JP5530904B2 - Heat pump type hot water generator - Google Patents

Heat pump type hot water generator Download PDF

Info

Publication number
JP5530904B2
JP5530904B2 JP2010258463A JP2010258463A JP5530904B2 JP 5530904 B2 JP5530904 B2 JP 5530904B2 JP 2010258463 A JP2010258463 A JP 2010258463A JP 2010258463 A JP2010258463 A JP 2010258463A JP 5530904 B2 JP5530904 B2 JP 5530904B2
Authority
JP
Japan
Prior art keywords
temperature side
heat exchanger
refrigeration cycle
high temperature
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010258463A
Other languages
Japanese (ja)
Other versions
JP2012107836A (en
Inventor
満 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2010258463A priority Critical patent/JP5530904B2/en
Publication of JP2012107836A publication Critical patent/JP2012107836A/en
Application granted granted Critical
Publication of JP5530904B2 publication Critical patent/JP5530904B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、二元冷凍サイクル装置に関する。   The present invention relates to a binary refrigeration cycle apparatus.

ヒートポンプ式高温水発生機において、高温の温水を発生させるために、高温側冷凍サイクルと低温側冷凍サイクルを備えた二元冷凍サイクルが用いられることがある。   In a heat pump type hot water generator, a binary refrigeration cycle having a high temperature side refrigeration cycle and a low temperature side refrigeration cycle may be used to generate high temperature hot water.

ここで、空気熱源のヒートポンプ式高温水発生機においては、外気温度が低い場合など、運転状態によって、空気側熱交換器に霜が着いてしまう。このため、適正な加熱運転を維持するために、霜を取り除くこと(除霜)が不可欠となる。   Here, in the heat pump type hot water generator of the air heat source, frost is formed on the air-side heat exchanger depending on the operation state such as when the outside air temperature is low. For this reason, in order to maintain a proper heating operation, it is indispensable to remove frost (defrosting).

この空気熱源のヒートポンプ式装置における一般的な除霜方式は「逆サイクルデフロスト」である。そして、二元冷凍サイクル装置の場合、高温側冷凍サイクルと低温側冷凍サイクルともに、四方切換弁を用いた機器構成が知られている(例えば、特許文献1参照)。   A general defrosting method in the heat pump type device of this air heat source is “reverse cycle defrost”. In the case of a dual refrigeration cycle apparatus, a device configuration using a four-way switching valve is known for both the high temperature side refrigeration cycle and the low temperature side refrigeration cycle (see, for example, Patent Document 1).

特開昭59−38568号公報JP 59-38568

しかしながら、特開昭59−38568号公報に開示されている二元冷凍サイクルの構成で除霜運転を行った場合、除霜を行うことは、逆サイクル運転を行うこと、即ち、冷却運転を行うことになってしまう。つまり、通常は加熱運転を行い、負荷に熱を供給しているにもかかわらず、一時的とはいえ、冷却運転に相当する除霜運転を行ってしまうことになる。   However, when the defrosting operation is performed with the configuration of the dual refrigeration cycle disclosed in Japanese Patent Laid-Open No. 59-38568, performing the defrosting performs the reverse cycle operation, that is, performs the cooling operation. It will be. That is, although the heating operation is normally performed and heat is supplied to the load, the defrosting operation corresponding to the cooling operation is performed although it is temporary.

そこで、本発明は、加熱運転時に放熱熱交換器で加熱された加熱対象物を冷却してしまうことなく、高速に除霜を行うことができる二元冷凍サイクル装置を提供することを目的とする。   Then, this invention aims at providing the dual refrigeration cycle apparatus which can defrost at high speed, without cooling the heating target object heated with the thermal radiation heat exchanger at the time of a heating operation. .

