WO2014155957A1 - Electrical leakage detector - Google Patents

Electrical leakage detector Download PDF

Info

Publication number
WO2014155957A1
WO2014155957A1 PCT/JP2014/000959 JP2014000959W WO2014155957A1 WO 2014155957 A1 WO2014155957 A1 WO 2014155957A1 JP 2014000959 W JP2014000959 W JP 2014000959W WO 2014155957 A1 WO2014155957 A1 WO 2014155957A1
Authority
WO
WIPO (PCT)
Prior art keywords
leakage
leakage detection
value
unit
level
Prior art date
Application number
PCT/JP2014/000959
Other languages
French (fr)
Japanese (ja)
Inventor
英司 岩見
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2014155957A1 publication Critical patent/WO2014155957A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/32Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors
    • H02H3/33Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors using summation current transformers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H83/00Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current
    • H01H83/02Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by earth fault currents

Definitions

  • the present invention relates to a leakage detection device that cuts off an electric path from a commercial power source to a load by detecting leakage and stops leakage.
  • the leakage detection device has a leakage current in the AC circuit according to the detection output of a zero-phase current transformer (ZCT: Zero phase current transformer) in which all three three-phase power lines penetrate the core of one current transformer. It is determined whether or not it has occurred. In other words, when there is no leakage, the sum of the currents flowing through the three wires becomes 0, but when any phase leaks to the ground, the balance of the current sum is lost, and both ends of the coil of the zero-phase current transformer (ZCT) In addition, an induced voltage corresponding to the leakage current is detected. Therefore, in the leakage detection device, it is possible to determine whether or not a leakage current has occurred in the electric circuit by detecting the output current of the coil of the zero-phase current transformer (ZCT).
  • ZCT Zero phase current transformer
  • Some earth leakage detection devices count the time and frequency of signals exceeding the earth leakage detection threshold so as to prevent malfunction due to noise transmitted through the lead-in wire such as lightning surge.
  • an inverter device used for speed control of an AC motor uses insulated wiring as input / output wiring.
  • a so-called “inverter harmonic leakage current” may flow from the core of the wiring toward the ground side through the impedance of the wiring.
  • FIG. 5A shows an example of the waveform of the leakage current of the inverter device, and it can be seen that a burst-like leakage current (anti-inrush noise resistance) flows for each switching operation. Since the leakage current from the inverter device increases as the wiring is longer and the switching frequency is higher, this leakage current causes the leakage detection device to malfunction. Therefore, the leakage detection device needs to maintain the accuracy of leakage detection even when there is waveform distortion such as leakage current from the inverter device.
  • the leakage detecting device 103 includes an integrating unit 101 that integrates the output voltage of the zero-phase current transformer 100 and stores an integrated value related to the leakage phenomenon in the calculation result storage unit 102. It is disclosed (for example, see Patent Document 1).
  • the leakage current from the conventional inverter device has a complicated distortion waveform as shown in FIG. 5A. If the leakage current is determined simply using the threshold value Th or the like, the leakage circuit breaker malfunctions. Result.
  • the leakage detection device cannot be distinguished from the leakage phenomenon such as the half-wave leakage phenomenon and sine wave waveform defined by the standard and the non-leakage phenomenon of inrush noise resistance from the inverter device. There is also a possibility of malfunction.
  • the present invention has been made in view of the above problems, and can detect a leakage phenomenon and a non-leakage phenomenon such as anti-rush noise output from an inverter device and the like, and can perform a more accurate leakage determination.
  • An object is to provide a detection device.
  • the present invention provides a zero-phase current transformer through which an AC system passes, an arithmetic unit that calculates an arithmetic value using an output current from the zero-phase current transformer, and an arithmetic operation of the arithmetic unit And a leakage detecting device that outputs a leakage detection signal indicating that leakage has occurred in the AC system to the interruption mechanism based on the value, wherein the leakage detection unit is a continuous output current.
  • the leakage detection signal is output to the interruption mechanism unit by assuming that the leakage state is present. is there.
  • the leakage detection unit regards the leakage detection signal as a leakage state when the calculated value of at least two half waves of the continuous three half-wave waveforms is equal to or higher than the leakage level. It is preferable to output.
  • the leakage detection unit considers the leakage detection signal as a leakage state when the calculated value of two consecutive half-waves is equal to or higher than the leakage level among the continuous three half-wave waveforms. It is preferable to output to the part.
  • the leakage detection unit when the calculated value of the first half wave is equal to or higher than the leakage level and the calculated value of the second half wave is less than the leakage level among the continuous three half-wave waveforms, When the calculated value of the third half-wave is equal to or higher than the leakage level, it is preferable that the leakage detection signal is output to the interruption mechanism unit by regarding the leakage state.
  • the calculated value is one of an effective value of the output current from the zero-phase current transformer, an average value of the output current, or an integral value of the output current.
  • a leakage current is generated in the AC system based on the calculation step of calculating the calculation value using the output current from the zero-phase current transformer through which the AC system passes, and the calculation value in the calculation step.
  • a leakage detection step for outputting a leakage detection signal indicating that the leakage current is present to the interruption mechanism, and among the plurality of continuous half-wave waveforms of the output current, the calculated value of at least a predetermined half-wave is equal to or higher than the leakage level.
  • the leakage detection signal is output to the interruption mechanism unit by regarding the leakage state. It is preferable.
  • the leakage detection device when the effective value of at least a predetermined half-wave or more of the plurality of continuous half-wave waveforms of the output current from the zero-phase current transformer is equal to or higher than the leakage level, the leakage The leakage detection signal is output to the interrupting mechanism unit.
  • FIG. 1 is a functional block diagram of a leakage detection device according to an embodiment of the present invention.
  • FIG. 2 is a diagram for explaining an example of a waveform stored in a waveform storage unit included in the leakage detection device.
  • FIG. 3 is a diagram for explaining a leakage detection method of a leakage detection unit provided in the leakage detection apparatus.
  • FIG. 4 is a flowchart showing an operation procedure of the leakage detection apparatus.
  • FIG. 5A is a diagram illustrating an example of a leakage current from a conventional inverter device
  • FIG. 5B is a functional block diagram of a conventional leakage detection device.
  • the leakage detection device 1 shown in FIG. 1 includes a zero-phase current transformer 11, a calculation unit 12, a waveform storage unit 13, and a leakage detection unit 14.
