JP5526372B2 - Electrode catalyst for polymer electrolyte fuel cell and production method thereof. - Google Patents

Electrode catalyst for polymer electrolyte fuel cell and production method thereof. Download PDF

Info

Publication number
JP5526372B2
JP5526372B2 JP2010211471A JP2010211471A JP5526372B2 JP 5526372 B2 JP5526372 B2 JP 5526372B2 JP 2010211471 A JP2010211471 A JP 2010211471A JP 2010211471 A JP2010211471 A JP 2010211471A JP 5526372 B2 JP5526372 B2 JP 5526372B2
Authority
JP
Japan
Prior art keywords
carbon black
platinum
methylated
fuel cell
electrode catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010211471A
Other languages
Japanese (ja)
Other versions
JP2012069304A (en
Inventor
太郎 衣本
大川裕美香
Original Assignee
国立大学法人 大分大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 大分大学 filed Critical 国立大学法人 大分大学
Priority to JP2010211471A priority Critical patent/JP5526372B2/en
Publication of JP2012069304A publication Critical patent/JP2012069304A/en
Application granted granted Critical
Publication of JP5526372B2 publication Critical patent/JP5526372B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

本発明は、固体高分子形燃料電池用電極触媒とその製造方法に関するものである。 The present invention relates to an electrode catalyst for a polymer electrolyte fuel cell and a method for producing the same.

固体高分子形燃料電池は家庭用、移動体用電源としての商用化が期待されており、現在、電極触媒として、炭素材料としてカーボンブラックを用い、それに2 nm相当径の白金粒子を担持した白金担持カーボン触媒が一般的に用いられている。しかしながら、カーボンは同燃料電池環境において安定ではなく、負荷変動や起動停止時に二酸化炭素として消耗してしまう。
カーボン材料を担体材料として用いてこの消耗を防ぎ、耐消耗性を飛躍的に高める方法として、非特許文献1で報告されているように、高温で熱処理したカーボン材料を用いる例がある。しかし、このように熱処理したカーボン材料では上記サイズの白金粒子を担持することが困難で、担持方法に対するコストやそれにともない白金使用量が増大し同電池の生産コストが高くなってしまう問題がある。
The polymer electrolyte fuel cell is expected to be commercialized as a power source for home and mobile use. Currently, platinum is used as an electrode catalyst, carbon black as a carbon material, and carrying platinum particles with a diameter equivalent to 2 nm. A supported carbon catalyst is generally used. However, carbon is not stable in the fuel cell environment, and is consumed as carbon dioxide when the load fluctuates or starts and stops.
As reported in Non-Patent Document 1, there is an example of using a carbon material that has been heat-treated at a high temperature, as reported in Non-Patent Document 1, as a method for dramatically reducing the wear resistance by using a carbon material as a carrier material. However, it is difficult to carry platinum particles of the above size with the carbon material thus heat treated, and there is a problem that the cost for the carrying method and the amount of platinum used increase accordingly and the production cost of the battery increases.

H. Yano, T. Akiyama, P. Bele, H. Uchida, and M. Watanabe, Physical Chemistry Chemical Physics, 12, No.15, 3806-3814 (2010).H. Yano, T. Akiyama, P. Bele, H. Uchida, and M. Watanabe, Physical Chemistry Chemical Physics, 12, No. 15, 3806-3814 (2010).

本発明は、従来触媒に用いられているカーボンブラック表面をメチル化剤でメチル化し、カーボンブラックよりも飛躍的に高い耐消耗性をもつことを明らかにした上で、2nm相当径の白金粒子を担持した電極触媒を提供する。そしてそれが同燃料電池用として有用な触媒活性と高い耐久性を有することを確認した。 The present invention methylates the surface of carbon black conventionally used in catalysts with a methylating agent, reveals that it has significantly higher wear resistance than carbon black, and then adds platinum particles with a diameter equivalent to 2 nm. A supported electrocatalyst is provided. And it was confirmed that it has useful catalytic activity and high durability for the fuel cell.

