JP5531262B2 - Freeze concentrator - Google Patents

Freeze concentrator Download PDF

Info

Publication number
JP5531262B2
JP5531262B2 JP2011184041A JP2011184041A JP5531262B2 JP 5531262 B2 JP5531262 B2 JP 5531262B2 JP 2011184041 A JP2011184041 A JP 2011184041A JP 2011184041 A JP2011184041 A JP 2011184041A JP 5531262 B2 JP5531262 B2 JP 5531262B2
Authority
JP
Japan
Prior art keywords
ice
ice particles
concentrated liquid
inner pipe
making machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011184041A
Other languages
Japanese (ja)
Other versions
JP2013044492A (en
Inventor
三和 岩川
泰典 松本
雅博 池上
洋憲 森山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAKIUCHI CO.,LTD.
Kochi University of Technology
Kochi Prefecture
Original Assignee
KAKIUCHI CO.,LTD.
Kochi University of Technology
Kochi Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAKIUCHI CO.,LTD., Kochi University of Technology, Kochi Prefecture filed Critical KAKIUCHI CO.,LTD.
Priority to JP2011184041A priority Critical patent/JP5531262B2/en
Publication of JP2013044492A publication Critical patent/JP2013044492A/en
Application granted granted Critical
Publication of JP5531262B2 publication Critical patent/JP5531262B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Preparation Of Fruits And Vegetables (AREA)

Description

本発明は、りんご、柚子、文旦、生姜などの搾汁や、かつおの出汁、バイオエタノール等のアルコール類、牛乳などの非濃縮液を凍結濃縮するための凍結濃縮装置に関する。 The present invention also relates apples, citrus, pomelos, juice or the like ginger, bonito soup, alcohols such as bio-ethanol, the freeze concentration equipment for freeze concentration of unconcentrated liquid such as milk.

従来から、非濃縮液を濃縮する方法としては、大別して蒸発濃縮法と凍結濃縮法が知られている。蒸発濃縮法は、非濃縮液を加熱沸騰させ、非濃縮液中の水分を蒸発させることにより非濃縮液を濃縮する方法であり、非濃縮液中にタンパク質など加熱によって変性しやすい物質を含んでいる場合は、風味を損なう恐れがある。一方、凍結濃縮法は、食品、医薬品等の高品質濃縮が可能であり、熱的に不安定な物質の濃縮法として好ましいものである。   Conventionally, methods for concentrating a non-concentrated liquid are roughly classified into an evaporation concentration method and a freeze concentration method. The evaporative concentration method is a method in which the non-concentrated liquid is concentrated by heating and boiling the non-concentrated liquid and evaporating the water in the non-concentrated liquid. The non-concentrated liquid contains a substance that is easily denatured by heating such as protein. If there is, there is a risk of losing the flavor. On the other hand, the freeze concentration method is capable of high-quality concentration of foods, pharmaceuticals, and the like, and is preferable as a method for concentration of thermally unstable substances.

上記凍結濃縮法に用いられる凍結濃縮装置としては、例えば、製氷機と、垂直に立てられた有底円筒状の水切り塔と、前記製氷機から前記水切り塔の下部に連結する移送管とを有するものが知られている(特許文献1参照)。この特許文献1の凍結濃縮装置は、製氷機で製造された氷粒子と濃縮液からなる氷スラリーが移送管を通って水切り塔の下部に移送される。   Examples of the freeze concentration apparatus used in the freeze concentration method include an ice making machine, a vertically-bottomed cylindrical draining tower, and a transfer pipe connected from the ice making machine to the lower part of the draining tower. The thing is known (refer patent document 1). In the freeze concentration apparatus of Patent Document 1, ice slurry made of ice particles and concentrated liquid produced by an ice making machine is transferred to the lower part of the draining tower through a transfer pipe.

水切り塔の下部に移送された氷スラリーは、濃縮液よりも比重の軽い氷粒子が上方に移送され、氷粒子よりも比重の重い濃縮液が水切り塔の下部に留まることにより、氷粒子と濃縮液に分離される。分離された濃縮液は、水切り塔に設けた管部片を通って回収される。   The ice slurry transferred to the lower part of the draining tower is transported upward with the ice particles having a specific gravity lighter than that of the concentrate, and the concentrated liquid having a higher specific gravity than the ice particles stays at the lower part of the draining tower. Separated into liquid. The separated concentrated liquid is collected through a pipe piece provided in the draining tower.

しかし、特許文献1の凍結濃縮装置では、製氷機で製造される氷粒子の割合を増加させることにより濃縮率を高めようとすると、増加した氷粒子によって製氷機やポンプに過大な負荷がかかったり、移送管が閉塞したりしてしまう。このため、特許文献1の凍結濃縮装置では、濃縮率を高めることは困難であった。特に、内面に生成する氷粒子を掻き取り刃で掻き取る形式の製氷機の場合には、製氷機内の氷充填率が30%以上となると、増加した氷粒子によって掻き取り刃に過大な負荷がかかってしまうので、製氷機内の氷充填率を30%以上とすることができず、濃縮率が低くなるという問題がある。なお、非濃縮液を3倍以上濃縮するには、製氷機内の氷充填率を67%以上にする必要がある。   However, in the freeze concentration apparatus of Patent Document 1, if an attempt is made to increase the concentration rate by increasing the proportion of ice particles produced by the ice maker, an excessive load is applied to the ice maker or pump due to the increased ice particles. The transfer pipe will be blocked. For this reason, in the freeze concentration apparatus of Patent Document 1, it is difficult to increase the concentration rate. In particular, in the case of an ice making machine that scrapes off ice particles generated on the inner surface with a scraping blade, if the ice filling rate in the ice making machine is 30% or more, an excessive load is applied to the scraping blade due to the increased ice particles. Therefore, there is a problem that the ice filling rate in the ice making machine cannot be increased to 30% or more and the concentration rate is lowered. In order to concentrate the non-concentrated liquid three times or more, the ice filling rate in the ice making machine needs to be 67% or more.

そこで、濃縮率を高めることができる凍結濃縮装置として特許文献2に記載されたものが知られている。特許文献2の凍結濃縮装置は、第1製氷機と第2製氷機とを有し、第1製氷機で製造された氷スラリーを第2製氷機に移送し、移送された氷スラリーを第2製氷機で氷スラリーの氷粒子の割合をさらに増加させることにより濃縮率を高めるものである。第2製氷機で濃縮された濃縮液は、内槽の多数の孔を通ることで氷粒子と分離されて回収される。しかし、特許文献2の凍結濃縮装置は、製氷機やポンプに過大な負荷がかかったり、配管が閉塞したりすることなく濃縮率を高めることができるが、製氷機が2つ必要となるので、装置が複雑で大型化してしまい、製造コストやランニングコストがかかってしまうという問題がある。   Then, what was described in patent document 2 as a freeze concentration apparatus which can raise a concentration rate is known. The freeze concentration apparatus of Patent Document 2 includes a first ice maker and a second ice maker, transfers ice slurry produced by the first ice maker to the second ice maker, and transfers the transferred ice slurry to the second ice maker. The concentration rate is increased by further increasing the proportion of ice particles in the ice slurry with an ice making machine. The concentrated liquid concentrated by the second ice maker is separated from the ice particles and collected by passing through a large number of holes in the inner tank. However, the freeze concentration apparatus of Patent Document 2 can increase the concentration rate without applying an excessive load to the ice making machine or the pump or blocking the piping, but two ice making machines are required. There is a problem that the apparatus becomes complicated and large, and manufacturing costs and running costs are increased.

特開昭48−77054号公報JP-A-48-77054 特開2000−093131号公報Japanese Patent Laid-Open No. 2000-093131

そこで、本発明の課題は、簡単な構造で小型化でき、しかも成分を変化させることなく濃縮率を高めることができる凍結濃縮装置を提供することである。 An object of the present invention can be miniaturized with a simple structure, yet to provide a freeze concentration equipment that can increase the no concentration rate by changing the components.

請求項1に係る発明は、上記した従来技術の問題点を解決すべくなされたものであって、非濃縮液を供給するための供給管及び生成された濃縮液を排出するための排出管を備える内管と、その内管の外周面との間に冷媒流路となる空間を有して内管の外周面を覆う外管と、前記内管内部に回転可能に配設された回転部材と、その回転部材の外周面から半径方向に突出して前記内管の内面に生成する氷粒子を掻き取るための掻き取り部とを備える製氷機を有し、前記製氷機は前記内管が縦向きとなるように支持され、前記内管は下部が閉塞され、上部に開口が形成され、前記内管内に生成する氷粒子は比重差によって内管内を上昇して前記開口から排出され、前記内管内で濃縮された濃縮液は比重差によって内管内を下降することで前記氷粒子と分離して前記排出管から排出されるようにし、前記製氷機の内管の上端に筒状の貯氷タンクを連結して、前記貯氷タンクと前記内管との間で前記氷粒子が移動可能な氷流路を形成し前記貯氷タンク内の前記製氷機の上方に、前記貯氷タンクの中心軸と略同一軸心で回転する筒状部と、その筒状部の外周面に設けられ、前記筒状部の回転方向とは逆方向に巻きながら軸方向に延びる外側スクリューとを備えるオーガを設け、前記オーガは、前記筒状部の内周面に、前記外側スクリューの巻き方向とは逆方向に巻きながら軸方向に延びる内側スクリューを設けたことを特徴とする凍結濃縮装置に関する。 The invention according to claim 1 is made to solve the above-described problems of the prior art, and includes a supply pipe for supplying a non-concentrated liquid and a discharge pipe for discharging the generated concentrated liquid. An outer tube having a space serving as a refrigerant flow path between the inner tube provided and the outer peripheral surface of the inner tube and covering the outer peripheral surface of the inner tube; and a rotating member rotatably disposed inside the inner tube An ice maker that projects radially from the outer peripheral surface of the rotating member and scrapes off the ice particles that are generated on the inner surface of the inner tube. The inner pipe is closed at the bottom, and an opening is formed at the top. Ice particles generated in the inner pipe rise in the inner pipe due to the difference in specific gravity and are discharged from the opening. The concentrated liquid concentrated in the pipe descends in the inner pipe due to the difference in specific gravity, thereby the ice particles. Separated so as to be discharged from the discharge pipe, by connecting a cylindrical ice storage tank to the upper end of the inner tube of the icemaker, the ice particles between the inner tube and the ice storage tank is movable An ice channel is formed above the ice making machine in the ice storage tank, and is provided on a cylindrical portion that rotates about the same axis as the central axis of the ice storage tank, and on the outer peripheral surface of the cylindrical portion. An auger provided with an outer screw extending in the axial direction while being wound in a direction opposite to the rotation direction of the cylindrical portion is provided, and the auger is provided on the inner peripheral surface of the cylindrical portion in a direction opposite to the winding direction of the outer screw. The present invention relates to a freeze concentrating device provided with an inner screw extending in the axial direction while being wound .

