を入力し、測定した変位データを三角関数により近似して上記偏芯部の位相ずれ量を計算する制御装置を備え、
偏芯部の変位データX(θ)を下式
X(θ)=A(θ)−α×B(θ) (0≦α≦1)
但し、A(θ)は偏芯部の変位、B(θ)は軸受部の変位、α重み付け係数
により求めるようにしたことを特徴とする偏芯ワークの位相出し装置。
An eccentric workpiece phasing device for phasing an eccentric workpiece having an eccentric portion and a bearing portion before grinding processing, wherein the eccentric workpiece and the bearing portion are provided so as to face each other. A contact-type displacement sensor, a chuck that rotates while gripping one end of the eccentric workpiece, and the eccentric portion displacement and bearing measured by the non-contact sensor according to the rotation angle while rotating the eccentric workpiece. Comprising a control device that inputs a partial displacement, approximates the measured displacement data by a trigonometric function, and calculates the phase shift amount of the eccentric portion;
Eccentric displacement data X (θ)
X (θ) = A (θ) −α × B (θ) (0 ≦ α ≦ 1)
Where A (θ) is the displacement of the eccentric part, B (θ) is the displacement of the bearing part, α weighting coefficient
Phase out apparatus eccentric workpiece, characterized in that the the seek by.
JP2010124249A 2010-05-31 2010-05-31 Method and apparatus for phasing eccentric workpiece, and method and apparatus for supplying workpiece to cylindrical grinder using the same Expired - Fee Related JP5538647B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010124249A JP5538647B2 (en) 2010-05-31 2010-05-31 Method and apparatus for phasing eccentric workpiece, and method and apparatus for supplying workpiece to cylindrical grinder using the same
CN201010530462.6A CN102259291B (en) 2010-05-31 2010-11-03 Phase adjusting method and device of eccentric workpiece and workpiece supplying method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010124249A JP5538647B2 (en) 2010-05-31 2010-05-31 Method and apparatus for phasing eccentric workpiece, and method and apparatus for supplying workpiece to cylindrical grinder using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013264849A Division JP5738393B2 (en) 2013-12-24 2013-12-24 Workpiece supply method to cylindrical grinder

Publications (2)

Publication Number Publication Date
JP2011245608A JP2011245608A (en) 2011-12-08
JP5538647B2 true JP5538647B2 (en) 2014-07-02

Family

ID=45006225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010124249A Expired - Fee Related JP5538647B2 (en) 2010-05-31 2010-05-31 Method and apparatus for phasing eccentric workpiece, and method and apparatus for supplying workpiece to cylindrical grinder using the same

Country Status (2)

Country Link
JP (1) JP5538647B2 (en)
CN (1) CN102259291B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6417882B2 (en) * 2014-11-17 2018-11-07 株式会社ジェイテクト Processing apparatus and processing method
JP6144320B2 (en) * 2015-11-17 2017-06-07 Ntn株式会社 Loading mechanism and machine tool system
CN106290582B (en) * 2016-08-03 2018-08-24 中南大学 A kind of Ultrasonic C-Scan course corrections method considering workpiece bias clamping error
CN109304655B (en) * 2017-07-26 2024-05-17 周联 Anti-shaking grinding polisher
CN109909603B (en) * 2019-03-11 2021-03-02 大族激光科技产业集团股份有限公司 Automatic feeding method and device, storage medium and automatic feeding control device
CN115401543B (en) * 2022-08-25 2023-09-05 青岛高测科技股份有限公司 Grinding machine, control method and system thereof, equipment and computer readable storage medium

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187610A (en) * 1981-05-14 1982-11-18 Mitsubishi Electric Corp Measuring device for coaxial degree of tubular and cylindrical objects
CN1073492C (en) * 1993-09-13 2001-10-24 丰田荣 Method and apparatus for automatic alignment and phase adjustment of eccentric work piece
JP4419224B2 (en) * 1999-10-07 2010-02-24 日本精工株式会社 How to determine the bending correction position and correction amount of bar
JP3780470B2 (en) * 1999-12-13 2006-05-31 ミクロン精密株式会社 Method for aligning composite eccentric shafts
KR100829012B1 (en) * 2001-10-12 2008-05-14 엘지전자 주식회사 An apparatus for controlling a tracking of an optical disc
CN100542705C (en) * 2007-12-06 2009-09-23 上海交通大学 Full-automatic on-line method for gag press straightening jackrod
CN101629783A (en) * 2008-07-17 2010-01-20 中冶天工建设有限公司 Method for adjusting deviation of plate blank of walking furnace by phase method
JP5315927B2 (en) * 2008-10-28 2013-10-16 株式会社ジェイテクト Grinding machine system and grinding method

Also Published As

Publication number Publication date
JP2011245608A (en) 2011-12-08
CN102259291B (en) 2014-01-22
CN102259291A (en) 2011-11-30

Similar Documents

Publication Publication Date Title
JP5538647B2 (en) Method and apparatus for phasing eccentric workpiece, and method and apparatus for supplying workpiece to cylindrical grinder using the same
JP5738393B2 (en) Workpiece supply method to cylindrical grinder
JP4824166B2 (en) Method and grinding machine for process guides in peel grinding of workpieces
JP6159549B2 (en) Workpiece peripheral processing equipment
US8287329B2 (en) Grinding machine and grinding method
KR101501628B1 (en) Grinding center and method for simultaneous grinding of a plurality of bearings and end-side surfaces of crankshafts
US9440328B2 (en) Method for ascertaining topography deviations of a dressing tool in a grinding machine
CN104162840B (en) Intelligent thickness gauge
US20220126384A1 (en) Method for grinding or polishing a gearwheel or a workpiece with a gearwheel-like profile in a grinding or polishing machine
WO2014119163A1 (en) Grinding processing method
JP5385330B2 (en) High precision processing equipment
GB2481476A (en) Centring method for optical elements
JP2010194623A (en) Thread grinding machine and thread groove grinding method
JP4898290B2 (en) Work transfer device with electric chuck with measurement function
JP4911810B2 (en) Workpiece grinding apparatus and grinding method
JP3975309B2 (en) Wafer chamfering method and apparatus
JP6571261B2 (en) Wafer chamfering device
JP5770381B2 (en) Honing method with centering of workpiece in inspection station
JP6144545B2 (en) Wafer chamfering equipment
JP2008279542A (en) Grinder, and grinding method for workpiece having imperfect circular or eccentric shape
TWI814988B (en) Arrangement and method for adjusting a robot arm
JP3660920B2 (en) Machine tool and processing method
JP3840389B2 (en) Processing method and processing apparatus
JP2009113161A (en) Grinding method and grinder
JP2011131355A (en) Grinding method and grinding machine of workpiece

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

R151 Written notification of patent or utility model registration

Ref document number: 5538647

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140429

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees