JP5538188B2 - Flame retardant thermoplastic polyester resin composition - Google Patents

Flame retardant thermoplastic polyester resin composition Download PDF

Info

Publication number
JP5538188B2
JP5538188B2 JP2010257098A JP2010257098A JP5538188B2 JP 5538188 B2 JP5538188 B2 JP 5538188B2 JP 2010257098 A JP2010257098 A JP 2010257098A JP 2010257098 A JP2010257098 A JP 2010257098A JP 5538188 B2 JP5538188 B2 JP 5538188B2
Authority
JP
Japan
Prior art keywords
mass
thermoplastic polyester
polyester resin
resin composition
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010257098A
Other languages
Japanese (ja)
Other versions
JP2012107126A (en
Inventor
康史 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Engineering Plastics Corp
Original Assignee
Mitsubishi Engineering Plastics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Engineering Plastics Corp filed Critical Mitsubishi Engineering Plastics Corp
Priority to JP2010257098A priority Critical patent/JP5538188B2/en
Publication of JP2012107126A publication Critical patent/JP2012107126A/en
Application granted granted Critical
Publication of JP5538188B2 publication Critical patent/JP5538188B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、難燃性熱可塑性ポリエステル樹脂組成物に関する。特に、ハロゲン系難燃剤を必須とし、難燃性に加えて、衝撃強度、外観および溶着性に優れた難燃性熱可塑性ポリエステル樹脂組成物に関する。   The present invention relates to a flame retardant thermoplastic polyester resin composition. In particular, the present invention relates to a flame-retardant thermoplastic polyester resin composition that requires a halogen-based flame retardant and is excellent in impact strength, appearance, and weldability in addition to flame retardancy.

熱可塑性ポリエステル樹脂は、その優れた特性から電気及び電子機器部品並びに自動車部品等に広く用いられている。特に、ポリブチレンテレフタレート系樹脂(以下、「PBT」と略記することがある。)は、要求特性に応じて様々な処方により高機能化と高性能化を実現してきた。   Thermoplastic polyester resins are widely used in electrical and electronic equipment parts, automobile parts and the like because of their excellent characteristics. In particular, polybutylene terephthalate-based resins (hereinafter sometimes abbreviated as “PBT”) have realized high functionality and high performance by various formulations according to required characteristics.

しかし、近年では部品の軽量小型化の為に、樹脂成形体の薄肉化が進められている。これに伴い、薄肉でも、難燃性に優れ、衝撃強度が高い樹脂成形体を提供できる難燃性熱可塑性ポリエステル樹脂組成物が求められている。さらに、外観に優れることや高い溶着性も重要な課題となっている。   However, in recent years, the thickness of resin molded bodies has been reduced in order to reduce the weight and size of parts. Accordingly, there is a demand for a flame-retardant thermoplastic polyester resin composition that can provide a resin molded article that is excellent in flame retardancy and has high impact strength even if it is thin. Furthermore, excellent appearance and high weldability are also important issues.

ここで、特許文献1には、ハロゲン系難燃剤を必須とする難燃性熱可塑性ポリエステル樹脂組成物が開示されている。しかしながら、特許文献1に記載の組成物では、衝撃強度、外観および溶着性のいずれかが劣ってしまう。   Here, Patent Document 1 discloses a flame-retardant thermoplastic polyester resin composition that essentially requires a halogen-based flame retardant. However, the composition described in Patent Document 1 is inferior in any of impact strength, appearance, and weldability.

特開平11−111376号公報JP-A-11-111376

本発明は上記従来技術の問題点を解決することを目的としたものであって、難燃性に加えて、衝撃強度、外観および溶着性にも優れた難燃性熱可塑性ポリエステル樹脂組成物を提供することを目的とする。   The present invention aims to solve the above-mentioned problems of the prior art, and in addition to flame retardancy, a flame retardant thermoplastic polyester resin composition excellent in impact strength, appearance and weldability is provided. The purpose is to provide.

かかる状況のもと、本発明者が鋭意検討を行った結果、熱可塑性ポリエステル樹脂組成物において、エラストマー成分として、少なくともブタジエンを重合してなるゴム質重合体に、少なくともメチルメタクリレートとスチレンをグラフト重合させたグラフト重合体を配合し、かつ、ハロゲン系難燃剤を配合することにより、高い難燃性に加えて、優れた衝撃強度、外観および溶着性を達成可能なことを見出し、本発明を完成するに至った。一般的に、エラストマー成分を添加すると、難燃性が低下することが知られているが、本発明では、エラストマー成分として、特定の組成を有するものを採用し、かつ、ハロゲン系難燃剤を添加することにより、高い難燃性を達成したものである。具体的には、以下の手段により、本発明の課題は達成された。
(1)(A)熱可塑性ポリエステル樹脂100質量部に対し、
(B)少なくともブタジエンを重合してなるゴム質重合体に、少なくともメチルメタクリレートとスチレンをグラフト重合させたグラフト重合体を1質量部〜30質量部、
(C)ハロゲン系難燃剤を7質量部〜40質量部、
(D)無機系難燃助剤を3質量部〜20質量部および
(E)無機系強化材を1質量部〜90質量部
を含み、(B)グラフト重合体以外のエラストマーの含量が(A)熱可塑性ポリエステル樹脂に対して3質量%以下である難燃性熱可塑性ポリエステル樹脂組成物。
(2)前記(B)グラフト重合体中のスチレン含有量が、3質量%以上である、(1)に記載の難燃性熱可塑性ポリエステル樹脂組成物。
(3)前記(B)グラフト重合体が、少なくともスチレンとブタジエンを共重合してなるゴム質重合体に、少なくともメチルメタクリレートとスチレンをグラフト重合させたグラフト重合体である、(1)または(2)に記載の難燃性熱可塑性ポリエステル樹脂組成物。
(4)熱可塑性ポリエステル樹脂が、ポリブチレンテレフタレート樹脂を含む、(1)〜(3)のいずれか1項に記載の難燃性熱可塑性ポリエステル樹脂組成物。
(5)熱可塑性ポリエステル樹脂が、ポリブチレンテレフタレート樹脂とポリエチレンテレフタレート樹脂を含む、(1)〜(3)のいずれか1項に記載の難燃性熱可塑性ポリエステル樹脂組成物。
(6)(C)ハロゲン系難燃剤が、臭素化エポキシ化合物、下記式(1)で表される化合物および下記式(2)で表される重合体の少なくとも1種を含む、(1)〜(5)のいずれか1項に記載の難燃性熱可塑性ポリエステル樹脂組成物。

Figure 0005538188
(式(1)中、R1は2価の有機基を示し、R2およびR3は、それぞれ、2価の有機基であり、R2およびR3の少なくとも一方が1つ以上のハロゲン原子を有する。)
Figure 0005538188
(式(2)中、R1 は水素原子またはメチル基を示し、R2 はアルキレン基を示し、Xはハロゲン原子を示す。mは1〜5の整数である。)
(7)(C)ハロゲン系難燃剤が臭素系難燃剤である、(1)〜(6)のいずれか1項に記載の難燃性熱可塑性ポリエステル樹脂組成物。
(8)(D)無機系難燃助剤が五酸化アンチモンである、(1)〜(7)のいずれか1項に記載の難燃性熱可塑性ポリエステル樹脂組成物。
(9)ハロゲン系難燃剤以外の難燃剤を実質的に含まない、(1)〜(8)のいずれか1項に記載の難燃性熱可塑性ポリエステル樹脂組成物。
(10)(1)〜(9)のいずれか1項に記載の難燃性熱可塑性ポリエステル樹脂組成物を成形してなる成形品。 Under such circumstances, as a result of intensive studies by the present inventors, in the thermoplastic polyester resin composition, at least methyl methacrylate and styrene are graft-polymerized as a rubber polymer obtained by polymerizing at least butadiene as an elastomer component. In addition to high flame retardancy, it was found that by blending the grafted polymer and the halogenated flame retardant, it was possible to achieve excellent impact strength, appearance and weldability, and the present invention was completed. It came to do. In general, it is known that when an elastomer component is added, the flame retardancy is reduced, but in the present invention, an elastomer component having a specific composition is employed and a halogen-based flame retardant is added. By doing so, high flame retardancy is achieved. Specifically, the object of the present invention has been achieved by the following means.
(1) (A) For 100 parts by mass of thermoplastic polyester resin,
(B) 1 to 30 parts by mass of a graft polymer obtained by graft-polymerizing at least methyl methacrylate and styrene to a rubbery polymer obtained by polymerizing at least butadiene;
(C) 7 to 40 parts by mass of a halogen-based flame retardant,
(D) 3 to 20 parts by weight of an inorganic flame retardant aid and (E) 1 to 90 parts by weight of an inorganic reinforcing material, and (B) the content of elastomer other than the graft polymer is (A ) A flame-retardant thermoplastic polyester resin composition that is 3% by mass or less based on the thermoplastic polyester resin.
(2) The flame-retardant thermoplastic polyester resin composition according to (1), wherein the styrene content in the graft polymer (B) is 3% by mass or more.
(3) The graft polymer (B) is a graft polymer obtained by graft-polymerizing at least methyl methacrylate and styrene to a rubbery polymer obtained by copolymerizing at least styrene and butadiene. ) The flame-retardant thermoplastic polyester resin composition.
(4) The flame-retardant thermoplastic polyester resin composition according to any one of (1) to (3), wherein the thermoplastic polyester resin contains a polybutylene terephthalate resin.
(5) The flame-retardant thermoplastic polyester resin composition according to any one of (1) to (3), wherein the thermoplastic polyester resin comprises a polybutylene terephthalate resin and a polyethylene terephthalate resin.
(6) (C) The halogen-based flame retardant includes at least one of a brominated epoxy compound, a compound represented by the following formula (1), and a polymer represented by the following formula (2), The flame-retardant thermoplastic polyester resin composition according to any one of (5).
Figure 0005538188
(In Formula (1), R 1 represents a divalent organic group, R 2 and R 3 are each a divalent organic group, and at least one of R 2 and R 3 is one or more halogen atoms. Have
Figure 0005538188
(In formula (2), R 1 represents a hydrogen atom or a methyl group, R 2 represents an alkylene group, X represents a halogen atom, and m is an integer of 1 to 5.)
(7) The flame retardant thermoplastic polyester resin composition according to any one of (1) to (6), wherein the halogen flame retardant (C) is a bromine flame retardant.
(8) The flame-retardant thermoplastic polyester resin composition according to any one of (1) to (7), wherein (D) the inorganic flame-retardant aid is antimony pentoxide.
(9) The flame-retardant thermoplastic polyester resin composition according to any one of (1) to (8), which contains substantially no flame retardant other than a halogen-based flame retardant.
(10) A molded product obtained by molding the flame-retardant thermoplastic polyester resin composition according to any one of (1) to (9).