本発明は上記の課題を満足するものでその特徴とすると技術条件は次の(1), (2)の通りである。
(1)、担持体にカーボンブラックを用い、固体高分子形燃料電池用電極触媒を製造するに際して、前記カーボンブラックを予め有機溶媒中でメチル化剤と反応させてメチル化カーボンブラックを作製して用い、これに白金錯体と還元剤を用いて白金粒子を担持することを特徴とする固体高分子形燃料電池用電極触媒の製造方法。
(2)、担持体をメチル化カーボンブラックにし、それに塩化白金酸を白金源として還元剤としてホルムアルデヒドで還元することにより2 〜3nm径の白金粒子を担持したことを特徴とする固体高分子形燃料電池用電極触媒。
The present invention satisfies the above-described problems and is characterized by the following technical conditions (1) and (2).
(1) When producing a polymer electrolyte fuel cell electrode catalyst using carbon black as a support, the carbon black is reacted in advance with a methylating agent in an organic solvent to produce methylated carbon black. A method for producing an electrode catalyst for a polymer electrolyte fuel cell, characterized in that platinum particles are supported using a platinum complex and a reducing agent.
(2) A solid polymer fuel characterized in that a support is made into methylated carbon black, and platinum particles having a diameter of 2 to 3 nm are supported by reducing with chloroplatinic acid as a platinum source and formaldehyde as a reducing agent. Battery electrode catalyst.

本発明の前記電極触媒は、メチル化していないカーボンブラックの表面に白金粒子を担持させた固体高分子形燃料電池用電極触媒に比し、メチル化カーボンブラックを用いることにより消耗抑制効果が大きく、又、生産性とコストに優位差がある。
このため、市販電極触媒よりも高い耐久性を有するので、高温作動燃料電池への適用も期待できる。白金担持触媒のカソード極触媒性能のみを実証しているが、アノード極触媒としても期待できる。また、アルカリ電解質形燃料電池やりん酸形,直接メタノール形燃料電池など他の燃料電池用触媒としても期待できる。
The electrocatalyst of the present invention has a large consumption-suppressing effect by using methylated carbon black, compared to the electrode catalyst for polymer electrolyte fuel cells in which platinum particles are supported on the surface of non-methylated carbon black, There is also a difference in productivity and cost.
For this reason, since it has durability higher than a commercially available electrode catalyst, application to a high temperature operation fuel cell can also be expected. Only the cathode catalyst performance of the platinum-supported catalyst has been demonstrated, but it can also be expected as an anode catalyst. It can also be expected as a catalyst for other fuel cells such as an alkaline electrolyte fuel cell, phosphoric acid type, and direct methanol type fuel cell.

メチル化カーボンブラックの過塩素酸水溶液中におけるサイクリックボルタモグムを示すグラフ。The graph which shows the cyclic voltammum in the perchloric acid aqueous solution of methylated carbon black. カーボンブラック、アミド化−メチル化カーボンブラックおよびメチル化カーボンブラックからの二酸化炭素生成量を示すグラフ。The graph which shows the carbon dioxide production amount from carbon black, amidation-methylation carbon black, and methylation carbon black. 白金担持メチル化カーボンブラックの透過型電子顕微鏡像を示す。The transmission electron microscope image of platinum carrying | support methylated carbon black is shown. 白金担持メチル化カーボンブラックと白金担持カーボンの電位サイクル試験中での安定性の比較を示すグラフ。The graph which shows the comparison of the stability in the potential cycle test of platinum carrying | support methylated carbon black and platinum carrying | support carbon. 白金担持メチル化カーボンブラックと白金担持カーボンの電位パルス試験中での安定性の比較を示すグラフ。The graph which shows the comparison of the stability in the electric potential pulse test of platinum carrying | support methylated carbon black and platinum carrying | support carbon.