本発明のヒートポンプ式高温水発生器は、高温側冷凍サイクルと、低温側冷凍サイクルと、前記高温側冷凍サイクルと低温側冷凍サイクルとの間で熱交換を行う中間熱交換器とを備え、前記高温側冷凍サイクルは、高温側圧縮機と、放熱熱交換器と、高温側減圧装置と、前記中間熱交換器とが順次接続されて構成され、前記低温側冷凍サイクルは、低温側圧縮機と、前記中間熱交換器と、低温側減圧装置と、空気熱交換器とが順次接続されて構成され、前記高温側冷凍サイクルは、前記高温側圧縮機からの吐出冷媒を前記放熱熱交換器をバイパスして前記中間熱交換器に導入するホットガスバイパス回路と、前記高温側圧縮機からの吐出冷媒が前記ホットガスバイパス回路に導入される状態と前記ホットガスバイパス回路に導入されない状態とを切り換える高温側流路切換機構とを備え、前記低温側冷凍サイクルは、前記低温側圧縮機からの吐出冷媒が前記中間熱交換器に導入される状態と、前記空気熱交換器に導入される状態とを切り換える低温側流路切換機構を備え、前記放熱熱交換器からの放熱により高温水を生成する際には、前記高温側圧縮機からの吐出冷媒を前記ホットガスバイパス回路に導入せずに前記放熱熱交換器に導入する状態に前記高温側流路切換機構を制御し、且つ、前記低温側圧縮機からの吐出冷媒を前記中間熱交換器に導入する状態に前記低温側流路切換機構を制御し、前記低温側冷凍サイクルの前記空気熱交換器を除霜する際には、前記高温側圧縮機からの吐出冷媒を前記ホットガスバイパス回路に導入して前記放熱熱交換器及び前記中間熱交換器に導入する状態に前記高温側流路切換機構を制御し、且つ、前記低温側圧縮機からの吐出冷媒を前記空気熱交換器に導入する状態に前記低温側流路切換機構を制御することを特徴とする。
The heat pump type hot water generator of the present invention comprises a high temperature side refrigeration cycle, a low temperature side refrigeration cycle, and an intermediate heat exchanger that performs heat exchange between the high temperature side refrigeration cycle and the low temperature side refrigeration cycle, The high temperature side refrigeration cycle is configured by sequentially connecting a high temperature side compressor, a heat radiation heat exchanger, a high temperature side decompression device, and the intermediate heat exchanger, and the low temperature side refrigeration cycle includes a low temperature side compressor, The intermediate heat exchanger, the low-temperature side pressure reducing device, and the air heat exchanger are sequentially connected, and the high-temperature side refrigeration cycle is configured to pass the refrigerant discharged from the high-temperature side compressor to the radiating heat exchanger. a hot gas bypass circuit to be introduced into the intermediate heat exchanger bypassing the state where the discharged refrigerant is not introduced into the hot gas bypass circuit to a state in which it is introduced into the hot gas bypass circuit from the high-temperature side compressor The low temperature side refrigeration cycle includes a state where refrigerant discharged from the low temperature side compressor is introduced into the intermediate heat exchanger and the air heat exchanger. comprising switching Ru low temperature side flow passage switching mechanism and a state, the heat radiation from the radiator heat exchanger when generating the hot water is introduced into the refrigerant discharged from the high-temperature side compressor to the hot gas bypass circuit Without controlling the high temperature side flow path switching mechanism to be introduced into the heat dissipation heat exchanger, and the low temperature side flow into the state where refrigerant discharged from the low temperature side compressor is introduced into the intermediate heat exchanger. controls road switching mechanism, when defrosting the air heat exchanger of the low temperature side refrigerating cycle, said radiator heat exchanger to introduce refrigerant discharged from the high-temperature side compressor to the hot gas bypass circuit And to the intermediate heat exchanger Controlling the hot-side flow path switching mechanism in a state of, and, and controls said low-temperature side flow path switching mechanism in a state of introducing the refrigerant discharged from the low temperature side compressor to the air heat exchanger To do.

本発明によれば、加熱運転時に放熱熱交換器で加熱された加熱対象物を冷却してしまうことなく、高速に除霜を行うことができる。   ADVANTAGE OF THE INVENTION According to this invention, it can defrost at high speed, without cooling the heating target object heated with the thermal radiation heat exchanger at the time of a heating operation.

本発明の実施形態1の冷凍サイクル系統図である。It is a refrigeration cycle system diagram of Embodiment 1 of the present invention.

図1は、本発明の一実施形態に係る二元冷凍サイクル装置を示す。   FIG. 1 shows a dual refrigeration cycle apparatus according to an embodiment of the present invention.

この二元冷凍サイクル装置は、高温側冷凍サイクルAと、低温側冷凍サイクルBと、高温側冷凍サイクルAと低温側冷凍サイクルBとの間で熱交換を行う中間熱交換器5とを備える。   This dual refrigeration cycle apparatus includes a high temperature side refrigeration cycle A, a low temperature side refrigeration cycle B, and an intermediate heat exchanger 5 that performs heat exchange between the high temperature side refrigeration cycle A and the low temperature side refrigeration cycle B.

具体的には、この二元冷凍サイクル装置は、高温の温水を生成する装置であり、ヒートポンプ式高温水発生機とも称される。また、放熱熱交換器7は、水側熱交換器とも称することができる。   Specifically, this dual refrigeration cycle apparatus is an apparatus that generates high-temperature hot water, and is also referred to as a heat pump type high-temperature water generator. Moreover, the heat radiation heat exchanger 7 can also be called a water side heat exchanger.