請求項に係る発明は、前記開口から排出された氷粒子を遠心分離機に移送し、その遠心分離機の遠心分離作用を前記氷粒子に及ぼすことにより、前記氷粒子に付着している濃縮液を前記氷粒子から分離するようにしたことを特徴とする請求項1に記載の凍結濃縮装置に関する。 According to a second aspect of the present invention, the ice particles discharged from the opening are transferred to a centrifugal separator, and the centrifugal action of the centrifugal separator is exerted on the ice particles, thereby concentrating the ice particles attached to the ice particles. 2. The freeze concentration apparatus according to claim 1, wherein a liquid is separated from the ice particles.

本発明においては、0.5重量%〜13重量%の低濃度の水溶液からなる非濃縮液を冷却し、前記水溶液から所定量の真水を氷結させて氷粒子にし、この氷粒子を取り除くことにより、前記非濃縮液の濃度を約3倍以上高めることもできる凍結濃縮方法を用いる。 In the present invention, a non-concentrated liquid consisting of an aqueous solution having a low concentration of 0.5 wt% to 13 wt% is cooled, and a predetermined amount of fresh water is frozen from the aqueous solution into ice particles, and the ice particles are removed. A freeze concentration method that can increase the concentration of the non-concentrated liquid by about 3 times or more is used.

請求項1に係る発明によれば、上記構成を採用することにより、生成する氷粒子が比重差によって内管内を上昇することで、前記開口からの氷粒子の排出が促進されるので、製氷機で製造される氷粒子による負荷が前記掻き取り部にかかり難くなる。このため、製氷機で製造される氷粒子の割合を増加させても、製氷機の掻き取り部にかかる負荷が過大になりにくくなり、安定して濃縮率を高めることができる。また、非濃縮液を加熱しないので、非濃縮液に含まれる成分を変化させることなく濃縮率を高めることができる。また、内管内で濃縮された濃縮液は、比重差によって内管内を下降することで氷粒子と分離して排出管から排出されるので、氷粒子によって排出管を閉塞することもない。さらに、従来のように濃縮率を高めるために製氷機を2つ設ける必要がないので、簡単な構造で小型化でき、製造コストやランニングコストを低減することができる。   According to the first aspect of the invention, by adopting the above-described configuration, the generated ice particles rise in the inner tube due to the difference in specific gravity, so that the discharge of the ice particles from the opening is promoted. The load due to the ice particles produced in is less likely to be applied to the scraping part. For this reason, even if the ratio of the ice particles produced by the ice making machine is increased, the load applied to the scraping part of the ice making machine is unlikely to be excessive, and the concentration rate can be stably increased. Moreover, since the non-concentrated liquid is not heated, the concentration rate can be increased without changing the components contained in the non-concentrated liquid. Further, the concentrated liquid concentrated in the inner pipe descends in the inner pipe due to the difference in specific gravity, and is separated from the ice particles and discharged from the discharge pipe. Therefore, the discharge pipe is not blocked by the ice particles. Furthermore, since it is not necessary to provide two ice makers in order to increase the concentration rate as in the prior art, the size can be reduced with a simple structure, and the manufacturing cost and running cost can be reduced.

請求項に係る発明によれば、前記製氷機の内管の上端に筒状の貯氷タンクを連結して、前記貯氷タンクと前記内管との間で前記氷粒子が移動可能な氷流路を形成することにより、氷粒子が貯氷タンクに移送されるので、氷粒子を回収しやすくなる。 According to the first aspect of the present invention, an ice flow path in which a cylindrical ice storage tank is connected to the upper end of the inner pipe of the ice making machine so that the ice particles can move between the ice storage tank and the inner pipe. By forming the ice particles, since the ice particles are transferred to the ice storage tank, the ice particles can be easily collected.

請求項に係る発明によれば、前記貯氷タンク内の前記製氷機の上方に、前記貯氷タンクの中心軸と同一軸心で回転する筒状部と、その筒状部の外周面に設けられ、前記筒状部の回転方向とは逆方向に巻きながら軸方向に延びる外側スクリューとを備えるオーガを設けることにより、内管内の氷粒子が、前記外側スクリューの送り作用によって貯氷タンク内に押し上げられるので、氷粒子の排出がさらに促進される。このため、氷粒子による前記掻き取り部への負荷がさらにかかり難くなるので、濃縮率をさらに高めることができる。 According to the first aspect of the present invention, the cylindrical portion that rotates about the same axis as the central axis of the ice storage tank and the outer peripheral surface of the cylindrical portion are provided above the ice making machine in the ice storage tank. By providing an auger provided with an outer screw that extends in the axial direction while being wound in a direction opposite to the rotation direction of the cylindrical portion, ice particles in the inner tube are pushed up into the ice storage tank by the feeding action of the outer screw. Therefore, the discharge of ice particles is further promoted. For this reason, the load on the scraping part due to ice particles is less likely to be applied, so that the concentration rate can be further increased.

請求項に係る発明によれば、前記オーガは、前記筒状部の内周面に、前記外側スクリューの巻き方向とは逆方向に巻きながら軸方向に延びる内側スクリューを設けることにより、外側スクリューによって押し上げられた氷粒子が内側スクリューによって製氷機の内管内に戻るのを防ぎつつ、氷粒子に付着している濃縮液を製氷機に戻すことができるので、さらに濃縮率を高めることができる。 According to the first aspect of the present invention, the auger is provided on the inner peripheral surface of the tubular portion with the inner screw extending in the axial direction while being wound in the direction opposite to the winding direction of the outer screw. The concentrated liquid adhering to the ice particles can be returned to the ice making machine while preventing the ice particles pushed up by the inner screw from returning to the inner pipe of the ice making machine by the inner screw, so that the concentration rate can be further increased.

請求項に係る発明によれば、前記開口から排出された氷粒子を遠心分離機に移送し、その遠心分離機の遠心分離作用を前記氷粒子に及ぼすことにより、前記氷粒子に付着している濃縮液を前記氷粒子から分離するようにすると、濃縮液が氷粒子に付着した状態で排出されることが抑制されるので、濃縮液の回収率を高めることができる。 According to the second aspect of the present invention, the ice particles discharged from the opening are transferred to a centrifuge, and the centrifugal action of the centrifuge is applied to the ice particles, thereby adhering to the ice particles. When the concentrated liquid is separated from the ice particles, the concentrated liquid is prevented from being discharged in a state of adhering to the ice particles, so that the recovery rate of the concentrated liquid can be increased.

発明においては、0.5重量%〜13重量%の低濃度の水溶液からなる非濃縮液を冷却し、前記水溶液から所定量の真水を氷結させて氷粒子にし、この氷粒子を取り除くことにより、前記非濃縮液の濃度を約3倍以上高めることができるので、成分変化することなく従来にはない高濃度の濃縮液を得ることができる。 Oite the present invention, the non-concentrated solution of a low concentration aqueous solution of 0.5 wt% to 13 wt% was cooled and frozen to a predetermined amount of fresh water from the aqueous solution into the ice particles, remove the ice particles As a result, the concentration of the non-concentrated liquid can be increased by about 3 times or more, so that a concentrated liquid with a high concentration that has not existed before can be obtained without changing the components.

本発明に係る凍結濃縮装置を示す概略図である。It is the schematic which shows the freeze concentration apparatus which concerns on this invention. 図1の凍結濃縮装置の製氷機および貯氷タンクの部分拡大縦断面図である。FIG. 2 is a partially enlarged longitudinal sectional view of an ice making machine and an ice storage tank of the freeze concentration apparatus of FIG. 1. 本発明に係る凍結濃縮装置のオーガを示す拡大縦断面図である。It is an expanded longitudinal cross-sectional view which shows the auger of the freeze concentration apparatus which concerns on this invention. 本発明に係る凍結濃縮装置のオーガを示す正面図である。It is a front view which shows the auger of the freeze concentration apparatus which concerns on this invention. 本発明に係る凍結濃縮装置のオーガの外側スクリューを示す正面図である。It is a front view which shows the outer side screw of the auger of the freeze concentration apparatus which concerns on this invention. 本発明に係る凍結濃縮装置のオーガの内側スクリューを示す正面図である。It is a front view which shows the inner side screw of the auger of the freeze concentration apparatus which concerns on this invention. 本発明に係る凍結濃縮装置の変形例を示す概略図である。It is the schematic which shows the modification of the freeze concentration apparatus which concerns on this invention.

以下、本発明に係る凍結濃縮装置の好適な実施形態について、図面を参照しつつ説明する。但し、本発明は、以下の実施形態に限定されるものではない。   Hereinafter, a preferred embodiment of a freeze concentration apparatus according to the present invention will be described with reference to the drawings. However, the present invention is not limited to the following embodiments.

