JP5535880B2 - Ungrounded AC circuit ground fault detector - Google Patents

Ungrounded AC circuit ground fault detector Download PDF

Info

Publication number
JP5535880B2
JP5535880B2 JP2010259031A JP2010259031A JP5535880B2 JP 5535880 B2 JP5535880 B2 JP 5535880B2 JP 2010259031 A JP2010259031 A JP 2010259031A JP 2010259031 A JP2010259031 A JP 2010259031A JP 5535880 B2 JP5535880 B2 JP 5535880B2
Authority
JP
Japan
Prior art keywords
ground fault
circuit
current
feeder
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010259031A
Other languages
Japanese (ja)
Other versions
JP2012108080A (en
Inventor
隆雄 大森
基材 南方
茂敬 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hasegawa Electric Co Ltd
Original Assignee
Hasegawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hasegawa Electric Co Ltd filed Critical Hasegawa Electric Co Ltd
Priority to JP2010259031A priority Critical patent/JP5535880B2/en
Publication of JP2012108080A publication Critical patent/JP2012108080A/en
Application granted granted Critical
Publication of JP5535880B2 publication Critical patent/JP5535880B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、母線から複数のフィーダを分岐させた商用周波数回路を備え、各フィーダごとにインバータ回路が接続された非接地交流回路において、商用周波数回路で発生した地絡事故およびインバータ回路で発生した地絡事故の両方を検出可能とする非接地交流回路の地絡検出装置に関する。   The present invention includes a commercial frequency circuit in which a plurality of feeders are branched from a bus, and an ungrounded AC circuit in which an inverter circuit is connected to each feeder. The present invention relates to a ground fault detection device for an ungrounded AC circuit capable of detecting both ground faults.

非接地系線路において、線路の地絡検出と、その地絡が1線地絡か2線地絡かを判定する地絡検出回路が提案されている(例えば、特許文献1参照)。この地絡検出回路では、非接地系の単相交流線路の各線路を接地する接地インピーダンスよりも負荷側の単相交流線路の零相電流を検出して零相電流に応じた電源周波数信号を出力する零相電流センサの出力に基づいて単相交流線路の2線接地を判定する判定回路を備えている。   There has been proposed a ground fault detection circuit for detecting a ground fault in a non-grounded line and determining whether the ground fault is a one-wire ground fault or a two-wire ground fault (for example, see Patent Document 1). This ground fault detection circuit detects the zero-phase current of the single-phase AC line on the load side from the ground impedance that grounds each line of the non-grounded single-phase AC line, and generates a power frequency signal corresponding to the zero-phase current. A determination circuit for determining the two-wire grounding of the single-phase AC line based on the output of the output zero-phase current sensor is provided.

このような非接地交流回路1では、従来、図2に示すように母線L0から複数のフィーダL1〜Lnを分岐させた商用周波数回路2を備えたものがある。この系統では、非接地交流回路1の各フィーダL1〜Lnにインバータ回路3が接続されている。このインバータ回路3は、非接地交流回路1の各フィーダL1〜Lnの負荷側にインバータINV1〜INVnを接続し、そのインバータINV1〜INVnの出力側に例えば可変速モータ負荷M1〜Mnなどが接続された構成を具備する。   Conventionally, such a non-grounded AC circuit 1 includes a commercial frequency circuit 2 in which a plurality of feeders L1 to Ln are branched from a bus L0 as shown in FIG. In this system, an inverter circuit 3 is connected to each of the feeders L1 to Ln of the non-grounded AC circuit 1. In this inverter circuit 3, inverters INV1 to INVn are connected to the load side of each of the feeders L1 to Ln of the ungrounded AC circuit 1, and variable speed motor loads M1 to Mn are connected to the output side of the inverters INV1 to INVn. The structure is provided.

この非接地交流回路1の母線L0には、非接地交流回路全体の地絡を検出するための零相変圧器EVTが設けられ、この零相変圧器EVTの接地線に零相変流器ZCT0が設けられている。また、非接地交流回路1の各フィーダL1〜Lnには、そのフィーダL1〜Lnの地絡を検出するための零相変流器ZCT1〜ZCTnが設けられている。零相変圧器EVTの接地線に設けられた零相変流器ZCT0、および各フィーダL1〜Lnに設けられた零相変流器ZCT1〜ZCTnのそれぞれには地絡検出回路CT0〜CTnが接続されている。なお、図中の符号CB0〜CBnは、母線L0および各フィーダL1〜Lnに設けられた遮断器である。   The bus L0 of the non-grounded AC circuit 1 is provided with a zero-phase transformer EVT for detecting a ground fault of the entire non-grounded AC circuit, and a zero-phase current transformer ZCT0 is connected to the ground line of the zero-phase transformer EVT. Is provided. In addition, each of the feeders L1 to Ln of the non-grounded AC circuit 1 is provided with zero-phase current transformers ZCT1 to ZCTn for detecting ground faults of the feeders L1 to Ln. Ground fault detection circuits CT0 to CTn are connected to the zero phase current transformer ZCT0 provided on the ground line of the zero phase transformer EVT and the zero phase current transformers ZCT1 to ZCTn provided to the feeders L1 to Ln, respectively. Has been. In addition, the code | symbol CB0-CBn in a figure is a circuit breaker provided in bus L0 and each feeder L1-Ln.