高温側冷凍サイクルAは、高温側圧縮機6と、放熱熱交換器7と、高温側減圧装置8と、中間熱交換器5とが順次接続されて構成される。一方、低温側冷凍サイクルBは、低温側圧縮機1と、中間熱交換器5と、低温側減圧装置3と、空気熱交換器2とが順次接続されて構成される。   The high temperature side refrigeration cycle A is configured by sequentially connecting a high temperature side compressor 6, a heat radiation heat exchanger 7, a high temperature side pressure reducing device 8, and an intermediate heat exchanger 5. On the other hand, the low temperature side refrigeration cycle B is configured by sequentially connecting a low temperature side compressor 1, an intermediate heat exchanger 5, a low temperature side pressure reducing device 3, and an air heat exchanger 2.

高温側冷凍サイクルAは、高温側圧縮機6からの吐出冷媒を放熱熱交換器7をバイパスして中間熱交換器5に導入するホットガスバイパス回路10と、高温側圧縮機6からの吐出冷媒がホットガスバイパス回路10に導入される状態とホットガスバイパス回路10に導入されない状態とを切り換える高温側流路切換機構9とを備える。   The high temperature side refrigeration cycle A includes a hot gas bypass circuit 10 that introduces refrigerant discharged from the high temperature side compressor 6 into the intermediate heat exchanger 5 by bypassing the heat dissipation heat exchanger 7, and refrigerant discharged from the high temperature side compressor 6. Is provided with a high-temperature side channel switching mechanism 9 for switching between a state where the gas is introduced into the hot gas bypass circuit 10 and a state where the gas is not introduced into the hot gas bypass circuit 10.

高温側流路切換機構9は、高温側圧縮機6からの吐出冷媒が放熱熱交換器7に導入される状態と、放熱熱交換器7及び中間熱交換器に導入される状態とを切り換えるものである。具体的には、高温側流路切換機構9は、ホットガスバイパス回路10に配置される電磁弁(二方弁)によって構成される。   The high temperature side flow path switching mechanism 9 switches between a state in which the refrigerant discharged from the high temperature side compressor 6 is introduced into the radiant heat exchanger 7 and a state where the refrigerant is introduced into the radiant heat exchanger 7 and the intermediate heat exchanger. It is. Specifically, the high temperature side flow path switching mechanism 9 is configured by an electromagnetic valve (two-way valve) disposed in the hot gas bypass circuit 10.

低温側冷凍サイクルBは、低温側圧縮機1からの吐出冷媒が中間熱交換器5に導入される状態と、空気熱交換器2に導入される状態とを切り換える低温側流路切換機構4を備える。低温側流路切換機構4は、四方切換弁によって構成される。   The low temperature side refrigeration cycle B includes a low temperature side flow path switching mechanism 4 that switches between a state where refrigerant discharged from the low temperature side compressor 1 is introduced into the intermediate heat exchanger 5 and a state where refrigerant is introduced into the air heat exchanger 2. Prepare. The low temperature side channel switching mechanism 4 is constituted by a four-way switching valve.

暖房運転時、低温側冷凍サイクルBでは、冷媒は実線で示す矢印の流れとなる。   During the heating operation, in the low temperature side refrigeration cycle B, the refrigerant flows in the direction of the arrow indicated by the solid line.

まず、低温側圧縮機1で圧縮された高温高圧のガス冷媒は、低温側流路切換機構4を径由して流入する凝縮器に相当する中間熱交換器5により冷却され凝縮液化される。この高圧液冷媒は、低温側減圧装置3により減圧された後、蒸発器に相当する空気熱交換器2で蒸発され低温低圧のガス冷媒となり低温側冷凍サイクル低温側圧縮機1に戻るサイクルである。   First, the high-temperature and high-pressure gas refrigerant compressed by the low-temperature side compressor 1 is cooled and condensed and liquefied by an intermediate heat exchanger 5 corresponding to a condenser that flows in via the low-temperature side flow path switching mechanism 4. This high-pressure liquid refrigerant is a cycle that is decompressed by the low-temperature side decompression device 3 and then evaporated by the air heat exchanger 2 corresponding to the evaporator to become a low-temperature and low-pressure gas refrigerant and return to the low-temperature side refrigeration cycle low-temperature side compressor 1. .

同様に、高温側冷凍サイクルAでは、高温側圧縮機6,凝縮器に相当する放熱熱交換器7,高温側減圧装置8,蒸発器に相当する中間熱交換器5の各機器を、冷媒が循環する構成である。   Similarly, in the high temperature side refrigeration cycle A, each of the high temperature side compressor 6, the radiant heat exchanger 7 corresponding to a condenser, the high temperature side pressure reducing device 8, and the intermediate heat exchanger 5 corresponding to an evaporator has refrigerant. It is a configuration that circulates.