本発明により、難燃性に加えて、衝撃強度、外観および溶着性に優れた難燃性熱可塑性ポリエステル樹脂組成物を提供可能になった。
本発明の難燃性熱可塑性ポリエステル樹脂組成物を成形して得られる成形品は、自動車分野、特に難燃性が必要な電気自動車用コネクター、電気・電子部品用コネクターとして有用である。
According to the present invention, it is possible to provide a flame retardant thermoplastic polyester resin composition excellent in impact strength, appearance and weldability in addition to flame retardancy.
The molded product obtained by molding the flame-retardant thermoplastic polyester resin composition of the present invention is useful in the automotive field, particularly as a connector for electric vehicles and a connector for electric / electronic parts that require flame retardancy.

図1は、一次成形品(試験片A)と二次成形材料との溶着強度を測定するためのポリブチレンテレフタレート樹脂製一体成形品試料(試験片B)の形状を説明する図である。FIG. 1 is a diagram for explaining the shape of a polybutylene terephthalate resin integrally molded product sample (test piece B) for measuring the welding strength between the primary molded product (test piece A) and the secondary molding material.

以下において、本発明の内容について詳細に説明する。尚、本願明細書において「〜」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。本明細書において、アルキル基等の「基」は、特に述べない限り、置換基を有していてもよいし、有していなくてもよい。さらに、炭素数が限定されている基の場合、該炭素数は、置換基が有する炭素数を含めた数を意味している。   Hereinafter, the contents of the present invention will be described in detail. In the present specification, “to” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value. In the present specification, a “group” such as an alkyl group may or may not have a substituent unless otherwise specified. Further, in the case of a group having a limited number of carbons, the number of carbons means a number including the number of carbons that the substituent has.

本発明の難燃性熱可塑性ポリエステル樹脂組成物は、(A)熱可塑性ポリエステル樹脂100質量部に対し、(B)少なくともブタジエンを重合してなるゴム質重合体に、少なくともメチルメタクリレートとスチレンをグラフト重合させたグラフト重合体を1質量部〜30質量部、(C)ハロゲン系難燃剤を7質量部〜40質量部、(D)無機系難燃助剤を3質量部〜20質量部および(E)無機系強化材を1質量部〜90質量部を含み、(B)グラフト重合体以外のエラストマーの含量が(A)熱可塑性ポリエステル樹脂に対して3質量%以下であることを特徴とする。以下、本発明の組成物について詳細に説明する。   The flame-retardant thermoplastic polyester resin composition of the present invention is obtained by grafting (B) at least methyl methacrylate and styrene onto a rubber polymer obtained by polymerizing (B) at least butadiene with respect to (A) 100 parts by mass of the thermoplastic polyester resin. 1 to 30 parts by mass of the polymerized graft polymer, (C) 7 to 40 parts by mass of a halogen-based flame retardant, (D) 3 to 20 parts by mass of an inorganic flame retardant aid and ( E) 1 to 90 parts by mass of the inorganic reinforcing material, and (B) the content of the elastomer other than the graft polymer is 3% by mass or less based on (A) the thermoplastic polyester resin. . Hereinafter, the composition of the present invention will be described in detail.

(A)熱可塑性ポリエステル樹脂
本発明の樹脂組成物(A)の主成分である熱可塑性ポリエステル樹脂とは、ジカルボン酸化合物とジヒドロキシ化合物の重縮合、オキシカルボン酸化合物の重縮合、又はこれらの化合物の混合物の重縮合などによって得られるポリエステルであり、ホモポリエステル、コポリエステルのいずれであってもよい。熱可塑性ポリエステル樹脂を構成するジカルボン酸化合物としては、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、ジフェニルジカルボン酸、ジフェニルエーテルジカルボン酸、ジフェニルエタンジカルボン酸などの芳香族ジカルボン酸、シクロヘキサンジカルボン酸などの脂環式ジカルボン酸、アジピン酸、セバシン酸などの脂肪族ジカルボン酸が挙げられる。
(A) Thermoplastic polyester resin The thermoplastic polyester resin which is the main component of the resin composition (A) of the present invention is a polycondensation of a dicarboxylic acid compound and a dihydroxy compound, a polycondensation of an oxycarboxylic acid compound, or these compounds. It is a polyester obtained by polycondensation of the above mixture, and may be either a homopolyester or a copolyester. Examples of the dicarboxylic acid compound constituting the thermoplastic polyester resin include alicyclic acids such as terephthalic acid, isophthalic acid, naphthalene dicarboxylic acid, diphenyldicarboxylic acid, diphenylether dicarboxylic acid, diphenylethanedicarboxylic acid, and cyclohexanedicarboxylic acid. Aliphatic dicarboxylic acids such as dicarboxylic acid, adipic acid and sebacic acid can be mentioned.

これらは周知のように、遊離酸以外にジメチルエステルなどのエステル形成性誘導体として重縮合反応に用いることができる。オキシカルボン酸としてはパラオキシ安息香酸、オキシナフトエ酸、ジフェニレンオキシカルボン酸などが挙げられる。これらは単独で重縮合させることもできるが、ジカルボン酸化合物に少量併用することが多い。   As is well known, these can be used in polycondensation reactions as ester-forming derivatives such as dimethyl esters in addition to free acids. Examples of the oxycarboxylic acid include paraoxybenzoic acid, oxynaphthoic acid, and diphenyleneoxycarboxylic acid. These can be polycondensed alone, but are often used in a small amount together with a dicarboxylic acid compound.

ジヒドロキシ化合物としては、エチレングリコール、プロピレングリコール、ブタンジオール、ネオペンチルグリコール、ポリオキシアルキレングリコールなどの脂肪族ジオールが主として用いられるが、ハイドロキノン、レゾルシン、ナフタレンジオール、ジヒドロキシジフェニルエーテル、2,2−ビス(4−ヒドロキシフェニル)プロパンなどの芳香族ジオールやシクロヘキサンジオールなどの脂環式ジオールも用いることができる。   As the dihydroxy compound, aliphatic diols such as ethylene glycol, propylene glycol, butanediol, neopentyl glycol, and polyoxyalkylene glycol are mainly used. Hydroquinone, resorcin, naphthalenediol, dihydroxydiphenyl ether, 2,2-bis (4 Aromatic diols such as -hydroxyphenyl) propane and cycloaliphatic diols such as cyclohexanediol can also be used.

またこのような二官能性化合物以外に、分岐構造を導入するためトリメリット酸、トリメシン酸、ピロメリット酸、ペンタエリスリトール、トリメチロールプロパンなどの三官能以上の多官能化合物や、分子量調節のための脂肪酸などの単官能化合物を少量併用することもできる。   In addition to these bifunctional compounds, trifunctional or higher polyfunctional compounds such as trimellitic acid, trimesic acid, pyromellitic acid, pentaerythritol, and trimethylolpropane are introduced to introduce a branched structure. A small amount of a monofunctional compound such as a fatty acid can also be used.

本発明では、熱可塑性ポリエステル樹脂としては、通常は主としてジカルボン酸化合物とジヒドロキシ化合物とから成る重縮合物、即ち計算上、ジカルボン酸化合物とジヒドロキシ化合物のエステルである構造単位が、樹脂全体の好ましくは70質量%以上、より好ましくは90質量%以上を占めるものを用いる。ジカルボン酸化合物としては芳香族ジカルボン酸が好ましく、ジヒドロキシ化合物としては脂肪族ジオールが好ましい。   In the present invention, the thermoplastic polyester resin is usually a polycondensate composed mainly of a dicarboxylic acid compound and a dihydroxy compound, that is, a structural unit which is an ester of a dicarboxylic acid compound and a dihydroxy compound in calculation, What occupies 70 mass% or more, More preferably, 90 mass% or more is used. The dicarboxylic acid compound is preferably an aromatic dicarboxylic acid, and the dihydroxy compound is preferably an aliphatic diol.

なかでも好ましいのは、酸性分の95モル%以上がテレフタル酸であり、アルコール成分の95モル%以上が脂肪族ジオールであるポリアルキレンテレフタレート樹脂である。その代表的なものはポリブチレンテレフタレート樹脂及びポリエチレンテレフタレート樹脂であり、本発明では、少なくとも、ポリブチレンテレフタレート樹脂を含むことが好ましく、ポリブチレンテレフタレート樹脂とポリエチレンテレフタレート樹脂の両方を含むことがより好ましい。ポリブチレンテレフタレート樹脂とポリエチレンテレフタレート樹脂の両方を含むにより、得られる成形品の外観がより良好となる傾向にある。ポリブチレンテレフタレート樹脂とポリエチレンテレフタレート樹脂の配合比(質量比)は、100:0〜50:50であることが好ましい。   Particularly preferred is a polyalkylene terephthalate resin in which 95 mol% or more of the acidic component is terephthalic acid and 95 mol% or more of the alcohol component is an aliphatic diol. Typical examples thereof are polybutylene terephthalate resin and polyethylene terephthalate resin. In the present invention, at least polybutylene terephthalate resin is preferable, and it is more preferable that both polybutylene terephthalate resin and polyethylene terephthalate resin are included. By including both the polybutylene terephthalate resin and the polyethylene terephthalate resin, the appearance of the obtained molded product tends to be better. The blending ratio (mass ratio) of the polybutylene terephthalate resin and the polyethylene terephthalate resin is preferably 100: 0 to 50:50.

熱可塑性ポリエステル樹脂の固有粘度は適宜選択して決定すればよいが、通常0.5〜2dl/gであることが好ましく、中でも樹脂組成物の成形性及び機械的特性の観点から0.6〜1.5dl/gであることが好ましい。固有粘度が0.5dl/g未満のものを用いると、樹脂組成物から得られる成形品の機械的強度が低くなる傾向にあり、逆に2dl/gより大きいと樹脂組成物の流動性が低下し、成形性が低下する場合がある。   The intrinsic viscosity of the thermoplastic polyester resin may be appropriately selected and determined. However, it is usually preferably 0.5 to 2 dl / g, and in particular, from the viewpoint of moldability and mechanical properties of the resin composition, 0.6 to It is preferably 1.5 dl / g. If a material having an intrinsic viscosity of less than 0.5 dl / g is used, the mechanical strength of the molded product obtained from the resin composition tends to be low, and conversely if it is greater than 2 dl / g, the fluidity of the resin composition decreases. However, moldability may be reduced.

尚、本明細書においてポリエステル樹脂の固有粘度は、テトラクロロエタンとフェノールとの1:1(質量比)の混合溶媒中、30℃で測定した値である。   In the present specification, the intrinsic viscosity of the polyester resin is a value measured at 30 ° C. in a 1: 1 (mass ratio) mixed solvent of tetrachloroethane and phenol.