本発明の第1実施形態の凍結濃縮装置(1)は、図1に示すように、非濃縮液(a)が貯蔵される貯蔵タンク(2)と、非濃縮液(a)から氷粒子(b)と濃縮液(c)からなる氷スラリーを製造する製氷機(3)と、製氷機(3)から排出される氷粒子(b)が移送される貯氷タンク(4)と、貯氷タンク(4)内の氷粒子(b)が移送される遠心分離機(5)と、遠心分離機(5)によって氷粒子(b)から分離された濃縮液(c)を貯える再貯蔵タンク(6)と、製氷機(3)内で濃縮された濃縮液(c)を回収する濃縮液回収タンク(7)と、遠心分離機(5)の下方に設けられる氷回収タンク(8)とを有する。この凍結濃縮装置(1)は、全体が10℃以下に設定された保冷ボックス(図示省略)に入れた状態で運転される。なお、凍結濃縮装置(1)は、製氷機(3)と貯氷タンク(4)と遠心分離機(5)のみを保冷ボックスに入れることもできるが、少なくとも遠心分離機(5)が保冷ボックスに入れられていれば足りる。   As shown in FIG. 1, the freeze concentration apparatus (1) of the first embodiment of the present invention includes a storage tank (2) in which a non-concentrated liquid (a) is stored, and ice particles (from the non-concentrated liquid (a) ( an ice making machine (3) for producing an ice slurry comprising b) and a concentrated liquid (c), an ice storage tank (4) to which ice particles (b) discharged from the ice making machine (3) are transferred, and an ice storage tank ( 4) A centrifuge (5) to which the ice particles (b) are transferred, and a re-storage tank (6) for storing the concentrated liquid (c) separated from the ice particles (b) by the centrifuge (5) And a concentrated liquid recovery tank (7) for recovering the concentrated liquid (c) concentrated in the ice making machine (3), and an ice recovery tank (8) provided below the centrifugal separator (5). The freeze concentrator (1) is operated in a state where it is placed in a cold box (not shown) set to 10 ° C. or lower as a whole. Note that the freeze concentration device (1) can include only the ice maker (3), the ice storage tank (4), and the centrifuge (5) in the cool box, but at least the centrifuge (5) is in the cool box. It is enough if it is included.

非濃縮液(a)は、水溶液など水分を含む液体であればその種類は特に限定されず、例えば、りんご、柚子、文旦、生姜などの搾汁や、かつおの出汁、バイオエタノール等のアルコール類、牛乳などを挙げることができ、これらのうち、文旦、生姜などの搾汁や、かつおの出汁、バイオエタノールなどの0.5重量%〜13重量%の濃度の低いものが特に好ましい。非濃縮液(a)の濃度が13重量%を超えると、非濃縮液(a)を濃縮したときに、製氷機(3)で製造された氷スラリーがゲル状になり、氷粒子(b)と濃縮液(c)とを分離できなくなり、一方、非濃縮液(a)の濃度が0.5重量%未満であると、非濃縮液(a)を製氷機(3)で冷却したときに、生成する氷粒子(b)が凝結してしまい、非濃縮液(a)が氷スラリーにならず、いずれの場合も好ましくない。なお、水溶液は、分散媒が水であるコロイド溶液も含む。   The non-concentrated liquid (a) is not particularly limited as long as it is a liquid containing water, such as an aqueous solution. For example, juice such as apples, eggplant, Buddha, ginger, etc., bonito soup, alcohol such as bioethanol Milk, etc. can be mentioned, Among these, those having a low concentration of 0.5 to 13% by weight such as jujutsu, ginger, bonito soup and bioethanol are particularly preferred. When the concentration of the non-concentrated liquid (a) exceeds 13% by weight, when the non-concentrated liquid (a) is concentrated, the ice slurry produced by the ice making machine (3) becomes a gel and ice particles (b) Can no longer be separated from the concentrated liquid (c), and when the concentration of the non-concentrated liquid (a) is less than 0.5% by weight, the non-concentrated liquid (a) is cooled by the ice making machine (3). The produced ice particles (b) are condensed and the non-concentrated liquid (a) does not become an ice slurry, which is not preferable in any case. The aqueous solution includes a colloidal solution in which the dispersion medium is water.

製氷機(3)は、図1、2に示すように、内管(9)と、内管(9)の外周面との間に冷媒流路(10)となる空間を有して内管(9)の外周面を覆う外管(11)と、内管(9)の内部に回転可能に配設された回転部材(12)と、回転部材(12)の外周面から半径方向に突出する掻き取り部(13)とを備える。この製氷機(3)は、内管(9)の中心軸が縦向きになるように支持されており、内管(9)の下端部が蓋部材(14a)により閉塞され、内管(9)の上端部には蓋部材(14b)が設けられている。蓋部材(14b)には、その中心から半径方向外側に偏った位置に上下方向に貫通する開口(15)が形成される。なお、内管(9)の中心軸の縦向きは、垂直から傾けた斜め方向も含む。   As shown in FIGS. 1 and 2, the ice making machine (3) has a space serving as a refrigerant flow path (10) between the inner pipe (9) and the outer peripheral surface of the inner pipe (9). An outer tube (11) covering the outer peripheral surface of (9), a rotating member (12) rotatably disposed inside the inner tube (9), and a radial projection from the outer peripheral surface of the rotating member (12) And a scraping part (13) for performing. The ice making machine (3) is supported such that the central axis of the inner pipe (9) is vertically oriented, the lower end of the inner pipe (9) is closed by the lid member (14a), and the inner pipe (9 ) Is provided with a lid member (14b). The lid member (14b) is formed with an opening (15) penetrating in the vertical direction at a position offset radially outward from the center thereof. The longitudinal direction of the central axis of the inner tube (9) includes an oblique direction inclined from the vertical.

内管(9)は円筒状体であって、その内部に非濃縮液(a)を収容して凍らせるための空間を有している。内管(9)の左側下部には非濃縮液(a)を供給するための供給管(16)が、内管(9)の右側下部には濃縮された濃縮液(c)を排出するための排出管(17)がそれぞれ接続されている。なお、供給管(16)の位置は、内管(9)の下部に限定されるものではなく、内管(9)の上部や中央部でもよい。排出管(17)の位置は、内管(9)の下部に限定されるものではなく、内管(9)の上部や中央部でもよいが、内管(9)の中央部から下部の間が好ましい。   The inner tube (9) is a cylindrical body and has a space for storing the non-concentrated liquid (a) and freezing it. A supply pipe (16) for supplying the non-concentrated liquid (a) is supplied to the lower left part of the inner pipe (9), and a concentrated liquid (c) is discharged to the lower right part of the inner pipe (9). The discharge pipes (17) are connected to each other. The position of the supply pipe (16) is not limited to the lower part of the inner pipe (9), but may be the upper part or the central part of the inner pipe (9). The position of the discharge pipe (17) is not limited to the lower part of the inner pipe (9) and may be the upper part or the central part of the inner pipe (9). Is preferred.

回転部材(12)は、内管(9)内部において内管(9)の中心軸と略同軸に配設された回転軸であり、蓋部材(14a)の内部と蓋部材(14b)の内部にそれぞれ取り付けられたベアリング(図示省略)によって支持されている。製氷機(3)の横方向には、モータ軸(18)が回転部材(12)の回転軸と平行になるように掻き取り刃用電動モータ(19)が配設されており、モータ軸(18)が歯車(20)を介して回転部材(12)の回転軸に接続されている。これにより、回転部材(12)は、モータ軸(18)の回転に伴って回転する。   The rotating member (12) is a rotating shaft disposed substantially coaxially with the central axis of the inner tube (9) inside the inner tube (9), and is arranged inside the lid member (14a) and inside the lid member (14b). Are supported by bearings (not shown) respectively attached to the. In the lateral direction of the ice making machine (3), a scraping blade electric motor (19) is disposed so that the motor shaft (18) is parallel to the rotation shaft of the rotating member (12). 18) is connected to the rotating shaft of the rotating member (12) via a gear (20). Thereby, a rotation member (12) rotates with rotation of a motor shaft (18).

冷媒流路(10)の左部下端寄りの位置には冷媒入口(21)が、右部上端寄りには冷媒出口(22)が夫々設けられており、冷媒は、冷媒入口(21)より供給され冷媒流路(10)を通過し、冷媒出口(22)より排出されるという工程を繰り返す。こうして冷媒が冷媒流路(10)を循環することにより、内管(9)内部の非濃縮液(a)が冷却され、内管(9)の内面に氷粒子(b)が生成することとなる。   A refrigerant inlet (21) is provided near the lower left end of the refrigerant flow path (10), and a refrigerant outlet (22) is provided near the upper right end of the refrigerant channel (10). The refrigerant is supplied from the refrigerant inlet (21). Then, the process of passing through the refrigerant flow path (10) and being discharged from the refrigerant outlet (22) is repeated. Thus, the refrigerant circulates in the refrigerant flow path (10), whereby the non-concentrated liquid (a) inside the inner pipe (9) is cooled and ice particles (b) are generated on the inner surface of the inner pipe (9). Become.

蓋部材(14)は、ステンレス鋼等の金属材料や合成樹脂で形成することができる。   The lid member (14) can be formed of a metal material such as stainless steel or a synthetic resin.

掻き取り部(13)は、回転部材(12)の外周面に固定配設されており、回転部材(12)の半径方向へ向けて突出している。また、掻き取り部(13)の半径方向先端には、内管(9)内面に生成される氷粒子(b)を掻き取るスクレーパ(23)が設けられている。スクレーパ(23)は、長方形状の板状体であり、その長手方向の両端が夫々、内管(9)の両端に至るように形成されている。   The scraping portion (13) is fixedly disposed on the outer peripheral surface of the rotating member (12) and protrudes in the radial direction of the rotating member (12). Further, a scraper (23) for scraping ice particles (b) generated on the inner surface of the inner tube (9) is provided at the radial tip of the scraping portion (13). The scraper (23) is a rectangular plate-like body and is formed so that both ends in the longitudinal direction thereof reach both ends of the inner tube (9).