次に、低温側冷凍サイクルBの空気熱交換器2に着いてしまった霜を取り除くための除霜運転時の制御について説明する。   Next, the control at the time of the defrost operation for removing the frost which has arrived at the air heat exchanger 2 of the low temperature side refrigerating cycle B is demonstrated.

低温側冷凍サイクルBの空気熱交換器2を除霜する際には、高温側圧縮機6からの吐出冷媒をホットガスバイパス回路10に導入する状態に高温側流路切換機構9を制御し、且つ、低温側圧縮機1からの吐出冷媒を空気熱交換器2に導入する状態に低温側流路切換機構4を制御する。具体的には、低温側冷凍サイクルBの空気熱交換器2を除霜する際には、高温側圧縮機6からの吐出冷媒を放熱熱交換器7及び中間熱交換器5に導入する状態に高温側流路切換機構9を制御する。   When defrosting the air heat exchanger 2 of the low temperature side refrigeration cycle B, the high temperature side flow path switching mechanism 9 is controlled so that the refrigerant discharged from the high temperature side compressor 6 is introduced into the hot gas bypass circuit 10; In addition, the low temperature side flow path switching mechanism 4 is controlled so that the refrigerant discharged from the low temperature side compressor 1 is introduced into the air heat exchanger 2. Specifically, when the air heat exchanger 2 of the low temperature side refrigeration cycle B is defrosted, the refrigerant discharged from the high temperature side compressor 6 is introduced into the heat radiation heat exchanger 7 and the intermediate heat exchanger 5. The high temperature side flow path switching mechanism 9 is controlled.

具体的には、除霜運転時、低温側冷凍サイクルBでは、冷媒は破線で示す矢印の流れとなる。   Specifically, during the defrosting operation, in the low temperature side refrigeration cycle B, the refrigerant flows in the direction of the arrow indicated by a broken line.

まず、低温側圧縮機1で圧縮された高温高圧のガス冷媒は、低温側流路切換機構4を径由して霜が着いてしまった空気熱交換器2に流入する。ここで、高温高圧のガス冷媒は、空気熱交換器2に着いた霜を溶解することで冷却され凝縮液化される。この高圧液冷媒は、低温側減圧装置3により減圧された後、蒸発器に中間熱交換器5で蒸発され低温低圧のガス冷媒となり低温側冷凍サイクル低温側圧縮機1に戻ることになる。   First, the high-temperature and high-pressure gas refrigerant compressed by the low-temperature side compressor 1 flows into the air heat exchanger 2 that has become frosted through the low-temperature side flow path switching mechanism 4. Here, the high-temperature and high-pressure gas refrigerant is cooled and condensed and liquefied by melting frost attached to the air heat exchanger 2. The high-pressure liquid refrigerant is depressurized by the low-temperature side decompression device 3 and then evaporated in the evaporator by the intermediate heat exchanger 5 to become a low-temperature and low-pressure gas refrigerant and return to the low-temperature side refrigeration cycle low-temperature side compressor 1.

一方、高温側冷凍サイクルAでは、低温側冷凍サイクルBが逆サイクル運転による除霜運転を行うが、暖房運転時と同様に、高温側圧縮機6,凝縮器に相当する放熱熱交換器7,高温側減圧装置8,蒸発器に相当する中間熱交換器5の各機器を、冷媒が循環する構成のままである。   On the other hand, in the high temperature side refrigeration cycle A, the low temperature side refrigeration cycle B performs the defrosting operation by the reverse cycle operation, but, similarly to the heating operation, the high temperature side compressor 6, the heat radiation heat exchanger 7 corresponding to the condenser, The refrigerant still circulates in the high-temperature decompression device 8 and the intermediate heat exchanger 5 corresponding to the evaporator.

なお、中間熱交換器5では、低温側冷凍サイクルBが除霜運転を行うことで、中間熱交換器5の温度低下が発生するが、高温側冷凍サイクルAのホットガスバイパス回路10における高温側流路切換機構9を開弁して、除霜運転に合わせ、高温高圧のガス冷媒を中間熱交換器5に適宜供給する。従って、除霜時における供給水温の温度低下抑制,適正な除霜運転の維持を図ることができる。   In the intermediate heat exchanger 5, the low temperature side refrigeration cycle B performs a defrosting operation to cause a temperature drop in the intermediate heat exchanger 5, but the high temperature side in the hot gas bypass circuit 10 of the high temperature side refrigeration cycle A. The flow path switching mechanism 9 is opened, and high-temperature and high-pressure gas refrigerant is appropriately supplied to the intermediate heat exchanger 5 in accordance with the defrosting operation. Therefore, it is possible to suppress the temperature drop of the supply water temperature during defrosting and maintain an appropriate defrosting operation.