本発明の固体高分子形燃料電池用電極触媒の製造方法は、担持体のカーボンブラックをその酸性官能基とメチル化剤との比を1:1〜1:100でメチル化剤を含む有機溶媒中に添加、反応させてメチル化カーボンブラックとし、このメチル化カーボンブラックに対して白金量が5〜50重量%となるような濃度の白金錯体溶液と、その1〜10倍濃度の還元剤を混合し、室温(通常16〜34℃)〜120℃で20時間内で反応させるものである。 The method for producing an electrocatalyst for a polymer electrolyte fuel cell according to the present invention comprises a carbon black as a support and an organic solvent containing a methylating agent in a ratio of acidic functional group to methylating agent of 1: 1 to 1: 100. A methylated carbon black is added and reacted to form a platinum complex solution having a concentration of 5 to 50% by weight of platinum with respect to the methylated carbon black, and a reducing agent having a concentration of 1 to 10 times the platinum complex solution. They are mixed and reacted at room temperature (usually 16 to 34 ° C.) to 120 ° C. within 20 hours.

また本発明の固体高分子形燃料電池用電極触媒は、担持組成物をメチル化カーボンブラックとし、それに2〜3 nm径の白金粒子をメチル化カーボンブラックの重量に対して5〜50%担持したものである。 The electrode catalyst for a polymer electrolyte fuel cell of the present invention uses a supported composition as methylated carbon black, and supports 5 to 50% of platinum particles having a diameter of 2 to 3 nm based on the weight of the methylated carbon black. Is.

本発明においてメチル化剤としてはトリメチルシリルジアゾメタンを用いる。 In the present invention, trimethylsilyldiazomethane is used as the methylating agent.

本発明の白金源としては、特に制限はなく塩化白金酸あるいはそれらのアルカリ金属塩,あるいは硝酸イオン,アンモニウムイオン,塩化物イオン,ヒドロキシル基などを配位子として有する白金錯体を、還元剤にも特に制限はなく水素,水素化ホウ素ナトリウム,ホルムアルデヒドなど一般的な還元剤を用いることができるが、なかでも塩化白金酸を白金減、ホルムアルデヒドを還元剤として用いるのが最も望ましい。
以下に本発明の実施例を示す。
The platinum source of the present invention is not particularly limited, and a platinum complex having a chloroplatinic acid or an alkali metal salt thereof or a nitrate ion, ammonium ion, chloride ion, hydroxyl group or the like as a ligand can be used as a reducing agent. There is no particular limitation, and general reducing agents such as hydrogen, sodium borohydride, and formaldehyde can be used. Of these, it is most preferable to use chloroplatinic acid as a platinum reducing agent and formaldehyde as a reducing agent.
Examples of the present invention are shown below.

表1に前記製造方法の各条件を網羅した具体例を紹介し、表2に表1に示す条件で製造した固体高分子形燃料電池用電極触媒の前記成分構成を網羅した具体例を紹介し、表3に表2に示す電極触媒の評価状態を紹介する。
表1にメチル化カーボンブラックを担持組成物として用い、下記の条件で触媒作製を行った。
Table 1 introduces specific examples covering the conditions of the production method, and Table 2 introduces specific examples of the composition of the components of the polymer electrolyte fuel cell electrode catalyst produced under the conditions shown in Table 1. Table 3 introduces the evaluation state of the electrode catalyst shown in Table 2.
In Table 1, a catalyst was prepared under the following conditions using methylated carbon black as a supporting composition.


白金錯体として塩化白金酸を、還元剤としてホルムアルデヒドを80oCに加熱して、溶媒を除去後、窒素雰囲気下120oCで6時間加熱して、平均2 nm径の白金粒子を担持することができた。その他の白金錯体は高価で製造コストが高くなるとともに白金粒子が担持しづらく、担持重量が極めて小さくなってしまうあるいは粒径が大きくなるといった問題が生じた。一方、塩化白金酸は用いた白金錯体の中では最も安価であり、それにより容易に平均2 nm径の白金粒子がメチル化カーボンブラック上に担持された電極触媒を作製できた。
表2にメチル化カーボンブラックを担持体とし、塩化白金酸とホルムアルデヒドを用いて作製された電極触媒の白金粒子の平均粒径を示す。