  • the zero-phase current transformer 11 includes, for example, an annular iron core (core) made of a magnetic material such as a soft magnetic material that penetrates a plurality of primary conductors that constitute an AC circuit through which a three-phase current flows. And a wound coil.
  • core annular iron core
  • a leakage current based on the difference is generated.
  • the arithmetic unit 12 measures the current by inserting a burden resistor into the circuit connected to the zero-phase current transformer 11 and detecting the voltage across the burden resistor. Moreover, the calculating part 12 has a function which performs the effective value calculation of the output current from the zero phase current transformer 11, an average value calculation, integrated value calculation, etc., and outputs these to the leak detection part 14 as a calculated value.
  • the calculation unit 12 may include an A / D conversion unit and an effective value calculation unit.
  • the A / D converter converts an analog signal having a current waveform received from the zero-phase current transformer 11 into a digital signal. As a result, it is easy to obtain the calculated value for each output waveform, and the cause of the leakage is specified. Further, by making the output waveform a digital value, it becomes easy to take out the inside and outside of the leakage detection device 1 using a memory card or general-purpose digital communication means.
  • the effective value calculation unit integrates the square value of the output current from the zero-phase current transformer 11 by one period, divides it by the time of one period, and obtains the square root of the value to obtain the effective value of the output current (leakage current) (Also called level). In this case, the leakage current can be detected with high accuracy.
  • the arithmetic unit 12 calculates the average value by integrating the absolute value of the output current for one period and dividing it by the time of one period. In this case, the amount of calculation can be reduced, and the leakage detection device 1 can be configured at low cost.
  • the waveform storage unit 13 is a memory unit for storing an output waveform from the zero-phase current transformer 11 during a predetermined period.
  • the predetermined period is a period during which leakage from the output waveform can be discriminated in the leakage detection unit 14, for example, a period of at least three half-wave waveforms in which the output waveform is continuous.
  • the output waveform stored in the waveform storage unit 13 will be described with reference to FIG.
  • Examples of the output waveform stored in the waveform storage unit 13 include (1) half wave (pattern A), (2) anti-inrush noise (pattern B), and (3) sine wave (pattern C).
  • the leakage detection unit 14 is configured by a microcomputer or the like, and uses an algorithm for performing a determination process based on the calculation value of the calculation unit 12 to cut off a leakage detection signal indicating that a leakage has occurred in the AC system. Output to.
  • the leakage detection signal is sent to a tripping coil (not shown) that opens the electric circuit contact as an interruption designation signal for opening the electric circuit contact of the AC electric circuit (for interrupting the AC electric circuit). As a result, the circuit contact of the AC circuit is opened.
  • the earth leakage detection unit 14 detects the earth leakage as a current leakage state when a calculated value such as an effective value or average value of at least a predetermined half or more of the half wave waveforms of continuous output current is equal to or higher than the earth leakage level.
  • a signal is output to the blocking mechanism.
  • the leakage detection unit 14 has an effective value (mArms) calculated by the calculation unit 12 for each waveform and a predetermined leakage level T for three consecutive half-wave waveforms of the output current. Compare h .
  • a leakage detection signal for opening the contacts of the electrical path (trip operation) external or internal Output to the shut-off mechanism.
  • the leakage detection unit 14 detects the leakage when the two consecutive half-waves of the output current are equal to or higher than the leakage level. Output a signal. Also, as shown in (1) of FIG. 3, when the first half-wave is greater than or equal to the leakage level and the adjacent second half-wave is less than the leakage level among the three half-wave waveforms in which the output current continues. In addition, when the third half wave is equal to or higher than the leakage level, a leakage detection signal is output. On the other hand, since the anti-inrush noise waveform of (2) in FIG. 3 does not satisfy the above algorithm, it is regarded as a non-leakage phenomenon. For this reason, the leakage detection device 1 can discriminate between the half-wave leakage phenomenon and the inrush noise resistance that is not the leakage phenomenon, and perform a more accurate leakage determination.
  • the leakage detection unit 14 for successive 3 halfwave waveform of the output current, it is also possible to compare the average value with a predetermined leakage level T h that is calculated by the calculation unit 12 for each waveform.
  • T h a predetermined leakage level
  • the leakage detection unit 14 detects whether or not the effective value of the first half wave is equal to or higher than the leakage level among the three half-wave waveforms in which the output current continues (S41). And when it becomes more than an electric leakage level (Y in S41), electric leakage detection part 14 detects whether the effective value of the 2nd half wave is more than an electric leakage level among three half wave waveforms with which output current continues. (S42). And when it becomes more than an electric leakage level (Y in S42), it determines with the electric leakage of the sine wave shown by (3) of FIG. 3, and sends an electric leakage detection signal to the interruption
  • the leakage detection unit 14 determines that the effective value of the third half wave is It is detected whether or not the leakage level is exceeded (S45). If the leakage level is equal to or higher than the leakage level (Y in S45), it is determined as a half-wave leakage in (1) of FIG. 3, and a leakage detection signal is sent to the interruption mechanism (S46). Thereafter, the disconnection of the electric circuit is manually canceled (S47).
  • the leakage detection unit 14 determines that the non-leakage phenomenon of the inrush noise resistance shown in (2) of FIG. 3 (S48), and then The processing from S41 is repeated.
  • the leakage detection unit 14 of the leakage detection apparatus 1 regards the leakage state as a leakage current state when the calculated value of at least two half waves of the continuous three half wave waveforms is equal to or higher than the leakage level.
  • the leakage detection signal is output to the interruption mechanism.
  • This leakage detection method distinguishes between half-wave leakage phenomena and sine wave leakage phenomena defined by the standard, and non-leakage phenomena such as anti-inrush noise due to leakage current from the inverter device that supplies power to the DC load. In addition, it is possible to make a more accurate leakage determination.
  • the present invention is not limited to the configuration of the above embodiment, and various modifications can be made without departing from the spirit of the invention.
  • the present invention can be realized as a leakage detection method using characteristic constituent means included in the leakage detection apparatus as a step, or as a program including these characteristic steps. You can also.
  • the program can be distributed not only in the ROM, but also via a recording medium such as a USB memory or a communication network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Breakers (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