そうすることで、中間熱交換器5の温度低下を抑制し、ヒートポンプ式装置として不可欠である空気熱交換器2の除霜が行えるようにする。   By doing so, the temperature fall of the intermediate heat exchanger 5 is suppressed, and the air heat exchanger 2 which is indispensable as a heat pump apparatus can be defrosted.

また、高温側冷凍サイクルAで、逆サイクル運転を行うことなく、暖房運転を継続するので、負荷側設備と接続される放熱熱交換器7の温度低下も抑制することができる。しかも、除霜運転時における加熱能力の低下を最小限に抑えることで、温水を継続して供給することができる。   In addition, since the heating operation is continued without performing the reverse cycle operation in the high temperature side refrigeration cycle A, it is also possible to suppress the temperature decrease of the heat radiation heat exchanger 7 connected to the load side equipment. And hot water can be continuously supplied by suppressing the fall of the heating capability at the time of a defrost operation to the minimum.

以上のように、本実施形態に係る二元冷凍サイクル装置によれば、低温側冷凍サイクルBの空気熱交換器2が着霜した場合、低温側冷凍サイクルABは、低温側流路切換機構4を切り換えて低温側圧縮機1からの吐出冷媒を空気熱交換器2に導入するいわゆる逆サイクル運転を行うため、高速で除霜を行うことができる。その一方、高温側冷凍サイクルAでは、高温側圧縮機6からの吐出冷媒をホットガスバイパス回路10に導入するいわゆるホットガスバイパス運転を行うため、中間熱交換器5に熱を供給することができ、且つ、放熱熱交換器7から熱を奪うことがない。   As described above, according to the dual refrigeration cycle apparatus according to the present embodiment, when the air heat exchanger 2 of the low temperature side refrigeration cycle B is frosted, the low temperature side refrigeration cycle AB has the low temperature side flow path switching mechanism 4. Since the so-called reverse cycle operation in which the refrigerant discharged from the low-temperature side compressor 1 is introduced into the air heat exchanger 2 is switched, defrosting can be performed at high speed. On the other hand, in the high temperature side refrigeration cycle A, the so-called hot gas bypass operation in which the refrigerant discharged from the high temperature side compressor 6 is introduced into the hot gas bypass circuit 10 is performed, so that heat can be supplied to the intermediate heat exchanger 5. And heat is not taken from the heat-dissipating heat exchanger 7.

従って、加熱運転時に放熱熱交換器7で加熱された加熱対象物を冷却してしまうことなく、高速に除霜を行うことができる。   Therefore, defrosting can be performed at high speed without cooling the object to be heated heated by the heat radiation heat exchanger 7 during the heating operation.

また、上記二元冷凍サイクル装置によれば、空気熱源のヒートポンプ式装置において不可欠となる低温側冷凍サイクルにおける除霜運転の際、負荷設備と接続される放熱熱交換器7を備える高温側冷凍サイクルでは、低温側冷凍サイクルの除霜運転を呼応した運転と、放熱熱交換器7に対する加熱運転が可能になる。これにより、高温側冷凍サイクルに四方切換弁を用いた逆サイクル除霜運転を行う構成に対して、低温側冷凍サイクルBが除霜時における供給温水の一時的な水温低下や、負荷側設備に設置される水槽内の水温低下を抑えることができるようになる。   Further, according to the above-described dual refrigeration cycle apparatus, the high temperature side refrigeration cycle provided with the heat radiation heat exchanger 7 connected to the load facility during the defrosting operation in the low temperature side refrigeration cycle that is indispensable in the heat pump type apparatus of the air heat source. Then, the operation corresponding to the defrosting operation of the low temperature side refrigeration cycle and the heating operation for the heat radiation heat exchanger 7 can be performed. Thereby, with respect to the configuration in which the reverse cycle defrosting operation using the four-way switching valve is performed in the high temperature side refrigeration cycle, the low temperature side refrigeration cycle B is temporarily reduced in supply water temperature during defrosting, It becomes possible to suppress the water temperature drop in the installed water tank.

また、従来では、負荷側に設置される水槽容量が極端に小さい場合などに除霜運転に伴って水温が著しく低下してしまうなど、負荷側設備構成との組合せによって発生する製品保護制御作動による装置の停止、あるいは、負荷側設備の停止に至ってしまうおそれがあるが、上記二元冷凍サイクル装置によれば、そういった不都合も抑止できる。   In addition, conventionally, due to the product protection control operation that occurs due to the combination with the load side equipment configuration, such as when the capacity of the water tank installed on the load side is extremely small, the water temperature significantly decreases with defrosting operation, etc. Although there is a risk of stopping the apparatus or stopping the load side equipment, the above two-way refrigeration cycle apparatus can also suppress such inconvenience.