Heat chloroplatinic acid as a platinum complex and formaldehyde as a reducing agent to 80 ° C, remove the solvent, and then heat at 120 ° C for 6 hours in a nitrogen atmosphere to support platinum particles with an average diameter of 2 nm. I was able to. Other platinum complexes are expensive and expensive to manufacture, and it is difficult to support platinum particles, resulting in a problem that the supported weight becomes extremely small or the particle size becomes large. On the other hand, chloroplatinic acid was the cheapest of the platinum complexes used, and as a result, an electrocatalyst in which platinum particles having an average diameter of 2 nm were supported on methylated carbon black could be easily prepared.
Table 2 shows the average particle diameter of platinum particles of an electrode catalyst prepared using methylated carbon black as a support and using chloroplatinic acid and formaldehyde.


表3にメチル化カーボンブラックを担持体とし、塩化白金酸とホルムアルデヒドを用いて作製された電極触媒の性能比較表を示す。

Table 3 shows a performance comparison table of electrode catalysts prepared using methylated carbon black as a support and using chloroplatinic acid and formaldehyde.


しかし、担持量が30, 50重量%の電極触媒では白金粒子の大きさが表2で示したように3, 5 nmで、耐久性は同程度であるが、白金利用率が低くなるため本例の中では15重量%で調製したものが総合的に良いと判断できる。

However, in the case of an electrocatalyst with a supported amount of 30 or 50% by weight, the platinum particle size is 3.5 nm as shown in Table 2 and the durability is similar, but the platinum utilization rate is low. In the examples, it can be judged that a product prepared at 15% by weight is generally good.

次にカーボンブラックのメチル化処理関係について具体例と共に説明する。
メチル化の溶媒に関してはアルコール系溶媒が望ましく、メチルアルコールが最も望ましかった。なお、溶媒とカーボンブラックとの比は任意であるが、カーボンブラック量が溶媒に対し過剰であると反応の均一性がなくなり、溶媒60 mLに対してカーボンブラックが0.4 gが最も望ましい。
原料のカーボンブラック内の酸性官能基とメチル化剤との比を1:1〜1:100の範囲内で20時間反応させ検討した結果、具体例1に示すように修飾後のカーボンブラック内の酸性官能基量がメチル化剤の比を大きくすると減少したことが確認できた。この際、メチル化カーボンブラックを水酸化ナトリウム水溶液に入れ、その酸性官能基にナトリウムイオンを十分に吸着せしめた後、残液中のナトリウム濃度を測定することによりメチル化カーボンブラックの酸性官能基量を求めた。なお、メチル化されるとナトリウムイオンを吸着する能力を失うため、酸性官能基量の減少はメチル化量の増大を示している。官能基量はメチル化剤量を増加させると減少した。
Next, the methylation treatment relationship of carbon black will be described together with specific examples.
As the solvent for methylation, an alcohol solvent is desirable, and methyl alcohol is most desirable. The ratio of the solvent and carbon black is arbitrary, but if the amount of carbon black is excessive with respect to the solvent, the uniformity of the reaction is lost, and 0.4 g of carbon black is most desirable for 60 mL of solvent.
As a result of examining the ratio of the acidic functional group and methylating agent in the raw material carbon black within the range of 1: 1 to 1: 100 for 20 hours, as shown in Example 1, the carbon black in the modified carbon black It was confirmed that the amount of the acidic functional group decreased when the ratio of the methylating agent was increased. At this time, the methylated carbon black is placed in an aqueous sodium hydroxide solution, and sodium ions are sufficiently adsorbed to the acidic functional groups, and then the sodium concentration in the residual liquid is measured to determine the amount of acidic functional groups of the methylated carbon black. Asked. In addition, since the ability to adsorb | suck a sodium ion is lost when methylated, the decrease in the amount of acidic functional groups has shown the increase in the amount of methylation. The amount of functional groups decreased with increasing amount of methylating agent.

