JP5527061B2 - Resin molded body having moisture absorption capability and drying container using the same - Google Patents

Resin molded body having moisture absorption capability and drying container using the same Download PDF

Info

Publication number
JP5527061B2
JP5527061B2 JP2010153720A JP2010153720A JP5527061B2 JP 5527061 B2 JP5527061 B2 JP 5527061B2 JP 2010153720 A JP2010153720 A JP 2010153720A JP 2010153720 A JP2010153720 A JP 2010153720A JP 5527061 B2 JP5527061 B2 JP 5527061B2
Authority
JP
Japan
Prior art keywords
resin
desiccant
molded body
resin molded
moisture absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010153720A
Other languages
Japanese (ja)
Other versions
JP2012017353A (en
Inventor
潔 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2010153720A priority Critical patent/JP5527061B2/en
Publication of JP2012017353A publication Critical patent/JP2012017353A/en
Application granted granted Critical
Publication of JP5527061B2 publication Critical patent/JP5527061B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Packages (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

本発明は、吸湿性を有する樹脂成型体に関し、特に長期間に亘って水分を吸収する能力を保持しうる樹脂成型体ならびにこれを用いた乾燥容器に関する。   The present invention relates to a resin molded body having hygroscopicity, and more particularly to a resin molded body capable of maintaining the ability to absorb moisture over a long period of time and a drying container using the same.

多くの医薬品や一部の食品や医療材料などのように、保存に当って空気中の水分の影響を排除することが望ましい物品を収納するための容器や、これに用いられる吸湿性を有する樹脂材料が種々提案されている。   Containers for storing articles that are desirable to eliminate the effects of moisture in the air during storage, such as many pharmaceuticals and some foods and medical materials, and hygroscopic resins used therefor Various materials have been proposed.

特許文献1には、乾燥剤と熱可塑性樹脂をブレンドした樹脂組成物を加熱成形したインサートが記載されている。この成形物は、ポリオレフィン、ポリカーボネート、ポリアミドから選択される熱可塑性樹脂をベースとして、これに分子篩、シリカゲル、クレー、塩化亜鉛から選択される乾燥剤を40%〜75%含有する樹脂組成物を加熱成形したものである。   Patent Document 1 describes an insert obtained by thermoforming a resin composition obtained by blending a desiccant and a thermoplastic resin. This molded product is based on a thermoplastic resin selected from polyolefins, polycarbonates and polyamides, and a resin composition containing 40% to 75% of a desiccant selected from molecular sieve, silica gel, clay and zinc chloride is heated. Molded.

特許文献2に記載された乾燥剤含有合成樹脂成型体は、合成樹脂ベース中に酸化カルシウムとモレキュラーシーブ(分子篩)とが分散混入していることを特徴とする乾燥剤含有合成樹脂成型体である。   The desiccant-containing synthetic resin molding described in Patent Document 2 is a desiccant-containing synthetic resin molding characterized in that calcium oxide and molecular sieve (molecular sieve) are dispersed and mixed in a synthetic resin base. .

特許文献3に記載された瞬発性乾燥剤含有樹脂成型体は、合成樹脂ベース中にモレキュラーシーブと酸化カルシウムと高分子吸収体とが混合分散していることを特徴とする瞬発性乾燥剤含有樹脂成型体である。   The instantaneous desiccant-containing resin molded article described in Patent Document 3 is a resin containing an instantaneous desiccant containing a molecular sieve, calcium oxide, and a polymer absorbent in a synthetic resin base. It is a molded body.

特許文献4に記載された瞬発性の高い乾燥剤含有樹脂成型体は、射出成形された合成樹脂成型体中に、乾燥剤として酸化カルシウムと高分子吸収体とが混合分散していることを特徴とする瞬発性の高い乾燥剤含有樹脂成型体である。   The desiccant-containing resin molded body having a high flash rate described in Patent Document 4 is characterized in that calcium oxide and a polymer absorber are mixed and dispersed as a desiccant in an injection-molded synthetic resin molded body. It is a desiccant-containing resin molding with high flashing property.

特許文献5に記載された瞬発性と持続性とをもつ乾燥剤含有樹脂成型体は、射出成形又は押出成形された合成樹脂成型体中に、乾燥剤としてモレキュラーシーブと、吸水膨張して合成樹脂成型体に微細なクラックを発現する高分子吸収体とが混合分散していることを特徴とする瞬発性と持続性とをもつ乾燥剤含有樹脂成型体である。   The desiccant-containing resin molded article having instantaneous properties and durability described in Patent Document 5 is a synthetic resin obtained by absorbing and expanding a molecular sieve as a desiccant in a synthetic resin molded article that has been injection molded or extruded. It is a desiccant-containing resin molded article having flashiness and sustainability, characterized in that a polymer absorbent that expresses fine cracks is mixed and dispersed in the molded article.

特許文献6に記載された瞬発性と持続性を有する乾燥剤含有樹脂成型体は、射出成形又は押出成形された合成樹脂成型体中に、乾燥剤として、吸水速度の速いモレキュラーシーブと、吸水膨張して合成樹脂成型体に微細なクラックを発現しトータル吸水能力が高い酸化カルシウムとを混合分散していることを特徴とする瞬発性と持続性を有する乾燥剤含有樹脂成型体である。   The desiccant-containing resin molded article having flashiness and durability described in Patent Document 6 is a molecular sieve having a high water absorption rate and a water absorption expansion as a desiccant in a synthetic resin molded article that has been injection molded or extruded. Thus, a desiccant-containing resin molded article having flashiness and sustainability characterized by mixing and dispersing calcium oxide having a fine crack and a high total water absorption capacity in the synthetic resin molded article.