貯氷タンク(4)は、内管(9)の内径と同径の円筒状に形成されており、製氷機(3)の内管(9)の上端に中心軸が縦向きとなるように連結されている。貯氷タンク(4)の中心軸の縦向きは、内管(9)と同様に、垂直から傾けた斜め方向も含む。貯氷タンク(4)と製氷機(3)の内管(9)との間には、氷粒子(b)が移動可能な氷流路(24)が形成されている。製氷機(3)と貯氷タンク(4)との連結手段は、例えば、ボルト等の固定部材を挙げることができる。また、貯氷タンク(4)の上部には、貯氷タンク(4)内の氷粒子(b)を遠心分離機(5)に移送するための管路(25)を備えている。管路(25)は、斜め下方に延びるように配設されている。   The ice storage tank (4) is formed in a cylindrical shape having the same diameter as the inner diameter of the inner pipe (9), and is connected to the upper end of the inner pipe (9) of the ice making machine (3) so that the central axis is vertically oriented. Has been. The vertical orientation of the central axis of the ice storage tank (4) includes an oblique direction inclined from the vertical as in the case of the inner pipe (9). Between the ice storage tank (4) and the inner pipe (9) of the ice making machine (3), an ice channel (24) in which ice particles (b) can move is formed. Examples of the connection means between the ice making machine (3) and the ice storage tank (4) include a fixing member such as a bolt. In addition, a pipe line (25) for transferring ice particles (b) in the ice storage tank (4) to the centrifuge (5) is provided at the upper part of the ice storage tank (4). The pipe line (25) is disposed so as to extend obliquely downward.

貯氷タンク(4)内の製氷機(3)の上方には、オーガ(26)が設けられている。オーガ(26)は、図3に示すように、円筒状の外筒状部(27)と、外筒状部(27)の内径よりも外径が小さい円筒状の内筒状部(28)とを有する。外筒状部(27)は、貯氷タンク(4)の中心軸と略同一軸心で回転可能に配設されている。外筒状部(27)の外周面(27a)には、図4、5に示すように、外筒状部(27)の回転方向(図1、2の矢印参照)とは逆方向に巻きながら軸方向に延びる外側スクリュー(29)が下端(27b)から上端(27c)まで形成されている。外側スクリュー(29)は、その外径方向側縁(29a)が貯氷タンク(4)の内面近傍まで延びて、外径方向側縁(29a)と貯氷タンク(4)の内面との間で微小隙間を形成している。   An auger (26) is provided above the ice making machine (3) in the ice storage tank (4). As shown in FIG. 3, the auger (26) includes a cylindrical outer cylindrical portion (27) and a cylindrical inner cylindrical portion (28) whose outer diameter is smaller than the inner diameter of the outer cylindrical portion (27). And have. The outer cylindrical portion (27) is rotatably disposed about the same axis as the central axis of the ice storage tank (4). As shown in FIGS. 4 and 5, the outer cylindrical portion (27) is wound around the outer peripheral surface (27 a) in the direction opposite to the rotation direction of the outer cylindrical portion (27) (see the arrows in FIGS. 1 and 2). However, an outer screw (29) extending in the axial direction is formed from the lower end (27b) to the upper end (27c). The outer screw (29) has an outer diameter side edge (29a) extending to the vicinity of the inner surface of the ice storage tank (4), and a minute amount between the outer diameter direction side edge (29a) and the inner surface of the ice storage tank (4). A gap is formed.

内筒状部(28)は、外筒状部(27)の内部に配設され、貯氷タンク(4)の中心軸と略同一軸心で回転可能となっている。内筒状部(28)の外周面(28a)には、図3、6に示すように、外側スクリュー(29)の巻き方向とは逆向きの円周方向に巻きながら軸方向に延びる内側スクリュー(30)が下端(28b)から上端(28c)まで形成されている。内側スクリュー(30)は、その外径方向側縁(29a)が全周に亘って外筒状部(27)の内周面(27d)に接触して固定されている。これにより、外筒状部(27)の内周面(27d)に内側スクリュー(30)が設けられる。   The inner cylindrical portion (28) is disposed inside the outer cylindrical portion (27) and is rotatable about the same axis as the central axis of the ice storage tank (4). On the outer peripheral surface (28a) of the inner cylindrical portion (28), as shown in FIGS. 3 and 6, an inner screw extending in the axial direction while being wound in a circumferential direction opposite to the winding direction of the outer screw (29). (30) is formed from the lower end (28b) to the upper end (28c). The inner screw (30) is fixed in contact with the inner peripheral surface (27d) of the outer cylindrical portion (27) at its outer diameter side edge (29a) over the entire circumference. Thus, the inner screw (30) is provided on the inner peripheral surface (27d) of the outer cylindrical portion (27).

内筒状部(28)は、貯氷タンク(4)の中心軸と略同軸に配設された攪拌軸(31)に嵌め込まれ、上端部のタップ孔(32)と下端部のタップ孔(33)にねじを差し込んで締め付けることにより、攪拌軸(31)に固定される。攪拌軸(31)は、蓋部材(14b)においてベアリングによって支持されており、貯氷タンク(4)の上に配設された攪拌用電動モータ(34)のモータ軸(35)とカップリング(36)を介して連結されている。これにより、オーガ(26)は、攪拌用電動モータ(34)の動力により、貯氷タンク(4)の中心軸と略同軸に回転可能となっている。   The inner cylindrical portion (28) is fitted into a stirring shaft (31) disposed substantially coaxially with the central axis of the ice storage tank (4), and the upper end tap hole (32) and the lower end tap hole (33). ) Is fixed to the stirring shaft (31) by inserting and tightening screws. The stirring shaft (31) is supported by a bearing on the lid member (14b), and is coupled to the motor shaft (35) of the stirring electric motor (34) disposed on the ice storage tank (4) (36). ). Thereby, the auger (26) can rotate substantially coaxially with the central axis of the ice storage tank (4) by the power of the stirring electric motor (34).

遠心分離機(5)は、図1に示すように、モータ(37)と、モータ軸(38)に連結された回転胴部(39)と、遠心分離作用により回転胴部(39)の外側に移送される濃縮液(c)を回収するタンク部(40)と、回転胴部(39)の内壁面(39a)とモータ軸(38)の間でスライド可能な氷掻き落し刃(41)とを有する。氷掻き落し刃(41)は、長方形状の板状体であり、その長手方向の両端が夫々、回転胴部(39)の上端と下端に至るように形成されている。   As shown in FIG. 1, the centrifuge (5) includes a motor (37), a rotating body part (39) connected to the motor shaft (38), and an outer side of the rotating body part (39) by centrifugal action. A tank part (40) for recovering the concentrated liquid (c) transferred to the surface, and an ice scraping blade (41) slidable between the inner wall surface (39a) of the rotating body part (39) and the motor shaft (38). And have. The ice scraping blade (41) is a rectangular plate-like body, and is formed so that both ends in the longitudinal direction thereof reach the upper end and the lower end of the rotating body (39), respectively.

上記のように構成された凍結濃縮装置(1)は、次のようにして動作する。   The freeze concentration apparatus (1) configured as described above operates as follows.

まず、貯蔵タンク(2)から非濃縮液(a)が供給管(16)を通って製氷機(3)の内管(9)内に移送される。内管(9)内に移送された非濃縮液(a)は、内管(9)内を上昇しながら冷媒流路(10)を流れる冷媒と熱交換しながら冷却されることにより、真水が氷結して氷粒子(b)と濃縮液(c)とからなる氷スラリーになる。濃縮液(c)よりも比重の軽い氷粒子(b)は、比重差によって内管(9)内を上昇し、氷粒子(b)よりも比重の重い濃縮液(c)は、比重差によって内管(9)内を下降する。これにより、氷粒子(b)と濃縮液(c)が分離される。このとき、分離された氷粒子(b)は、開口(15)から貯氷タンク(4)に排出される。一方、分離された濃縮液(c)は、排出管(17)から排出される間に冷媒と熱交換しながら冷却されてさらに濃縮され、排出管(17)を通って濃縮液回収タンク(7)に回収される。このとき、濃縮液(c)が氷粒子(b)から分離された状態で排出管(17)を通るので、氷粒子(b)による排出管(17)の閉塞が生じることがない。   First, the non-concentrated liquid (a) is transferred from the storage tank (2) through the supply pipe (16) into the inner pipe (9) of the ice making machine (3). The non-concentrated liquid (a) transferred into the inner pipe (9) is cooled while exchanging heat with the refrigerant flowing through the refrigerant flow path (10) while rising in the inner pipe (9), so that fresh water is It freezes to become an ice slurry consisting of ice particles (b) and concentrate (c). The ice particles (b) having a lighter specific gravity than the concentrated liquid (c) rise in the inner tube (9) due to the specific gravity difference, and the concentrated liquid (c) having a higher specific gravity than the ice particles (b) is caused by the specific gravity difference. The inside of the inner pipe (9) is lowered. As a result, the ice particles (b) and the concentrated liquid (c) are separated. At this time, the separated ice particles (b) are discharged from the opening (15) to the ice storage tank (4). On the other hand, the separated concentrated liquid (c) is cooled and further concentrated while exchanging heat with the refrigerant while being discharged from the discharge pipe (17), and then concentrated through the discharge pipe (17). ). At this time, since the concentrated liquid (c) is separated from the ice particles (b) and passes through the discharge pipe (17), the discharge pipe (17) is not blocked by the ice particles (b).

貯氷タンク(4)に排出された氷粒子(b)は、図1、2の矢印に示す円周方向にオーガ(26)を回転させることにより、オーガ(26)の外側スクリュー(29)の送り作用によって貯氷タンク(4)内のオーガ(26)の上方まで押し上げられる。これにより、内管(9)内の氷粒子(b)の排出が促進されるので、製氷機(3)で製造される氷スラリーの氷粒子(b)の割合を増加させても、製氷機(3)の掻き取り部(13)に氷粒子(b)による負荷がかかり難くなる。このため、製氷機(3)で製造される氷粒子(b)の割合を増加させることにより濃縮率を高めることができる。   The ice particles (b) discharged to the ice storage tank (4) are fed by the outer screw (29) of the auger (26) by rotating the auger (26) in the circumferential direction shown by the arrows in FIGS. By the action, it is pushed up above the auger (26) in the ice storage tank (4). As a result, the discharge of the ice particles (b) in the inner pipe (9) is promoted. The scraping part (13) of (3) is less likely to be loaded with ice particles (b). For this reason, a concentration rate can be raised by increasing the ratio of the ice particle (b) manufactured with an ice making machine (3).