この地絡検出回路CT0〜CTnでは、非接地交流回路1のフィーダL1〜Lnに地絡事故が発生すると、その商用周波数の地絡電流を検出することができるようにローパスフィルタ(LPF)により商用周波数よりも高い周波数成分をカットするようにしている。地絡検出回路CT0〜CTnでは、このローパスフィルタにより、商用周波数の地絡電流のみを検出するようにしている。   In the ground fault detection circuits CT0 to CTn, when a ground fault occurs in the feeders L1 to Ln of the ungrounded AC circuit 1, a commercial low-pass filter (LPF) is used to detect a ground fault current at the commercial frequency. A frequency component higher than the frequency is cut. In the ground fault detection circuits CT0 to CTn, only the ground fault current at the commercial frequency is detected by this low-pass filter.

特開平9−163584号公報Japanese Patent Laid-Open No. 9-163584

ところで、前述した非接地交流回路1の地絡検出装置では、商用周波数回路2の地絡事故を検出することを目的として、ローパスフィルタを内蔵させた地絡検出回路CT0〜CTnを設けた構成となっている。一方、インバータ回路3では、可変速モータ負荷M1〜Mnを速度制御しながら運転するために出力周波数が例えば0〜400Hz程度となっている。   By the way, in the ground fault detection apparatus of the non-grounded AC circuit 1 described above, for the purpose of detecting a ground fault in the commercial frequency circuit 2, a ground fault detection circuit CT0 to CTn having a built-in low-pass filter is provided. It has become. On the other hand, in the inverter circuit 3, since the variable speed motor loads M1 to Mn are operated while controlling the speed, the output frequency is, for example, about 0 to 400 Hz.

そのため、インバータ回路3で地絡事故が発生すると、前述の地絡検出回路CT0〜CTnではその地絡事故を検出することができなかった。つまり、インバータ回路3の出力周波数が商用周波数よりも大きくなる場合があり、地絡検出回路CT0〜CTnでは、ローパスフィルタにより商用周波数よりも高い周波数成分をカットしていることから、その商用周波数よりも高いインバータ回路3の出力周波数の地絡電流を検出することができないというのが現状であった。   Therefore, when a ground fault occurs in the inverter circuit 3, the ground fault detection circuits CT0 to CTn described above cannot detect the ground fault. That is, the output frequency of the inverter circuit 3 may be higher than the commercial frequency, and the ground fault detection circuits CT0 to CTn cut the frequency component higher than the commercial frequency by the low-pass filter. However, the current situation is that it is impossible to detect the ground fault current at the output frequency of the inverter circuit 3 which is too high.

また、インバータ回路3での地絡事故を検出可能とする地絡検出回路をインバータINV1〜INVnに内蔵させる場合もあるが、その場合、インバータ自体が大型化すると共にインバータINV1〜INVnのコストアップにより高価な地絡検出装置となってしまう。さらに、インバータINV1〜INVnの起動時や停止時にインバータ回路3で地絡事故が発生した場合、インバータ回路3の出力周波数が低周波数領域にあるため、零相変圧器EVTの接地線に設けられた零相変流器ZCT0により地絡電流を検出することができず、また、その低周波数領域での地絡電流により零相変圧器EVTの鉄心が偏磁して過電流が発生するという問題もあった。   In some cases, a ground fault detection circuit capable of detecting a ground fault in the inverter circuit 3 is built in the inverters INV1 to INVn. In that case, the inverter itself becomes larger and the cost of the inverters INV1 to INVn increases. It becomes an expensive ground fault detection device. Furthermore, when a ground fault occurs in the inverter circuit 3 when the inverters INV1 to INVn are started or stopped, the output frequency of the inverter circuit 3 is in the low frequency region, so that it is provided on the ground line of the zero-phase transformer EVT. There is a problem that the ground fault current cannot be detected by the zero phase current transformer ZCT0, and the iron core of the zero phase transformer EVT is demagnetized due to the ground fault current in the low frequency region. there were.

そこで、本発明は、前述の問題点に鑑みて提案されたもので、その目的とするところは、低コストで、商用周波数回路で発生した地絡事故およびインバータ回路で発生した地絡事故の両方を検出可能とし得る非接地交流回路の地絡検出装置を提供することにある。   Therefore, the present invention has been proposed in view of the above-described problems, and the object of the present invention is to provide both low-cost ground faults occurring in commercial frequency circuits and ground faults occurring in inverter circuits. An object of the present invention is to provide a ground fault detection device for a non-grounded AC circuit that can detect a fault.