特許文献7に記載された瞬発性乾燥剤含有樹脂成型体は、射出成形又は押出成形された合成樹脂成型体中に、乾燥剤として、吸水膨張して合成樹脂成型体に微細なクラックを発現して含水ゼリー状経路を形成する高分子吸収体と、吸水膨張して合成樹脂成型体に微細なクラックを発現する酸化カルシウムとを混合分散していることを特徴とする瞬発性乾燥剤含有樹脂成型体である   The instantaneous desiccant-containing resin molded body described in Patent Document 7 absorbs and expands as a desiccant in a synthetic resin molded body that has been injection-molded or extruded, and develops fine cracks in the synthetic resin molded body. Resin molding containing a flashing desiccant, characterized by mixing and dispersing a polymer absorbent that forms a water-containing jelly-like pathway and calcium oxide that absorbs water and expands to develop fine cracks in the synthetic resin molding Body

特表2002-516917号公報Special Table 2002-516917 特開2006-348126号公報JP 2006-348126 A 特開2007-99886号公報JP 2007-99886 特開2007-138090号公報JP 2007-138090 JP 特開2007-211039号公報JP 2007-211039 A 特開2007-291258号公報JP 2007-291258 JP 特開2007-289881号公報JP 2007-289881

従来乾燥剤として使用されているそれぞれの材料の特性を調べてみると、酸化カルシウムは、価格も安く、トータルの吸湿能力は高いものの、単に樹脂と混合すると瞬発性に欠け、だらだらと吸湿能力の低い状態が続くという欠点があった。一方モレキュラーシーブ(分子篩)は、瞬発性を有し、吸湿の立ち上がりは速いが持続性に欠け、また高価な材料である。また高分子吸収体は、吸水能力は高いものの、吸湿性に関しては低湿度において吸湿能力が低い。またシリカゲルやクレーは、モレキュラーシーブと同様の吸湿機構を有し、主として物理吸着によるものであり、水分を吸収してもその体積が変化しないため、ベース樹脂に隙間が生じ難く、このため成型体内部の乾燥剤が有効に働かない。また温度によっては、一旦吸湿した水分を放出する性質がある。   Investigating the characteristics of each material conventionally used as a desiccant, calcium oxide is cheap and has a high total moisture absorption capacity. There was a drawback that it remained low. On the other hand, molecular sieves (molecular sieves) have a flashing property, and the rise of moisture absorption is fast but lacks sustainability, and is an expensive material. In addition, the polymer absorber has a high water absorption capacity, but has a low hygroscopic capacity at low humidity. Silica gel and clay have a moisture absorption mechanism similar to that of molecular sieves, mainly due to physical adsorption, and their volume does not change even when moisture is absorbed. The internal desiccant does not work effectively. Also, depending on the temperature, there is a property of releasing moisture once absorbed.

これらの乾燥剤を組み合わせた従来の上記樹脂成型体を、例えば医薬品の容器に応用した場合、実際の使用状況において不都合が生じることが分かった。すなわちこれらの容器に収納された医薬品は、未開封の状態において比較的長期間(2年程度)保存され、一旦開封されると比較的短期間(6ヶ月程度)に使用される。内容物である医薬品は、未開封の状態では殆ど水蒸気に曝されることはないが、一旦開封されると頻繁に蓋が開閉されるため、多量の水蒸気に暴露されることになる。   It has been found that when the above-described conventional resin molded body in which these desiccants are combined is applied to, for example, a pharmaceutical container, inconvenience occurs in actual use conditions. That is, the medicines stored in these containers are stored for a relatively long period (about 2 years) in an unopened state, and once opened, they are used for a relatively short period (about 6 months). The contents of the pharmaceutical product are hardly exposed to water vapor in an unopened state, but once opened, the lid is frequently opened and closed, so that it is exposed to a large amount of water vapor.

瞬発性の高い乾燥剤含有樹脂成型体を用いた場合、未開封の保存期間中に盛んに吸湿してしまい、肝心の開封後に能力を使い果たしてしまっているという状況が生じる。逆に単なる持続性の乾燥剤含有樹脂成型体を用いた場合、開封後の著しい水蒸気暴露に対して、追従しきれず乾燥能力不足を生じるという問題がある。   When a desiccant-containing resin molding having a high flashing property is used, moisture is actively absorbed during an unopened storage period, and the ability is used up after the essential opening. On the other hand, when a mere persistent desiccant-containing resin molding is used, there is a problem in that it cannot follow the remarkable water vapor exposure after opening, resulting in insufficient drying capacity.

本発明の解決しようとする課題は、安価な材料を用いて、未開封の状態では長期の保存安定性を有し、開封後は、外部からの水蒸気がきっかけとなって、適度な吸湿瞬発性を発揮すると共に十分な吸湿能力を持続する樹脂組成物成型体を提案するものである。   The problem to be solved by the present invention is to use an inexpensive material and have a long-term storage stability in an unopened state, and after opening, water vapor from the outside is a trigger, so A resin composition molded body that exhibits the above and maintains a sufficient hygroscopic ability is proposed.

上記の課題を解決するための手段として、請求項1に記載の発明は、ベース樹脂中に、水分を吸収して体積が増加する乾燥剤を分散した樹脂組成物を成形してなる、吸湿能力を有する樹脂成型体であって、前記ベース樹脂は、低密度ポリエチレン樹脂直鎖状低密度ポリエチレン樹脂を1:1の比率で混合して主たる成分とし、曲げ弾性率が150MPaあり、前記乾燥剤は、重量の80%以上が、酸化カルシウムまたは塩化カルシウムの、粒径が10μmより大きく60μm未満であり、15μm以上50μm以下の粒子が重量の95%を占め、前記樹脂組成物は、該乾燥剤を樹脂組成物中に35%以上75%以下含むことを特徴とする吸湿能力を有する樹脂成型体である。 As means for solving the above-mentioned problems, the invention according to claim 1 is characterized in that a moisture absorption capacity is obtained by molding a resin composition in which a desiccant that absorbs moisture and increases in volume is dispersed in a base resin. The base resin is a main component obtained by mixing a low density polyethylene resin and a linear low density polyethylene resin at a ratio of 1: 1, and has a flexural modulus of 150 MPa , In the desiccant, 80% or more of the weight of calcium oxide or calcium chloride has a particle size of more than 10 μm and less than 60 μm, and particles of 15 μm or more and 50 μm or less occupy 95% of the weight. A resin molded body having a hygroscopic ability, wherein the resin composition contains a desiccant in an amount of 35% to 75%.