具体例2は、メチル化反応時間と酸性官能基量の関係を示しており、反応時間を伸ばすと酸性官能基量が減少していくことが確認できた。しかし、20時間以上反応させても酸性官能基量の顕著な減少は認められなかったことから、反応時間は20時間程度が最適で、それ以上の時間をかけても効果的ではない。
具体例3はメチル化カーボンブラックの比表面積を窒素ガス吸着測定で測定した結果を示している。比表面積はメチル化材の量と時間を増大させると共に減少する傾向であったが、最大1割程度の減少となった。
Example 2 shows the relationship between the methylation reaction time and the amount of acidic functional groups, and it was confirmed that the amount of acidic functional groups decreased as the reaction time was extended. However, since a significant decrease in the amount of acidic functional groups was not observed even after reaction for 20 hours or more, the reaction time is optimally about 20 hours, and it is not effective even if it takes more time.
Specific Example 3 shows the result of measuring the specific surface area of methylated carbon black by nitrogen gas adsorption measurement. The specific surface area tended to decrease with increasing amount of methylated material and time, but it decreased by up to 10%.

具体例4はメチル化カーボンブラックとカーボンブラックをイオン伝導性樹脂と混合後金網に貼りつけ、80℃の過塩素酸水溶液中で測定したサイクリックボルタモグラムで、閉じられた部分から求められる容量はメチル化で少し減少するものの、右上がりの形状にはならず、電気抵抗は小さいとわかった。
その状態で1.0 Vに保持し、消耗による二酸化炭素量を測定した結果を具体例5にしめしている。カーボンブラックに対してメチル化カーボンブラックでは最大50%まで二酸化炭素量が抑制、つまり消耗が抑制された。
具体例6は原料のカーボンブラック内の酸性官能基とメチル化剤との比に対する消耗抑制効果を示していて、メチル化剤の割合が増大するほど消耗割合は低下した。
Example 4 is a cyclic voltammogram measured in a perchloric acid aqueous solution at 80 ° C. after mixing methylated carbon black and carbon black with an ion conductive resin and pasting on a wire mesh. It was found that the electrical resistance was small, although it did not increase to the right, although it decreased slightly.
The result of measuring the amount of carbon dioxide due to exhaustion while holding at 1.0 V in this state is shown in Example 5. Methylated carbon black compared to carbon black reduced the amount of carbon dioxide by up to 50%, that is, reduced consumption.
Example 6 shows the effect of suppressing the consumption with respect to the ratio of the acidic functional group in the raw material carbon black to the methylating agent, and the consumption rate decreased as the proportion of the methylating agent increased.

具体例7はメチル時間に対する消耗抑制効果を示していて、メチル化剤の割合が増大するほど消耗割合は低下した。
具体例8は白金粒子を担持したメチル化カーボンブラックの透過型電子顕微鏡像で、2nm相当径の白金粒子が分散性良く担持されていた。
具体例9は白金担持メチル化カーボンブラックと白金担持カーボンブラックの酸素還元反応への電極触媒活性の比較を示していて、誤差範囲内で同程度であることがわかった。
Example 7 shows the effect of suppressing the consumption with respect to the methyl time, and the consumption rate decreased as the proportion of the methylating agent increased.
Example 8 is a transmission electron microscope image of methylated carbon black carrying platinum particles, and platinum particles having a diameter equivalent to 2 nm were carried with good dispersibility.
Example 9 shows a comparison of the electrocatalytic activity for the oxygen reduction reaction between platinum-supported methylated carbon black and platinum-supported carbon black, and was found to be comparable within an error range.