前述の目的を達成するための技術的手段として、本発明に係る非接地交流回路の地絡検出装置は、地絡検出用零相変圧器が設けられた母線から複数のフィーダを分岐させ、各フィーダに地絡検出用零相変流器を設けた商用周波数回路を備え、インバータ回路が各フィーダごとに接続された非接地交流回路において、前記零相変圧器の一次側の接地線に、その接地線に流れる地絡電流を検出する抵抗を設けると共に、前記零相変流器および抵抗に接続された地絡検出回路は、商用周波数の地絡電流と、その商用周波数よりも高い周波数成分および低周波数領域のインバータの出力周波数の地絡電流を検出可能としたことを特徴とする。 As a technical means for achieving the above-described object, the ground fault detection device for an ungrounded AC circuit according to the present invention branches a plurality of feeders from a bus provided with a ground fault detection zero-phase transformer, A non-grounded AC circuit having a commercial frequency circuit provided with a zero-phase current transformer for detecting a ground fault in a feeder, and an inverter circuit connected to each feeder, the ground wire on the primary side of the zero-phase transformer has its A resistor for detecting a ground fault current flowing in the ground line is provided, and a ground fault detection circuit connected to the zero-phase current transformer and the resistor includes a ground fault current at a commercial frequency, a frequency component higher than the commercial frequency, and It is possible to detect a ground fault current at an output frequency of an inverter in a low frequency region .

本発明では、零相変圧器の接地線に設けられた抵抗の両端電圧を監視することによりその接地線に流れる地絡電流を地絡検出回路で検出する。その地絡検出回路では、従来のようにローパスフィルタを内蔵させることなく、商用周波数よりも高い周波数成分をカットせず、商用周波数とインバータの出力周波数の両方で地絡電流を検出可能としたことにより、インバータ回路で発生した地絡事故を検出することが可能となる。その結果、インバータ回路での地絡事故を検出可能とする地絡検出回路をインバータに内蔵させる必要がないので、低コストで、商用周波数回路で発生した地絡事故およびインバータ回路で発生した地絡事故の両方が検出可能となる。   In the present invention, the ground fault current flowing through the ground line is detected by the ground fault detection circuit by monitoring the voltage across the resistor provided on the ground line of the zero-phase transformer. In the ground fault detection circuit, it is possible to detect the ground fault current at both the commercial frequency and the inverter output frequency without cutting a frequency component higher than the commercial frequency without incorporating a low-pass filter as in the past. This makes it possible to detect a ground fault that has occurred in the inverter circuit. As a result, it is not necessary to incorporate a ground fault detection circuit that can detect a ground fault in the inverter circuit into the inverter, so that it is possible to reduce the cost of a ground fault occurring in a commercial frequency circuit and a ground fault occurring in the inverter circuit. Both accidents can be detected.

また、地絡電流の検出抵抗として機能する抵抗は、制限抵抗としても機能する。つまり、インバータの起動時や停止時にインバータ回路で地絡事故が発生した場合、そのインバータ回路の出力周波数が低周波数領域であっても、その低周波数領域での地絡電流により零相変圧器の鉄心が偏磁することなく、その地絡電流を確実に検出することができる。   In addition, the resistor that functions as a ground fault current detection resistor also functions as a limiting resistor. In other words, when a ground fault occurs in the inverter circuit when the inverter is started or stopped, even if the output frequency of the inverter circuit is in the low frequency region, the ground fault current in the low frequency region causes the zero-phase transformer to The ground fault current can be reliably detected without the iron core being demagnetized.

本発明における地絡検出回路は、前記抵抗に流れる地絡電流と各フィーダに流れる電流の位相を比較し、その位相比較に基づいて地絡フィーダを特定することが望ましい。このような地絡電流の位相比較で簡単に地絡フィーダを特定することが可能となる。   It is desirable that the ground fault detection circuit according to the present invention compares the phase of the ground fault current flowing through the resistor with the phase of the current flowing through each feeder, and identifies the ground fault feeder based on the phase comparison. The ground fault feeder can be easily identified by the phase comparison of the ground fault current.

本発明における地絡検出回路は、各フィーダに流れる電流の大きさを検出し、その電流値の比較に基づいて地絡フィーダを特定することが望ましい。このような地絡電流の電流値比較で簡単に地絡フィーダを特定することが可能となる。   It is desirable that the ground fault detection circuit according to the present invention detects the magnitude of the current flowing through each feeder and specifies the ground fault feeder based on the comparison of the current values. It becomes possible to specify the ground fault feeder easily by comparing the current values of the ground fault current.

本発明における地絡検出回路は、前記地絡フィーダに流れる地絡電流に含まれるインバータ回路の搬送周波数成分を検出し、その搬送周波数成分の有無でもって地絡事故点が商用周波数回路かインバータ回路かを判定することが望ましい。このようなインバータ回路の搬送周波数成分の有無で地絡事故点が商用周波数回路かインバータ回路かを判定することが容易となる。   The ground fault detection circuit in the present invention detects the carrier frequency component of the inverter circuit included in the ground fault current flowing in the ground fault feeder, and the ground fault point is the commercial frequency circuit or the inverter circuit depending on the presence or absence of the carrier frequency component. It is desirable to determine whether or not. It becomes easy to determine whether the ground fault point is a commercial frequency circuit or an inverter circuit based on the presence or absence of the carrier frequency component of the inverter circuit.