また、請求項に記載の発明は、前記樹脂組成物は、酸化カルシウムである乾燥剤を樹脂組成物中に4%以下含むことを特徴とする請求項記載の吸湿能力を有する樹脂成型体である。 The invention according to claim 2, wherein the resin composition is a resin molding having a moisture absorption capacity according to claim 1, characterized in that it comprises 4 to 5% of desiccant is calcium oxide in the resin composition Is the body.

また、請求項に記載の発明は、請求項1または2に記載の樹脂成型体を内容器または乾燥部材として内部に具備したことを特徴とする乾燥容器である。 The invention described in claim 3 is a drying container comprising the resin molded body according to claim 1 or 2 as an inner container or a drying member.

本発明に係る吸湿能力を有する樹脂成型体は、低密度ポリエチレン樹脂と直鎖状低密度ポリエチレン樹脂を1:1の比率で混合した曲げ弾性率が150MPaベース樹脂に、水分を吸収して体積が増加する乾燥剤を分散した樹脂組成物を成形してなる樹脂成型体であり、乾燥剤として安価な酸化カルシウムまたは塩化カルシウムを使用し、さらにこの乾燥剤の添加量と粒径を特定の範囲のものとすることにより、吸湿に伴う乾燥剤粒子の体積増加によりベース樹脂に微細なクラックを形成させ、さらにこのクラックの発生を樹脂成型体の内部にまで連続的に進行させることにより長期間に亘って高い乾燥能力を持続させることに成功したものである。 The resin molded body having a hygroscopic ability according to the present invention absorbs moisture in a base resin having a flexural modulus of 150 MPa in which a low density polyethylene resin and a linear low density polyethylene resin are mixed at a ratio of 1: 1. It is a resin molded body formed by molding a resin composition in which a desiccant with an increased volume is dispersed, and uses inexpensive calcium oxide or calcium chloride as the desiccant. By making it within the range, a fine crack is formed in the base resin due to an increase in the volume of the desiccant particles due to moisture absorption, and further, the generation of this crack is continuously advanced to the inside of the resin molded body for a long period of time. It has succeeded in sustaining a high drying capacity over a long period of time.

この時の乾燥剤の配合条件としては酸化カルシウムまたは塩化カルシウムの、粒径が10μmより大きく60μm未満であり、15μm以上50μm以下の粒子が重量の95%を占めるものである。 The blending conditions at this time of the drying agent, calcium oxide or calcium chloride, the particle size is less than greater than 10 [mu] m 60 [mu] m, 50 [mu] m or less of particles above 15μm is what accounts for 95% by weight.

本発明に係る樹脂成型体は、ベース樹脂中に分散された乾燥剤のうち、まず成型体の表面付近に存在する乾燥剤粒子が吸湿してその体積を増すことにより、ベース樹脂に微細なクラックを生じさせ、このクラックを経由して外気中の水蒸気が成型体内部に取り込まれるようになる。すなわち外部の環境が低湿度であるうちは、成型体内部の乾燥剤粒子は殆ど反応せず、従って長期保存安定性が優れている。   The resin molded body according to the present invention has a fine crack in the base resin because the desiccant dispersed in the base resin first absorbs moisture and increases its volume. The water vapor in the outside air is taken into the molded body through the crack. That is, while the external environment is low humidity, the desiccant particles inside the molded body hardly react, and therefore, the long-term storage stability is excellent.

樹脂成型体の外部環境が高湿度になると、表面付近の乾燥剤粒子が吸湿して体積を増し、この時生じる微細クラックによって、成型体内部の乾燥剤が働き出し、微細クラックは連鎖反応的に成型体内部まで及んでいく。このため、一旦外気に触れると、これがきっかけとなって高い乾燥能力を発揮するようになるのである。   When the external environment of the resin molding becomes high humidity, the desiccant particles near the surface absorb moisture and the volume increases. It extends to the inside of the molded body. For this reason, once it comes into contact with the outside air, this triggers a high drying capacity.

ベース樹脂の曲げ弾性率が、10MPaある場合には、微細なクラックの発生および進行と樹脂成型体全体の強度のバランスが良好なものとなる。 Base resin of flexural modulus, in the case of 1 5 0 MPa, the balance of the generation and progression and resin molded body overall strength of fine cracks is improved.

また前記乾燥剤が、重量の90%以上が、酸化カルシウムまたは塩化カルシウムの、粒径が15μm以上50μm以下の粒子からなり、前記樹脂組成物は、該乾燥剤を樹脂組成物中に40%以上60%以下含むものである場合には、乾燥能力と持続性において最も好ましい結果を与える。   The desiccant is composed of particles having a particle size of 15 μm or more and 50 μm or less in which 90% or more of the weight is calcium oxide or calcium chloride, and the resin composition contains 40% or more of the desiccant in the resin composition. When it contains 60% or less, the most preferable result is given in terms of drying ability and sustainability.

また、上記の樹脂成型体を内容器または乾燥部材として内部に具備した乾燥容器は、開封前の保存性が良く、開封後も容器内部を低湿度に保持する能力が高い。   Moreover, the dry container which comprised the said resin molded body inside as an inner container or a drying member has the good preservability before opening, and the capability to hold | maintain the inside of a container at low humidity after opening is high.