(B)少なくともブタジエンを重合してなるゴム質重合体に、少なくともメチルメタクリレートとスチレンをグラフト重合させたグラフト重合体
本発明の樹脂組成物は、少なくともブタジエンを重合してなるゴム質重合体に、少なくともメチルメタクリレートとスチレンをグラフト重合させたグラフト重合体を含む。本発明で用いるグラフト重合体は、通常、コア−シェル構造体と称されるものであるが、コア−シェル構造を有していることを必須とするものではない。
少なくともブタジエンを重合してなるゴム質重合体は、ブタジエンのみからなっていてもよいし、ブタジエンと他の単量体を共重合させたゴム質重合体であってもよい。他の単量体としては、スチレン、α−メチルスチレン、ビニルトルエン等の芳香族アルケニル化合物、アクリロニトリル、メタクリロニトリル等のシアン化ビニル化合物等の各種ビニル系単量体を共重合成分として含んで良い。中でもスチレン、α−メチルスチレンが好ましい。
本発明におけるグラフト重合体は、スチレン含有量が3質量%以上であることが好ましく、また、10質量%以下であることが好ましい。
本発明におけるゴム質重合体は、その40質量%以上がブタジエン由来であることが好ましく、より好ましくは、45質量%以上である。他の単量体成分は、40質量%以下であることが好ましく、30〜0.05質量%であることがより好ましい。他の単量体成分としてスチレン由来の成分を含む場合、その配合量は25〜0.05質量%であることが好ましい。スチレンの配合量を、前記範囲とすることにより、難燃性と耐衝撃性が向上する。
本発明で用いるゴム質重合体の体積平均粒子径は特に限定されないが、好ましくは、0.08〜1.5μmである。
本発明で用いるグラフト重合体は、上記ゴム質重合体に、少なくともメチルメタクリレートとスチレンをグラフト重合させて得られるものである。グラフト重合させる単量体は、メチルメタクリレート成分が40質量%以下、スチレン成分が30〜0.005質量%、他の成分が5質量%以下であることが好ましく、メチルメタクリレート成分が35質量%以下、スチレン成分が25〜0.005質量%、他の成分が4質量%以下であることがより好ましい。このような組成比とすることにより、難燃性と耐衝撃性が向上する。
(B) Graft polymer obtained by graft polymerization of at least methyl methacrylate and styrene on a rubber polymer obtained by polymerizing at least butadiene. The resin composition of the present invention comprises at least a rubber polymer obtained by polymerizing butadiene. At least a graft polymer obtained by graft polymerization of methyl methacrylate and styrene is included. The graft polymer used in the present invention is usually referred to as a core-shell structure, but does not necessarily have a core-shell structure.
The rubbery polymer obtained by polymerizing at least butadiene may be composed only of butadiene, or may be a rubbery polymer obtained by copolymerizing butadiene and another monomer. Other monomers include various vinyl monomers such as aromatic alkenyl compounds such as styrene, α-methylstyrene and vinyltoluene, and vinyl cyanide compounds such as acrylonitrile and methacrylonitrile as copolymerization components. good. Of these, styrene and α-methylstyrene are preferred.
The graft polymer in the present invention preferably has a styrene content of 3% by mass or more, and preferably 10% by mass or less.
The rubber polymer in the present invention is preferably 40% by mass or more derived from butadiene, more preferably 45% by mass or more. The other monomer component is preferably 40% by mass or less, and more preferably 30 to 0.05% by mass. When the styrene-derived component is included as the other monomer component, the blending amount is preferably 25 to 0.05% by mass. By setting the blending amount of styrene within the above range, flame retardancy and impact resistance are improved.
The volume average particle diameter of the rubbery polymer used in the present invention is not particularly limited, but is preferably 0.08 to 1.5 μm.
The graft polymer used in the present invention is obtained by graft-polymerizing at least methyl methacrylate and styrene to the rubber polymer. The monomer to be graft polymerized is preferably 40% by mass or less of methyl methacrylate component, 30 to 0.005% by mass of styrene component, 5% by mass or less of other components, and 35% by mass or less of methyl methacrylate component. More preferably, the styrene component is 25 to 0.005 mass%, and the other components are 4 mass% or less. By setting it as such a composition ratio, a flame retardance and impact resistance improve.

本発明で用いるグラフト重合体の体積平均粒子径は特に限定されないが、好ましくは、0.1〜2.0μmである。   The volume average particle diameter of the graft polymer used in the present invention is not particularly limited, but is preferably 0.1 to 2.0 μm.

本発明で用いるグラフト重合体は、特開2005−112907号公報に記載の方法等公知の方法に従って製造できる。また、市販品を用いることもできる。市販品としては、後述する実施例で採用するもののほか、三菱レイヨン製メタブレンC−215A、C―930A、C−223Aが例示される。   The graft polymer used in the present invention can be produced according to a known method such as the method described in JP-A-2005-112907. Commercial products can also be used. Examples of commercially available products include those employed in Examples described later, and Metablene C-215A, C-930A, and C-223A manufactured by Mitsubishi Rayon.

本発明で用いるグラフト重合体の含有量は、(A)熱可塑性ポリエステル樹脂100質量部に対して、1質量部〜30質量部であり、1質量部〜20質量部が好ましく、1質量部〜15質量部がより好ましい。   Content of the graft polymer used by this invention is 1 mass part-30 mass parts with respect to 100 mass parts of (A) thermoplastic polyester resins, 1 mass part-20 mass parts are preferable, and 1 mass part- 15 parts by mass is more preferable.

そして本発明では、上記グラフト重合体(B)以外のエラストマー成分を実質的に含んでいないことをも特徴とする。実質的に含まないとは、通常、(A)熱可塑性ポリエステル樹脂成分に対し、3質量%以下である。
グラフト重合体(B)以外のエラストマー成分含有用が多すぎると、難燃性や外観の低下が生ずる場合があるので、出来る限り含有量を低くすることが好ましい。ここで(B)以外のエラストマー成分とは、ガラス転移温度(Tg)が0℃以下の、従来公知の任意のエラストマーを示す。
And this invention is characterized by not containing elastomer components other than the said graft polymer (B) substantially. “Not substantially contained” is usually 3% by mass or less based on the thermoplastic polyester resin component (A).
If the elastomer component other than the graft polymer (B) is contained too much, flame retardancy and appearance may be deteriorated, so it is preferable to make the content as low as possible. Here, the elastomer component other than (B) refers to any conventionally known elastomer having a glass transition temperature (Tg) of 0 ° C. or lower.

(C)ハロゲン系難燃剤
本発明の樹脂組成物は、ハロゲン系難燃剤を含む。ハロゲン原子としては、好ましくは、フッ素、塩素、臭素が好ましく、臭素がより好ましい。
ハロゲン系難燃剤としては、臭素化エポキシ化合物、ビスイミド構造化合物、またはポリブロム化ベンジル(メタ)アクリレート化合物が好ましい。これらの化合物における臭素原子含有量は任意だが、十分な難燃性を付与する上で、通常、10質量%以上であり、中でも20質量%以上、特に30質量%以上であることが好ましく、その上限は80質量%、中でも70質量%以下であることが好ましい。
(C) Halogen flame retardant The resin composition of the present invention contains a halogen flame retardant. The halogen atom is preferably fluorine, chlorine or bromine, more preferably bromine.
As the halogen flame retardant, a brominated epoxy compound, a bisimide structure compound, or a polybrominated benzyl (meth) acrylate compound is preferable. The bromine atom content in these compounds is arbitrary, but is usually 10% by mass or more, preferably 20% by mass or more, particularly preferably 30% by mass or more, in order to impart sufficient flame retardancy. The upper limit is 80% by mass, preferably 70% by mass or less.

臭素化エポキシ化合物
本発明に用いる(C)ハロゲン系難燃剤としての臭素化エポキシ化合物としては、具体的には例えば、テトラブロモビスフェノールAエポキシに代表されるビスフェノールA型臭素化エポキシ化合物が挙げられる。
Brominated Epoxy Compound Specific examples of the brominated epoxy compound (C) as a halogen-based flame retardant used in the present invention include bisphenol A-type brominated epoxy compounds represented by tetrabromobisphenol A epoxy.

臭素化エポキシ化合物の分子量は任意であり、適宜選択して決定すればよいが、通常、質量平均分子量(Mw)で10000〜100000であり、中でも分子量が高い方が好ましく、具体的にはMwとして15000〜80000、中でも18000〜78000(Mw)、更には20000〜75000(Mw)、特に22000〜70000であることが好ましく、この範囲内に於いても分子量の高いものが好ましい。
本発明で用いる臭素化エポキシ化合物のエポキシ当量が4000〜40000g/eqであることが好ましく、中でも4500〜35000g/eqがこのましく、特に10000〜30000g/eqであることが好ましい。
The molecular weight of the brominated epoxy compound is arbitrary and may be selected and determined as appropriate. Usually, the mass average molecular weight (Mw) is 10,000 to 100,000, and among them, the higher molecular weight is preferable. It is preferably 15000 to 80000, more preferably 18000 to 78000 (Mw), more preferably 20000 to 75000 (Mw), and particularly preferably 22000 to 70000, and even within this range, those having a high molecular weight are preferable.
The epoxy equivalent of the brominated epoxy compound used in the present invention is preferably 4000 to 40000 g / eq, particularly 4500 to 35000 g / eq, and particularly preferably 10,000 to 30000 g / eq.

また、臭素化エポキシ化合物としてオリゴマーを併用することもできる。この際、例えばMwが5000以下のオリゴマーを0〜50質量%程度用いることで、難燃性、離型性および流動性を適宜調整することができる。臭素化エポキシ化合物における臭素原子含有量は任意だが、十分な難燃性を付与する上で、通常10質量%以上であり、中でも20質量%以上、特に30質量%以上であることが好ましく、その上限は60質量%、中でも55質量%以下であることが好ましい。   Moreover, an oligomer can also be used together as a brominated epoxy compound. In this case, for example, by using about 0 to 50% by mass of an oligomer having Mw of 5000 or less, flame retardancy, mold release property and fluidity can be appropriately adjusted. Although the bromine atom content in the brominated epoxy compound is arbitrary, it is usually 10% by mass or more, preferably 20% by mass or more, particularly preferably 30% by mass or more, in order to impart sufficient flame retardancy. The upper limit is 60% by mass, preferably 55% by mass or less.

ビスイミド構造化合物について
本発明に用いる(C)ハロゲン系難燃剤としてのビスイミド構造化合物は、以下の一般式(1)で表されるものが好ましい。
About Bisimide Structure Compound The bisimide structure compound as the halogen flame retardant (C) used in the present invention is preferably represented by the following general formula (1).