さらには、高温側冷凍サイクルAの構成が、四方切換弁を用いた機器構成ではないため、部品点数が少ないシンプルな回路構成となる。ここで、回路構成の簡素化という観点では、高温側冷凍サイクルAだけでなく、低温側冷凍サイクルBも四方切換弁を廃止して、ホットガスバイパス回路を有した構成とすることも一案であるが、空気熱交換器2の除霜を行うという観点では、逆サイクル除霜運転がより大きな除霜能力が得られ望ましい。このため、極力シンプルで、かつ、高い除霜能力をもつことができるという効果もある。   Furthermore, since the configuration of the high temperature side refrigeration cycle A is not a device configuration using a four-way switching valve, the circuit configuration is simple with a small number of parts. Here, in terms of simplification of the circuit configuration, it is also a suggestion that not only the high-temperature side refrigeration cycle A but also the low-temperature side refrigeration cycle B has a configuration having a hot gas bypass circuit by eliminating the four-way switching valve. However, from the viewpoint of performing defrosting of the air heat exchanger 2, the reverse cycle defrosting operation is desirable because a larger defrosting capability can be obtained. For this reason, there is an effect that it can be as simple as possible and has a high defrosting capability.

また、上記構成であれば、低温側冷凍サイクルBに、空調調和装置として、安価なパッケージエアコンを用いることも可能であり、回路構成の簡素化とともに、コスト低減を図ることが可能となる。   Moreover, if it is the said structure, it is also possible to use an inexpensive package air conditioner as an air-conditioning harmony apparatus for the low temperature side refrigerating cycle B, and it becomes possible to aim at cost reduction with simplification of a circuit structure.

なお、本実施形態に係る二元冷凍サイクル装置は、上記実施形態の構成に限定されるものではなく、発明の趣旨を逸脱しない範囲内で種々の変更が可能である。   The dual refrigeration cycle apparatus according to this embodiment is not limited to the configuration of the above embodiment, and various modifications can be made without departing from the spirit of the invention.

例えば、上記実施形態では、高温側流路切換機構9は、ホットガスバイパス回路10に配置される電磁弁(二方弁)によって構成されるものとして説明したが、高温側圧縮機6からの吐出冷媒がホットガスバイパス回路10に導入される状態とホットガスバイパス回路10に導入されない状態とを切り換えることができるものであれば、これに限定されるものではない。例えば、高温側圧縮機から放熱熱交換器7へ向かう経路とホットガスバイパス回路10との分岐部や、高温側減圧装置8から中間熱交換器5に向かう経路とホットガスバイパス回路10との合流部に三方弁が配置されるものであってもよい。   For example, in the above embodiment, the high temperature side flow path switching mechanism 9 has been described as being configured by an electromagnetic valve (two-way valve) disposed in the hot gas bypass circuit 10, but the discharge from the high temperature side compressor 6 is performed. The present invention is not limited to this as long as the refrigerant can be switched between a state where the refrigerant is introduced into the hot gas bypass circuit 10 and a state where the refrigerant is not introduced into the hot gas bypass circuit 10. For example, a junction between the hot gas bypass circuit 10 and a path from the high temperature side compressor to the heat radiation heat exchanger 7, or a merge between the hot gas bypass circuit 10 and the path from the high temperature side decompression device 8 to the intermediate heat exchanger 5. A three-way valve may be arranged in the part.

三方弁として三方切換弁を用いた場合、高温側圧縮機6からの吐出冷媒が放熱熱交換器7のみに供給される状態と、放熱熱交換器7のみに導入される状態とを切り換える構成が考えられる。また、三方弁として流量比率調整弁を用いた場合、高温側圧縮機6からの吐出冷媒が放熱熱交換器7のみに供給される状態と、放熱熱交換器7及びホットガスバイパス回路10に導入される状態とを切り換える構成が考えられる。   When a three-way switching valve is used as the three-way valve, there is a configuration for switching between a state in which the refrigerant discharged from the high-temperature side compressor 6 is supplied only to the radiant heat exchanger 7 and a state in which only the radiant heat exchanger 7 is introduced. Conceivable. Further, when a flow rate ratio adjusting valve is used as the three-way valve, the refrigerant discharged from the high temperature side compressor 6 is supplied only to the radiant heat exchanger 7 and introduced into the radiant heat exchanger 7 and the hot gas bypass circuit 10. A configuration for switching the state to be performed can be considered.

また、上記実施形態では、低温側流路切換機構4は、四方切換弁によって構成されるものとして説明したが、冷媒の流れ方向を逆転させるいわゆる逆サイクル運転を行うことができる構造であれば、四方切換弁に限定されるものではない。   Moreover, in the said embodiment, although the low temperature side flow-path switching mechanism 4 demonstrated as what is comprised with a four-way switching valve, if it is a structure which can perform what is called a reverse cycle operation which reverses the flow direction of a refrigerant | coolant, It is not limited to a four-way switching valve.