An electrical leakage detector (1) is provided with a zero phase current transformer (11) through which an AC system passes, a calculation unit (12) for calculating a calculated value using the output current from the zero phase current transformer (11), and an electrical leakage detection unit (14) for outputting an electrical leakage detection signal indicating that electrical leakage is occurring in the AC system to a circuit breaking mechanism on the basis of the calculated value of the calculation unit (12). The electrical leakage detection unit (14) determines that there is an electrical leakage state and outputs an electrical leakage detection signal to the circuit breaking mechanism if the calculated values for at least a prescribed fraction of a plurality of contiguous half-wave waveforms in the output current are above an electrical leakage level. As a result of this configuration, the electrical leakage detector (1) is capable of distinguishing electrical leakage phenomena from non-leakage phenomena such as the anti-inrush noise, and the like, output from inverters, and the like, and more accurately determining whether there is electrical leakage.

Description

漏電検出装置Earth leakage detector
本発明は、漏電検出により商用電源から負荷への電路を遮断し、漏電を停止する漏電検出装置に関する。 The present invention relates to a leakage detection device that cuts off an electric path from a commercial power source to a load by detecting leakage and stops leakage.
 従来より、電気的安全確保のため、制御盤などにおいては漏電検出装置が用いられている。漏電検出装置は、例えば3相の電力線を3本とも1つの変流器のコアに貫通させた零相変流器(ZCT:Zero phase Current Transformer)の検出出力に応じて、交流電路に漏電が発生したか否かを判定する。すなわち、漏電していない場合、3本の線を流れる電流の和は0となる一方、いずれかの相から大地に漏電すると電流和のバランスがくずれ、零相変流器(ZCT)のコイル両端に、漏電電流に対応する誘起電圧が検出される。従って、漏電検出装置では、零相変流器(ZCT)のコイルの出力電流を検出することで電路に漏電電流が発生したか否かを判定することができる。 Conventionally, in order to ensure electrical safety, leakage detectors are used in control panels and the like. For example, the leakage detection device has a leakage current in the AC circuit according to the detection output of a zero-phase current transformer (ZCT: Zero phase current transformer) in which all three three-phase power lines penetrate the core of one current transformer. It is determined whether or not it has occurred. In other words, when there is no leakage, the sum of the currents flowing through the three wires becomes 0, but when any phase leaks to the ground, the balance of the current sum is lost, and both ends of the coil of the zero-phase current transformer (ZCT) In addition, an induced voltage corresponding to the leakage current is detected. Therefore, in the leakage detection device, it is possible to determine whether or not a leakage current has occurred in the electric circuit by detecting the output current of the coil of the zero-phase current transformer (ZCT).
 漏電検出装置には、例えば雷サージなど、引込み線を伝わってくるノイズで誤動作しないように、漏電検出閾値を超える信号の時間や回数をカウントして漏電制御するようにしているものもある。 Some earth leakage detection devices count the time and frequency of signals exceeding the earth leakage detection threshold so as to prevent malfunction due to noise transmitted through the lead-in wire such as lightning surge.
 ところで、交流モータの速度制御などに用いられるインバータ装置は、入出力配線として絶縁した配線を用いる。インバータ装置の電線に高調波を含んだ電流が流れると、配線の有するインピーダンスを介して配線の芯線から大地側に向かって、いわゆる「インバータ高調波漏洩電流」が流れることがある。図5(a)は、インバータ装置の漏洩電流の波形の一例を示しており、スイッチング動作ごとにバースト状の漏洩電流(耐インラッシュノイズ)が流れていることが分かる。インバータ装置からの漏洩電流は、配線が長いほど、また、スイッチング周波数が高いほど増加するために、この漏洩電流が漏電検出装置を誤動作させてしまう。従って、漏電検出装置は、インバータ装置からの漏洩電流など波形歪がある場合でも漏電検出の精度を保つ必要性がある。 By the way, an inverter device used for speed control of an AC motor uses insulated wiring as input / output wiring. When a current containing harmonics flows in the electric wire of the inverter device, a so-called “inverter harmonic leakage current” may flow from the core of the wiring toward the ground side through the impedance of the wiring. FIG. 5A shows an example of the waveform of the leakage current of the inverter device, and it can be seen that a burst-like leakage current (anti-inrush noise resistance) flows for each switching operation. Since the leakage current from the inverter device increases as the wiring is longer and the switching frequency is higher, this leakage current causes the leakage detection device to malfunction. Therefore, the leakage detection device needs to maintain the accuracy of leakage detection even when there is waveform distortion such as leakage current from the inverter device.
 また、図5(b)に示すように、零相変流器100の出力電圧を積分する積分部101を備えて、漏電現象に関する積分値を演算結果記憶部102に記憶する漏電検出装置103が開示されている(例えば、特許文献1参照)。 Further, as shown in FIG. 5B, the leakage detecting device 103 includes an integrating unit 101 that integrates the output voltage of the zero-phase current transformer 100 and stores an integrated value related to the leakage phenomenon in the calculation result storage unit 102. It is disclosed (for example, see Patent Document 1).
特開2012-202705号公報JP 2012-202705 A
 しかしながら、上記従来のインバータ装置からの漏洩電流は、図5(a)に示すように、複雑な歪波形を有しており、単に閾値Thなどを用いて漏電判定すると、漏電遮断器を誤動作させる結果となる。 However, the leakage current from the conventional inverter device has a complicated distortion waveform as shown in FIG. 5A. If the leakage current is determined simply using the threshold value Th or the like, the leakage circuit breaker malfunctions. Result.
 また、上記従来の漏電検出装置においては、規格で定める半波漏電現象や正弦波波形などの漏電現象と、インバータ装置からの耐インラッシュノイズの非漏電現象とを識別できず、漏電検出装置を誤動作させる可能性もある。 In addition, in the above-mentioned conventional leakage detection device, the leakage detection device cannot be distinguished from the leakage phenomenon such as the half-wave leakage phenomenon and sine wave waveform defined by the standard and the non-leakage phenomenon of inrush noise resistance from the inverter device. There is also a possibility of malfunction.
 本発明は、上記課題に鑑みてなされたものであり、漏電現象とインバータ装置などから出力される耐インラッシュノイズなどの非漏電現象とを識別でき、より正確な漏電判定を行うことができる漏電検出装置を提供することを目的とする。 The present invention has been made in view of the above problems, and can detect a leakage phenomenon and a non-leakage phenomenon such as anti-rush noise output from an inverter device and the like, and can perform a more accurate leakage determination. An object is to provide a detection device.