Figure 0005538188
(式(1)中、R1は2価の有機基を示し、R2およびR3は、それぞれ、2価の有機基であり、R2およびR3の少なくとも一方が1つ以上のハロゲン原子を有する。)
Figure 0005538188
(In Formula (1), R 1 represents a divalent organic group, R 2 and R 3 are each a divalent organic group, and at least one of R 2 and R 3 is one or more halogen atoms. Have

式(1)中、R1は2価の有機基を示し、具体的には、メチレン、エチレン、1,4−ブチレン、1,6−ヘキサメチレン、フェニレン、4,4′−メチレンジフェニレン、4,4′−オキシジフェニレン、キシリレン、テトラクロロキシリレン、テトラブロモキシリレン等の、アルキレン基、アリレン基が挙げられる。中でも、エチレン、ブチレン、ヘキサメチレン基等の低級アルキレン基が好ましい。 In the formula (1), R 1 represents a divalent organic group, specifically, methylene, ethylene, 1,4-butylene, 1,6-hexamethylene, phenylene, 4,4′-methylenediphenylene, Examples include alkylene groups and arylene groups such as 4,4'-oxydiphenylene, xylylene, tetrachloroxylylene, and tetrabromoxylylene. Of these, lower alkylene groups such as ethylene, butylene and hexamethylene groups are preferred.

式(1)中、R2およびR3は、2価の有機基であり、少なくとも一方が1つ以上のハロゲン原子を有する二価の有機基である。中でもR2及びR3の両方が、1つ以上のハロゲン原子を有する二価の有機基であることが好ましい。この二価の有機基としては芳香環を含む構造であることが好ましく、中でも1〜4個のハロゲン原子を有するフェニレン基であることが好ましい。ハロゲン原子としては臭素が好ましく、特にR2及びR3としては、テトラブロモフェニレン基であることが好ましい。 In formula (1), R 2 and R 3 are divalent organic groups, at least one of which is a divalent organic group having one or more halogen atoms. Among them, it is preferable that both R 2 and R 3 are divalent organic groups having one or more halogen atoms. The divalent organic group preferably has a structure containing an aromatic ring, and particularly preferably a phenylene group having 1 to 4 halogen atoms. The halogen atom is preferably bromine, and particularly R 2 and R 3 are preferably tetrabromophenylene groups.

一般式(1)で示されるビスイミド構造の化合物としては、具体的には、N,N′−(p−及びm−フェニレン)−ビス〔3・4・5・6−テトラ−クロロフタルイミド〕、N,N′−(p−及びm−フェニレン)−ビス〔3・4・5・6−テトラ−ブロモフタルイミド〕、N,N′−(メチレン−ジ−p−フェニレン)−ビス〔3・4・5・6−テトラクロロフタルイミド〕、N,N′−(メチレン−ジ−p−フェニレン)ビス〔3・4・5・6−テトラブロモフタルイミド〕、N,N′−(オキシ−ジ−p−フェニレン)−ビス〔3・4・5・6−テトラクロロフタルイミド〕、N,N′−(オキシ−ジ−p−フェニレン)−ビス〔3・4・5・6−テトラブロモフタルイミド〕、
N,N′−(p−及びm−テトラクロロキシリレン)−ビス〔3・4・5・6−テトラクロロフタルイミド〕、N,N′−(p−及びm−テトラクロロキシリレン)−ビス〔3・4・5・6−テトラブロモフタルイミド〕、N,N′−(p−及びm−テトラクロロキシリレン)−ビスクロルエンドイミド、N,N′−(1・2−エチレン)−ビスクロルエンドイミド、N,N′−(1・2−エチレン)−ビス〔3・4・5・6−テトラブロモフタルイミド〕、N,N′−ビス(1・2・3・4・5−ペンタブロモベンジル)−ピロメリットイミド、N,N′−ビス(2・4・6−トリブロモフェニル)ピロメリットイミド、N,N′−(p−及びm−フェニレン)−ビスクロルエンドイミド等が挙げられる。尚、これらのうちテトラハロキシリレン基は、1・2・4・5−テトラハロキシリレン及び/又は1・3・4・5−テトラロキシリレン基である。
Specific examples of the compound having a bisimide structure represented by the general formula (1) include N, N ′-(p- and m-phenylene) -bis [3,4,5,6-tetra-chlorophthalimide], N, N '-(p- and m-phenylene) -bis [3,4,5,6-tetra-bromophthalimide], N, N'-(methylene-di-p-phenylene) -bis [3.4 .5,6-tetrachlorophthalimide], N, N '-(methylene-di-p-phenylene) bis [3,4,5,6-tetrabromophthalimide], N, N'-(oxy-di-p -Phenylene) -bis [3,4,5,6-tetrachlorophthalimide], N, N '-(oxy-di-p-phenylene) -bis [3,4,5,6-tetrabromophthalimide],
N, N '-(p- and m-tetrachloroxylylene) -bis [3,4,5,6-tetrachlorophthalimide], N, N'-(p- and m-tetrachloroxylylene) -bis [3,4,5,6-tetrabromophthalimide], N, N '-(p- and m-tetrachloroxylylene) -bischlorendimide, N, N'-(1,2-ethylene) -bis Chlorendoimide, N, N '-(1,2-ethylene) -bis [3,4,5,6-tetrabromophthalimide], N, N'-bis (1,2,3,4,5-penta Bromobenzyl) -pyromellitimide, N, N′-bis (2,4,6-tribromophenyl) pyromellitimide, N, N ′-(p- and m-phenylene) -bischloroendoimide, etc. It is done. Of these, the tetrahaloxylylene group is a 1,2,4,5-tetrahaloxylylene and / or 1,3,4,5-tetraloxylylene group.

これらの中でも、低級アルキレンビステトラブロモフタルイミドが好ましく、特にN,N′エチレンビステトラブロモフタルイミドが好ましい。   Among these, lower alkylene bistetrabromophthalimide is preferable, and N, N′ethylenebistetrabromophthalimide is particularly preferable.

ビスイミド構造化合物における臭素原子含有量は任意だが、十分な難燃性を付与する上で、通常10質量%以上であり、中でも20質量%以上、特に50質量%以上であることが好ましく、その上限は80質量%、中でも70質量%以下であることが好ましい。   The bromine atom content in the bisimide structure compound is arbitrary, but is usually 10% by mass or more, preferably 20% by mass or more, and particularly preferably 50% by mass or more, in order to impart sufficient flame retardancy. Is preferably 80% by mass, especially 70% by mass or less.

ポリブロム化ベンジル(メタ)アクリレート化合物について
本発明に用いる(C)ハロゲン系難燃剤としてのポリブロム化ベンジル(メタ)アクリレート化合物は、以下の一般式(2)で表される化合物が好ましい。
About the polybrominated benzyl (meth) acrylate compound The polybrominated benzyl (meth) acrylate compound as the halogen flame retardant (C) used in the present invention is preferably a compound represented by the following general formula (2).

Figure 0005538188
(式(2)中、R1 は水素原子またはメチル基を示し、R2 はアルキレン基を示し、Xはハロゲン原子を示す。mは1〜5の整数である。)
Figure 0005538188
(In formula (2), R 1 represents a hydrogen atom or a methyl group, R 2 represents an alkylene group, X represents a halogen atom, and m is an integer of 1 to 5.)

式(2)中、R1は水素原子またはメチル基を示し、水素原子が好ましい。R2は、アルキレン基を示し、炭素数1〜5のアルキレン基が好ましく、中でも炭素数1〜3のアルキレン基が好ましい。mは、2以上、中でも4〜5であることが好ましい。式(2)で表される重合体の分子量は100000以下が好ましい。100000を超えると、樹脂組成物の溶融粘度が高くなり成形性が低下する場合がある。 In the formula (2), R 1 represents a hydrogen atom or a methyl group, and preferably a hydrogen atom. R 2 represents an alkylene group, preferably an alkylene group having 1 to 5 carbon atoms, and more preferably an alkylene group having 1 to 3 carbon atoms. m is preferably 2 or more, particularly 4 to 5. The molecular weight of the polymer represented by the formula (2) is preferably 100,000 or less. When it exceeds 100,000, the melt viscosity of the resin composition becomes high and moldability may be lowered.

本発明で用いられるポリブロム化ベンジル(メタ)アクリレートとしては、臭素原子を含有するベンジル(メタ)アクリレートを単独で重合、または2種以上を共重合、もしくは他のビニル系モノマーと共重合させることによって得られる重合体であることが好ましい。   As the polybrominated benzyl (meth) acrylate used in the present invention, benzyl (meth) acrylate containing a bromine atom is polymerized alone, or two or more kinds are copolymerized or copolymerized with other vinyl monomers. The resulting polymer is preferred.

該臭素原子を含有するベンジルアクリレートとしては、具体的には例えばペンタブロムベンジルアクリレート、テトラブロムベンジルアクリレート、トリブロムベンジルアクリレートまたはこれらの混合物等が挙げられる。また、臭素原子を含有するベンジルメタクリレートとしては、上記したアクリレートに対応するメタクリレートが挙げられる。   Specific examples of the benzyl acrylate containing a bromine atom include pentabromobenzyl acrylate, tetrabromobenzyl acrylate, tribromobenzyl acrylate, and mixtures thereof. Examples of the benzyl methacrylate containing a bromine atom include methacrylates corresponding to the acrylates described above.

臭素原子を含有するベンジル(メタ)アクリレートと共重合させるために使用される他のビニル系モノマーとしては、具体的には例えば、アクリル酸、メチルアクリレート、エチルアクリレート、ブチルアクリレート、ベンジルアクリレートのようなアクリル酸エステル類;メタクリル酸、メチルメタクリレート、エチルメタクリレート、ブチルメタクリレート、ベンジルメタクリレートのようなメタクリル酸エステル類;スチレン、アクリロニトリル、フマル酸、マレイン酸の様な不飽和カルボン酸またはその無水物;酢酸ビニル、塩化ビニル、などが挙げられる。これらは通常、臭素原子を含有するベンジル(メタ)アクリレートに対して等モル量以下、中でも0.5倍モル量以下が用いることが好ましい。   Specific examples of other vinyl monomers used for copolymerization with benzyl (meth) acrylates containing bromine atoms include acrylic acid, methyl acrylate, ethyl acrylate, butyl acrylate, and benzyl acrylate. Acrylic acid esters; methacrylic acid esters such as methacrylic acid, methyl methacrylate, ethyl methacrylate, butyl methacrylate, benzyl methacrylate; unsaturated carboxylic acids such as styrene, acrylonitrile, fumaric acid, maleic acid, or anhydrides thereof; vinyl acetate , Vinyl chloride, and the like. These are usually preferably used in an equimolar amount or less, particularly 0.5 times the molar amount or less with respect to the benzyl (meth) acrylate containing a bromine atom.