図1は、本発明に係る吸湿能力を有する樹脂成型体の内部構造を示した断面説明図であり、未吸湿の状態を示す。FIG. 1 is a cross-sectional explanatory view showing the internal structure of a resin molded body having a moisture absorption capability according to the present invention, and shows a state of no moisture absorption. 図2は、本発明に係る吸湿能力を有する樹脂成型体の内部構造を示した断面説明図であり表面が吸湿を開始した状態を示したものである。FIG. 2 is an explanatory cross-sectional view showing the internal structure of a resin molded body having a hygroscopic ability according to the present invention, and shows a state in which the surface starts to absorb moisture. 図3は、本発明に係る吸湿能力を有する樹脂成型体の内部構造を示した断面説明図であり吸湿が内部にまで及んで行く状態を示したものである。FIG. 3 is a cross-sectional explanatory view showing the internal structure of a resin molded body having a hygroscopic ability according to the present invention, showing a state in which the moisture absorption reaches the inside. 図4は、本発明に係る吸湿能力を有する樹脂成型体の内部構造を示した断面説明図であり吸湿が内部にまで及んだ状態を示したものである。FIG. 4 is a cross-sectional explanatory view showing the internal structure of a resin molded body having a hygroscopic ability according to the present invention, and shows a state in which the moisture absorption reaches the inside. 図5は、本発明に係る吸湿能力を有する樹脂成型体を用いた医薬品容器の一例を示した断面模式図であり、未開封の状態を示したものである。FIG. 5 is a schematic cross-sectional view showing an example of a pharmaceutical container using a resin molded body having a hygroscopic ability according to the present invention, and shows an unopened state. 図6は、本発明に係る吸湿能力を有する樹脂成型体を用いた医薬品容器の一例を示した断面模式図であり、開封後の状態を示したものである。FIG. 6 is a schematic cross-sectional view showing an example of a pharmaceutical container using a resin molded body having a hygroscopic ability according to the present invention, and shows a state after opening. 図7は、実施例1に示した本発明に係る吸湿能力を有する樹脂成型体を用いた乾燥容器の断面模式図である。FIG. 7 is a schematic cross-sectional view of a drying container using a molded resin body having a hygroscopic ability according to the present invention shown in Example 1. 図8(1)は、図7に示した乾燥容器の吸湿性を有する内筒の断面模式図であり、図8(2)は、平面図である。FIG. 8 (1) is a schematic cross-sectional view of the hygroscopic inner cylinder of the drying container shown in FIG. 7, and FIG. 8 (2) is a plan view. 図9は、実施例1において、樹脂成型体の吸水量と容器内の相対湿度の関係を示すグラフである。FIG. 9 is a graph showing the relationship between the water absorption amount of the resin molded body and the relative humidity in the container in Example 1.

以下図面に従って、本発明に係る吸湿能力を有する樹脂成型体について詳細に説明する。図1は、本発明に係る吸湿能力を有する樹脂成型体の内部構造を示した断面説明図であり、未吸湿の状態を示したものである。また図2〜4は、吸湿が樹脂成型体の内部に進行する様子を示した断面説明図である。   Hereinafter, the resin molded body having a moisture absorption capability according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional explanatory view showing the internal structure of a resin molded body having a moisture absorption capability according to the present invention, and shows a state of no moisture absorption. Moreover, FIGS. 2-4 is sectional explanatory drawing which showed a mode that moisture absorption advanced to the inside of a resin molding.

本発明に係る吸湿能力を有する樹脂成型体は、ベース樹脂2中に、水分を吸収して体積が増加する乾燥剤粒子3を分散した樹脂組成物を成形してなる。ベース樹脂2は、低密度ポリエチレン樹脂および直鎖状低密度ポリエチレン樹脂を1:1の比率で混合して主たる成分とし、曲げ弾性率が150MPaあることが必要である。 The resin molding which has the moisture absorption capability based on this invention shape | molds the resin composition which disperse | distributed the desiccant particle 3 which absorbs a water | moisture content and increases a volume in the base resin 2. FIG. Base resin 2, a low-density polyethylene resins and linear low-density polyethylene resin 1: as a main component are mixed in a ratio of flexural modulus is required to be 0.99 MPa.

ベース樹脂2の一方の主成分である低密度ポリエチレン樹脂(以下LDPEと略す)は、乾燥剤粒子3が膨張した際に膨らみながら形状を保持する役割を持ち、もう一方の主成分である直鎖状低密度ポリエチレン樹脂(以下LLDPEと略す)は、発生した微細なクラック4をその延長上に伸ばし、微細なクラック4の経路を長く延伸させる効果を発揮する。従ってLLDPEの添加は必須である。   The low-density polyethylene resin (hereinafter abbreviated as LDPE), which is one main component of the base resin 2, has a role of maintaining its shape while expanding when the desiccant particles 3 expand, and is a straight chain that is the other main component. The low-density polyethylene resin (hereinafter abbreviated as LLDPE) exerts the effect of extending the generated fine crack 4 on its extension and extending the path of the fine crack 4 long. Therefore, the addition of LLDPE is essential.

乾燥剤としては、重量の80%以上が、酸化カルシウムまたは塩化カルシウムの、粒径が10μmより大きく60μm未満であり、15μm以上50μm以下の粒子が重量の95%を占める粒子3からなり、前記樹脂組成物は、該乾燥剤を樹脂組成物中に35%以上75%以下含むことを必要とする。 As the desiccant, 80% or more of the weight is composed of particles 3 of calcium oxide or calcium chloride having a particle size of more than 10 μm and less than 60 μm, and particles of 15 μm or more and 50 μm or less occupying 95% of the weight. The composition needs to contain 35% or more and 75% or less of the desiccant in the resin composition.

下記反応式のように、酸化カルシウムは水と反応して水酸化カルシウムとなり体積が膨張する。また塩化カルシウムは、無水物が水と反応して一水和物、二水和物、四水和物、六水和物となり同様に体積が膨張する。塩化カルシウムの場合は、無水物か二水和物を乾燥剤として利用できる。

Figure 0005527061
As shown in the following reaction formula, calcium oxide reacts with water to become calcium hydroxide and the volume expands. In addition, calcium chloride reacts with water to form monohydrate, dihydrate, tetrahydrate, and hexahydrate, and the volume of the chloride expands similarly. In the case of calcium chloride, anhydrous or dihydrate can be used as a desiccant.
Figure 0005527061

乾燥剤の粒子3が吸湿して膨張することにより、周囲のベース樹脂2に微細なクラック4を生じる。この微細なクラック4を経由して外部の水蒸気が成型体の内部にまで到達するため、吸湿が連続的に進行する。   When the desiccant particles 3 absorb moisture and expand, fine cracks 4 are generated in the surrounding base resin 2. Since external water vapor reaches the inside of the molded body via the fine cracks 4, moisture absorption proceeds continuously.