上記目的を達成するために本発明は、交流系統が貫通する零相変流器と、前記零相変流器からの出力電流を用いて演算値を算出する演算部と、前記演算部の演算値に基づいて、前記交流系統に漏電が発生していることを示す漏電検出信号を遮断機構部に出力する漏電検出部と、を備える漏電検出装置において、前記漏電検出部は、出力電流の連続する複数半波波形の内、少なくとも所定割合以上の半波の前記演算値が漏電レベル以上の場合において、漏電状態とみなして前記漏電検出信号を遮断機構部に出力することを特徴とするものである。 In order to achieve the above object, the present invention provides a zero-phase current transformer through which an AC system passes, an arithmetic unit that calculates an arithmetic value using an output current from the zero-phase current transformer, and an arithmetic operation of the arithmetic unit And a leakage detecting device that outputs a leakage detection signal indicating that leakage has occurred in the AC system to the interruption mechanism based on the value, wherein the leakage detection unit is a continuous output current. Among the plurality of half-wave waveforms, when the calculated value of the half-wave at least a predetermined ratio is equal to or higher than the leakage level, the leakage detection signal is output to the interruption mechanism unit by assuming that the leakage state is present. is there.
 この漏電検出装置において、前記漏電検出部は、連続する3半波波形のうち、少なくとも2半波の演算値が漏電レベル以上の場合において、漏電状態とみなして前記漏電検出信号を遮断機構部に出力することが好ましい。 In this leakage detection device, the leakage detection unit regards the leakage detection signal as a leakage state when the calculated value of at least two half waves of the continuous three half-wave waveforms is equal to or higher than the leakage level. It is preferable to output.
この漏電検出装置において、前記漏電検出部は、連続する3半波波形のうち、連続する2半波の演算値が漏電レベル以上である場合において、漏電状態とみなして前記漏電検出信号を遮断機構部に出力することが好ましい。 In this leakage detection device, the leakage detection unit considers the leakage detection signal as a leakage state when the calculated value of two consecutive half-waves is equal to or higher than the leakage level among the continuous three half-wave waveforms. It is preferable to output to the part.
 この漏電検出装置において、前記漏電検出部は、連続する3半波波形のうち、1半波目の演算値が漏電レベル以上、且つ2半波目の演算値が漏電レベル未満である場合において、3半波目の演算値が漏電レベル以上となる場合には、漏電状態とみなして前記漏電検出信号を遮断機構部に出力することが好ましい。 In this leakage detection device, the leakage detection unit, when the calculated value of the first half wave is equal to or higher than the leakage level and the calculated value of the second half wave is less than the leakage level among the continuous three half-wave waveforms, When the calculated value of the third half-wave is equal to or higher than the leakage level, it is preferable that the leakage detection signal is output to the interruption mechanism unit by regarding the leakage state.
 この漏電検出装置において、前記演算値は、前記零相変流器からの出力電流の実効値、当該出力電流の平均値、又は当該出力電流の積分値のいずれかであることが好ましい。 In this leakage detection device, it is preferable that the calculated value is one of an effective value of the output current from the zero-phase current transformer, an average value of the output current, or an integral value of the output current.
また、本発明は、交流系統が貫通する零相変流器からの出力電流を用いて演算値を算出する演算ステップと、前記演算ステップにおける演算値に基づいて、前記交流系統に漏電が発生していることを示す漏電検出信号を遮断機構部に出力する漏電検出ステップと、出力電流の連続する複数半波波形の内、少なくとも所定割合以上の半波の前記演算値が漏電レベル以上の場合において、漏電状態とみなして前記漏電検出信号を遮断機構部に出力する判定ステップと、をコンピュータに実行させることを特徴とするプログラムである。 Further, according to the present invention, a leakage current is generated in the AC system based on the calculation step of calculating the calculation value using the output current from the zero-phase current transformer through which the AC system passes, and the calculation value in the calculation step. A leakage detection step for outputting a leakage detection signal indicating that the leakage current is present to the interruption mechanism, and among the plurality of continuous half-wave waveforms of the output current, the calculated value of at least a predetermined half-wave is equal to or higher than the leakage level. A program for causing a computer to execute a determination step of considering the leakage state and outputting the leakage detection signal to the interruption mechanism unit.
 このプログラムにおいて、前記判定ステップにおいては、連続する3半波波形のうち、少なくとも2半波の演算値が漏電レベル以上の場合において、漏電状態とみなして前記漏電検出信号を遮断機構部に出力することが好ましい。 In this program, in the determination step, when the calculated value of at least two half-waves of the continuous three half-wave waveforms is equal to or higher than the leakage level, the leakage detection signal is output to the interruption mechanism unit by regarding the leakage state. It is preferable.
本発明に係る漏電検出装置によれば、零相変流器からの出力電流の連続する複数半波波形の内、少なくとも所定割合以上の半波の実効値などが漏電レベル以上の場合において、漏電状態とみなし、漏電検出信号を遮断機構部に出力する。この構成により、本発明では、漏電現象とインバータ装置などから出力される耐インラッシュノイズなどの非漏電現象とを識別でき、より正確な漏電判定を行うことができる。 According to the leakage detection device according to the present invention, when the effective value of at least a predetermined half-wave or more of the plurality of continuous half-wave waveforms of the output current from the zero-phase current transformer is equal to or higher than the leakage level, the leakage The leakage detection signal is output to the interrupting mechanism unit. With this configuration, according to the present invention, it is possible to distinguish between a leakage phenomenon and a non-leakage phenomenon such as anti-inrush noise output from an inverter device and the like, and a more accurate leakage determination can be performed.
図1は、本発明の実施の形態に係る漏電検出装置の機能ブロック図である。FIG. 1 is a functional block diagram of a leakage detection device according to an embodiment of the present invention. 図2は、前記漏電検出装置に備わる波形記憶部に記憶される波形の例を説明するための図である。FIG. 2 is a diagram for explaining an example of a waveform stored in a waveform storage unit included in the leakage detection device. 図3は、前記漏電検出装置に備わる漏電検出部の漏電検出方法を説明する図である。FIG. 3 is a diagram for explaining a leakage detection method of a leakage detection unit provided in the leakage detection apparatus. 図4は、前記漏電検出装置の動作手順を示すフローチャートである。FIG. 4 is a flowchart showing an operation procedure of the leakage detection apparatus. 図5(a)は、従来のインバータ装置からの漏洩電流の一例を示す図、図5(b)は、従来の漏電検出装置の機能ブロック図である。FIG. 5A is a diagram illustrating an example of a leakage current from a conventional inverter device, and FIG. 5B is a functional block diagram of a conventional leakage detection device.
(実施の形態)
 本発明の実施の形態に係る漏電検出装置について図面を参照して説明する。図1に示す漏電検出装置1は、零相変流器11、演算部12、波形記憶部13、及び漏電検出部14を備える。
(Embodiment)
An electrical leakage detection apparatus according to an embodiment of the present invention will be described with reference to the drawings. The leakage detection device 1 shown in FIG. 1 includes a zero-phase current transformer 11, a calculation unit 12, a waveform storage unit 13, and a leakage detection unit 14.