また、ビニル系モノマーとしては、キシレンジアクリレート、キシレンジメタクリレート、テトラブロムキシレンジアクリレート、テトラブロムキシレンジメタクリレート、ブタジエン、イソプレン、ジビニルベンゼンなどを使用することもでき、これらは通常、臭素原子を含有するベンジルアクリレートまたはベンジルメタクリレートに対し、0.5倍モル量以下が使用できる。   In addition, as vinyl monomers, xylene diacrylate, xylene dimethacrylate, tetrabromoxylene diacrylate, tetrabromoxylene dimethacrylate, butadiene, isoprene, divinylbenzene, etc. can be used, and these usually contain bromine atoms. 0.5 mol or less of benzyl acrylate or benzyl methacrylate can be used.

ポリブロム化ベンジル(メタ)アクリレート化合物における臭素原子含有量は任意だが、十分な難燃性を付与する上で、通常30質量%以上であり、中でも40質量%以上、特に50質量%以上であることが好ましく、その上限は80質量%、中でも70質量%以下であることが好ましい。   Although the bromine atom content in the polybrominated benzyl (meth) acrylate compound is arbitrary, it is usually 30% by mass or more, particularly 40% by mass or more, and particularly 50% by mass or more in order to impart sufficient flame retardancy. The upper limit is preferably 80% by mass, and more preferably 70% by mass or less.

該ポリブロム化ベンジル(メタ)アクリレートとしては、ポリペンタブロモベンジルアクリレートが、高臭素含有量であることから難燃効果が高い観点で好ましい。   As the polybrominated benzyl (meth) acrylate, polypentabromobenzyl acrylate is preferable from the viewpoint of high flame retardancy because of its high bromine content.

本発明で用いる(C)ハロゲン系難燃剤は、公知の方法に従って合成してもよいし、市販品を用いることもできる。   The (C) halogen flame retardant used in the present invention may be synthesized according to a known method, or a commercially available product may be used.

ハロゲン系難燃剤の含有量は、(A)熱可塑性ポリエステル樹脂100質量部に対して、7〜40質量部であり、10質量部〜30質量部が好ましく、12質量部〜28質量部がより好ましい。7質量部未満であると難燃性の発現が不十分となり、逆に40質量部を越えると機械的特性が低下しやすくなる。   Content of a halogenated flame retardant is 7-40 mass parts with respect to 100 mass parts of (A) thermoplastic polyester resin, 10 mass parts-30 mass parts are preferable, and 12 mass parts-28 mass parts are more. preferable. If the amount is less than 7 parts by mass, the expression of flame retardancy becomes insufficient. Conversely, if the amount exceeds 40 parts by mass, the mechanical properties tend to be deteriorated.

本発明に用いる(C)ハロゲン系難燃剤としては、本発明の難燃性熱可塑性ポリエステル樹脂組成物における諸特性、具体的には難燃性、強度、外観そして溶着性等の諸物性バランスに優れることから、中でも臭素化エポキシ樹脂を用いることが好ましい。   As the halogen-based flame retardant (C) used in the present invention, various properties in the flame-retardant thermoplastic polyester resin composition of the present invention, specifically, balance of various physical properties such as flame retardancy, strength, appearance, and weldability. Among them, it is preferable to use a brominated epoxy resin because it is excellent.

(D)無機系難燃助剤
本発明の樹脂成物においては、無機系難燃助剤を含む。無機系難燃助剤としては、アンチモン化合物等が挙げられ、アンチモン化合物が好ましい。アンチモン化合物としては酸化アンチモンまたは酸化アンチモンと他の金属の複塩を使用することができる。具体的には例えば、三酸化アンチモン(Sb23)、四酸化アンチモン(Sb24)、五酸化アンチモン(Sb25)、アンチモン酸ナトリウム等のアンチモン酸塩や、これらの複塩が挙げられる。
(D) Inorganic flame retardant aid The resin composition of the present invention includes an inorganic flame retardant aid. Examples of inorganic flame retardant aids include antimony compounds, and antimony compounds are preferred. As the antimony compound, antimony oxide or a double salt of antimony oxide and another metal can be used. Specifically, for example, antimonate such as antimony trioxide (Sb 2 O 3 ), antimony tetraoxide (Sb 2 O 4 ), antimony pentoxide (Sb 2 O 5 ), sodium antimonate, or a double salt thereof. Is mentioned.

中でも五酸化アンチモンまたは五酸化アンチモンと他の金属酸化物との複塩が好ましい。これは五酸化アンチモンが、他のアンチモン化合物に比べてポリエステル樹脂への影響が小さいので、樹脂の分解が他の抑えられる為である。よって樹脂の結晶化温度(Tc)が維持できるので、射出成形においても離型抵抗力が増加し難く、例えばエジェクターピン痕等の発生を抑制した、表面外観を良好な樹脂成形体が提供できるという効果が得られる。   Of these, antimony pentoxide or a double salt of antimony pentoxide and another metal oxide is preferable. This is because antimony pentoxide has a smaller influence on the polyester resin than other antimony compounds, so that the decomposition of the resin can be suppressed. Therefore, since the crystallization temperature (Tc) of the resin can be maintained, it is difficult to increase the mold release resistance even in the injection molding. An effect is obtained.

また五酸化アンチモン、または五酸化アンチモンと他の金属酸化物との複塩は、GWIT性能が優れている点でも、用いることが好ましい。五酸化アンチモンと他の金属酸化物との複塩としては、具体的には例えば下記一般式(3)又は(4)で示される複塩が好ましい。尚、これらは任意の割合で併用して用いてもよい。   Further, antimony pentoxide or a double salt of antimony pentoxide and another metal oxide is preferably used from the viewpoint of excellent GWIT performance. Specifically, as a double salt of antimony pentoxide and another metal oxide, for example, a double salt represented by the following general formula (3) or (4) is preferable. These may be used in combination at any ratio.

n(X2O)・Sb25・m(H2O) (3) n (X 2 O) · Sb 2 O 5 · m (H 2 O) (3)

n(YO)・Sb25・m(H2O) (4)
(これらの式中、Xは1価のアルカリ金属元素、Yは2価のアルカリ土類金属元素、nは0〜1.5、mは0〜4を示す。mおよびnは化学式(3)及び化学式(4)においてそれぞれ独立して決定される)
n (YO) · Sb 2 O 5 · m (H 2 O) (4)
(In these formulas, X represents a monovalent alkali metal element, Y represents a divalent alkaline earth metal element, n represents 0 to 1.5, and m represents 0 to 4. m and n represent the chemical formula (3). And chemical formula (4) are independently determined)

更に好ましくは、下記一般式(5)で示される複塩を使用することができる。
n(Na2O)・Sb25 ・・・・・(5)
(式中、nは0.65〜1.5を示す。)
More preferably, a double salt represented by the following general formula (5) can be used.
n (Na 2 O) · Sb 2 O 5 (5)
(In the formula, n represents 0.65 to 1.5.)

上述の式(3)〜(5)において、Xとしてはリチウム、ナトリウム、カリウム、セシウムなどが挙げられ、Yとしてはカルシウム、マグネシウム、バリウムなどが挙げられる。nは、0より大きく、通常0.3以上、特に0.65〜1.5が好ましい。nが小さすぎると吸着水の脱離速度が小さいために、溶融粘度が変化しやすい傾向にあり、逆にnが大きすぎると相対的にアンチモンの量が低下することにより難燃助剤としての効果が低減する。 In the above formulas (3) to (5), X includes lithium, sodium, potassium, cesium, and the like, and Y includes calcium, magnesium, barium, and the like. n is larger than 0, usually 0.3 or more, particularly preferably 0.65 to 1.5. If n is too small, the desorption rate of adsorbed water is small, so that the melt viscosity tends to change. Conversely, if n is too large, the amount of antimony will be relatively lowered, and as a flame retardant aid. The effect is reduced.

mは0〜4であり、好ましくは0〜2である。mが大きすぎるとPBT系樹脂の加水分解が著しくなるので好ましくない。本発明においては特に、耐加水分解性の点からNa2O・Sb25(n=1)で表される、酸化ナトリウムと五酸化アンチモンの1対1の複塩が好ましく、これは具体的には例えば、日産化学社よりNA−1070L等の商品名で市販されているものが挙げられる。 m is 0-4, preferably 0-2. If m is too large, hydrolysis of the PBT resin becomes remarkable, which is not preferable. In the present invention, in particular, a one-to-one double salt of sodium oxide and antimony pentoxide represented by Na 2 O.Sb 2 O 5 (n = 1) is preferable from the viewpoint of hydrolysis resistance. For example, what is marketed by the brand name of NA-1070L etc. from Nissan Chemical Co., Ltd. is mentioned.

無機系難燃助剤の含有量は、(A)熱可塑性ポリエステル樹脂100質量部に対して、3質量部〜20質量部であり、5質量部〜15質量部が好ましく、6質量部〜14質量部がより好ましい。   Content of an inorganic type flame retardant adjuvant is 3 mass parts-20 mass parts with respect to 100 mass parts of (A) thermoplastic polyester resin, 5 mass parts-15 mass parts are preferable, and 6 mass parts-14 Part by mass is more preferable.

(E)無機系強化材
また本発明の樹脂組成物には、機械的強度、耐熱性、寸法安定性(耐変形、そり)、電気的性質等の性能に優れた樹脂成形体を得るために、繊維状、粉粒状、板状等の、各種の(E)無機系強化材を配合する。
(E) Inorganic reinforcing material In addition, in order to obtain a resin molded article excellent in performance such as mechanical strength, heat resistance, dimensional stability (deformation resistance, warpage), and electrical properties in the resin composition of the present invention. Various kinds of (E) inorganic reinforcing materials such as fiber, powder, and plate are blended.

繊維状無機系強化材としては、例えば、ガラス繊維、カーボン繊維、シリカ繊維、シリカ・アルミナ繊維、ジルコニア繊維、窒化硼素繊維、窒化珪素繊維、硼素繊維、チタン酸カリ繊維、更にステンレス、アルミニウム、チタン、銅、真鍮等の金属の繊維状物等が挙げられる。特に代表的な繊維状無機系強化材はガラス繊維、カーボン繊維である。   Examples of the fibrous inorganic reinforcing material include glass fiber, carbon fiber, silica fiber, silica / alumina fiber, zirconia fiber, boron nitride fiber, silicon nitride fiber, boron fiber, potassium titanate fiber, stainless steel, aluminum, titanium , Metal fibrous materials such as copper and brass. Particularly typical fibrous inorganic reinforcing materials are glass fiber and carbon fiber.