具体例10は白金担持メチル化カーボンブラックと白金担持カーボンの電位サイクル試験中での安定性の比較で、5,000回においてカーボンブラックの消耗に起因する容量増加率がメチル化により飛躍的に抑制された。
具体例11は白金担持メチル化カーボンブラックと白金担持カーボンの電位パルス試験中での安定性の比較で、白金粒子の劣化による白金の残有効表面積の減少が、メチル化カーボンブラックの方が低く、白金粒子の劣化も抑制できることがわかった。
Example 10 is a comparison of the stability of platinum-supported methylated carbon black and platinum-supported carbon during a potential cycle test. The capacity increase rate due to carbon black consumption was dramatically suppressed by methylation at 5,000 times. .
Specific Example 11 is a comparison of the stability of platinum-supported methylated carbon black and platinum-supported carbon in a potential pulse test. The decrease in the remaining effective surface area of platinum due to deterioration of platinum particles is lower in methylated carbon black. It was found that the deterioration of platinum particles can be suppressed.

具体例1:メチル化カーボンブラックの酸性官能基量。カーボンブラックとメチル化剤量比の関係を表4に示す。 Specific Example 1: Amount of acidic functional group of methylated carbon black. Table 4 shows the relationship between the amount ratio of carbon black and methylating agent.


具体例2:メチル化カーボンブラックの酸性官能基量。メチル化反応時間との関係を表5に示す。

Specific Example 2: Amount of acidic functional group of methylated carbon black. Table 5 shows the relationship with the methylation reaction time.


具体例3:メチル化カーボンブラックの比表面積。メチル化剤量とカーボンブラック量の関係を表6に示す。

Specific Example 3: Specific surface area of methylated carbon black. Table 6 shows the relationship between the amount of methylating agent and the amount of carbon black.

段落番号0024の内容

Contents of paragraph number 0024


具体例4:メチル化カーボンブラックの過塩素酸水溶液中におけるサイクリックボルタモグムを図1に示す。
具体例5:カーボンブラック、アミド化−メチル化カーボンブラックおよびメチル化カーボンブラックからの二酸化炭素生成量を図2に示す。
具体例6:メチル化カーボンブラックからの二酸化炭素生成量。メチル化剤量とカーボンブラック量の関係を表8に示す。

Example 4: FIG. 1 shows cyclic voltammum in a perchloric acid aqueous solution of methylated carbon black.
Specific Example 5: The amount of carbon dioxide produced from carbon black, amidated-methylated carbon black and methylated carbon black is shown in FIG.
Specific Example 6: Amount of carbon dioxide produced from methylated carbon black. Table 8 shows the relationship between the amount of methylating agent and the amount of carbon black.

段落番号0026の内容

Contents of paragraph number 0026


具体例8:白金担持メチル化カーボンブラックの透過型電子顕微鏡像を図3に示す。
具体例9:白金担持メチル化カーボンブラックと白金担持カーボンの酸素還元反応への電極触媒活性の比較を表10に示す。

Specific Example 8: A transmission electron microscope image of platinum-supported methylated carbon black is shown in FIG.
Specific Example 9: Table 10 shows a comparison of electrocatalytic activities for oxygen reduction reaction between platinum-supported methylated carbon black and platinum-supported carbon.


具体例10:白金担持メチル化カーボンブラックと白金担持カーボンの電位サイクル試験中での安定性の比較を図4に示す。
具体例11:白金担持メチル化カーボンブラックと白金担持カーボンの電位パルス試験中での安定性の比較を図5に示す。

Example 10: FIG. 4 shows a comparison of the stability of platinum-supported methylated carbon black and platinum-supported carbon during a potential cycle test.
Specific Example 11: FIG. 5 shows a comparison of the stability of platinum-supported methylated carbon black and platinum-supported carbon during a potential pulse test.

本発明は、固体高分子形燃料電池用の耐久性の高い電極触媒の作製方法に関するものであり、同電池の性能向上、特に耐久性の向上に資するものである。また、可逆燃料電池用、直接メタノール形燃料電池、りん酸形燃料電池、アルカリ形燃料電池用電極、電気分解用電極などの電極としても使用可能で、今後コアーシェル触媒用電極触媒担体として有用である。


































The present invention relates to a method for producing a highly durable electrode catalyst for a polymer electrolyte fuel cell, and contributes to improving the performance of the battery, in particular, improving durability. It can also be used as an electrode for reversible fuel cells, direct methanol fuel cells, phosphoric acid fuel cells, alkaline fuel cell electrodes, electrolysis electrodes, etc., and will be useful as an electrode catalyst carrier for core-shell catalysts in the future. .


