零相変流器11は、例えば、三相の通電電流が流れる交流電路を構成する複数の一次導体を貫通させた軟磁性材料等の磁性体からなる環状の鉄心(コア)と、当該コアに巻回されたコイルとを備える。零相変流器11には、交流電路の往路方向を流れる電流と復路方向を流れる電流との間に差異が発生した場合には、その差異に基づく漏電電流が発生する。 The zero-phase current transformer 11 includes, for example, an annular iron core (core) made of a magnetic material such as a soft magnetic material that penetrates a plurality of primary conductors that constitute an AC circuit through which a three-phase current flows. And a wound coil. In the zero-phase current transformer 11, when a difference occurs between the current flowing in the forward direction of the AC circuit and the current flowing in the return direction, a leakage current based on the difference is generated.
演算部12は、零相変流器11と接続される回路に負担抵抗を挿入して、この負担抵抗の両端の電圧を検出することで電流を計測する。また、演算部12は、零相変流器11からの出力電流の実効値演算、平均値演算や積算値演算などを行い、これらを演算値として漏電検出部14へ出力する機能を有する。 The arithmetic unit 12 measures the current by inserting a burden resistor into the circuit connected to the zero-phase current transformer 11 and detecting the voltage across the burden resistor. Moreover, the calculating part 12 has a function which performs the effective value calculation of the output current from the zero phase current transformer 11, an average value calculation, integrated value calculation, etc., and outputs these to the leak detection part 14 as a calculated value.
 この演算部12は、A/D変換部、及び実効値演算部を備えても良い。A/D変換部は、零相変流器11から受信する電流波形のアナログ信号をデジタル信号に変換する。これにより、出力波形ごとの演算値を求めることが容易となり漏電原因の特定に繋がる。また、出力波形をデジタル値とすることで、メモリカードや汎用デジタル通信手段を用いて漏電検出装置1の内外に取り出し易くなる。実効値演算部は、零相変流器11からの出力電流の2乗値を1周期分積分し、1周期の時間で除し、その値の平方根を求めることで出力電流の実効値(漏電レベルともいう)を演算する。この場合には、漏電電流を精度よく検出することができる。 The calculation unit 12 may include an A / D conversion unit and an effective value calculation unit. The A / D converter converts an analog signal having a current waveform received from the zero-phase current transformer 11 into a digital signal. As a result, it is easy to obtain the calculated value for each output waveform, and the cause of the leakage is specified. Further, by making the output waveform a digital value, it becomes easy to take out the inside and outside of the leakage detection device 1 using a memory card or general-purpose digital communication means. The effective value calculation unit integrates the square value of the output current from the zero-phase current transformer 11 by one period, divides it by the time of one period, and obtains the square root of the value to obtain the effective value of the output current (leakage current) (Also called level). In this case, the leakage current can be detected with high accuracy.
なお、演算部12は、出力電流の絶対値を1周期分積分し、1周期の時間で除して平均値を計算することも考え得る。この場合、演算量を低減させることができ、低コストで漏電検出装置1を構成することができる。 It is also conceivable that the arithmetic unit 12 calculates the average value by integrating the absolute value of the output current for one period and dividing it by the time of one period. In this case, the amount of calculation can be reduced, and the leakage detection device 1 can be configured at low cost.
波形記憶部13は、所定期間における零相変流器11からの出力波形を記憶するためのメモリ部である。なお、本実施の形態において所定期間とは、漏電検出部14において出力波形からの漏電が判別可能な期間であり、例えば、少なくとも出力波形の連続する3半波波形の期間である。 The waveform storage unit 13 is a memory unit for storing an output waveform from the zero-phase current transformer 11 during a predetermined period. In the present embodiment, the predetermined period is a period during which leakage from the output waveform can be discriminated in the leakage detection unit 14, for example, a period of at least three half-wave waveforms in which the output waveform is continuous.
ここで、波形記憶部13に記憶される出力波形に関して図2を参照して説明する。波形記憶部13に記憶される出力波形としては、(1)半波(パターンA)、(2)耐インラッシュノイズ(パターンB)、(3)正弦波(パターンC)などが挙げられる。このように、波形記憶部13に記憶される漏電波形を少なくとも連続する3半波波形にすることで、不必要に大きなメモリを要することがなく効率的となる。また、より正確な漏電判定の特定情報として用いることができる。 Here, the output waveform stored in the waveform storage unit 13 will be described with reference to FIG. Examples of the output waveform stored in the waveform storage unit 13 include (1) half wave (pattern A), (2) anti-inrush noise (pattern B), and (3) sine wave (pattern C). Thus, by making the leakage waveform stored in the waveform storage unit 13 at least a continuous three-half wave waveform, it becomes efficient without requiring an unnecessarily large memory. Moreover, it can be used as specific information for more accurate leakage determination.
漏電検出部14は、マイコン等で構成され、演算部12の演算値に基づく判定処理を行うためのアルゴリズムを用いて、交流系統に漏電が発生していることを示す漏電検出信号を遮断機構部に出力する。なお、漏電検出信号は、交流電路の電路接点を開放するための(交流電路を遮断するための)遮断指定信号として、電路接点を開放する引外しコイル(不図示)に送出される。その結果、交流電路の電路接点は開放される。 The leakage detection unit 14 is configured by a microcomputer or the like, and uses an algorithm for performing a determination process based on the calculation value of the calculation unit 12 to cut off a leakage detection signal indicating that a leakage has occurred in the AC system. Output to. The leakage detection signal is sent to a tripping coil (not shown) that opens the electric circuit contact as an interruption designation signal for opening the electric circuit contact of the AC electric circuit (for interrupting the AC electric circuit). As a result, the circuit contact of the AC circuit is opened.
漏電検出部14は、出力電流の連続する複数半波波形の内、少なくとも所定割合以上の半波の実効値や平均値などの演算値が漏電レベル以上の場合において、漏電状態とみなして漏電検出信号を遮断機構部に出力する。具体的には、漏電検出部14は、図3に示すように、出力電流の連続する3半波波形について、波形毎に演算部12にて演算された実効値(mArms)と所定漏電レベルTを比較する。そして、連続する3半波波形の内、少なくとも2半波の実効値が所定漏電レベルTを超える場合においては、電路の接点を開放(トリップ動作)するための漏電検出信号を外部又は内部の遮断機構部に出力する。 The earth leakage detection unit 14 detects the earth leakage as a current leakage state when a calculated value such as an effective value or average value of at least a predetermined half or more of the half wave waveforms of continuous output current is equal to or higher than the earth leakage level. A signal is output to the blocking mechanism. Specifically, as shown in FIG. 3, the leakage detection unit 14 has an effective value (mArms) calculated by the calculation unit 12 for each waveform and a predetermined leakage level T for three consecutive half-wave waveforms of the output current. Compare h . Of the three consecutive half-wave waveform, in the case where the effective value of at least 2 half-waves exceeds a predetermined leakage level T h, a leakage detection signal for opening the contacts of the electrical path (trip operation) external or internal Output to the shut-off mechanism.