粉粒状無機系強化材としては、例えば、カーボンブラック、シリカ、石英粉末、ガラスビーズ、ガラス粉、硅酸カルシウム、硅酸アルミニウム、カオリン、タルク、クレー、硅藻土、ウォラストナイト等の硅酸塩、酸化鉄、酸化チタン、酸化亜鉛、アルミナ等の金属酸化物、炭酸カルシウム、炭酸マグネシウム等の金属の炭酸塩、硫酸カルシウム、硫酸バリウム等の金属の硫酸塩、その他炭化硅素、窒化硅素、窒化硼素、各種金属粉末等が挙げられる。
板状無機系強化材としては、例えば、マイカ、ガラスフレーク、各種の金属箔等が挙げられる。
これらの無機系強化材は単独で、又は2種以上を任意の割合で併用してもよい。
Examples of the granular inorganic reinforcing material include oxalic acid such as carbon black, silica, quartz powder, glass beads, glass powder, calcium oxalate, aluminum oxalate, kaolin, talc, clay, diatomaceous earth, and wollastonite. Metal oxides such as salts, iron oxide, titanium oxide, zinc oxide, and alumina, carbonates of metals such as calcium carbonate and magnesium carbonate, metal sulfates such as calcium sulfate and barium sulfate, other silicon carbide, silicon nitride, and nitride Examples thereof include boron and various metal powders.
Examples of the plate-like inorganic reinforcing material include mica, glass flakes, various metal foils, and the like.
These inorganic reinforcing materials may be used alone or in combination of two or more at any ratio.

これらの無機系強化材の使用にあたっては、必要ならば収束剤や表面処理剤を使用することができる。例えば、エポキシ系化合物、シラン系化合物、チタネート系化合物等の官能性化合物が用いられる。無機系強化材は、予めこれらの化合物によって処理しておいてもよく、または樹脂組成物の製造時に同時に、または個別に添加してもよい。   In using these inorganic reinforcing materials, if necessary, a sizing agent or a surface treatment agent can be used. For example, functional compounds such as epoxy compounds, silane compounds, and titanate compounds are used. The inorganic reinforcing material may be treated with these compounds in advance, or may be added simultaneously or individually during the production of the resin composition.

(E)無機系強化材の配合量は、成分(A)熱可塑性ポリエステル樹脂100質量部に対して、1〜90質量部、好ましくは10〜80質量部であり、さらに好ましくは12〜77質量部、特に好ましくは14〜75質量部である。90質量部を超えて配合すると、樹脂組成物の靭性を確保することが困難となる。   (E) The compounding quantity of an inorganic type reinforcement is 1-90 mass parts with respect to 100 mass parts of component (A) thermoplastic polyester resins, Preferably it is 10-80 mass parts, More preferably, it is 12-77 mass. Parts, particularly preferably 14 to 75 parts by mass. When it mix | blends exceeding 90 mass parts, it will become difficult to ensure the toughness of a resin composition.

さらに本発明の樹脂組成物には、本発明の目的を損なわない範囲で、熱可塑性樹脂組成物に常用されている種々の添加剤を添加することができる。このような添加剤としては、酸化防止剤、紫外線吸収剤、光安定剤等の安定剤、耐加水分解抑制剤(エポキシ化合物、カルボジイミド化合物など)、帯電防止剤、滑剤、離型剤、染料や顔料等の着色剤、可塑剤、耐候性改良剤などが挙げられる。特に、安定剤及び離型剤の添加は効果的である。これらの添加剤の添加量は、熱可塑性ポリエステル樹脂100質量部に対し、通常、10質量部以下であり、好ましくは5質量部以下である。   Furthermore, various additives commonly used in thermoplastic resin compositions can be added to the resin composition of the present invention within a range that does not impair the object of the present invention. Examples of such additives include stabilizers such as antioxidants, ultraviolet absorbers, light stabilizers, hydrolysis inhibitors (epoxy compounds, carbodiimide compounds, etc.), antistatic agents, lubricants, mold release agents, dyes, Examples thereof include colorants such as pigments, plasticizers, and weather resistance improvers. In particular, the addition of a stabilizer and a release agent is effective. The addition amount of these additives is usually 10 parts by mass or less, preferably 5 parts by mass or less, with respect to 100 parts by mass of the thermoplastic polyester resin.

中でも本発明においては、耐候性を向上させる目的においては、先述のカーボンブラックを少量含有させることが好ましく、特に(C)ハロゲン系難燃剤として臭素化エポキシ化合物を用いる場合に効果が顕著となる。耐候性改良剤として用いるカーボンブラックの量は、(A)熱可塑性ポリエステル樹脂100質量部に対して0.1〜1質量部、中でも0.1〜0.5質量部とすることが好ましい。   Among them, in the present invention, for the purpose of improving the weather resistance, it is preferable to contain a small amount of the above-mentioned carbon black, and the effect is particularly remarkable when a brominated epoxy compound is used as the (C) halogen flame retardant. The amount of carbon black used as a weather resistance improver is preferably 0.1 to 1 part by mass, and more preferably 0.1 to 0.5 part by mass with respect to 100 parts by mass of (A) the thermoplastic polyester resin.

また、懸濁重合法で得られたポリテトラフルオロエチレンやヒュームドコロイダルシリカなどの滴下防止剤を添加して、燃焼時の滴下防止を行うこともできる。しかしながら、本発明ではこのような滴下防止剤を実質的に含まなくても、高い難燃性を達成できる。実質的に含まないとは、滴下防止剤として機能する添加量で添加されていないことをいい、通常樹脂成分に対し、0.1質量%以下である。   Moreover, dripping prevention at the time of combustion can also be performed by adding a dripping inhibitor such as polytetrafluoroethylene or fumed colloidal silica obtained by suspension polymerization. However, in the present invention, high flame retardancy can be achieved without substantially including such an anti-dripping agent. “Substantially not contained” means that it is not added in an addition amount that functions as an anti-dripping agent, and is usually 0.1% by mass or less based on the resin component.

本発明の樹脂組成物は、ハロゲン系難燃剤以外の難燃剤を実質的に含まないことが好ましい。実質的に含まないとは、難燃剤として機能する添加量で添加されていないことをいい、通常樹脂成分に対し、0.1質量%以下である。ハロゲン系以外の難燃剤としては、リン酸エステル、ポリリン酸塩、赤燐等のリン系難燃剤、水酸化アルミニウム、水酸化マグネシウム等の無機系難燃剤、その他シリコン系難燃剤、トリアジン系難燃剤等が挙げられる。   It is preferable that the resin composition of the present invention does not substantially contain a flame retardant other than the halogen-based flame retardant. “Substantially not contained” means that it is not added in an addition amount that functions as a flame retardant, and is usually 0.1% by mass or less based on the resin component. Non-halogen flame retardants include phosphorus flame retardants such as phosphates, polyphosphates and red phosphorus, inorganic flame retardants such as aluminum hydroxide and magnesium hydroxide, other silicon flame retardants, and triazine flame retardants. Etc.

本発明の難燃性熱可塑性ポリエステル樹脂組成物は、更に他の熱可塑性樹脂を補助的に用いてもよく、高温において安定な樹脂であれば使用可能であり、具体的には例えばポリカーボネート、ポリアミド、ポリフェニレンオキサイド、ポリスチレン系樹脂、ポリフェニレンサルファイドエチレン、ポリサルホン、ポリエーテルサルホン、ポリエーテルイミド、ポリエーテルケトン、フッ素樹脂等が挙げられる。   The flame-retardant thermoplastic polyester resin composition of the present invention may further use another thermoplastic resin, and can be used as long as the resin is stable at high temperatures. Specifically, for example, polycarbonate, polyamide , Polyphenylene oxide, polystyrene resin, polyphenylene sulfide ethylene, polysulfone, polyethersulfone, polyetherimide, polyetherketone, fluororesin and the like.

本発明の難燃性熱可塑性ポリエステル樹脂組成物の調製は、樹脂組成物調製の常法に従って行うことができる。通常は各成分及び所望により添加される種々の添加剤を一緒にしてよく混合し、次いで一軸又は二軸押出機で溶融混練する。また各成分を予め混合することなく、ないしはその一部のみを予め混合し、フイーダーを用いて押出機に供給して溶融混練し、本発明の樹脂組成物を調製することもできる。さらには、ポリエステル樹脂の一部に他の成分の一部を配合したものを溶融混練してマスターバッチを調製し、次いでこれに残りのポリエステル樹脂や他の成分を配合して溶融混練してもよい。   The flame-retardant thermoplastic polyester resin composition of the present invention can be prepared according to a conventional method for preparing a resin composition. Usually, the components and various additives added as desired are mixed together and then melt-kneaded in a single-screw or twin-screw extruder. Also, the resin composition of the present invention can be prepared by mixing each component in advance or by mixing only a part of the components in advance and supplying them to an extruder using a feeder and melt-kneading them. Further, a master batch is prepared by melting and kneading a part of a polyester resin and a part of other components, and then the remaining polyester resin and other ingredients are blended and melt kneaded. Good.

本発明の熱可塑性樹脂組成物は、上述した様な溶融状態とした樹脂組成物を、従来公知の任意の製造方法により樹脂成形体とすることが出来る。具体的には例えば、射出成形、押出成形、プレス成形等種々の熱可塑性樹脂成形法により、樹脂成形体に成形することが可能である。中でも、成形サイクルが短く生産性が安定していることから、射出成形法により成形された成形体が、その特徴が顕著となるので好ましい。   In the thermoplastic resin composition of the present invention, the resin composition in a molten state as described above can be formed into a resin molded body by any conventionally known production method. Specifically, for example, it can be molded into a resin molded body by various thermoplastic resin molding methods such as injection molding, extrusion molding, and press molding. Among these, since the molding cycle is short and the productivity is stable, a molded body molded by an injection molding method is preferable because its features become remarkable.

本発明の樹脂成形体は、上述した射出成形によるものの他、樹脂フィルム、樹脂シートの様な樹脂成形体等の様々な形態で、電子材料、構造体材料、自動車材料、建築材料等の各種工業製品、部品部材用途に幅広く用いることが可能である。本発明の樹脂成形体は、現在広く用いられている一般的なプラスチック用成形機での使用が可能であるので、複雑な形状を有する成形体とすることも可能である。   The resin molded body of the present invention can be used in various industries such as electronic materials, structural materials, automobile materials, building materials, etc. in various forms such as resin molded bodies such as resin films and resin sheets, in addition to the above-described injection molding. It can be used widely for products and parts and materials. Since the resin molded body of the present invention can be used in a general plastic molding machine that is widely used at present, it can be formed into a molded body having a complicated shape.