本発明における抵抗は、インバータの起動時および停止時に発生する低周波数地絡電流により、前記零相変圧器の鉄心が飽和しない値に設定されていることが望ましい。このようにすれば、インバータの起動時および停止時にインバータ回路で地絡事故が発生した場合、その低周波数領域での地絡電流で零相変圧器の鉄心が偏磁することを抑止でき、過電流発生による零相変圧器の焼損を未然に防止できる。   The resistance in the present invention is preferably set to a value that does not saturate the iron core of the zero-phase transformer due to the low-frequency ground fault current that occurs when the inverter is started and stopped. In this way, when a ground fault occurs in the inverter circuit when the inverter is started and stopped, it is possible to prevent the core of the zero-phase transformer from being demagnetized by the ground fault current in the low frequency region. Burnout of the zero-phase transformer due to current generation can be prevented beforehand.

本発明によれば、従来のようにローパスフィルタを内蔵させることなく、商用周波数よりも高い周波数成分をカットせず、商用周波数とインバータの出力周波数の両方で地絡電流を検出可能としたことにより、インバータ回路で発生した地絡事故を検出することが可能となる。その結果、インバータ回路での地絡事故を検出可能とする地絡検出回路をインバータに内蔵させる必要がないので、低コストで、商用周波数回路で発生した地絡事故およびインバータ回路で発生した地絡事故の両方が検出可能となる。   According to the present invention, it is possible to detect a ground fault current at both the commercial frequency and the output frequency of the inverter without cutting a frequency component higher than the commercial frequency without incorporating a low-pass filter as in the prior art. Thus, it becomes possible to detect a ground fault occurring in the inverter circuit. As a result, it is not necessary to incorporate a ground fault detection circuit that can detect a ground fault in the inverter circuit into the inverter, so that it is possible to reduce the cost of a ground fault occurring in a commercial frequency circuit and a ground fault occurring in the inverter circuit. Both accidents can be detected.

本発明の実施形態で、非接地交流回路の地絡検出装置を示す概略構成回路図である。1 is a schematic configuration circuit diagram showing a ground fault detection device for an ungrounded AC circuit in an embodiment of the present invention. 非接地交流回路の地絡検出装置の従来例を示す概略構成回路図である。It is a schematic structure circuit diagram which shows the prior art example of the ground fault detection apparatus of a non-grounded AC circuit.

本発明に係る非接地交流回路の地絡検出装置の実施形態を、図面を参照しながら以下に詳述する。なお、図1において、図2と同一部分には同一参照符号を付す。   An embodiment of a ground fault detection device for an ungrounded AC circuit according to the present invention will be described in detail below with reference to the drawings. In FIG. 1, the same parts as those in FIG.

この実施形態における非接地交流回路1では、図1に示すように母線L0から複数のフィーダL1〜Lnを分岐させた商用周波数回路2を備え、その商用周波数回路2の各フィーダL1〜Lnにインバータ回路3が接続されている。このインバータ回路3は、商用周波数回路2の各フィーダL1〜Lnの負荷側にインバータINV1〜INVnを接続し、そのインバータINV1〜INVnの出力側に例えば可変速モータ負荷M1〜Mnなどが接続された構成を具備する。なお、図中の符号CB0〜CBnは、母線L0および各フィーダL1〜Lnに設けられた遮断器である。   The ungrounded AC circuit 1 in this embodiment includes a commercial frequency circuit 2 that branches a plurality of feeders L1 to Ln from a bus L0 as shown in FIG. 1, and an inverter is connected to each feeder L1 to Ln of the commercial frequency circuit 2 Circuit 3 is connected. In this inverter circuit 3, inverters INV1 to INVn are connected to the load side of each feeder L1 to Ln of the commercial frequency circuit 2, and variable speed motor loads M1 to Mn are connected to the output side of the inverters INV1 to INVn. It has a configuration. In addition, the code | symbol CB0-CBn in a figure is a circuit breaker provided in bus L0 and each feeder L1-Ln.

この非接地交流回路1の母線L0には、非接地交流回路全体の地絡を検出するための零相変圧器EVTが設けられ、この零相変圧器EVTの接地線に抵抗Rsが設けられている。また、非接地交流回路1の各フィーダL1〜Lnには、そのフィーダL1〜Lnの地絡を検出するための零相変流器ZCT1〜ZCTnが設けられている。零相変圧器EVTの接地線に設けられた抵抗Rs、および各フィーダL1〜Lnに設けられた零相変流器ZCT1〜ZCTnのそれぞれには地絡検出回路RT0〜RTnが接続されている。   The bus L0 of the non-grounded AC circuit 1 is provided with a zero-phase transformer EVT for detecting a ground fault of the entire non-grounded AC circuit, and a resistance Rs is provided on the ground line of the zero-phase transformer EVT. Yes. In addition, each of the feeders L1 to Ln of the non-grounded AC circuit 1 is provided with zero-phase current transformers ZCT1 to ZCTn for detecting ground faults of the feeders L1 to Ln. Ground fault detection circuits RT0 to RTn are connected to the resistor Rs provided on the ground line of the zero phase transformer EVT and the zero phase current transformers ZCT1 to ZCTn provided to the feeders L1 to Ln, respectively.

