CN101814607A - Preparation method of platinum/graphen catalyst for proton exchange membrane fuel cell - Google Patents
Preparation method of platinum/graphen catalyst for proton exchange membrane fuel cell Download PDFInfo
- Publication number
- CN101814607A CN101814607A CN201010149141A CN201010149141A CN101814607A CN 101814607 A CN101814607 A CN 101814607A CN 201010149141 A CN201010149141 A CN 201010149141A CN 201010149141 A CN201010149141 A CN 201010149141A CN 101814607 A CN101814607 A CN 101814607A
- Authority
- CN
- China
- Prior art keywords
- platinum
- catalyst
- graphene
- exchange membrane
- proton exchange
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Catalysts (AREA)
- Inert Electrodes (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种燃料电池用的催化剂制备方法,特别是一种质子交换膜燃料电池用铂/石墨烯催化剂的制备方法。The invention relates to a method for preparing a catalyst for a fuel cell, in particular to a method for preparing a platinum/graphene catalyst for a proton exchange membrane fuel cell.
背景技术Background technique
质子交换膜燃料电池(PEMFC)具有结构简单、启动时间短等优点,近年来展现出良好的应用前景。但是,PEMFC要达到真正的商业化应用还需要解决催化剂成本与稳定性等问题。改善催化剂载体结构,对催化剂提高稳定性是有利的。各类导电碳材料,如碳微球、多壁碳纳米管、单壁碳纳米管等被用作电催化剂载体,以期改进其稳定性。Proton exchange membrane fuel cell (PEMFC) has the advantages of simple structure and short start-up time, and has shown good application prospects in recent years. However, in order to achieve real commercial application of PEMFC, problems such as catalyst cost and stability need to be solved. Improving the structure of the catalyst support is beneficial to the stability of the catalyst. Various conductive carbon materials, such as carbon microspheres, multi-walled carbon nanotubes, and single-walled carbon nanotubes, have been used as electrocatalyst supports in order to improve their stability.
目前应用最为广泛的是商品导电炭黑XC-72,如美国专利US3,857,737中采用浸渍法将铂氨络合离子负载到XC-72上,美国专利US4,044,193和日本专利JP99-47595采用沉淀法将铂氧凝胶负载到XC-72上,中国专利CN1915521A采用固相法将铂负载于XC-72上,从报道中看出,负载于这种载体上的铂/XC-72催化剂具有较好的电催化性能,但是并没有对铂/XC-72催化剂的稳定性进行报道。Journal of Power Sources杂志2007年172卷145页中报导了关于铂/碳催化剂稳定性的现状,对XC-72、碳纳米管等载体材料进行了讨论,认为载体的稳定性对催化剂稳定性影响重大,文章指出,在燃料电池操作环境下(大于0.6伏特,室温及以上操作温度)碳载体会出现明显流失,这是由于在这个条件下碳载体会生成二氧化碳或一氧化碳,同时伴随着金属颗粒的团聚,催化剂活性会表现出很大的衰减,在170小时后,以XC-72为载体的铂/碳催化剂活性衰减为80%,以碳纳米管为载体的铂/碳催化剂活性衰减为30%。因此,要提高催化剂的稳定性,需要选用更为稳定的载体。At present, the most widely used commercial conductive carbon black is XC-72. For example, in U.S. Patent No. 3,857,737, the impregnation method is used to load platinum ammonium complex ions on XC-72. Platinum oxygen gel is loaded on XC-72 by the method, and Chinese patent CN1915521A adopts solid-phase method to load platinum on XC-72, find out from the report, the platinum/XC-72 catalyst that is loaded on this carrier has relatively Good electrocatalytic performance, but the stability of the Pt/XC-72 catalyst was not reported. Journal of Power Sources magazine 2007, volume 172, page 145, reported the current status of the stability of platinum/carbon catalysts, discussed XC-72, carbon nanotubes and other carrier materials, and believed that the stability of the carrier has a great impact on the stability of the catalyst , the article pointed out that in the fuel cell operating environment (greater than 0.6 volts, room temperature and above operating temperature) the carbon carrier will be significantly lost, this is because the carbon carrier will generate carbon dioxide or carbon monoxide under this condition, accompanied by the agglomeration of metal particles , The catalyst activity will show a large attenuation. After 170 hours, the activity of the platinum/carbon catalyst based on XC-72 is 80%, and the activity of the platinum/carbon catalyst based on carbon nanotubes is 30%. Therefore, in order to improve the stability of the catalyst, it is necessary to select a more stable carrier.