本発明の熱可塑性樹脂組成物は、難燃性に加えて衝撃強度、外観、及び溶着性に優れた特性を有するので、各種工業製品・部品用部材として、好適に用いることが出来る。特に自動車分野における電器・電子部品、具体的には例えばコネクター等の部材部品を構成する樹脂成形体として、好適に用いることが出来る。   Since the thermoplastic resin composition of the present invention has properties excellent in impact strength, appearance, and weldability in addition to flame retardancy, it can be suitably used as a member for various industrial products and parts. In particular, it can be suitably used as a resin molded body constituting electric / electronic parts in the automobile field, specifically, member parts such as connectors.

以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。   The present invention will be described more specifically with reference to the following examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention is not limited to the specific examples shown below.

<樹脂組成物の評価方法>
表1に示す質量比で、ガラス繊維以外の成分を一括してスーパーミキサー(新栄機械社製SK−350型)で混合し、混合物をL/D=42の2軸押出機(日本製鋼所社製、TEX30HSST)のホッパーに投入し、ガラス繊維をサイドフィードして、吐出量20kg/h、スクリュー回転数250rpm、バレル温度260℃の条件下で押出して、ポリブチレンテレフタレート樹脂組成物のペレットを得た。得られたペレットを上記評価方法に応じた試験片に成形した。
<Evaluation method of resin composition>
At a mass ratio shown in Table 1, components other than glass fiber are mixed together by a super mixer (SK-350 type, manufactured by Shinei Machinery Co., Ltd.), and the mixture is L / D = 42 twin screw extruder (Nippon Steel Works, Ltd.). Made of TEX30HSST), side feed the glass fiber, and extrude under the conditions of discharge rate 20kg / h, screw rotation speed 250rpm, barrel temperature 260 ° C to obtain pellets of polybutylene terephthalate resin composition It was. The obtained pellet was formed into a test piece according to the evaluation method.

得られたポリブチレンテレフタレート樹脂組成物(一次成形材料と二次成形材料は同じ)を用いて、射出成形機(日精株式会社製NEX80−9E)により、シリンダー温度260℃、金型温度80℃で、図1に示す試験片A(一次成形品)を成形し、熱風オーブン(120℃)中で30分間保持して取り出した後、直ちに二次成形金型内に装着し、上記の得られたポリブチレンテレフタレート樹脂組成物(二次成形材料)を用いて試験片を射出成形し、試験片Aと二次成形材料からなる試験片とを金型内で溶着させ射出溶着一体成形品Bを得た。得られた射出溶着一体成形品について射出溶着強度を測定した。   Using the obtained polybutylene terephthalate resin composition (the primary molding material and the secondary molding material are the same), an injection molding machine (NEX80-9E manufactured by Nissei Co., Ltd.) at a cylinder temperature of 260 ° C. and a mold temperature of 80 ° C. 1 was molded, held in a hot air oven (120 ° C.) for 30 minutes and then taken out, immediately mounted in a secondary molding die, and the above obtained. A test piece is injection-molded using a polybutylene terephthalate resin composition (secondary molding material), and a test piece A and a test piece made of the secondary molding material are welded in a mold to obtain an injection-welded integrally molded product B. It was. The injection weld strength of the obtained injection welded integral molded product was measured.

難燃性テスト:
UL−94の方法に準じ、5本の試験片(厚さ0.75mm)を用いて難燃性テストを行い、UL94記載の評価方法に従い、V−0、V−1、V−2、HBに分類した(V−0が最も難燃性が高いことを示す)。合計燃焼時間は、5本の合計燃焼時間(第一接炎時、第二接炎時の燃焼時間を含む)であり、単位は、秒で示した。
Flame retardant test:
According to the method of UL-94, a flame retardancy test is performed using five test pieces (thickness: 0.75 mm), and according to the evaluation method described in UL94, V-0, V-1, V-2, HB (V-0 indicates the highest flame retardancy). The total combustion time is the total combustion time of 5 tubes (including the combustion time at the time of the first flame contact and the second flame contact), and the unit is shown in seconds.

ノッチ付きシャルピー衝撃強度
ポリブチレンテレフタレート樹脂組成物ペレットを用いて、射出成形機(日精樹脂工業株式会社製NEX80−9E型)にて、ISO試験片を成形した。ISO179−2に準拠してノッチ付シャルピー衝撃強さを測定した。
Charpy impact strength with notch Using a polybutylene terephthalate resin composition pellet, an ISO test piece was molded with an injection molding machine (NEX80-9E type manufactured by Nissei Plastic Industries Co., Ltd.). The notched Charpy impact strength was measured according to ISO 179-2.

成形品表面外観
ポリブチレンテレフタレート樹脂組成物ペレットを用いて、射出成形機(日精樹脂工業株式会社製NEX80−9E型)にて、樹脂温度270℃、金型温度80℃で、100mm径×2mm厚みの円盤状成形品を成形した。その円盤の表面外観を目視にて観察し、蛍光灯の像がくっきりと写るものを◎、少し揺らいで写るものを○、揺らいで写るものを×として評価した。○以上が実用上問題ないと判断される。
Surface appearance of molded product Using polybutylene terephthalate resin composition pellets, with injection molding machine (NEX80-9E type manufactured by Nissei Plastic Industry Co., Ltd.), resin temperature 270 ° C., mold temperature 80 ° C., 100 mm diameter × 2 mm thickness A disk-shaped molded product was molded. The surface appearance of the disk was visually observed and evaluated as ◎ when the image of the fluorescent light was clearly reflected, ◯ when the image was slightly shaken, and × when the image was shaken. ○ The above are judged to be practically acceptable.

溶着強度の測定:
一体成形品(図1に示す試験片B)を、曲げ速度2mm/min、スパン間距離64mmの条件で引っ張り、破断時の荷重を測定し、その大きさをkgfで表しこれを溶着強度とした。
Measurement of welding strength:
The integrally molded product (test piece B shown in FIG. 1) was pulled under the conditions of a bending speed of 2 mm / min and a span distance of 64 mm, the load at break was measured, and the size was represented by kgf, which was defined as the welding strength. .

Figure 0005538188
Figure 0005538188

Figure 0005538188
表2中、PS含有量とは、グラフト重合体中におけるスチレンの総量を意味する。
Figure 0005538188
In Table 2, the PS content means the total amount of styrene in the graft polymer.

上記表から明らかなとおり、グラフト重合体を用いても、スチレンを含まないグラフト重合体を用いた場合(比較例1〜3)、ハロゲン系難燃剤を含んでいても、実施例1〜3に比べて、難燃性が劣ることが分かった。また、スチレンを含む重合体を用いても、グラフト重合体でない場合(比較例4、5)、ハロゲン系難燃剤を含んでいても、実施例1〜3に比べて、難燃性が劣ることが分かる。また、グラフト重合体を含まない場合(比較例6)や、グラフト重合体を含んでいてもその含量が多い場合(比較例7)では、実施例1、4〜7と比べて、難燃性が劣ることが分かった。   As is clear from the above table, even when a graft polymer is used, when a graft polymer not containing styrene is used (Comparative Examples 1 to 3), even if a halogen-based flame retardant is included, Examples 1 to 3 It was found that the flame retardancy was inferior compared. Moreover, even if it uses the polymer containing styrene and it is not a graft polymer (Comparative Examples 4 and 5), even if it contains a halogenated flame retardant, the flame retardance is inferior compared with Examples 1-3. I understand. Moreover, in the case where the graft polymer is not included (Comparative Example 6) or the case where the graft polymer is included but the content thereof is large (Comparative Example 7), the flame retardancy is higher than those in Examples 1 and 4-7. Was found to be inferior.

また、実施例1と実施例11で作成したISO樹脂片(4mm厚)におけるエジェクターピン痕を観察した。両者は、難燃助剤であるアンチモン化合物のみを変更したものである。観察の結果、難燃助剤として五酸化アンチモンを用いた実施例1の樹脂成形体では、殆どエジェクターピン痕は見受けられなかったが、実施例8では深さ約0.3mmの痕が見られたことから、実施例8の樹脂組成物の方が離型抵抗力が高くなっており、難燃助剤であるアンチモン化合物として、五酸化アンチモンが優れていることが判った。   Moreover, the ejector pin trace in the ISO resin piece (4 mm thickness) created in Example 1 and Example 11 was observed. In both cases, only the antimony compound which is a flame retardant aid is changed. As a result of the observation, almost no ejector pin marks were observed in the resin molded body of Example 1 using antimony pentoxide as a flame retardant aid, but in Example 8, a mark having a depth of about 0.3 mm was observed. From the above, it was found that the resin composition of Example 8 had higher release resistance, and antimony pentoxide was superior as an antimony compound as a flame retardant aid.

また実施例1と実施例13、14、そして比較例9〜11との対比によって、(B)グラフト重合体以外のエラストマー含有量が多すぎてしまうと、本願発明の効果である難燃性が低下することが分かった。   Moreover, if the elastomer content other than (B) the graft polymer is too much due to the comparison between Example 1 and Examples 13 and 14 and Comparative Examples 9 to 11, the flame retardancy that is the effect of the present invention is obtained. It turns out that it falls.

さらに、実施例1と実施例10の比較により、樹脂成分としてPBTのみを用いた場合よりも、PBTとPETの混合系の方が、燃焼時間と溶着性について、より優れていることが分かった。   Furthermore, a comparison between Example 1 and Example 10 shows that the mixed system of PBT and PET is more excellent in terms of combustion time and weldability than when only PBT is used as the resin component. .

本発明の難燃性熱可塑性ポリエステル樹脂組成物は、電気電子部品、例えばコネクター、ターミナルなどの広範囲の部品への適用が期待できる。そしてさらには、自動車部品や建材部品などにも適用が考えられる。   The flame-retardant thermoplastic polyester resin composition of the present invention can be expected to be applied to a wide range of parts such as electric and electronic parts such as connectors and terminals. Furthermore, it can be applied to automobile parts and building material parts.