 より具体的には、漏電検出部14は、図3の(3)に示すように、出力電流の連続する3半波波形の内、連続する2半波が漏電レベル以上となる場合、漏電検出信号を出力する。また、図3の(1)に示すように、出力電流の連続する3半波波形の内、1半波目が漏電レベル以上であり、且つ隣り合う2半波目が漏電レベル未満となる場合に、3半波目が漏電レベル以上となる場合において漏電検出信号を出力する。一方、図3の(2)の耐インラッシュノイズ波形は上記アルゴリズムを満たしていないため非漏電現象とみなす。このため、漏電検出装置1では、半波漏電現象と、漏電現象でない耐インラッシュノイズとを識別して、より正確な漏電判定を行うことができる。 More specifically, as shown in (3) of FIG. 3, the leakage detection unit 14 detects the leakage when the two consecutive half-waves of the output current are equal to or higher than the leakage level. Output a signal. Also, as shown in (1) of FIG. 3, when the first half-wave is greater than or equal to the leakage level and the adjacent second half-wave is less than the leakage level among the three half-wave waveforms in which the output current continues. In addition, when the third half wave is equal to or higher than the leakage level, a leakage detection signal is output. On the other hand, since the anti-inrush noise waveform of (2) in FIG. 3 does not satisfy the above algorithm, it is regarded as a non-leakage phenomenon. For this reason, the leakage detection device 1 can discriminate between the half-wave leakage phenomenon and the inrush noise resistance that is not the leakage phenomenon, and perform a more accurate leakage determination.
なお、漏電検出部14は、出力電流の連続する3半波波形について、波形毎に演算部12にて演算された平均値と所定漏電レベルTを比較することもできる。この平均値を用いる場合、漏電開始位相が零点スタートでない漏電波形であり実効値演算結果が所定の漏電レベルに至らない場合や、1波目の波形が漏電と判定しにくい波形であっても正確な漏電判定を行うことができる。 Incidentally, the leakage detection unit 14, for successive 3 halfwave waveform of the output current, it is also possible to compare the average value with a predetermined leakage level T h that is calculated by the calculation unit 12 for each waveform. When this average value is used, it is accurate even if the leakage start phase is a leakage waveform that is not a zero point start and the effective value calculation result does not reach a predetermined leakage level, or the first waveform is a waveform that is difficult to determine as a leakage. Can be determined.
 次に、図4を参照して本実施の形態に係る漏電検出装置1の動作手順を説明する。最初に、漏電検出部14は、出力電流の連続する3半波波形の内、1半波目の実効値が漏電レベル以上か否か検出する(S41)。そして、漏電レベル以上となる場合には(S41でY)、漏電検出部14は、出力電流の連続する3半波波形の内、2半波目の実効値が漏電レベル以上か否か検出する(S42)。そして、漏電レベル以上となる場合には(S42でY)、図3の(3)で示す正弦波の漏電と判定して、漏電検出信号を遮断機構部に送出する(S43)。その後、手動で電路の遮断が解除される(S44)。 Next, the operation procedure of the leakage detection device 1 according to this embodiment will be described with reference to FIG. First, the leakage detection unit 14 detects whether or not the effective value of the first half wave is equal to or higher than the leakage level among the three half-wave waveforms in which the output current continues (S41). And when it becomes more than an electric leakage level (Y in S41), electric leakage detection part 14 detects whether the effective value of the 2nd half wave is more than an electric leakage level among three half wave waveforms with which output current continues. (S42). And when it becomes more than an electric leakage level (Y in S42), it determines with the electric leakage of the sine wave shown by (3) of FIG. 3, and sends an electric leakage detection signal to the interruption | blocking mechanism part (S43). Thereafter, the interruption of the electric circuit is manually released (S44).
 一方、漏電検出部14は、出力電流の連続する3半波波形の内、2半波目の実効値が漏電レベル以上とならない場合には(S42でN)、3半波目の実効値が漏電レベル以上となるか否か検出する(S45)。そして、漏電レベル以上となる場合には(S45でY)、図3の(1)で示す半波の漏電と判定して、漏電検出信号を遮断機構部に送出する(S46)。その後、手動で電路の遮断が解除される(S47)。 On the other hand, if the effective value of the second half wave does not exceed the leakage level among the continuous three half wave waveforms of the output current (N in S42), the leakage detection unit 14 determines that the effective value of the third half wave is It is detected whether or not the leakage level is exceeded (S45). If the leakage level is equal to or higher than the leakage level (Y in S45), it is determined as a half-wave leakage in (1) of FIG. 3, and a leakage detection signal is sent to the interruption mechanism (S46). Thereafter, the disconnection of the electric circuit is manually canceled (S47).
 また、漏電検出部14は、S45において漏電レベル以上とならない場合には(S45でN)、図3の(2)で示す耐インラッシュノイズの非漏電現象と判定して(S48)、その後、S41以下の処理を繰り返す。 In addition, when the leakage level does not exceed the leakage level in S45 (N in S45), the leakage detection unit 14 determines that the non-leakage phenomenon of the inrush noise resistance shown in (2) of FIG. 3 (S48), and then The processing from S41 is repeated.
 以上のように、本実施の形態に係る漏電検出装置1の漏電検出部14は、連続する3半波波形のうち、少なくとも2半波の演算値が漏電レベル以上の場合において、漏電状態とみなして漏電検出信号を遮断機構部に出力する。この漏電検出方法により、規格で定める半波漏電現象や正弦波などの漏電現象と、直流負荷に電力を供給するインバータ装置からの漏洩電流に由来する耐インラッシュノイズなどの非漏電現象とを識別し、より正確な漏電判断を行うことができる。 As described above, the leakage detection unit 14 of the leakage detection apparatus 1 according to the present embodiment regards the leakage state as a leakage current state when the calculated value of at least two half waves of the continuous three half wave waveforms is equal to or higher than the leakage level. The leakage detection signal is output to the interruption mechanism. This leakage detection method distinguishes between half-wave leakage phenomena and sine wave leakage phenomena defined by the standard, and non-leakage phenomena such as anti-inrush noise due to leakage current from the inverter device that supplies power to the DC load. In addition, it is possible to make a more accurate leakage determination.
 なお、本発明は、上記実施の形態の構成に限られず、発明の趣旨を変更しない範囲で種々の変形が可能である。また、本発明の目的を達成するために、本発明は、漏電検出装置に含まれる特徴的な構成手段をステップとする漏電検出方法としたり、それらの特徴的なステップを含むプログラムとして実現することもできる。そして、そのプログラムは、ROM等に格納しておくだけでなく、USBメモリ等の記録媒体や通信ネットワークを介して流通させることもできる。 It should be noted that the present invention is not limited to the configuration of the above embodiment, and various modifications can be made without departing from the spirit of the invention. In order to achieve the object of the present invention, the present invention can be realized as a leakage detection method using characteristic constituent means included in the leakage detection apparatus as a step, or as a program including these characteristic steps. You can also. The program can be distributed not only in the ROM, but also via a recording medium such as a USB memory or a communication network.
 1 漏電検出装置
 11 零相変流器
 12 演算部
 13 波形記憶部
 14 漏電検出部
DESCRIPTION OF SYMBOLS 1 Leakage detection apparatus 11 Zero phase current transformer 12 Calculation part 13 Waveform memory part 14 Leakage detection part