ここで、図2に示す従来の非接地交流回路1の地絡検出装置と、図1に示す実施形態の非接地交流回路1の地絡検出装置との相違点は、従来では、零相変圧器EVTの接地線に零相変流器ZCT0を設け、地絡検出回路CT0〜CTnがローパスフィルタを備えていたのに対して、この実施形態では、零相変圧器EVTの接地線に抵抗Rsを設けると共に地絡検出回路RT0〜RTnがローパスフィルタを備えていない点にある。   Here, the difference between the ground fault detection device of the conventional non-grounded AC circuit 1 shown in FIG. 2 and the ground fault detection device of the non-grounded AC circuit 1 of the embodiment shown in FIG. The zero-phase current transformer ZCT0 is provided in the ground line of the transformer EVT, and the ground fault detection circuits CT0 to CTn are provided with the low-pass filter. In this embodiment, the resistor Rs is connected to the ground line of the zero-phase transformer EVT. And the ground fault detection circuits RT0 to RTn are not provided with a low-pass filter.

なお、この実施形態の抵抗Rsは、地絡電流の検出抵抗として機能すると共に、零相変圧器の鉄心偏磁を防止する制限抵抗としても機能する。また、地絡検出回路RT0〜RTnは、後述するように、電流の位相判別機能やインバータ回路3の搬送周波数成分の判別機能も併せ持つ。   Note that the resistor Rs of this embodiment functions as a resistance for detecting a ground fault current, and also functions as a limiting resistor for preventing the core deviation of the zero-phase transformer. The ground fault detection circuits RT0 to RTn also have a current phase discrimination function and a carrier frequency component discrimination function of the inverter circuit 3, as will be described later.

この非接地交流回路1では、零相変圧器EVTの接地線に設けられた抵抗Rsの両端電圧を監視することによりその接地線に流れる地絡電流を地絡検出回路RT0で検出する。この地絡電流の検出により地絡抵抗値を判定することができる。その地絡検出回路RT0〜RTnでは、従来のようにローパスフィルタを内蔵させることなく、商用周波数よりも高い周波数成分をカットせず、商用周波数とインバータINV1〜INVnの出力周波数の両方で地絡電流を検出可能としたことにより、インバータ回路3で発生した地絡事故を検出することが可能となる。その結果、インバータ回路3での地絡事故を検出可能とする地絡検出回路をインバータINV1〜INVnに内蔵させる必要がないので、低コストで、商用周波数回路2で発生した地絡事故およびインバータ回路3で発生した地絡事故の両方が検出可能となる。   In the non-grounded AC circuit 1, the ground fault current flowing in the ground line is detected by the ground fault detection circuit RT0 by monitoring the voltage across the resistor Rs provided in the ground line of the zero-phase transformer EVT. By detecting the ground fault current, the ground fault resistance value can be determined. The ground fault detection circuits RT0 to RTn do not incorporate a low-pass filter as in the prior art, do not cut a frequency component higher than the commercial frequency, and have a ground fault current at both the commercial frequency and the output frequency of the inverters INV1 to INVn. It is possible to detect a ground fault that has occurred in the inverter circuit 3. As a result, it is not necessary to incorporate in the inverters INV1 to INVn a ground fault detection circuit capable of detecting a ground fault in the inverter circuit 3, so that the ground fault and inverter circuit generated in the commercial frequency circuit 2 can be produced at low cost. Both of the ground faults that occurred in 3 can be detected.

ここで、インバータINV1〜INVnの起動時や停止時にインバータ回路3で地絡事故が発生した場合、従来では、零相変圧器EVTの接地線に設けられた零相変流器ZCT0により地絡電流を検出しようとしても(図2参照)、インバータINV1〜INVnの起動時や停止時にインバータ回路3の出力周波数が低周波数領域であることから、その零相変流器ZCT0により地絡電流を検出することができず、また、低周波数領域での地絡電流により零相変圧器EVTの鉄心が偏磁して過電流が発生する。   Here, when a ground fault occurs in the inverter circuit 3 when the inverters INV1 to INVn are started or stopped, conventionally, a ground fault current is generated by the zero phase current transformer ZCT0 provided on the ground line of the zero phase transformer EVT. (See FIG. 2), since the output frequency of the inverter circuit 3 is in a low frequency region when the inverters INV1 to INVn are started or stopped, the ground fault current is detected by the zero-phase current transformer ZCT0. Moreover, the iron core of the zero-phase transformer EVT is demagnetized due to a ground fault current in a low frequency region, and an overcurrent is generated.

これに対して、この実施形態のように、零相変圧器EVTの接地線に設けられた抵抗Rsの両端電圧を監視することにより、インバータINV1〜INVnの起動時や停止時にインバータ回路3の出力周波数が低周波数領域であっても、地絡電流を検出することができ、また、地絡電流の検出抵抗として機能する抵抗Rsが制限抵抗としても機能することから、低周波数領域での地絡電流により零相変圧器EVTの鉄心が偏磁して過電流が発生することはない。   On the other hand, as in this embodiment, by monitoring the voltage across the resistor Rs provided on the ground line of the zero-phase transformer EVT, the output of the inverter circuit 3 when the inverters INV1 to INVn are started or stopped Even when the frequency is in the low frequency region, the ground fault current can be detected, and the resistor Rs that functions as a detection resistor for the ground fault current also functions as a limiting resistor. The iron core of the zero-phase transformer EVT is not demagnetized by the current, and no overcurrent is generated.