オーガ(26)の上方まで押し上げられた氷粒子(b)は、落下して製氷機(3)の内管(9)内に戻ることが内側スクリュー(30)の上面(30a)で防がれる。一方、氷粒子(b)に付着している濃縮液(c)は、内側スクリュー(30)の上面(30a)に沿って移動して製氷機(3)の内管(9)内に戻る。   The ice particles (b) pushed up above the auger (26) are prevented from falling back into the inner pipe (9) of the ice making machine (3) by the upper surface (30a) of the inner screw (30). . On the other hand, the concentrate (c) adhering to the ice particles (b) moves along the upper surface (30a) of the inner screw (30) and returns into the inner pipe (9) of the ice making machine (3).

オーガ(26)の上方まで押し上げられた氷粒子(b)は、貯氷タンク(4)の上部に到達すると管路(25)に流入し、管路(25)を重力により流れ下り遠心分離機(5)に入る。遠心分離機(5)に入った氷粒子(b)は、回転胴部(39)内で遠心分離作用が及ぼされ、付着している濃縮液(c)が分離される。回転胴部(39)内の氷粒子(b)は、回転胴部(39)に溜まると、氷掻き落し刃(41)が回転胴部(39)の内壁面(39a)からモータ軸(38)に向かってスライドし、遠心分離機(5)の下方の氷回収タンク(8)に落とされて回収される。   When the ice particles (b) pushed up above the auger (26) reach the upper part of the ice storage tank (4), the ice particles (b) flow into the pipe (25), flow through the pipe (25) by gravity, and descend by a centrifugal separator ( 5) Enter. The ice particles (b) that have entered the centrifuge (5) are subjected to a centrifugal separation action in the rotating body (39), and the attached concentrated liquid (c) is separated. When the ice particles (b) in the rotating body (39) accumulate in the rotating body (39), the ice scraping blade (41) is moved from the inner wall surface (39a) of the rotating body (39) to the motor shaft (38). ) And dropped into an ice collection tank (8) below the centrifuge (5) to be collected.

一方、遠心分離作用により分離された濃縮液(c)は、タンク部(40)に回収された後、管路(42)を通って再貯蔵タンク(6)に貯えられる。再貯蔵タンク(6)に貯えられた濃縮液(c)は、貯蔵タンク(2)に移送されて再び貯蔵タンク(2)に貯えられた後、製氷機(3)に移送されて再濃縮される。このサイクルにより、製氷機(3)の開口(15)から排出された氷粒子(b)に付着している濃縮液(c)を再び製氷機(3)の内管(9)内に戻すことができるので、濃縮液(c)の回収率および濃縮率を向上させることができる。   On the other hand, the concentrated liquid (c) separated by the centrifugal separation action is collected in the tank section (40) and then stored in the re-storage tank (6) through the pipe line (42). The concentrated liquid (c) stored in the re-storage tank (6) is transferred to the storage tank (2) and stored again in the storage tank (2), and then transferred to the ice making machine (3) for re-concentration. The By this cycle, the concentrated liquid (c) adhering to the ice particles (b) discharged from the opening (15) of the ice making machine (3) is returned again into the inner pipe (9) of the ice making machine (3). Therefore, the recovery rate and concentration rate of the concentrated liquid (c) can be improved.

次に、本発明の第2実施形態の凍結濃縮装置(51)について説明する。
第2実施形態の凍結濃縮装置(51)は、第1実施形態の凍結濃縮装置の貯氷タンク(4)、再貯蔵タンク(6)を省略したものであり、第1実施形態の凍結濃縮装置よりも簡略化したものである。なお、第1実施形態の凍結濃縮装置(1)と対応する部分は、第1実施形態と同一の符号を付してその説明を省略する。
Next, the freeze concentration apparatus (51) of 2nd Embodiment of this invention is demonstrated.
The freeze concentration apparatus (51) of the second embodiment is obtained by omitting the ice storage tank (4) and the re-storage tank (6) of the freeze concentration apparatus of the first embodiment, than the freeze concentration apparatus of the first embodiment. Is also simplified. In addition, the part corresponding to the freeze concentration apparatus (1) of 1st Embodiment attaches | subjects the code | symbol same as 1st Embodiment, and abbreviate | omits the description.

凍結濃縮装置(51)は、図7に示すように、貯蔵タンク(2)と、製氷機(3)と、遠心分離機(5)と、濃縮液回収タンク(7)と、氷回収タンク(8)とを有する。この凍結濃縮装置(51)は、第1実施形態と同様に、全体が10℃以下に設定された保冷ボックス(図示省略)に入れた状態で運転される。また、凍結濃縮装置(51)は、製氷機(3)と遠心分離機(5)のみを保冷ボックスに入れることもできるが、少なくとも遠心分離機(5)が保冷ボックスに入れた状態であればよい。なお、符号52は、BRIX計などの濃度計測器であり、符号53、54は電磁弁である。   As shown in FIG. 7, the freeze concentration apparatus (51) includes a storage tank (2), an ice maker (3), a centrifuge (5), a concentrate recovery tank (7), an ice recovery tank ( 8). This freeze concentrator (51) is operated in a state where it is placed in a cold box (not shown) set to 10 ° C. or lower as in the first embodiment. In addition, the freeze concentrator (51) can put only the ice maker (3) and the centrifuge (5) in the cold box, but at least if the centrifuge (5) is in the cold box. Good. Reference numeral 52 is a concentration measuring device such as a BRIX meter, and reference numerals 53 and 54 are electromagnetic valves.

このように構成された凍結濃縮装置(51)は、貯蔵タンク(2)から非濃縮液(a)が供給管(16)を通って製氷機(3)の内管(9)内に移送される。内管(9)内に移送された非濃縮液(a)は、内管(9)内を上昇しながら冷媒流路(10)を流れる冷媒と熱交換しながら冷却されることにより、真水が氷結して氷粒子(b)と濃縮液(c)とからなる氷スラリーになる。濃縮液(c)よりも比重の軽い氷粒子(b)は、比重差によって内管(9)内を上昇することで、開口(15)からの排出が促進される。これにより、内管(9)内の氷粒子(b)が取り除かれる。一方、氷粒子(b)よりも比重の重い濃縮液(c)は、比重差によって内管(9)内を下降して氷粒子(b)から分離され、排出管(17)から排出される間に冷媒と熱交換しながら冷却されてさらに濃縮され、排出管(17)を通って濃縮液回収タンク(7)に回収される。   In the freeze concentrating device (51) thus configured, the non-concentrated liquid (a) is transferred from the storage tank (2) through the supply pipe (16) into the inner pipe (9) of the ice making machine (3). The The non-concentrated liquid (a) transferred into the inner pipe (9) is cooled while exchanging heat with the refrigerant flowing through the refrigerant flow path (10) while rising in the inner pipe (9), so that fresh water is It freezes to become an ice slurry consisting of ice particles (b) and concentrate (c). The ice particles (b) having a lighter specific gravity than the concentrated liquid (c) rise in the inner tube (9) due to the difference in specific gravity, thereby promoting discharge from the opening (15). Thereby, the ice particles (b) in the inner tube (9) are removed. On the other hand, the concentrated liquid (c) having a higher specific gravity than the ice particles (b) descends in the inner pipe (9) due to the specific gravity difference, is separated from the ice particles (b), and is discharged from the discharge pipe (17). The refrigerant is further cooled and concentrated while exchanging heat with the refrigerant, and then collected through the discharge pipe (17) into the concentrate collection tank (7).

開口(15)から排出された氷粒子(b)は、手作業により遠心分離機(5)に移送する。遠心分離機(5)に入った氷粒子(b)は、回転胴部(39)内で遠心分離作用が及ぼされ、付着している濃縮液(c)が分離される。回転胴部(39)内の氷粒子(b)は、回転胴部(39)に溜まると、氷掻き落し刃(41)が回転胴部(39)の内壁面(39a)からモータ軸(38)に向かってスライドし、遠心分離機(5)の下方の氷回収タンク(8)に落とされて回収される。   The ice particles (b) discharged from the opening (15) are transferred manually to the centrifuge (5). The ice particles (b) that have entered the centrifuge (5) are subjected to a centrifugal separation action in the rotating body (39), and the attached concentrated liquid (c) is separated. When the ice particles (b) in the rotating body (39) accumulate in the rotating body (39), the ice scraping blade (41) is moved from the inner wall surface (39a) of the rotating body (39) to the motor shaft (38). ) And dropped into an ice collection tank (8) below the centrifuge (5) to be collected.

遠心分離作用により分離された濃縮液(c)は、タンク部(40)に回収され、その濃度が目標値に達している場合は、電磁弁(53)を経て濃縮液回収タンク(7)に回収される。濃縮液(c)の濃度が目標値に達しない場合には、電磁弁(53、54)を切り換えて、製氷機(3)の内管(9)内に濃縮液(c)を移送して、再び冷却させる濃縮工程を繰り返すこともできる。   The concentrated liquid (c) separated by the centrifugal separation action is recovered in the tank section (40), and when the concentration reaches the target value, it passes through the electromagnetic valve (53) to the concentrated liquid recovery tank (7). Collected. When the concentration of the concentrate (c) does not reach the target value, the solenoid valve (53, 54) is switched to transfer the concentrate (c) into the inner pipe (9) of the ice making machine (3). The concentration step of cooling again can be repeated.

以下、本発明に係る凍結濃縮装置(1、51)に関する実施例を示すことにより、本発明の効果をより明確なものとする。但し、本発明は、以下の実施例に限定されるものではない。   Hereinafter, the effect of the present invention will be made clearer by showing examples relating to the freeze concentration apparatus (1, 51) according to the present invention. However, the present invention is not limited to the following examples.