Claims (7)

  1. 交流系統が貫通する零相変流器と、
    前記零相変流器からの出力電流を用いて演算値を算出する演算部と、
    前記演算部の演算値に基づいて、前記交流系統に漏電が発生していることを示す漏電検出信号を遮断機構部に出力する漏電検出部と、を備える漏電検出装置において、
    前記漏電検出部は、出力電流の連続する複数半波波形の内、少なくとも所定割合以上の半波の前記演算値が漏電レベル以上の場合において、漏電状態とみなして前記漏電検出信号を遮断機構部に出力する、ことを特徴とする漏電検出装置。
    A zero-phase current transformer through which the AC system passes,
    A calculation unit for calculating a calculation value using an output current from the zero-phase current transformer;
    In the leakage detection device, comprising: a leakage detection unit that outputs a leakage detection signal indicating that leakage has occurred in the AC system to the breaking mechanism unit based on the calculated value of the calculation unit;
    The leakage detecting unit considers the leakage detection signal as a leakage state when the calculated value of at least a predetermined half or more of the half-wave waveforms of continuous output current is equal to or higher than a leakage level. A leakage detecting device characterized in that:
  2. 前記漏電検出部は、連続する3半波波形のうち、少なくとも2半波の演算値が漏電レベル以上の場合において、漏電状態とみなして前記漏電検出信号を遮断機構部に出力する、ことを特徴とする請求項1記載の漏電検出装置。 The leakage detection unit is regarded as a leakage state and outputs the leakage detection signal to the breaking mechanism unit when the calculated value of at least two half waves of the continuous three half-wave waveforms is equal to or higher than the leakage level. The leakage detection device according to claim 1.
  3. 前記漏電検出部は、連続する3半波波形のうち、連続する2半波の演算値が漏電レベル以上である場合において、漏電状態とみなして前記漏電検出信号を遮断機構部に出力する、ことを特徴とする請求項2記載の漏電検出装置。 The leakage detection unit outputs a leakage detection signal to the interrupting mechanism unit as a leakage state when a calculation value of two consecutive half-waves is equal to or higher than a leakage level among consecutive three half-wave waveforms. The leakage detecting device according to claim 2.
  4. 前記漏電検出部は、連続する3半波波形のうち、1半波目の演算値が漏電レベル以上、且つ2半波目の演算値が漏電レベル未満である場合において、3半波目の演算値が漏電レベル以上となる場合には、漏電状態とみなして前記漏電検出信号を遮断機構部に出力する、ことを特徴とする請求項2記載の漏電検出装置。 The leakage detection unit calculates the third half-wave when the calculated value of the first half wave is equal to or higher than the leakage level and the calculated value of the second half wave is less than the leakage level among the continuous three half-wave waveforms. 3. The leakage detecting device according to claim 2, wherein when the value is greater than or equal to the leakage level, the leakage detection signal is output to the interruption mechanism unit by regarding the leakage state.
  5. 前記演算値は、前記零相変流器からの出力電流の実効値、当該出力電流の平均値、又は当該出力電流の積分値のいずれかである、ことを特徴とする請求項1乃至4のいずれか一項に記載の漏電検出装置。 The calculation value is any one of an effective value of an output current from the zero-phase current transformer, an average value of the output current, or an integral value of the output current. The leakage detection device according to any one of the above.
  6. 交流系統が貫通する零相変流器からの出力電流を用いて演算値を算出する演算ステップと、
    前記演算ステップにおける演算値に基づいて、前記交流系統に漏電が発生していることを示す漏電検出信号を遮断機構部に出力する漏電検出ステップと、
    出力電流の連続する複数半波波形の内、少なくとも所定割合以上の半波の前記演算値が漏電レベル以上の場合において、漏電状態とみなして前記漏電検出信号を遮断機構部に出力する判定ステップと、をコンピュータに実行させることを特徴とするプログラム。
    A calculation step for calculating a calculation value using an output current from a zero-phase current transformer through which the AC system passes,
    Based on the calculation value in the calculation step, a leakage detection step of outputting a leakage detection signal indicating that leakage has occurred in the AC system to the breaking mechanism unit,
    A determination step of considering the leakage state and outputting the leakage detection signal to the breaking mechanism unit when the calculated value of at least a predetermined half or more of the half waves of the output current is equal to or higher than the leakage level; , Causing a computer to execute.
  7. 前記判定ステップにおいては、連続する3半波波形のうち、少なくとも2半波の演算値が漏電レベル以上の場合において、漏電状態とみなして前記漏電検出信号を遮断機構部に出力する、ことを特徴とする請求項6記載のプログラム。 In the determination step, when the calculated value of at least two half-waves of the continuous three half-wave waveforms is equal to or higher than the leakage level, the leakage detection signal is output to the interruption mechanism unit by regarding the leakage state. The program according to claim 6.
PCT/JP2014/000959 2013-03-29 2014-02-24 Electrical leakage detector WO2014155957A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-073657 2013-03-29
JP2013073657A JP6369775B2 (en) 2013-03-29 2013-03-29 Earth leakage detector