非接地交流回路1において地絡事故が発生したフィーダL1〜Ln(以下、地絡フィーダと称す)の特定は、フィーダL1〜Lnに流れる電流の位相に基づいて以下の要領で行われる。   Identification of feeders L1 to Ln (hereinafter referred to as ground fault feeders) in which a ground fault has occurred in the ungrounded AC circuit 1 is performed in the following manner based on the phase of the current flowing through the feeders L1 to Ln.

地絡検出回路RT0〜RTnでは、抵抗Rsに流れる地絡電流と各フィーダL1〜Lnに流れる電流の位相を比較する。例えば、図示のようにフィーダL2に地絡事故が発生した場合、地絡フィーダL2には、抵抗Rsに流れる地絡電流Igsと同相の地絡電流Igiが流れる。これに対して、地絡事故が発生していないフィーダL1(以下、健全フィーダと称す)には、対地静電容量Cにより、抵抗Rsに流れる地絡電流Igsと逆相の電流Icが流れることから、その抵抗Rsに流れる地絡電流Igsと同相の地絡電流Igiが流れるフィーダL2を地絡フィーダとして特定することができる。このような地絡電流の位相比較で簡単に地絡フィーダを特定することが可能となる。なお、地絡事故が発生していない他のフィーダL3〜Lnについても、前述のフィーダL1と同様、対地静電容量により、抵抗Rsに流れる地絡電流Igsと逆相の電流が流れる。   In the ground fault detection circuits RT0 to RTn, the phase of the ground fault current flowing through the resistor Rs and the current flowing through each of the feeders L1 to Ln are compared. For example, when a ground fault occurs in the feeder L2 as illustrated, a ground fault current Igi having the same phase as the ground fault current Igs flowing through the resistor Rs flows through the ground fault feeder L2. On the other hand, a current Ic having a phase opposite to that of the ground fault current Igs flowing through the resistor Rs flows to the feeder L1 (hereinafter referred to as a healthy feeder) in which a ground fault has not occurred due to the capacitance C to the ground. Therefore, the feeder L2 through which the ground fault current Igi having the same phase as the ground fault current Igs flowing through the resistor Rs can be specified as the ground fault feeder. The ground fault feeder can be easily identified by the phase comparison of the ground fault current. As for the other feeders L3 to Ln in which no ground fault has occurred, a current having a phase opposite to that of the ground fault current Igs flowing through the resistor Rs flows due to the ground capacitance, similarly to the feeder L1 described above.

非接地交流回路1における地絡フィーダの特定は、フィーダL1〜Lnに流れる電流の大きさに基づいても可能である。   The ground fault feeder in the non-grounded AC circuit 1 can be specified based on the magnitude of the current flowing through the feeders L1 to Ln.

つまり、地絡検出回路RT0〜RTnでは、各フィーダL1〜Lnに流れる電流の大きさを検出する。例えば、図示のようにフィーダL2に地絡事故が発生した場合、地絡フィーダL2には、地絡電流Igiと共に他のフィーダL1からの電流Icが流入することから、その地絡電流Igiに他のフィーダL1からの電流Icを加算した最大値が流れることになる。このことから、最大値の電流が流れる地絡フィーダL2を特定することができる。このような地絡電流の最大値を検出することで簡単に地絡フィーダを特定することが可能となる。なお、地絡フィーダL2には、地絡事故が発生していない他のフィーダL3〜Lnからも、前述のフィーダL1と同様に電流が流入する。   That is, the ground fault detection circuits RT0 to RTn detect the magnitudes of currents flowing through the feeders L1 to Ln. For example, when a ground fault occurs in the feeder L2 as shown in the figure, the current Ic from the other feeder L1 flows into the ground fault feeder L2 together with the ground fault current Igi. The maximum value obtained by adding the current Ic from the feeder L1 is flowed. From this, it is possible to specify the ground fault feeder L2 through which the maximum current flows. By detecting the maximum value of such a ground fault current, it becomes possible to easily specify the ground fault feeder. In addition, a current flows into the ground fault feeder L2 from the other feeders L3 to Ln in which no ground fault has occurred as in the above-described feeder L1.

次に、例えば、図示のようにフィーダL2に地絡事故が発生した場合、地絡フィーダL2において、その地絡事故点が商用周波数回路2およびインバータ回路3のいずれであるかは、以下の要領でもって特定する。つまり、インバータ回路3の制御信号には、例えば1kHz程度の搬送周波数成分を含むことからこの搬送周波数成分の有無に基づいて地絡事故点の特定が可能である。   Next, for example, when a ground fault occurs in the feeder L2 as shown in the figure, whether the ground fault point in the ground fault feeder L2 is the commercial frequency circuit 2 or the inverter circuit 3 is as follows. So identify. That is, since the control signal of the inverter circuit 3 includes a carrier frequency component of about 1 kHz, for example, the ground fault point can be specified based on the presence or absence of this carrier frequency component.