また、上記実施形態では、高温側冷凍サイクルAの放熱熱交換器7は水を加熱するものとして説明したが、加熱対象は水に限られず、ブライン等の液体であってもよく、また、空気であってもよい。   Moreover, in the said embodiment, although the thermal radiation heat exchanger 7 of the high temperature side refrigerating cycle A demonstrated as what heats water, the heating object is not restricted to water, Liquid such as brine may be sufficient, and air It may be.

1 低温側圧縮機
2 空気熱交換器
3 低温側減圧装置
4 低温側流路切換機構
5 中間熱交換器
6 高温側圧縮機
7 放熱熱交換器
8 高温側減圧装置
9 高温側流路切換機構
10 ホットガスバイパス回路
DESCRIPTION OF SYMBOLS 1 Low temperature side compressor 2 Air heat exchanger 3 Low temperature side decompression device 4 Low temperature side flow path switching mechanism 5 Intermediate heat exchanger 6 High temperature side compressor 7 Radiation heat exchanger 8 High temperature side decompression device 9 High temperature side flow path switching mechanism 10 Hot gas bypass circuit

Claims (1)

高温側冷凍サイクルと、低温側冷凍サイクルと、前記高温側冷凍サイクルと低温側冷凍サイクルとの間で熱交換を行う中間熱交換器とを備え、
前記高温側冷凍サイクルは、高温側圧縮機と、放熱熱交換器と、高温側減圧装置と、前記中間熱交換器とが順次接続されて構成され、
前記低温側冷凍サイクルは、低温側圧縮機と、前記中間熱交換器と、低温側減圧装置と、空気熱交換器とが順次接続されて構成され、
前記高温側冷凍サイクルは、前記高温側圧縮機からの吐出冷媒を前記放熱熱交換器をバイパスして前記中間熱交換器に導入するホットガスバイパス回路と、前記高温側圧縮機からの吐出冷媒が前記ホットガスバイパス回路に導入される状態と前記ホットガスバイパス回路に導入されない状態とを切り換える高温側流路切換機構とを備え、
前記低温側冷凍サイクルは、前記低温側圧縮機からの吐出冷媒が前記中間熱交換器に導入される状態と、前記空気熱交換器に導入される状態とを切り換える低温側流路切換機構を備え、
前記放熱熱交換器からの放熱により高温水を生成する際には、前記高温側圧縮機からの吐出冷媒を前記ホットガスバイパス回路に導入せずに前記放熱熱交換器に導入する状態に前記高温側流路切換機構を制御し、且つ、前記低温側圧縮機からの吐出冷媒を前記中間熱交換器に導入する状態に前記低温側流路切換機構を制御し、
前記低温側冷凍サイクルの前記空気熱交換器を除霜する際には、前記高温側圧縮機からの吐出冷媒を前記ホットガスバイパス回路に導入して前記放熱熱交換器及び前記中間熱交換器に導入する状態に前記高温側流路切換機構を制御し、且つ、前記低温側圧縮機からの吐出冷媒を前記空気熱交換器に導入する状態に前記低温側流路切換機構を制御することを特徴とするヒートポンプ式高温水発生器
A high temperature side refrigeration cycle, a low temperature side refrigeration cycle, and an intermediate heat exchanger that performs heat exchange between the high temperature side refrigeration cycle and the low temperature side refrigeration cycle,
The high temperature side refrigeration cycle is configured by sequentially connecting a high temperature side compressor, a heat dissipation heat exchanger, a high temperature side pressure reducing device, and the intermediate heat exchanger,
The low temperature side refrigeration cycle is configured by sequentially connecting a low temperature side compressor, the intermediate heat exchanger, a low temperature side pressure reducing device, and an air heat exchanger,
The high temperature side refrigeration cycle includes a hot gas bypass circuit that introduces refrigerant discharged from the high temperature side compressor into the intermediate heat exchanger by bypassing the heat dissipation heat exchanger, and refrigerant discharged from the high temperature side compressor. wherein a hot-side flow path switching mechanism for switching between a state that is not introduced to a state in which it is introduced into the hot gas bypass circuit to the hot gas bypass circuit,
Said cold side refrigeration cycle, a state in which refrigerant discharged from the low-temperature side compressor is introduced into the intermediate heat exchanger, said air heat Ru switched between a state that is introduced into exchanger low temperature side flow passage switching mechanism With
When generating high-temperature water by heat radiation from the heat-dissipating heat exchanger, the high-temperature water is introduced into the heat-dissipating heat exchanger without introducing the refrigerant discharged from the high-temperature side compressor into the hot gas bypass circuit. Controlling the low-temperature side flow path switching mechanism to control the side flow path switching mechanism and introducing the refrigerant discharged from the low-temperature side compressor into the intermediate heat exchanger;
When defrosting the air heat exchanger of the low temperature side refrigerating cycle, the refrigerant discharged from the high-temperature side compressor to the radiator heat exchanger and the intermediate heat exchanger is introduced into the hot gas bypass circuit The high temperature side flow path switching mechanism is controlled in a state of introduction , and the low temperature side flow path switching mechanism is controlled in a state of introducing refrigerant discharged from the low temperature side compressor into the air heat exchanger. Heat pump type high temperature water generator .
JP2010258463A 2010-11-19 2010-11-19 Heat pump type hot water generator Active JP5530904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010258463A JP5530904B2 (en) 2010-11-19 2010-11-19 Heat pump type hot water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010258463A JP5530904B2 (en) 2010-11-19 2010-11-19 Heat pump type hot water generator