Claims (2)

カーボンブラックを予めアルコール系溶媒中で前記カーボンブラックの酸性官能基との比を1:1〜1:100の範囲内としたトリメチルシリルジアゾメタンと反応させてメチル化カーボンブラックを作製して担持体とし、これに塩化白金酸とホルムアルデヒドを加えて加熱還元して前記溶媒を除去し、その後窒素雰囲気下で加熱して平均2nm径で前記担持体に対して15〜30重量%の白金粒子を担持させることを特徴とする固体高分子形燃料電池用電極触媒の製造方法。 Carbon black is reacted in advance with trimethylsilyldiazomethane in a ratio of 1: 1 to 1: 100 with the acidic functional group of the carbon black in an alcohol solvent to prepare a methylated carbon black as a support, To this, chloroplatinic acid and formaldehyde are added and reduced by heating to remove the solvent, and then heated in a nitrogen atmosphere to carry 15 to 30% by weight of platinum particles on the carrier with an average diameter of 2 nm. A method for producing an electrode catalyst for a polymer electrolyte fuel cell. カーボンブラックを予めアルコール系溶媒中で前記カーボンブラックの酸性官能基との比を1:1〜1:100の範囲内としたトリメチルシリルジアゾメタンと反応させてメチル化カーボンブラックを作製して担持体とし、これに塩化白金酸とホルムアルデヒドを加えて加熱還元して前記溶媒を除去し、その後窒素雰囲気下で加熱して平均2nm径で前記担持体に対して15〜30重量%の白金粒子を担持させてなる固体高分子形燃料電池用電極触媒。 Carbon black is reacted in advance with trimethylsilyldiazomethane in a ratio of 1: 1 to 1: 100 with the acidic functional group of the carbon black in an alcohol solvent to prepare a methylated carbon black as a support, Chloroplatinic acid and formaldehyde are added to the mixture to reduce the solvent by heating, and then heated in a nitrogen atmosphere to support 15 to 30% by weight of platinum particles on the support with an average diameter of 2 nm. comprising a solid polymer fuel cell electrode catalyst.
JP2010211471A 2010-09-22 2010-09-22 Electrode catalyst for polymer electrolyte fuel cell and production method thereof. Active JP5526372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010211471A JP5526372B2 (en) 2010-09-22 2010-09-22 Electrode catalyst for polymer electrolyte fuel cell and production method thereof.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010211471A JP5526372B2 (en) 2010-09-22 2010-09-22 Electrode catalyst for polymer electrolyte fuel cell and production method thereof.

Publications (2)

Publication Number Publication Date
JP2012069304A JP2012069304A (en) 2012-04-05
JP5526372B2 true JP5526372B2 (en) 2014-06-18

Family

ID=46166327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010211471A Active JP5526372B2 (en) 2010-09-22 2010-09-22 Electrode catalyst for polymer electrolyte fuel cell and production method thereof.

Country Status (1)

Country Link
JP (1) JP5526372B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003149203A (en) * 2001-11-16 2003-05-21 Isamu Uchida Method and apparatus for evaluating electrode catalyst using microelectrode for measuring powder
JP2004265638A (en) * 2003-02-25 2004-09-24 Ebara Corp Mixed conductive carbon and electrode
JP2005087989A (en) * 2003-08-08 2005-04-07 Hitachi Ltd Catalyst material, method for manufacturing the same, and fuel cell using the method
JP2007053086A (en) * 2005-07-21 2007-03-01 Fujifilm Corp Catalyst material for fuel cell, catalyst film, electrode-membrane assembly, and fuel cell
JP4575268B2 (en) * 2005-10-18 2010-11-04 株式会社東芝 Catalyst, electrode for fuel cell fuel electrode, and fuel cell
JP2007280828A (en) * 2006-04-10 2007-10-25 Hitachi Ltd Carbon carrier for fuel cell, electrode material for fuel cell, membrane electrode assembly using this, fuel cell, fuel cell power source system, and electronic equipment
CN101641816B (en) * 2007-12-04 2012-05-23 韩华石油化学株式会社 Process for the electrochemical catalysts of fuel cells based on polymer electrolytes
WO2009119556A1 (en) * 2008-03-24 2009-10-01 富士フイルム株式会社 Platinum carrying carbon, catalyst for fuel cell, electrode-membrane assembly, and fuel cell