この時、ベース樹脂2が強靱すぎると、乾燥剤の膨張する力より勝るため、クラックが発生しない。また逆に柔らかすぎると乾燥剤の膨張を吸収してしまい、やはりクラックが発生しない。   At this time, if the base resin 2 is too tough, the cracking does not occur because it exceeds the expansion force of the desiccant. On the other hand, if it is too soft, the expansion of the desiccant is absorbed and cracks are not generated.

ベース樹脂の曲げ弾性率が80MPa以上240MPa以下であれば、適度に微細なクラックを発生させることが可能となる。ベース樹脂の曲げ弾性率は、95MPa以上190MPa以下であることが最も望ましい。   If the base resin has a flexural modulus of 80 MPa or more and 240 MPa or less, moderately fine cracks can be generated. Most preferably, the flexural modulus of the base resin is 95 MPa or more and 190 MPa or less.

ベース樹脂としては、LDPE、LLDPEの他、LDPEにエチレンプロピレンゴム(EPR)を添加することもできる。また通常のLLDPEの替わりにメタロセン触媒によるLLDPEを使用することもできる。LDPEの代わりにメタロセン触媒による軟質のポリプロピレン樹脂を用いることは、LLDPEとの相溶性の問題で好ましくない。   As the base resin, ethylene propylene rubber (EPR) can be added to LDPE in addition to LDPE and LLDPE. Moreover, LLDPE by a metallocene catalyst can be used instead of ordinary LLDPE. The use of a soft polypropylene resin based on a metallocene catalyst instead of LDPE is not preferred because of compatibility with LLDPE.

一方乾燥剤については、乾燥剤の粒径を細かくして微粉末とした場合は、ベース樹脂にクラックを発生させるだけの応力を生じることができない。逆に粒径が大きすぎるとベース樹脂との分散性が悪くなり、成形適性において問題が生じたり、凝集して塊状になり吸湿性が低下する。   On the other hand, with respect to the desiccant, when the particle size of the desiccant is reduced to a fine powder, stress sufficient to cause cracks in the base resin cannot be generated. On the other hand, if the particle size is too large, the dispersibility with the base resin deteriorates, causing problems in molding suitability, or agglomerating into a lump and reducing the hygroscopicity.

乾燥剤の粒径については、5μm以上100μm以下の粒子が、乾燥剤全体の重量の80%以上であることが必要である。乾燥剤の粒径は、15μm以上50μm以下であることがより望ましく、この範囲の粒径のものが乾燥剤全体の重量の90%以上であることがより望ましい。   As for the particle size of the desiccant, it is necessary that the particles of 5 μm or more and 100 μm or less are 80% or more of the total weight of the desiccant. The particle size of the desiccant is more preferably 15 μm or more and 50 μm or less, and the particle size within this range is more preferably 90% or more of the total weight of the desiccant.

乾燥剤の添加量については、樹脂組成物を100%とした場合の重量比で35%以上75%以下が適当である。35%未満ではクラックの発生が不十分で吸湿能力が発揮されない。また75%を超えるような場合には成型体が脆くなり、成型体全体が割れたり、破片が生じたり、微少な粉や粒が発生したりして実用上問題となる可能性がある。   About the addition amount of a desiccant, 35% or more and 75% or less are suitable by the weight ratio when a resin composition is 100%. If it is less than 35%, the generation of cracks is insufficient and the moisture absorption capacity is not exhibited. On the other hand, if it exceeds 75%, the molded body becomes brittle, the entire molded body is cracked, fragments are generated, and fine powders and particles are generated, which may be a practical problem.

乾燥剤の添加量としては、樹脂組成物を100%とした場合の重量比で40%以上60%以下であることがより望ましい。   The addition amount of the desiccant is more preferably 40% or more and 60% or less by weight ratio when the resin composition is 100%.

図1〜4は、本発明に係る吸湿能力を有する樹脂成型体の内部構造を示した断面説明図であり、図1は、未吸湿の状態を、また図2は、表面が吸湿を開始した状態を、図3は、吸湿が内部にまで及んで行く状態を、図4は、吸湿が内部にまで及んだ状態をそれぞれ示したものである。   FIGS. 1 to 4 are cross-sectional explanatory views showing the internal structure of a resin molded body having a moisture absorption capability according to the present invention. FIG. 1 shows a non-absorbed state, and FIG. 2 shows that the surface starts to absorb moisture. FIG. 3 shows a state where moisture absorption reaches the inside, and FIG. 4 shows a state where moisture absorption reaches the inside.

図2に示したように、水蒸気を含んだ雰囲気中に曝された樹脂成型体1は、最外表面付近に存在する乾燥剤粒子が吸湿を開始する。吸湿に伴って乾燥剤粒子は膨張するため乾燥剤粒子の周辺のベース樹脂2に微細なクラック4が発生する。   As shown in FIG. 2, in the molded resin body 1 exposed to the atmosphere containing water vapor, the desiccant particles existing near the outermost surface start to absorb moisture. Since the desiccant particles expand with moisture absorption, fine cracks 4 are generated in the base resin 2 around the desiccant particles.

図3に示したように微細なクラック4は、徐々に内部にまで進行し、水蒸気はこのクラックを経由して内部の乾燥剤粒子に到達し、クラックが到達した乾燥剤粒子が吸湿を開始する。   As shown in FIG. 3, the fine crack 4 gradually progresses to the inside, the water vapor reaches the internal desiccant particles through the crack, and the desiccant particles that have reached the crack start to absorb moisture. .