(株)岡林農園(高知県高岡郡越知町)から入手した文旦の絞汁を上記凍結濃縮装置(1)で濃縮した。濃縮後の文旦搾汁は、凍結濃縮装置(1)で所定時間濃縮して製氷機(3)の内管(9)内から濃縮液(c)を取り出し、これを濃縮時間の短い方から順に実施例1〜5の試料とした。これら実施例1〜5の試料の濃度は、下記に示す濃度分析方法により求めた。また、実施例で使用した濃縮前の文旦搾汁を比較例とし、その濃度も下記に示す濃度分析方法により求めた。分析した項目は、文旦搾汁の主な成分である有機酸(リンゴ酸、クエン酸)、遊離糖(フルクトース、グルコース、スクロース)、アスコルビン酸、フラバノン類(ナリンギン、ヘスペリジン)、リモノイド類(リモニン)、アミノ酸である。実施例1〜5と比較例の文旦搾汁中の主要成分の濃度は、溶液中に溶存している固形分の重量%濃度であるBrix値で示した。その結果を表1、2に示した。なお、Brix値よりも広い概念である、溶液中に溶存している溶質の重量%濃度で濃度を示してもよい。以下、それぞれの成分について、詳細に濃度分析方法を説明する。   Bundan juice obtained from Okabayashi Farm Co., Ltd. (Ochi-cho, Takaoka-gun, Kochi Prefecture) was concentrated with the freeze concentration apparatus (1). The concentrated Bundan squeezed juice is concentrated for a predetermined time by the freeze concentration device (1), and the concentrated liquid (c) is taken out from the inner tube (9) of the ice making machine (3). Samples of Examples 1 to 5 were used. The density | concentration of the sample of these Examples 1-5 was calculated | required with the density | concentration analysis method shown below. Moreover, the Bundan squeezed juice before concentration used in the examples was used as a comparative example, and the concentration was also determined by the concentration analysis method shown below. Analyzed items are organic acids (malic acid, citric acid), free sugars (fructose, glucose, sucrose), ascorbic acid, flavanones (naringin, hesperidin), limonoids (limonin), which are the main components of Bundan Juice An amino acid. The concentration of the main component in the Bundan squeezes of Examples 1 to 5 and the comparative example was indicated by the Brix value, which is the concentration by weight of the solid content dissolved in the solution. The results are shown in Tables 1 and 2. In addition, you may show a density | concentration by the weight% density | concentration of the solute dissolved in the solution which is a concept wider than a Brix value. Hereinafter, the concentration analysis method will be described in detail for each component.

(1)有機酸分析
ろ紙によりろ過した文旦搾汁(試料)を超純水(MQ水)で10倍希釈し、0.45μmのフィルターに通過させた後、ポストカラム方式のHPLC装置に注入した。標準の有機酸試薬で得られたクロマトグラムのピーク面積値と試料で得られた値とを用いることにより、試料中の有機酸濃度を算出した。HPLC条件は、カラム Shodex Rspak KC-LG+KC-811(φ8.0×300mm)、カラム温度50℃、移動相1.0mM HClO4、移動相流速1.0mL/min、反応試薬 1/10 ST3-R、反応試薬流速0.5mL/min、検出波長430nm、注入量10μLである。
(1) Organic acid analysis Bundan juice (sample) filtered through filter paper was diluted 10-fold with ultrapure water (MQ water), passed through a 0.45 μm filter, and then injected into a post-column HPLC apparatus. . The concentration of the organic acid in the sample was calculated by using the peak area value of the chromatogram obtained with the standard organic acid reagent and the value obtained with the sample. HPLC conditions are as follows: Column Shodex Rspak KC-LG + KC-811 (φ8.0 × 300 mm), column temperature 50 ° C., mobile phase 1.0 mM HClO 4 , mobile phase flow rate 1.0 mL / min, reaction reagent 1/10 ST3-R The reaction reagent flow rate is 0.5 mL / min, the detection wavelength is 430 nm, and the injection volume is 10 μL.

(2)遊離糖分析
ろ紙によりろ過した文旦搾汁(試料)を超純水(MQ水)で10倍希釈し、0.45μmのフィルターに通過させた後、HPLC装置(ウォーターズ製デルタ600システム)に注入した。標準の糖類試薬で得られたクロマトグラムのピーク面積値と試料で得られた値とを用いることにより、試料中の遊離糖の濃度を算出した。HPLC条件は、カラム Shodex Asahipak NH2P-50 4E(φ4.6×250mm)、カラム温度30℃、移動相75%アセトニトリル、移動相流速1.0mL/min、検出器RI、注入量10μLである。
(2) Free sugar analysis Bundan juice (sample) filtered through filter paper was diluted 10-fold with ultrapure water (MQ water), passed through a 0.45 μm filter, and then HPLC apparatus (Delta 600 system manufactured by Waters) Injected into. The concentration of free sugar in the sample was calculated by using the peak area value of the chromatogram obtained with the standard saccharide reagent and the value obtained with the sample. HPLC conditions are a column Shodex Asahipak NH2P-50 4E (φ4.6 × 250 mm), a column temperature of 30 ° C., a mobile phase of 75% acetonitrile, a mobile phase flow rate of 1.0 mL / min, a detector RI, and an injection volume of 10 μL.

(3)アスコルビン酸分析
ろ紙によりろ過した文旦搾汁(試料)をホモシステイン還元法で処理した後、0.2μmのフィルターに通過させた後、HPLC装置(日本分光製X-LCシステム)に注入した。標準のアスコルビン酸試薬で得られたクロマトグラムのピーク面積値と試料で得られた値とを用いることにより、試料中の総アスコルビン酸濃度を算出した。HPLC条件は、カラム Phenomenex LUNA NH2(φ3.0×50mm、3μm)、カラム温度40℃、移動相50mmol/L トリエタノールアミン−リン酸塩緩衝液(pH2.2)/アセトニトリル=15/85(v/v)、移動相流速0.8mL/min、検出波長240nm、注入量1.0μLである。
(3) Ascorbic acid analysis Bundan squeezed juice (sample) filtered through filter paper was treated with the homocysteine reduction method, passed through a 0.2 μm filter, and then injected into an HPLC apparatus (X-LC system manufactured by JASCO Corporation). did. The total ascorbic acid concentration in the sample was calculated by using the peak area value of the chromatogram obtained with the standard ascorbic acid reagent and the value obtained with the sample. HPLC conditions were as follows: column Phenomenex LUNA NH 2 (φ3.0 × 50 mm, 3 μm), column temperature 40 ° C., mobile phase 50 mmol / L triethanolamine-phosphate buffer (pH 2.2) / acetonitrile = 15/85 ( v / v), mobile phase flow rate 0.8 mL / min, detection wavelength 240 nm, injection volume 1.0 μL.

(4)フラバノン類分析
ろ紙によりろ過した文旦搾汁(試料)を60%アセトニトリルによって任意の割合で希釈し、0.2μmのフィルターに通過させた後、HPLC装置(日本分光製X-LCシステム)に注入した。標準試薬で得られたクロマトグラムのピーク面積値と試料で得られた値とを用いることにより、試料中のナリンギンとヘスペリジンの各濃度を算出した。HPLC条件は、カラム COSMOSIL 2.5C18-MS-II(φ3.0×75mm、2.5μm)、カラム温度35℃、移動相A10mmol/L ギ酸アンモニウム緩衝液(pH3.7)/アセトニトリル=9/1(v/v)、移動相B10mmol/L ギ酸アンモニウム緩衝液(pH3.7)/アセトニトリル=2/8(v/v)、グラジエント条件0%B(0min)→50%B(7.0min)→100%B(7.55min)→100%B(8.0min)、移動相流速0.7mL/min、検出波長285nm、注入量1.0μLである。
(4) Flavanone Analysis Bundan Juice (sample) filtered with filter paper is diluted with 60% acetonitrile at an arbitrary ratio, passed through a 0.2 μm filter, and then HPLC apparatus (X-LC system manufactured by JASCO Corporation) Injected into. Using the peak area value of the chromatogram obtained with the standard reagent and the value obtained with the sample, the concentrations of naringin and hesperidin in the sample were calculated. HPLC conditions were: column COSMOSIL 2.5C 18 -MS-II (φ3.0 × 75 mm, 2.5 μm), column temperature 35 ° C., mobile phase A 10 mmol / L ammonium formate buffer (pH 3.7) / acetonitrile = 9/1 ( v / v), mobile phase B 10 mmol / L ammonium formate buffer (pH 3.7) / acetonitrile = 2/8 (v / v), gradient condition 0% B (0 min) → 50% B (7.0 min) → 100% B (7.55 min) → 100% B (8.0 min), mobile phase flow rate 0.7 mL / min, detection wavelength 285 nm, injection volume 1.0 μL.

(5)リモノイド分析
ろ紙によりろ過した文旦搾汁(試料)を固相抽出カートリッジ(アジレント製Excelpak SPE-ENV/124、8mL、250mg)に適用し、60%メタノールで洗浄後、90%メタノールで溶出した。この溶出液を0.2μmのフィルターに通過させた後、HPLC装置(日本分光製X-LCシステム)に注入した。標準試薬で得られたクロマトグラムのピーク面積値と試料で得られた値とを用いることにより、試料中のリモニン濃度を算出した。HPLC条件:カラム Zorbax Eclipse Plus C18 Rapid Resolution HT 600Bar(φ3.0×50mm、1.8μm)、カラム温度30℃、移動相60%アセトニトリル、移動相流量0.4mL/min、検出波長210nm、注入量1.0μLである。
(5) Limonoid analysis Bundan juice (sample) filtered through filter paper was applied to a solid-phase extraction cartridge (Excelpak SPE-ENV / 124, 8 mL, 250 mg manufactured by Agilent), washed with 60% methanol, and eluted with 90% methanol. did. The eluate was passed through a 0.2 μm filter and then injected into an HPLC apparatus (X-LC system manufactured by JASCO Corporation). The limonin concentration in the sample was calculated by using the peak area value of the chromatogram obtained with the standard reagent and the value obtained with the sample. HPLC conditions: Column Zorbax Eclipse Plus C18 Rapid Resolution HT 600Bar (φ3.0 × 50mm, 1.8μm), column temperature 30 ° C, mobile phase 60% acetonitrile, mobile phase flow rate 0.4mL / min, detection wavelength 210nm, injection volume 1.0μL It is.