Publications (1)

Publication Number Publication Date
WO2014155957A1 true WO2014155957A1 (en) 2014-10-02

Family

ID=51622980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000959 WO2014155957A1 (en) 2013-03-29 2014-02-24 Electrical leakage detector

Country Status (2)

Country Link
JP (1) JP6369775B2 (en)
WO (1) WO2014155957A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6019069B2 (en) * 2014-08-08 2016-11-02 株式会社Nttファシリティーズ Circuit breaker for wiring, protective relay, wiring interruption method and wiring interruption program
CN105572530A (en) * 2015-12-11 2016-05-11 国网北京市电力公司 Electric leakage detection device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53107640A (en) * 1977-03-01 1978-09-19 Mitsubishi Electric Corp Grounding fault detector
JPH04109178A (en) * 1990-08-29 1992-04-10 Kyushu Electric Power Co Inc Detecting method for earth detecting current sensor
JP2010048746A (en) * 2008-08-25 2010-03-04 Hioki Ee Corp Insulation monitoring device
JP2011015583A (en) * 2009-07-06 2011-01-20 Fuji Electric Fa Components & Systems Co Ltd Leakage detection method, leakage detection device, and earth leakage breaker

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53107640A (en) * 1977-03-01 1978-09-19 Mitsubishi Electric Corp Grounding fault detector
JPH04109178A (en) * 1990-08-29 1992-04-10 Kyushu Electric Power Co Inc Detecting method for earth detecting current sensor
JP2010048746A (en) * 2008-08-25 2010-03-04 Hioki Ee Corp Insulation monitoring device
JP2011015583A (en) * 2009-07-06 2011-01-20 Fuji Electric Fa Components & Systems Co Ltd Leakage detection method, leakage detection device, and earth leakage breaker

Also Published As

Publication number Publication date
JP6369775B2 (en) 2018-08-08
JP2014199718A (en) 2014-10-23

Similar Documents

Publication Publication Date Title
EP2426802B1 (en) Apparatus and method for quickly determining fault in electric power system
KR101454203B1 (en) Low current arc detecting system
US8680872B2 (en) Identification of false positives in high impedance fault detection
KR101771098B1 (en) Apparatus of electorical black box for analyzing cause of arc interruption
EP3359973B1 (en) Method and system for locating ground faults in a network of drives
WO2012127307A1 (en) Earth leakage detection device
US10734179B2 (en) Method and apparatus for controlling a circuit breaker in an electrical energy supply network
US8749100B2 (en) Overvoltage suppressing device
JP2014196920A (en) Leak detection device
JP6573571B2 (en) Electric leakage relay, electric leakage breaker and control method thereof
EP3496222B1 (en) Earth leakage circuit breaker based on the ratio of a specific harmonic current component to the fundamental wave current component
JP5821014B2 (en) Leakage determination device
Valdes et al. Advances in protective device interlocking for improved protection and selectivity
EP3772147B1 (en) Power interruption method and device based on phase measurement and arc detection of power level
JP2016144297A (en) Ratio differential relay device
KR20200093979A (en) Earth leakage circuit breaker(elcb) and method for detecting leakage current
KR101402046B1 (en) Digital earth leakage breaker
JP6369775B2 (en) Earth leakage detector
US20100254056A1 (en) Efficient method for calculating the dot product in fault detection algorithms
JP5908336B2 (en) Excitation inrush current suppression device and excitation inrush current suppression method
JP6678539B2 (en) Phase loss detection system, phase loss detection device, and phase loss detection method
US11411390B2 (en) Secure and dependable restricted earth fault protection for electric power generators and transformers
JP6065253B2 (en) Earth leakage detector
JP7072982B2 (en) Discharge accident detection structure
JP6065252B2 (en) Earth leakage detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14774671

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14774671

Country of ref document: EP

Kind code of ref document: A1