Also Published As

Publication number Publication date
JP2012069304A (en) 2012-04-05

Similar Documents

Publication Publication Date Title
Fu et al. FeCo–Nx embedded graphene as high performance catalysts for oxygen reduction reaction
Chen et al. From bimetallic metal-organic framework to porous carbon: high surface area and multicomponent active dopants for excellent electrocatalysis
Zheng et al. High content of pyridinic-and pyrrolic-nitrogen-modified carbon nanotubes derived from blood biomass for the electrocatalysis of oxygen reduction reaction in alkaline medium
Fu et al. Metal-organic framework derived hierarchically porous nitrogen-doped carbon nanostructures as novel electrocatalyst for oxygen reduction reaction
CN112517011B (en) Carbon-based nickel-iron bimetal oxygen evolution catalyst and preparation method thereof
CN113437314B (en) Nitrogen-doped carbon-supported low-content ruthenium and Co 2 Three-function electrocatalyst of P nano particle and preparation method and application thereof
JP2011195351A (en) Nitrogen-containing carbon alloy, and carbon catalyst using the same
You et al. High porosity and surface area self-doped carbon derived from polyacrylonitrile as efficient electrocatalyst towards oxygen reduction
Fu et al. Graphene-xerogel-based non-precious metal catalyst for oxygen reduction reaction
Liu et al. Nitrogen-doped carbon foam as a highly durable metal-free electrocatalyst for the oxygen reduction reaction in alkaline solution
Cao et al. N-doped hierarchical porous metal-free catalysts derived from covalent triazine frameworks for the efficient oxygen reduction reaction
Su et al. Palladium nanoparticles immobilized in B, N doped porous carbon as electrocatalyst for ethanol oxidation reaction
CN110273162B (en) Iron/cobalt/nickel-nitrogen coupled carbon-based composite material and application thereof
JP2015032468A (en) Electrode catalyst for fuel cell, method for producing the same, catalyst carrying electrode for fuel cell, and fuel cell
KR20140136256A (en) Method and process of metal catalyst for fuel cell using a complex compound, and fuel cell electrode adopting the catalyst and fuel cell comprising the electrode
Miao et al. A bio-inspired N-doped porous carbon electrocatalyst with hierarchical superstructure for efficient oxygen reduction reaction
Habibi et al. Ni@ Pt core-shell nanoparticles as an improved electrocatalyst for ethanol electrooxidation in alkaline media
KR101327894B1 (en) Method for preparing platinum-cobalt-based electrocatalysts for fuel cells
CN114420961A (en) Nitrogen-doped carbon-loaded platinum-zinc alloy electrocatalyst and preparation method and application thereof
Liu et al. Co/N co-doped graphene-like nanocarbon for highly efficient oxygen reduction electrocatalyst
Chai et al. Heterogeneous Ir3Sn–CeO2/C as alternative Pt-free electrocatalysts for ethanol oxidation in acidic media
Han et al. Highly stable and active Pt electrocatalysts on TiO2-Co3O4-C composite support for polymer exchange membrane fuel cells
CN110931815A (en) Preparation method of fuel cell carbon-supported platinum-based catalyst
Lei et al. Facile preparation of a methanol catalyst with ultra-high voltage efficiency and super-durability: Pt pollution introduction by composite electrodeposition
KR101932612B1 (en) Preparing method of nitrogen-iron doped porous carbon nanoparticle catalyst for oxygen reduction reaction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140324

R150 Certificate of patent or registration of utility model

Ref document number: 5526372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250