地絡検出回路RT0〜RTnでは、地絡フィーダL2に流れる地絡電流Igiにインバータ回路3の搬送周波数成分が含まれている場合には、その地絡事故点がインバータ回路3であると特定することができ、その地絡電流Igiに搬送周波数成分が含まれていなければ、地絡事故点が商用周波数回路2であると特定することができる。このようなインバータ回路3の搬送周波数成分の有無で地絡事故点が商用周波数回路2かインバータ回路3かを判定することが容易となる。   The ground fault detection circuits RT0 to RTn specify that the ground fault point is the inverter circuit 3 when the carrier frequency component of the inverter circuit 3 is included in the ground fault current Igi flowing through the ground fault feeder L2. If the carrier frequency component is not included in the ground fault current Igi, the ground fault point can be specified as the commercial frequency circuit 2. It becomes easy to determine whether the ground fault point is the commercial frequency circuit 2 or the inverter circuit 3 based on the presence or absence of the carrier frequency component of the inverter circuit 3.

なお、零相変圧器EVTの接地線に接続された抵抗Rsは、インバータINV1〜INVnの起動時および停止時に発生する低周波数地絡電流により、零相変圧器EVTの鉄心が飽和しない値、例えば100〜300Ωに設定されている。このようにすれば、インバータINV1〜INVnの起動時および停止時にインバータ回路3で地絡事故が発生した場合、その低周波数領域での地絡電流で零相変圧器EVTの鉄心が偏磁することを抑止でき、過電流発生による零相変圧器EVTの焼損を未然に防止できる。   The resistance Rs connected to the ground line of the zero-phase transformer EVT is a value that does not saturate the iron core of the zero-phase transformer EVT due to the low-frequency ground fault current generated when the inverters INV1 to INVn are started and stopped, for example, It is set to 100 to 300Ω. In this way, when a ground fault occurs in the inverter circuit 3 when the inverters INV1 to INVn are started and stopped, the iron core of the zero-phase transformer EVT is demagnetized by the ground fault current in the low frequency region. Can be prevented, and burning of the zero-phase transformer EVT due to overcurrent can be prevented.

各フィーダL1〜Lnにおける対地静電容量が大きい系統では、フィーダL1〜Lnに流れる地絡電流が大きくなることから、地絡検出回路RT0〜RTnでは、地絡電流が所定の閾値を超えた場合、その地絡フィーダL2を遮断器CB2により他のフィーダから切り離すことにより非接地交流回路1を保護するようにしてもよい。   In a system with a large ground capacitance in each of the feeders L1 to Ln, since the ground fault current flowing through the feeders L1 to Ln becomes large, in the ground fault detection circuits RT0 to RTn, when the ground fault current exceeds a predetermined threshold value The ungrounded AC circuit 1 may be protected by disconnecting the ground fault feeder L2 from another feeder by the circuit breaker CB2.

本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。   The present invention is not limited to the above-described embodiments, and can of course be implemented in various forms without departing from the gist of the present invention. It includes the equivalent meanings recited in the claims and the equivalents recited in the claims, and all modifications within the scope.

1 非接地交流回路
2 商用周波数回路
3 インバータ回路
EVT 零相変圧器
INV1〜INVn インバータ
L0 母線
L1〜Ln フィーダ
Rs 抵抗
RT0〜RTn 地絡検出回路
ZCT0〜ZCTn 零相変流器
DESCRIPTION OF SYMBOLS 1 Ungrounded AC circuit 2 Commercial frequency circuit 3 Inverter circuit EVT Zero phase transformer INV1-INVn Inverter L0 Bus L1-Ln Feeder Rs Resistance RT0-RTn Ground fault detection circuit ZCT0-ZCTn Zero phase current transformer

Claims (5)