この吸湿過程が進行すると、図4に示したようにクラックが内部全域まで到達し、全ての乾燥剤粒子が完全に吸湿すると吸湿過程が終了する。   As this moisture absorption process proceeds, cracks reach the entire interior as shown in FIG. 4, and the moisture absorption process ends when all the desiccant particles have completely absorbed moisture.

本発明に係る吸湿能力を有する樹脂成型体を成形する方法としては、予め必要材料を混練してペレット化しておき、このペレットを射出成形機や押出成形機にかけて所望の成形
品を成形することができる。通常本発明に係る樹脂成型体を単独で使用することは意味がなく、防湿性の容器の内貼りや挿入部品として使用される場合が多い。
As a method of molding a resin molded body having a hygroscopic ability according to the present invention, a necessary material is previously kneaded and pelletized, and the pellet is subjected to an injection molding machine or an extrusion molding machine to form a desired molded product. it can. Usually, it is meaningless to use the resin molded body according to the present invention alone, and it is often used as an inner part of a moisture-proof container or as an insertion part.

図5は、本発明に係る吸湿能力を有する樹脂成型体を用いた医薬品容器の一例を示した断面模式図であり、未開封の状態を示したものである。また図6は、開封後の状態を示したものである。   FIG. 5 is a schematic cross-sectional view showing an example of a pharmaceutical container using a resin molded body having a hygroscopic ability according to the present invention, and shows an unopened state. FIG. 6 shows the state after opening.

図5の例では、乾燥容器10は、防湿性の外筒11の内部に本発明に係る吸湿能力を有する樹脂成型体である吸湿性を有する内筒12を挿入した容器本体に蓋13を螺合した構造となっている。蓋13には、密封性を高めるためのインナーリング16が設けられている。未開封の状態では、容器の内部には水蒸気の侵入15はないため、容器の内部は乾燥しており、この状態が保たれる。図6のように、乾燥容器10が開封されると、蓋13を開閉する度に、外気に伴って水蒸気の侵入15が生じる。吸湿性を有する内筒12に接触した水蒸気は、前述のようにまず最外表面付近にある乾燥剤粒子に吸湿され、次いで順次内部の乾燥剤粒子に吸湿される。   In the example of FIG. 5, the drying container 10 has a lid 13 screwed into a container body in which a moisture-absorbing inner cylinder 12, which is a resin molded body having a moisture-absorbing ability according to the present invention, is inserted inside a moisture-proof outer cylinder 11. It has a combined structure. The lid 13 is provided with an inner ring 16 for improving the sealing performance. In the unopened state, since there is no water vapor intrusion 15 inside the container, the inside of the container is dry and this state is maintained. As shown in FIG. 6, when the drying container 10 is opened, every time the lid 13 is opened and closed, a water vapor intrusion 15 occurs with the outside air. As described above, the water vapor that has contacted the hygroscopic inner cylinder 12 is first absorbed by the desiccant particles near the outermost surface and then sequentially absorbed by the internal desiccant particles.

このため、一旦開封しても、蓋が閉じられると容器内部の空間に残された空気中の水分は、吸湿性を有する内筒12に吸湿除去される。このような用途では、開封してから内容物を使い切るまでに相当の期間が経過する場合が想定されるが、吸湿性を有する内筒12が吸湿能力を持続するので、内容物が変質する怖れがない。   For this reason, even if it is once opened, moisture in the air left in the space inside the container is absorbed and removed by the inner cylinder 12 having hygroscopicity when the lid is closed. In such an application, it is assumed that a considerable period of time elapses after opening the contents until the contents are used up. However, since the inner cylinder 12 having hygroscopicity maintains the hygroscopic ability, the contents may be deteriorated. There is no.

防湿性の外筒11としては、金属製やガラス製の容器の他、高密度ポリエチレン樹脂、ポリプロピレン樹脂、ポリエチレンテレフタレート樹脂、アクリル樹脂等の比較的水蒸気透過性の小さいプラスチック容器が適している。アルミニウム箔や、金属酸化物を蒸着したガスバリアフィルム等の水蒸気透過性の小さい素材を組み合わせたバリア性の容器を用いることも好ましい結果を与える。   As the moisture-proof outer cylinder 11, a plastic container having a relatively low water vapor permeability such as a high-density polyethylene resin, a polypropylene resin, a polyethylene terephthalate resin, and an acrylic resin is suitable in addition to a metal or glass container. It is also preferable to use a barrier container in which a material having a low water vapor permeability such as an aluminum foil or a gas barrier film on which a metal oxide is deposited is combined.

LDPEとLLDPEとを1:1の比率で混合したベース樹脂中に、粒径を下記のように調整した酸化カルシウムを45%含有するように混合、分散した樹脂組成物を調製し、射出成形法によって、図8(1)、(2)に示したような形状の、吸湿性を有する内筒12に相当する樹脂成形体を作成した。樹脂成型体の寸法は、上端の外径が約27mm、高さが約43mmであり、重量は約11gである。従って、この樹脂成型体中には、酸化カルシウムが約5g含まれていることになる。なおベース樹脂の曲げ弾性率は、150MPaであった。   A resin composition prepared by mixing and dispersing in a base resin in which LDPE and LLDPE are mixed at a ratio of 1: 1 so as to contain 45% of calcium oxide having a particle size adjusted as follows is prepared, and an injection molding method is used. Thus, a resin molded body corresponding to the hygroscopic inner cylinder 12 having a shape as shown in FIGS. 8 (1) and (2) was prepared. As for the dimensions of the resin molding, the outer diameter at the upper end is about 27 mm, the height is about 43 mm, and the weight is about 11 g. Therefore, this resin molding contains about 5 g of calcium oxide. The flexural modulus of the base resin was 150 MPa.