Publications (2)

Publication Number Publication Date
JP2012107836A JP2012107836A (en) 2012-06-07
JP5530904B2 true JP5530904B2 (en) 2014-06-25

Family

ID=46493643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010258463A Active JP5530904B2 (en) 2010-11-19 2010-11-19 Heat pump type hot water generator

Country Status (1)

Country Link
JP (1) JP5530904B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101854254B1 (en) * 2018-01-10 2018-08-27 정인자 Duality Refrigerating System having Hot gas defrosting

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5939676B2 (en) * 2012-04-24 2016-06-22 一般財団法人電力中央研究所 Dual heat pump system and defrost method in dual heat pump system
KR101528160B1 (en) * 2013-08-23 2015-06-11 나이스텍(주) Duality for refrigerating/heating cycle type Heat pump system
CN104121721B (en) * 2014-07-02 2017-01-11 广东芬尼克兹节能设备有限公司 Single-and-double-stage switchable heat pump
KR101495788B1 (en) 2014-09-01 2015-02-25 윤정희 The thermal expansion pressure used to having two won the defrost function for heat pump heating unit
CN105758045A (en) * 2016-04-25 2016-07-13 深圳市派沃新能源科技有限公司 Ultralow-temperature overlapped triple generation heat pump unit
JP7442047B2 (en) * 2020-09-30 2024-03-04 パナソニックIpマネジメント株式会社 refrigerator
WO2022118841A1 (en) * 2020-12-01 2022-06-09 ダイキン工業株式会社 Refrigeration cycle system
CN116507865A (en) * 2020-12-01 2023-07-28 大金工业株式会社 Refrigeration cycle system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726775B2 (en) * 1989-01-20 1995-03-29 ダイキン工業株式会社 Dual refrigerator
JP2697376B2 (en) * 1991-07-11 1998-01-14 ダイキン工業株式会社 Defrost device for cooling system with binary refrigeration cycle
JP2000130895A (en) * 1998-10-29 2000-05-12 Daikin Ind Ltd Chiller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101854254B1 (en) * 2018-01-10 2018-08-27 정인자 Duality Refrigerating System having Hot gas defrosting

Also Published As

Publication number Publication date
JP2012107836A (en) 2012-06-07

Similar Documents

Publication Publication Date Title
JP5530904B2 (en) Heat pump type hot water generator
WO2011092802A1 (en) Heat pump device and refrigerant bypass method
JP5427428B2 (en) Heat pump type hot water supply / air conditioner
JP2010159926A (en) Air conditioner
JP2010001013A (en) Heating, ventilating and/or air-conditioning device for automobile
JP2006284022A (en) Geothermal heat pump device
KR20110127836A (en) Hot water supply device associated with heat pump
JPWO2016088262A1 (en) Refrigeration cycle equipment
KR20130105460A (en) Heat pump
DK200501574A (en) Defrost system
JP5404761B2 (en) Refrigeration equipment
JP2014052123A (en) Engine driven heat pump chiller
JP5677472B2 (en) Refrigeration equipment
JP2007322024A (en) Large temperature difference air conditioning system
JP2010236830A (en) Refrigerating device for transportation
JPH11173711A (en) Dual refrigerator
JP7034251B2 (en) Heat source equipment and refrigeration cycle equipment
KR20090102478A (en) Heat pump system for vehicles
JP5316973B2 (en) Cooling and defrosting system using carbon dioxide refrigerant, and operation method thereof
JP2014081180A (en) Heat pump apparatus
EP3059522A2 (en) Transport refrigeration unit
JP2020192965A (en) Heat exchange system
JP2011012844A (en) Refrigerating cycle device
JPWO2016170616A1 (en) Air conditioner
KR101173736B1 (en) Refrigerating and freezing combine air conditioning system

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120521

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140421

R150 Certificate of patent or registration of utility model

Ref document number: 5530904

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250