1 試験片Bにおける試験片Aの部分
2 試験片Bにおける二次成形材料からなる成形品部分
3 218mm
4 12.82mm
5 25mm
6 121.5mm
7 28mm
8 3.0mm
9 3.0mm
10 45度
1 Part of Test Specimen A in Specimen B 2 Molded Product Part Consisting of Secondary Molding Material in Specimen B 3 218mm
4 12.82mm
5 25mm
6 121.5mm
7 28mm
8 3.0mm
9 3.0mm
10 45 degrees

Claims (9)

(A)熱可塑性ポリエステル樹脂100質量部に対し、
(B)少なくともブタジエンを重合してなるゴム質重合体に、少なくともメチルメタクリレートとスチレンをグラフト重合させたグラフト重合体を1質量部〜30質量部、
(C)ハロゲン系難燃剤を7質量部〜40質量部、
(D)アンチモン化合物を3質量部〜20質量部および
(E)無機系強化材を1質量部〜90質量部
を含み、(B)グラフト重合体以外のエラストマーの含量が(A)熱可塑性ポリエステル樹脂に対して3質量%以下であり、前記(B)グラフト重合体中のスチレン含有量が、3質量%以上10質量%以下である、難燃性熱可塑性ポリエステル樹脂組成物。
(A) For 100 parts by mass of the thermoplastic polyester resin,
(B) 1 to 30 parts by mass of a graft polymer obtained by graft-polymerizing at least methyl methacrylate and styrene to a rubbery polymer obtained by polymerizing at least butadiene;
(C) 7 to 40 parts by mass of a halogen-based flame retardant,
(D) 3 parts by mass to 20 parts by mass of an antimony compound and (E) 1 part by mass to 90 parts by mass of an inorganic reinforcing material, and (B) an elastomer content other than the graft polymer is (A) a thermoplastic polyester. der 3 mass% or less with respect to the resin is, the (B) graft styrene content in the polymer is 10 mass% or less than 3 wt%, the flame retardant thermoplastic polyester resin composition.
前記(B)グラフト重合体が、少なくともスチレンとブタジエンを共重合してなるゴム質重合体に、少なくともメチルメタクリレートとスチレンをグラフト重合させたグラフト重合体である、請求項1に記載の難燃性熱可塑性ポリエステル樹脂組成物。 The flame retardant according to claim 1, wherein the graft polymer (B) is a graft polymer obtained by graft-polymerizing at least methyl methacrylate and styrene to a rubbery polymer obtained by copolymerizing at least styrene and butadiene. Thermoplastic polyester resin composition. 熱可塑性ポリエステル樹脂が、ポリブチレンテレフタレート樹脂を含む、請求項1または2に記載の難燃性熱可塑性ポリエステル樹脂組成物。 The flame-retardant thermoplastic polyester resin composition according to claim 1 or 2 , wherein the thermoplastic polyester resin comprises a polybutylene terephthalate resin. 熱可塑性ポリエステル樹脂が、ポリブチレンテレフタレート樹脂とポリエチレンテレフタレート樹脂を含む、請求項1または2に記載の難燃性熱可塑性ポリエステル樹脂組成物。 The flame-retardant thermoplastic polyester resin composition according to claim 1 or 2 , wherein the thermoplastic polyester resin comprises a polybutylene terephthalate resin and a polyethylene terephthalate resin. (C)ハロゲン系難燃剤が、臭素化エポキシ化合物、下記式(1)で表される化合物および下記式(2)で表される重合体の少なくとも1種を含む、請求項1〜のいずれか1項に記載の難燃性熱可塑性ポリエステル樹脂組成物。
Figure 0005538188
(式(1)中、R1は2価の有機基を示し、R2およびR3は、それぞれ、2価の有機基であり、R2およびR3の少なくとも一方が1つ以上のハロゲン原子を有する。)
Figure 0005538188
(式(2)中、R1 は水素原子またはメチル基を示し、R2 はアルキレン基を示し、Xはハロゲン原子を示す。mは1〜5の整数である。)
(C) halogen-based flame retardant is a brominated epoxy compound comprises at least one polymer represented by the compounds and the following formula represented by the following formula (1) (2), any of the claims 1-4 The flame-retardant thermoplastic polyester resin composition according to claim 1.
Figure 0005538188
(In Formula (1), R 1 represents a divalent organic group, R 2 and R 3 are each a divalent organic group, and at least one of R 2 and R 3 is one or more halogen atoms. Have
Figure 0005538188
(In formula (2), R 1 represents a hydrogen atom or a methyl group, R 2 represents an alkylene group, X represents a halogen atom, and m is an integer of 1 to 5.)
(C)ハロゲン系難燃剤が臭素系難燃剤である、請求項1〜のいずれか1項に記載の難燃性熱可塑性ポリエステル樹脂組成物。 (C) The flame retardant thermoplastic polyester resin composition according to any one of claims 1 to 5 , wherein the halogen flame retardant is a bromine flame retardant. (D)アンチモン化合物が五酸化アンチモンである、請求項1〜のいずれか1項に記載の難燃性熱可塑性ポリエステル樹脂組成物。 (D) The flame-retardant thermoplastic polyester resin composition according to any one of claims 1 to 6 , wherein the antimony compound is antimony pentoxide. ハロゲン系難燃剤以外の難燃剤を実質的に含まない、請求項1〜のいずれか1項に記載の難燃性熱可塑性ポリエステル樹脂組成物。 The flame-retardant thermoplastic polyester resin composition according to any one of claims 1 to 7 , which contains substantially no flame retardant other than a halogen-based flame retardant. 請求項1〜のいずれか1項に記載の難燃性熱可塑性ポリエステル樹脂組成物を成形してなる成形品。 A molded product obtained by molding the flame-retardant thermoplastic polyester resin composition according to any one of claims 1 to 8 .
JP2010257098A 2010-11-17 2010-11-17 Flame retardant thermoplastic polyester resin composition Active JP5538188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010257098A JP5538188B2 (en) 2010-11-17 2010-11-17 Flame retardant thermoplastic polyester resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010257098A JP5538188B2 (en) 2010-11-17 2010-11-17 Flame retardant thermoplastic polyester resin composition

Publications (2)

Publication Number Publication Date
JP2012107126A JP2012107126A (en) 2012-06-07
JP5538188B2 true JP5538188B2 (en) 2014-07-02

Family

ID=46493093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010257098A Active JP5538188B2 (en) 2010-11-17 2010-11-17 Flame retardant thermoplastic polyester resin composition

Country Status (1)

Country Link
JP (1) JP5538188B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6039372B2 (en) * 2012-11-09 2016-12-07 三菱エンジニアリングプラスチックス株式会社 Polybutylene terephthalate resin composition
JP6278898B2 (en) * 2012-12-06 2018-02-14 ウィンテックポリマー株式会社 Resin molded body
JP6482755B2 (en) * 2013-09-10 2019-03-13 三菱エンジニアリングプラスチックス株式会社 Method for producing thermoplastic resin composition
JP6071623B2 (en) * 2013-02-22 2017-02-01 三菱エンジニアリングプラスチックス株式会社 Polybutylene terephthalate-based resin composition molded body
JP6298194B1 (en) * 2017-05-16 2018-03-20 三菱エンジニアリングプラスチックス株式会社 Connector port for external connection of electronic equipment
JP6231239B1 (en) * 2016-05-19 2017-11-15 三菱エンジニアリングプラスチックス株式会社 Polybutylene terephthalate resin composition and molded article
WO2017199989A1 (en) * 2016-05-19 2017-11-23 三菱エンジニアリングプラスチックス株式会社 Polybutylene terephthalate-based resin composition, and molded article
JP6483193B2 (en) * 2017-06-07 2019-03-13 三菱エンジニアリングプラスチックス株式会社 Method for producing thermoplastic resin composition
JP6483228B2 (en) * 2017-12-13 2019-03-13 三菱エンジニアリングプラスチックス株式会社 Method for producing thermoplastic resin composition
JP6483229B2 (en) * 2017-12-13 2019-03-13 三菱エンジニアリングプラスチックス株式会社 Method for producing thermoplastic resin composition
JP6483230B2 (en) * 2017-12-13 2019-03-13 三菱エンジニアリングプラスチックス株式会社 Method for producing thermoplastic resin composition
JP6386652B2 (en) * 2017-12-13 2018-09-05 三菱エンジニアリングプラスチックス株式会社 Method for producing thermoplastic resin composition
JP6590962B2 (en) * 2018-01-26 2019-10-16 三菱エンジニアリングプラスチックス株式会社 Connector port for external connection of electronic equipment
JP6687771B2 (en) * 2019-02-12 2020-04-28 三菱エンジニアリングプラスチックス株式会社 Method for producing thermoplastic resin composition
CN113429787A (en) * 2021-06-18 2021-09-24 金发科技股份有限公司 High glow wire PPS composition and preparation method and application thereof
US20240010828A1 (en) * 2022-07-08 2024-01-11 B/E Aerospace, Inc. Fire resistant polymer matrix composite

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5494553A (en) * 1978-01-10 1979-07-26 Teijin Ltd Polyester resin composition
JP3235939B2 (en) * 1994-12-28 2001-12-04 ポリプラスチックス株式会社 Flame retardant polyester resin composition
DE19543186A1 (en) * 1995-11-20 1997-05-22 Bayer Ag Flame-retardant themoplastic moldings with improved properties
JPH10168291A (en) * 1996-12-16 1998-06-23 Nippon G Ii Plast Kk Thermoplastic polyester resin composition
JP2005042082A (en) * 2003-07-04 2005-02-17 Mitsubishi Rayon Co Ltd Thermoplastic resin composition

Also Published As

Publication number Publication date
JP2012107126A (en) 2012-06-07

Similar Documents

Publication Publication Date Title
JP5538188B2 (en) Flame retardant thermoplastic polyester resin composition
US9475933B2 (en) Antimony trioxide free flame retardant thermoplastic composition
WO2011058992A1 (en) Polybutylene terephthalate resin composition
WO2012147811A1 (en) Insert molded article
JP2017197676A (en) Polybutylene terephthalate resin composition
JPH1060242A (en) Reinforced polyester resin composition and its molded product
WO2013085789A1 (en) Low antimony or antimony trioxide-free flame retarded thermoplastic composition
JP2003026905A (en) Resin composition and its molded article
JP6749174B2 (en) Polyester resin composition for laser direct structuring
EP2289999B1 (en) Thermoplastic composition
KR100846861B1 (en) Composition Of Polyester resin
JP2006219626A (en) Polybutylene terephthalate resin composition and molded article made thereof
JPH08183896A (en) Flame-retardant polyester resin composition
JP2001011292A (en) Light colored light-resistant polyester resin composition and luminaire parts molded therefrom
WO1997002302A1 (en) Graft ethylene-vinyl acetate copolymer and resin composition containing the same
JP6163862B2 (en) Thermoplastic resin composition and method for producing the same
JP2005240003A (en) Thermoplastic polyester resin composition and insert-molded article
JP2006206921A (en) Automobile part comprising polyester resin composition
JPH0959524A (en) Flame retardant resin composition
JP2007321109A (en) Polyester resin molded article and polyester resin composition
JPH0551025B2 (en)
WO2018043334A1 (en) Epoxy-modified vinyl copolymer, thermoplastic resin composition containing same and molded article of said thermoplastic resin composition
JP2003119362A (en) Flame retardant reinforced polytrimethylene terephthalate resin composition
JP2020203963A (en) Method for producing flame-retardant thermoplastic polyester resin composition
JPH0517669A (en) Flame-retardant polyester resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140422

R150 Certificate of patent or registration of utility model

Ref document number: 5538188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140428

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250