地絡検出用零相変圧器が設けられた母線から複数のフィーダを分岐させ、各フィーダに地絡検出用零相変流器を設けた商用周波数回路を備え、インバータ回路が各フィーダごとに接続された非接地交流回路において、前記零相変圧器の一次側の接地線に、その接地線に流れる地絡電流を検出する抵抗を設けると共に、前記零相変流器および抵抗に接続された地絡検出回路は、商用周波数の地絡電流と、その商用周波数よりも高い周波数成分および低周波数領域のインバータの出力周波数の地絡電流を検出可能としたことを特徴とする非接地交流回路の地絡検出装置。 Multiple feeders are branched from the bus with a zero-phase transformer for ground fault detection, each feeder is equipped with a commercial frequency circuit with a zero-phase current transformer for ground fault detection, and an inverter circuit is connected to each feeder In the non-grounded AC circuit, a resistance for detecting a ground fault current flowing in the ground line is provided on the ground line on the primary side of the zero-phase transformer, and a ground connected to the zero-phase current transformer and the resistor is provided. The fault detection circuit is capable of detecting a ground fault current of a commercial frequency, a frequency component higher than the commercial frequency, and a ground fault current of an output frequency of an inverter in a low frequency region. Fault detector. 前記地絡検出回路は、前記抵抗に流れる地絡電流と各フィーダに流れる電流の位相を比較し、その位相比較に基づいて地絡フィーダを特定する請求項1に記載の非接地交流回路の地絡検出装置。   2. The ground fault detection circuit according to claim 1, wherein the ground fault detection circuit compares the phase of the ground fault current flowing through the resistor with the phase of the current flowing through each feeder, and identifies the ground fault feeder based on the phase comparison. Fault detector. 前記地絡検出回路は、各フィーダに流れる電流の大きさを検出し、その電流値の比較に基づいて地絡フィーダを特定する請求項1に記載の非接地交流回路の地絡検出装置。   2. The ground fault detection device for an ungrounded AC circuit according to claim 1, wherein the ground fault detection circuit detects the magnitude of a current flowing through each feeder and identifies the ground fault feeder based on a comparison of the current values. 前記地絡検出回路は、前記地絡フィーダに流れる地絡電流に含まれるインバータ回路の搬送周波数成分を検出し、その搬送周波数成分の有無でもって地絡事故点が商用周波数回路かインバータ回路かを判定する請求項1〜3のいずれか一項に記載の非接地交流回路の地絡検出装置。   The ground fault detection circuit detects a carrier frequency component of an inverter circuit included in a ground fault current flowing in the ground fault feeder, and determines whether a ground fault point is a commercial frequency circuit or an inverter circuit with or without the carrier frequency component. The ground fault detection apparatus of the non-grounded AC circuit according to any one of claims 1 to 3. 前記抵抗は、インバータの起動および停止時に発生する低周波数地絡電流により、前記零相変圧器の鉄心が飽和しない値に設定されている請求項1〜4のいずれか一項に記載の非接地交流回路の地絡検出装置。   The non-grounding according to any one of claims 1 to 4, wherein the resistor is set to a value that does not saturate the iron core of the zero-phase transformer due to a low-frequency ground fault current that occurs when the inverter is started and stopped. AC circuit ground fault detector.
JP2010259031A 2010-11-19 2010-11-19 Ungrounded AC circuit ground fault detector Active JP5535880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010259031A JP5535880B2 (en) 2010-11-19 2010-11-19 Ungrounded AC circuit ground fault detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010259031A JP5535880B2 (en) 2010-11-19 2010-11-19 Ungrounded AC circuit ground fault detector

Publications (2)

Publication Number Publication Date
JP2012108080A JP2012108080A (en) 2012-06-07
JP5535880B2 true JP5535880B2 (en) 2014-07-02

Family

ID=46493848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010259031A Active JP5535880B2 (en) 2010-11-19 2010-11-19 Ungrounded AC circuit ground fault detector

Country Status (1)

Country Link
JP (1) JP5535880B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10967744B2 (en) 2017-03-10 2021-04-06 Hitachi Construction Machinery Co., Ltd. Electrically operated working vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111273194B (en) * 2020-04-01 2022-02-11 李晓明 Extraction method, line selection method and system for small current ground fault quantity of transformer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2719732B2 (en) * 1990-06-06 1998-02-25 関西電力株式会社 Method and apparatus for determining ground fault failure cause in high-voltage distribution line
JP2774693B2 (en) * 1990-11-09 1998-07-09 株式会社東芝 Earth leakage breaker
JPH07194132A (en) * 1993-12-28 1995-07-28 Meidensha Corp Inverter facility
JPH09224294A (en) * 1996-02-15 1997-08-26 Toshiba Meter Techno Kk Insulation supervisory equipment
JP5256757B2 (en) * 2008-02-05 2013-08-07 Jfeスチール株式会社 Micro ground fault detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10967744B2 (en) 2017-03-10 2021-04-06 Hitachi Construction Machinery Co., Ltd. Electrically operated working vehicle

Also Published As

Publication number Publication date
JP2012108080A (en) 2012-06-07

Similar Documents

Publication Publication Date Title
US9397494B2 (en) Electrical monitoring device and method for safeguarding the protective function of a type A residual current device (RCD)
KR101421564B1 (en) Electrical leakage detection apparatus with unexpected motion blocking function
CN106066450B (en) Insulation monitoring device with voltage monitoring and method based on same
US9257829B2 (en) Grounding apparatus
EP2306487B1 (en) Wiring device with leakage detection function
CN101199034B (en) Earth leakage circuit breaker
EP2862252B1 (en) A power bay protection device and a method for protecting power bays
US9859085B2 (en) Fault protection devices and methods for power systems
CN107438929A (en) Method for being protected in combined power transmission line
US10352985B2 (en) Method for detecting ground faults in a LVDC electric line and an electronic device thereof
CN110865311B (en) Device for detecting direct or alternating current, module and protection unit comprising same
EP2879152B1 (en) Relay welding detector, relay equipment incorporating the same, and relay welding detecting method
JP2014196920A (en) Leak detection device
JP5535880B2 (en) Ungrounded AC circuit ground fault detector
KR101417940B1 (en) Cabinet panel for prevention disaster of abnormal voltage protection and method thereof
KR101840288B1 (en) Electrical leakage current circuit breaker
JP2009033789A (en) Charging monitor
CA2741382C (en) Measuring transient electrical activity in aircraft power distribution systems
JP2009033790A (en) Charging monitor
JP2006148990A (en) Leakage detecting circuit
JP6116499B2 (en) Circuit breaker
WO2014155957A1 (en) Electrical leakage detector
JP6343926B2 (en) Breaker
JP7354926B2 (en) earth leakage breaker
JP2010273478A (en) Method and system for detection of line-to-ground fault in dc and ac circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140423

R150 Certificate of patent or registration of utility model

Ref document number: 5535880

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250