(6)アミノ酸分析
ろ紙によりろ過した文旦搾汁(試料)を超純水(MQ水)で50倍希釈し、0.2μmのフィルターに通過させた。このろ過試料をウォーターズ製AccQ・Tag Ultra誘導体化試薬キットでラベル化した後、HPLC装置(ウォーターズ製UPLCシステム)に注入した。標準アミノ酸で得られたクロマトグラムのピーク面積値と試料で得られた値とを用いることにより、試料中のアミノ酸濃度を算出した。HPLC条件は、カラム AccQ・TagTM Ultraカラム(φ2.1×100mm、1.7μm)、カラム温度60℃、移動相AccQ・Tag Ultra専用溶媒A及びB、移動相流量0.7mL/min、測定波長260nm、注入量1.0μLである。
(6) Amino acid analysis Bundan juice (sample) filtered through filter paper was diluted 50-fold with ultrapure water (MQ water) and passed through a 0.2 μm filter. The filtered sample was labeled with a Waters AccQ • Tag Ultra derivatization reagent kit and then injected into an HPLC apparatus (Waters UPLC system). The amino acid concentration in the sample was calculated by using the peak area value of the chromatogram obtained with the standard amino acid and the value obtained with the sample. HPLC conditions are: Column AccQ • Tag Ultra column (φ2.1 × 100 mm, 1.7 μm), column temperature 60 ° C., mobile phase AccQ • Tag Ultra dedicated solvents A and B, mobile phase flow rate 0.7 mL / min, measurement wavelength 260 nm The injection volume is 1.0 μL.

Figure 0005531262
Figure 0005531262

Figure 0005531262
Figure 0005531262

上記凍結濃縮装置(1)で文旦搾汁を濃縮した結果、表1、2に示すように、文旦搾汁のBrix値が13.2(実施例1)、19.0(実施例2)、23.2(実施例3)、34.9(実施例4)、38.7(実施例5)となった。これより、文旦搾汁は、濃縮前から約1.2倍〜約3.5倍に濃縮されたことが分かる。   As a result of concentrating the Bundan juice in the freeze concentration apparatus (1), as shown in Tables 1 and 2, the Brix value of the Bundan juice was 13.2 (Example 1), 19.0 (Example 2), It became 23.2 (Example 3), 34.9 (Example 4), and 38.7 (Example 5). From this, it can be seen that Bundan Juice was concentrated about 1.2 times to about 3.5 times before the concentration.

また、文旦搾汁中の各成分は、表1、表2に示すように、Brix値の増加割合とほぼ同じ割合で濃度がいずれも増加しているので、上記Brix値の範囲において、析出や成分変化が生じていないことが分かる。従って、上記凍結濃縮装置(1)は、文旦搾汁を原液果汁から約3.5倍濃縮しても風味を損なわない。   In addition, as shown in Tables 1 and 2, each component in Bunju Juice increases in concentration at almost the same rate as the increase rate of Brix value, so in the range of Brix value, precipitation and It turns out that the component change has not arisen. Therefore, the freeze concentration apparatus (1) does not impair the flavor even if the Bundan juice is concentrated about 3.5 times from the undiluted juice.

次に、第1実施形態の凍結濃縮装置(1)と第2実施形態の凍結濃縮装置(51)をそれぞれ使用して同じ文旦搾汁の濃縮処理を行なうことにより、オーガ(26)の有無による文旦搾汁のBrix値の変化を調べた。Brix値は、以下に示す方法で算出した。製氷機(3)で製造される氷粒子(b)の割合を増加させていき、増加した氷粒子(b)によって製氷機(3)の掻き取り部(13)にかかる負荷が一定以上になったときに運転を停止し、このときの内管(9)内の濃縮液(c)を採取して、上記と同様の濃度分析方法によりBrix値を算出した。Brix値の算出は、オーガ(26)有りの場合(第1実施形態の凍結濃縮装置(1)を用いる場合)とオーガ(26)無しの場合(第2実施形態の凍結濃縮装置(51)を用いる場合)でそれぞれ3回ずつ行なった。その結果を表3に示した。なお、運転の停止は、掻き取り部(13)にかかる負荷が一定以上になったときに、モータ(19)の焼き付きを防止するサーモスタットが作動するようにして行なった。   Next, by using the freeze concentration device (1) of the first embodiment and the freeze concentration device (51) of the second embodiment, respectively, the same bundan juice is concentrated, depending on the presence or absence of the auger (26). The change in Brix value of Judan Juice was examined. The Brix value was calculated by the following method. The proportion of ice particles (b) produced by the ice making machine (3) is increased, and the load applied to the scraping part (13) of the ice making machine (3) by the increased ice particles (b) becomes a certain level or more. Then, the operation was stopped, and the concentrated liquid (c) in the inner tube (9) at this time was collected, and the Brix value was calculated by the same concentration analysis method as described above. The calculation of the Brix value is performed when the auger (26) is provided (when the freeze concentration apparatus (1) of the first embodiment is used) and when the auger (26) is not provided (the freeze concentration apparatus (51) of the second embodiment). In the case of use). The results are shown in Table 3. The operation was stopped by operating a thermostat that prevents the motor (19) from seizing when the load applied to the scraper (13) exceeds a certain level.

Figure 0005531262
Figure 0005531262

表3に示すように、Brix値は、オーガ(26)有りの場合がオーガ(26)無しの場合よりも、いずれも約1.13倍増加したことが確認される。したがって、オーガ(26)を製氷機(3)の上方に配置すると、文旦の搾汁をさらに高濃度とできることが分かる。また、文旦の搾汁は、オーガ(26)有りの場合だと、約3.7倍濃縮されていることが確認される。したがって、文旦の搾汁は、製氷機(3)の掻き取り部(13)にかかる負荷を過大にすることなく、安定して3倍以上濃縮できることが分かる。なお、Brix値は、オーガ(26)無しの場合でも、約3.3倍濃縮されていることが分かる。   As shown in Table 3, it is confirmed that the Brix value increased about 1.13 times in the case with the auger (26) than in the case without the auger (26). Therefore, when the auger (26) is arranged above the ice making machine (3), it can be seen that the concentration of jujuda juice can be further increased. Moreover, it is confirmed that the bunju squeezed juice is about 3.7 times concentrated when there is an auger (26). Therefore, it can be seen that Buntan's squeezed juice can be stably concentrated three times or more without increasing the load on the scraping part (13) of the ice making machine (3). Note that the Brix value is concentrated about 3.3 times even without the auger (26).

次に、製氷機(3)で濃縮される濃縮液(c)の回収率を調べるため、上記凍結濃縮装置(1)により以下の実験を行なった。まず、製氷機(3)の内管(9)の上端から排出される氷粒子(b)を遠心分離機(5)に移送し、氷粒子(b)に付着している濃縮液(c)と氷粒子(b)とを遠心分離作用により分離した。次に、分離された氷粒子(b)を融解させたときのBrix値を上記と同様の濃度分析方法により算出し、このBrix値と、濃縮試験前の文旦搾汁のBrix値とを比較して回収率を算出した。この操作を7回行なった。その結果を表4に示す。   Next, in order to examine the recovery rate of the concentrated liquid (c) concentrated by the ice making machine (3), the following experiment was performed using the freeze concentration apparatus (1). First, the ice particles (b) discharged from the upper end of the inner pipe (9) of the ice making machine (3) are transferred to the centrifuge (5), and the concentrate (c) adhering to the ice particles (b). And ice particles (b) were separated by centrifugation. Next, the Brix value when the separated ice particles (b) are melted is calculated by the same concentration analysis method as described above, and this Brix value is compared with the Brix value of Bundan Juice before the concentration test. The recovery rate was calculated. This operation was performed 7 times. The results are shown in Table 4.

Figure 0005531262
Figure 0005531262

表4に示すように、製氷機(3)の内管(9)の上端から排出される氷粒子(b)と、この氷粒子(b)に付着している濃縮液(c)を遠心分離機(5)で分離することにより、濃縮液(c)の回収率を90%以上とできることが確認された。   As shown in Table 4, the ice particles (b) discharged from the upper end of the inner pipe (9) of the ice making machine (3) and the concentrated liquid (c) adhering to the ice particles (b) are centrifuged. It was confirmed that the recovery rate of the concentrated liquid (c) can be 90% or more by separating with the machine (5).

上記実施例では、非濃縮液(a)として文旦の搾汁を凍結濃縮装置(1)により濃縮したが、非濃縮液(a)として、りんご、柚子、生姜などの搾汁や、かつおの出汁、バイオエタノール等のアルコール類、牛乳などについても、上記と同様の方法により凍結濃縮装置(1、51)により濃縮することができる。この場合、いずれについても、非濃縮液(a)の重量%濃度の3倍〜3.5倍まで濃縮することができる。   In the above embodiment, the bunjou juice was concentrated as the non-concentrated liquid (a) by the freeze concentration apparatus (1), but as the non-concentrated liquid (a), juices such as apples, eggplants, ginger, etc. Alcohols such as bioethanol, milk and the like can also be concentrated by the freeze concentration apparatus (1, 51) by the same method as described above. In this case, in any case, it can be concentrated to 3 to 3.5 times the weight% concentration of the non-concentrated liquid (a).