(酸化カルシウムの粒径)
粒径が10μm以下の微粒と、粒径が60μm以上の粗粒を除去し、粒径が15μm以上50μm以下の粒子が重量の95%を占めるものとなるようにした。
(Calcium oxide particle size)
Fine particles having a particle size of 10 μm or less and coarse particles having a particle size of 60 μm or more were removed, and particles having a particle size of 15 μm or more and 50 μm or less accounted for 95% of the weight.

ポリプロピレン樹脂を用いて、射出成形法により、図7に示したような形状の防湿性の外筒11に相当する外容器を作成した。外容器にはヒンジで連結した蓋13が一体に成形されており、この蓋13により、容器を密封することができる。外容器の寸法は、上端外径が約30mm、高さは約43mmである。
この外容器に前記樹脂成型体を挿入した。樹脂成型体の側壁の外周には微細なV字状の通気溝を設け、底面には貫通孔17を設けたため、挿入は円滑に行うことができた。
An outer container corresponding to the moisture-proof outer cylinder 11 having a shape as shown in FIG. 7 was prepared by an injection molding method using polypropylene resin. A lid 13 connected by a hinge is integrally formed with the outer container, and the container can be sealed by the lid 13. The outer container has an upper end outer diameter of about 30 mm and a height of about 43 mm.
The resin molding was inserted into the outer container. Since a fine V-shaped ventilation groove was provided on the outer periphery of the side wall of the resin molded body and the through hole 17 was provided on the bottom surface, the insertion could be performed smoothly.

容器の蓋を20℃、65%RHの環境において1分間開いた状態で保持した後、蓋を閉めて、容器内の相対湿度が10%RH未満になるまでに要する時間を2個のサンプルについて測定した。この結果を表1に示す。   After holding the lid of the container for 1 minute in an environment of 20 ° C. and 65% RH, the lid is closed and the time required for the relative humidity in the container to be less than 10% RH is about 2 samples. It was measured. The results are shown in Table 1.

Figure 0005527061
Figure 0005527061

このように、蓋を閉じてから7時間後には、容器内の相対湿度が10%未満に到達することが分かった。次に、容器内の相対湿度を10%以下に保持しうる容器の保存期間と吸水量の関係を調べた。図9は、樹脂成型体の吸水量と容器内の相対湿度の関係を示したグラフである。この結果から吸水量423mgまでは、容器内の相対湿度を10%未満に保持し得ることが分かった。   Thus, it was found that the relative humidity in the container reached less than 10% 7 hours after closing the lid. Next, the relationship between the storage period of the container capable of maintaining the relative humidity in the container at 10% or less and the water absorption amount was examined. FIG. 9 is a graph showing the relationship between the water absorption amount of the resin molded body and the relative humidity in the container. From this result, it was found that the relative humidity in the container could be kept below 10% up to a water absorption of 423 mg.

次に、この容器の保存性を推定するため、40℃、90%RHの雰囲気中と20℃、65%RHの雰囲気中において、1日の透過水分量を調べ、この値から容器内部を10%RH未満に保持できる日数を推定した。この結果を表2に示す。   Next, in order to estimate the storage stability of this container, the amount of permeated water per day was examined in an atmosphere of 40 ° C. and 90% RH and in an atmosphere of 20 ° C. and 65% RH. The number of days that could be kept below% RH was estimated. The results are shown in Table 2.

Figure 0005527061
Figure 0005527061

このように、本発明に係る吸湿能力を有する樹脂成型体を用いた実施例1の乾燥容器は、過酷な環境で約1年、通常の環境で約2年の湿度保持能力を有するものと推定される。なお、吸湿性を有する内筒が完全に吸湿すると、体積が増加するため、防湿性の外筒との嵌め合い寸法の関係によっては、外筒の蓋の開閉に支障が生じるようにすることができる。このようにすると、外筒の蓋の開閉の具合によって内筒の吸湿度合いを推定することができるので、誤って吸湿済みの容器を使ってしまうといったトラブルを未然に防止することも可能となる。   Thus, it is estimated that the drying container of Example 1 using the resin molded body having moisture absorption capability according to the present invention has a humidity retention capability of about one year in a harsh environment and about two years in a normal environment. Is done. In addition, since the volume increases when the hygroscopic inner cylinder completely absorbs moisture, depending on the fitting dimension with the moisture-proof outer cylinder, the opening and closing of the lid of the outer cylinder may be hindered. it can. In this way, the degree of moisture absorption of the inner cylinder can be estimated by the degree of opening and closing of the lid of the outer cylinder, so that it is possible to prevent troubles such as accidentally using a moisture-absorbed container.

1・・・成型体
2・・・ベース樹脂
3・・・乾燥剤粒子
4・・・微細なクラック
5・・・吸湿した乾燥剤粒子
10・・・乾燥容器
11・・・防湿性の外筒
12・・・吸湿性を有する内筒
13・・・蓋
14・・・内容物
15・・・水蒸気の侵入
16・・・インナーリング
17・・・貫通孔
DESCRIPTION OF SYMBOLS 1 ... Molded body 2 ... Base resin 3 ... Desiccant particle 4 ... Fine crack 5 ... Absorbed desiccant particle 10 ... Drying container 11 ... Moisture-proof outer cylinder 12 ... Hygroscopic inner cylinder 13 ... Lid 14 ... Contents 15 ... Water vapor intrusion 16 ... Inner ring 17 ... Through hole

Claims (3)