また、非濃縮液(a)としてバイオエタノールを用いる場合、上記凍結濃縮装置(1、51)は、バイオエタノールの蒸留工程の前工程で使用すると、蒸留にかかるエネルギーを飛躍的に低減することができるので好ましい。   When bioethanol is used as the non-concentrated liquid (a), the freeze concentration apparatus (1, 51) can drastically reduce the energy required for distillation when used in the pre-process of the bioethanol distillation process. It is preferable because it is possible.

3 製氷機
4 貯氷タンク
5 遠心分離機
9 内管
10 冷媒流路
11 外管
12 回転部材
13 掻き取り部
15 開口
16 供給管
17 排出管
24 氷流路
26 オーガ
27 筒状部
27a 外周面
27d 内周面
29 外側スクリュー
30 内側スクリュー
a 非濃縮液
b 氷粒子
c 濃縮液
3 ice making machine 4 ice storage tank 5 centrifuge 9 inner pipe 10 refrigerant flow path 11 outer pipe 12 rotating member 13 scraping part 15 opening 16 supply pipe 17 discharge pipe 24 ice flow path 26 auger 27 cylindrical part 27a outer peripheral surface 27d inside Peripheral surface 29 Outer screw 30 Inner screw a Non-concentrated liquid b Ice particle c Concentrated liquid

Claims (2)

非濃縮液を供給するための供給管及び生成された濃縮液を排出するための排出管を備える内管と、その内管の外周面との間に冷媒流路となる空間を有して内管の外周面を覆う外管と、前記内管内部に回転可能に配設された回転部材と、その回転部材の外周面から半径方向に突出して前記内管の内面に生成する氷粒子を掻き取るための掻き取り部とを備える製氷機を有し、
前記製氷機は前記内管が縦向きとなるように支持され、前記内管は下部が閉塞され、上部に開口が形成され、前記内管内に生成する氷粒子は比重差によって内管内を上昇して前記開口から排出され、前記内管内で濃縮された濃縮液は比重差によって内管内を下降することで前記氷粒子と分離して前記排出管から排出されるようにし
前記製氷機の内管の上端に筒状の貯氷タンクを連結して、前記貯氷タンクと前記内管との間で前記氷粒子が移動可能な氷流路を形成し
前記貯氷タンク内の前記製氷機の上方に、前記貯氷タンクの中心軸と略同一軸心で回転する筒状部と、その筒状部の外周面に設けられ、前記筒状部の回転方向とは逆方向に巻きながら軸方向に延びる外側スクリューとを備えるオーガを設け、
前記オーガは、前記筒状部の内周面に、前記外側スクリューの巻き方向とは逆方向に巻きながら軸方向に延びる内側スクリューを設けた、
ことを特徴とする凍結濃縮装置。
An internal pipe having a supply pipe for supplying the non-concentrated liquid and a discharge pipe for discharging the produced concentrated liquid and an outer peripheral surface of the inner pipe having a space serving as a refrigerant flow path An outer tube that covers the outer peripheral surface of the tube, a rotating member that is rotatably disposed inside the inner tube, and scrapes ice particles that protrude radially from the outer peripheral surface of the rotating member and that are generated on the inner surface of the inner tube. Having an ice making machine with a scraping part for removing,
The ice making machine is supported so that the inner pipe is oriented vertically, the lower part of the inner pipe is closed, an opening is formed in the upper part, and the ice particles generated in the inner pipe rise in the inner pipe due to the difference in specific gravity. The concentrated liquid discharged from the opening and concentrated in the inner pipe descends in the inner pipe due to the difference in specific gravity so as to be separated from the ice particles and discharged from the discharge pipe ,
A cylindrical ice storage tank is connected to the upper end of the inner pipe of the ice making machine to form an ice channel through which the ice particles can move between the ice storage tank and the inner pipe.
Above the ice making machine in the ice storage tank, a cylindrical portion that rotates about the same axis as the central axis of the ice storage tank, provided on the outer peripheral surface of the cylindrical portion, and the rotation direction of the cylindrical portion Provides an auger with an outer screw extending in the axial direction while winding in the opposite direction,
The auger is provided with an inner screw that extends in the axial direction while being wound in the direction opposite to the winding direction of the outer screw on the inner peripheral surface of the cylindrical portion.
The freeze concentration apparatus characterized by the above-mentioned.
前記開口から排出された氷粒子を遠心分離機に移送し、その遠心分離機の遠心分離作用を前記氷粒子に及ぼすことにより、前記氷粒子に付着している濃縮液を前記氷粒子から分離するようにしたことを特徴とする請求項1に記載の凍結濃縮装置。 The ice particles discharged from the opening are transferred to a centrifuge, and the concentrated solution adhering to the ice particles is separated from the ice particles by exerting the centrifugal action of the centrifuge on the ice particles. The freeze concentrating apparatus according to claim 1, which is configured as described above.
JP2011184041A 2011-08-25 2011-08-25 Freeze concentrator Active JP5531262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011184041A JP5531262B2 (en) 2011-08-25 2011-08-25 Freeze concentrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011184041A JP5531262B2 (en) 2011-08-25 2011-08-25 Freeze concentrator

Publications (2)

Publication Number Publication Date
JP2013044492A JP2013044492A (en) 2013-03-04
JP5531262B2 true JP5531262B2 (en) 2014-06-25

Family

ID=48008538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011184041A Active JP5531262B2 (en) 2011-08-25 2011-08-25 Freeze concentrator

Country Status (1)

Country Link
JP (1) JP5531262B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016194391A1 (en) * 2015-06-04 2016-12-08 株式会社垣内 Centrifuge and freeze concentration apparatus provided with same
KR20190136901A (en) * 2018-05-31 2019-12-10 저지앙 빙리거 일렉트로 메커니컬 컴퍼니 리미티드 Scraper assembly for evaporator of ice machine and evaporator of ice machine

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5382659A (en) * 1976-12-28 1978-07-21 Hoshizaki Electric Co Ltd Method and apparatus for separating solution by freezing and pressing
NL8902621A (en) * 1989-10-23 1991-05-16 Grasso Koninkl Maschf METHOD FOR MANUFACTURING CONCENTRATED NUTRIENT LIQUIDS
JPH05328901A (en) * 1991-10-17 1993-12-14 T Hasegawa Co Ltd Preparation of concentrated tea extract
JP3728519B2 (en) * 1997-07-10 2005-12-21 株式会社前川製作所 Freeze concentration method and apparatus
JP4062374B2 (en) * 1997-07-10 2008-03-19 株式会社前川製作所 Ice maker
JP2000258005A (en) * 1999-03-11 2000-09-22 Hokuriku Electric Power Co Inc:The Method and system for making and carrying granular ice
JP4306018B2 (en) * 1999-03-19 2009-07-29 カゴメ株式会社 Freeze concentrator
JP2002357379A (en) * 2001-05-31 2002-12-13 Hokuriku Electric Power Co Inc:The Dewatering method of grain ice and apparatus therefor
CN101668574B (en) * 2007-06-20 2013-05-08 纳格祖那能量私人有限公司 Process and apparatus for concentrating dilute solution

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016194391A1 (en) * 2015-06-04 2016-12-08 株式会社垣内 Centrifuge and freeze concentration apparatus provided with same
JPWO2016194391A1 (en) * 2015-06-04 2018-05-31 株式会社垣内 Centrifuge and freeze concentration apparatus equipped with the same
KR20190136901A (en) * 2018-05-31 2019-12-10 저지앙 빙리거 일렉트로 메커니컬 컴퍼니 리미티드 Scraper assembly for evaporator of ice machine and evaporator of ice machine
KR102184725B1 (en) 2018-05-31 2020-12-01 저지앙 빙리거 일렉트로 메커니컬 컴퍼니 리미티드 Scraper assembly for evaporator of ice machine and evaporator of ice machine

Also Published As

Publication number Publication date
JP2013044492A (en) 2013-03-04

Similar Documents

Publication Publication Date Title
Ding et al. Concentration of apple juice with an intelligent freeze concentrator
Campillo et al. Ten years of dispersive liquid–liquid microextraction and derived techniques
Miyawaki et al. Yield improvement in progressive freeze-concentration by partial melting of ice
Viñas et al. Recent achievements in solidified floating organic drop microextraction
Saraji et al. Recent developments in dispersive liquid–liquid microextraction
JP5531262B2 (en) Freeze concentrator
JP4840513B2 (en) Preparative purification equipment
US4314455A (en) Freeze concentration apparatus and process
Qin et al. Freeze concentration of apple juice followed by centrifugation of ice packed bed
FR2836396A1 (en) METHOD AND DEVICE FOR CHROMATOGRAPHY WITH SOLVENT RECOVERY
US7357260B2 (en) Solid material separator
FR3074425A1 (en) DEVICE FOR EXTRACTING AND SEPARATING VOLATILE AND NON-VOLATILE COMPOUNDS FROM BIOLOGICAL MATERIAL AND ASSOCIATED METHOD
CN201073563Y (en) High-efficiency energy-saving device integrating and concentrating
US4457769A (en) Freeze concentration apparatus and process
Wang et al. A solidified floating organic drop-dispersive liquid–liquid microextraction based on in situ formed fatty acid-based deep eutectic solvents for the extraction of benzophenone-UV filters from water samples
Shadabi et al. Selective separation of essential phenolic compounds from olive oil mill wastewater using a bulk liquid membrane
CN103405942A (en) Novel suspension type freeze concentration equipment
Shalmashi et al. Subcritical water extraction of caffeine from black tea leaf of Iran
Dette et al. Freeze concentration of black currant juice
CN215427359U (en) Ageing mother liquor recovery processing device
Loh et al. Simple extraction of bisphenol A in beverages and water by membrane-protected liquid phase microextraction
BE565928A (en)
CN211799323U (en) Chemical industry ionic liquid purification device
CN108949232B (en) A kind of slag lasaxing Oilfield system
Hamedfar et al. Deep eutectic solvent-based microwave-assisted extraction combined with in-syringe homogenous liquid–liquid microextraction of chloramphenicol and florfenicol from chicken meat

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140203

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140324

R150 Certificate of patent or registration of utility model

Ref document number: 5531262

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250