ベース樹脂中に、水分を吸収して体積が増加する乾燥剤を分散した樹脂組成物を成形してなる、吸湿能力を有する樹脂成型体であって、前記ベース樹脂は、低密度ポリエチレン樹脂直鎖状低密度ポリエチレン樹脂を1:1の比率で混合して主たる成分とし、曲げ弾性率が150MPaあり、前記乾燥剤は、重量の80%以上が、酸化カルシウムまたは塩化カルシウムの、粒径が10μmより大きく60μm未満であり、15μm以上50μm以下の粒子が重量の95%を占め、前記樹脂組成物は、該乾燥剤を樹脂組成物中に35%以上75%以下含むことを特徴とする吸湿能力を有する樹脂成型体。 In the base resin, by molding the resin composition volume by absorbing moisture is dispersed desiccant increases, a resin molded body having a moisture absorption capacity, the base resin include low density polyethylene resins and linear A chain low density polyethylene resin is mixed as a main component in a ratio of 1: 1 , the flexural modulus is 150 MPa , and the desiccant has a particle size of 80% or more of calcium oxide or calcium chloride. Is larger than 10 μm and smaller than 60 μm, particles of 15 μm or more and 50 μm or less occupy 95% of the weight, and the resin composition contains 35% or more and 75% or less of the desiccant in the resin composition. Resin molded body with hygroscopic ability. 前記樹脂組成物は、酸化カルシウムである乾燥剤を樹脂組成物中に4%以下含むことを特徴とする請求項記載の吸湿能力を有する樹脂成型体。 The resin composition, a resin molded body having a moisture absorption capacity according to claim 1, characterized in that it comprises 4 to 5% in the resin composition of the drying agent is calcium oxide. 請求項1または2に記載の樹脂成型体を内容器または乾燥部材として内部に具備したことを特徴とする乾燥容器。 Drying vessel, characterized by comprising inside the resin molded body according as the inner container or drying member to claim 1 or 2.
JP2010153720A 2010-07-06 2010-07-06 Resin molded body having moisture absorption capability and drying container using the same Active JP5527061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010153720A JP5527061B2 (en) 2010-07-06 2010-07-06 Resin molded body having moisture absorption capability and drying container using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010153720A JP5527061B2 (en) 2010-07-06 2010-07-06 Resin molded body having moisture absorption capability and drying container using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013261210A Division JP5825334B2 (en) 2013-12-18 2013-12-18 Resin molded body having moisture absorption capability and drying container using the same

Publications (2)

Publication Number Publication Date
JP2012017353A JP2012017353A (en) 2012-01-26
JP5527061B2 true JP5527061B2 (en) 2014-06-18

Family

ID=45602841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010153720A Active JP5527061B2 (en) 2010-07-06 2010-07-06 Resin molded body having moisture absorption capability and drying container using the same

Country Status (1)

Country Link
JP (1) JP5527061B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015208583A (en) * 2014-04-30 2015-11-24 診療化成株式会社 Ointment container
EP3159279B1 (en) * 2014-06-18 2020-03-04 Kyodo Printing Co., Ltd. Absorbent layer for blister packs, laminate comprising same, and blister pack using said laminate
TWI730047B (en) * 2016-02-09 2021-06-11 美商Csp技術股份有限公司 Containers, container inserts and associated methods for making containers
CN111073149B (en) * 2019-12-31 2022-09-30 石家庄中汇药品包装有限公司 Moisture-proof resin material of packaging bottle, application of moisture-proof resin material, moisture-proof medicine bottle and processing technology of moisture-proof medicine bottle

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4583697B2 (en) * 2002-06-13 2010-11-17 凸版印刷株式会社 Resin composition containing inorganic compound, and laminate and package using the same
JP4265200B2 (en) * 2002-10-25 2009-05-20 凸版印刷株式会社 Resin composition having drying ability, and laminate and package using the same
JP2004143311A (en) * 2002-10-25 2004-05-20 Toppan Printing Co Ltd Inorganic compound-containing resin composition, and laminate and packaging form using the same
JP2006348126A (en) * 2005-06-15 2006-12-28 Toppan Printing Co Ltd Drying agent-containing synthetic resin-molded article
JP5050339B2 (en) * 2005-11-22 2012-10-17 凸版印刷株式会社 Container using desiccant-containing resin molding
JP2007289881A (en) * 2006-04-26 2007-11-08 Toppan Printing Co Ltd Instantaneously developing desiccant containing resin molded object
JP4894345B2 (en) * 2006-04-26 2012-03-14 凸版印刷株式会社 Desiccant-containing resin molded article having flashiness and durability and container using the same

Also Published As

Publication number Publication date
JP2012017353A (en) 2012-01-26

Similar Documents

Publication Publication Date Title
US6613405B1 (en) Monolithic composition having the capability of maintaining constant relative humidity in a package
US7201959B2 (en) Absorbent polymeric composition
JP5731985B2 (en) Hygroscopic resin composition and molded article thereof
JP5527061B2 (en) Resin molded body having moisture absorption capability and drying container using the same
RU2433864C2 (en) Method of selecting absorbing composite barriers for packages
EP1187874A4 (en) Monolithic polymer composition having an absorbing material
JP5700414B2 (en) Hygroscopic resin composition and hygroscopic multilayer container
US20220161232A1 (en) Polymer compositions comprising active carbon for formaldehyde sorption
JP5825334B2 (en) Resin molded body having moisture absorption capability and drying container using the same
JP2010116435A (en) Water vapor barriable resin composition
EP2969182A1 (en) Water vapor barrier composition
TWI710591B (en) Polymer composition comprising a base polymer, an inorganic desiccant material, and an additive
JP4225062B2 (en) Moisture absorption packaging container
JP2010116436A (en) Water-absorbing resin composition
JP2005220149A (en) Hygroscopic resin composition and moisture-absorbing container
JP2006044772A (en) Composite cap and container with the same
JP2004001801A (en) Plastic envelope
JP4423867B2 (en) Moisture absorption plastic container
JP2017148117A (en) Preservation method of pharmaceutical products
EP3891215B1 (en) Polyolefin compositions with improved oxygen scavenging capability
US20190022900A1 (en) Method for making oxygen remediating melt-incorporated additives in plastics for packages
WO2022006600A1 (en) Ammonia adsorption entrained polymer
JP2006348126A (en) Drying agent-containing synthetic resin-molded article
JP6819849B2 (en) Oxygen absorption molded article and its manufacturing method, oxygen absorption multilayer body, and oxygen absorption package
JP5912765B2 (en) Hygroscopic resin composition and container lid having hygroscopic function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140331

R150 Certificate of patent or registration of utility model

Ref document number: 5527061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250