Science杂志2009年324卷1530页中Geim指出,石墨烯是具有少于10层石墨分子层状结构的碳材料,比表面积较高(单层石墨烯理论比表面积可达2620m2/g),可以提供较多的命属负载位。同时,石墨烯表现出很强的量子效应,具有良好的电子传导能力。通过第一原理计算发现,铂簇可以稳定地负载于石墨烯上,而一氧化碳或氢在命属铂颗粒上的吸附能会因为石墨烯的存在而降低,更利于燃料电池中的反应。因此,石墨烯可以作为一个很好的碳载体。Geim pointed out in Science magazine 2009, volume 324, page 1530, that graphene is a carbon material with less than 10 layers of graphite molecular layered structure, and has a relatively high specific surface area (the theoretical specific surface area of single-layer graphene can reach 2620m 2 /g), which can Provide more command load bits. At the same time, graphene exhibits a strong quantum effect and has good electron conductivity. Through first-principle calculations, it is found that platinum clusters can be stably supported on graphene, while the adsorption energy of carbon monoxide or hydrogen on platinum particles will be reduced due to the presence of graphene, which is more conducive to the reaction in fuel cells. Therefore, graphene can serve as a good carbon support.
目前用硼氢化钠或乙二醇为还原剂制备的铂/石墨烯催化剂相关报导仪针对催化剂的初始活性及制备方法,催化剂稳定性尚无考察。专利中也没有关于铂/石墨烯催化剂制备的相关内容。At present, the initial activity and preparation method of the platinum/graphene catalyst prepared by using sodium borohydride or ethylene glycol as the reducing agent has not yet been investigated. There is also no relevant content about the preparation of platinum/graphene catalysts in the patent.
The Journal of Physical Chemistry C杂志2009年113卷7990页中报导了一种铂/石墨烯催化剂的制备方法,研究人员在pH=2时进行还原,得到50wt%铂/石墨烯催化剂。The Journal of Physical Chemistry C, 2009, volume 113, page 7990, reported a preparation method of a platinum/graphene catalyst. The researchers carried out reduction at pH=2 to obtain a 50wt% platinum/graphene catalyst.
Electrochemistry Communications杂志2009年11卷846页中报导的铂/石墨烯催化剂需在pH=10下还原24小时,并在40℃下烘干,得到45wt%的铂/石墨烯催化剂。The platinum/graphene catalyst reported in Electrochemistry Communications magazine 2009, volume 11, page 846 needs to be reduced at pH=10 for 24 hours, and dried at 40°C to obtain a 45wt% platinum/graphene catalyst.
The Journal of Physical Chemistry C杂志2008年112卷19841页报导了一种用乙二醇法还原制备铂/石墨烯催化剂的方法,用于甲醇电氧化反应。The Journal of Physical Chemistry C magazine, 2008, volume 112, page 19841, reported a method for preparing a platinum/graphene catalyst by reducing the ethylene glycol method for methanol electrooxidation.
Electrochemistry Communications杂志2009年11卷954页报导的铂/石墨烯催化剂以高温氢气为还原剂制备,在循环伏安测试后催化剂性能衰减为37.6%,表现出优于商业催化剂的稳定性。The platinum/graphene catalyst reported on page 954 of Volume 11 of Electrochemistry Communications in 2009 was prepared with high-temperature hydrogen as a reducing agent. After the cyclic voltammetry test, the catalyst performance decayed to 37.6%, showing better stability than commercial catalysts.
发明内容Contents of the invention
本发明的目的是制备一种质子交换膜燃料电池用的铂/石墨烯催化剂,其中铂载量为10wt%-60wt%。这种催化剂使用石墨烯为载体,利用石墨烯特有的量子效应和二维延展性,以提高催化剂的稳定性。通过将氯铂酸和氧化石墨进行共混,使用硼氢化钠或乙二醇作为还原剂进行共还原,通过调节还原时间来控制催化剂的活性,从而制备出具有更高稳定性的质子交换膜燃料电池催化剂。The purpose of the present invention is to prepare a platinum/graphene catalyst for proton exchange membrane fuel cells, wherein the platinum loading is 10wt%-60wt%. This catalyst uses graphene as a carrier, and utilizes the unique quantum effect and two-dimensional ductility of graphene to improve the stability of the catalyst. By blending chloroplatinic acid and graphite oxide, using sodium borohydride or ethylene glycol as a reducing agent for co-reduction, and controlling the activity of the catalyst by adjusting the reduction time, a proton exchange membrane fuel with higher stability is prepared battery catalyst.
本发明一种质子交换膜燃料电池用铂/石墨烯催化剂的制备方法如下,以下均以质量份来表示:A kind of preparation method of platinum/graphene catalyst for proton exchange membrane fuel cell of the present invention is as follows, and the following all represent with mass parts:
A.硼氢化钠还原法:取氧化石墨超声分散于去离子水中形成0.05wt%-1wt%的氧化石墨分散液1000-20000份,加入2.66-15.93份氯铂酸混合均匀,使铂在铂/石墨烯催化剂中载量为10wt%-60wt%,用0.5M-4M氢氧化钾水溶液调节pH值至9-13,加入160-640份硼氢化钠及5000-10000份去离子水,还原1-18小时,然后抽滤,并用去离子水洗涤,60-100℃干燥6-24小时,得到一种质子交换膜燃料电池用的铂/石墨烯催化剂;A. Sodium borohydride reduction method: Ultrasonically disperse graphite oxide in deionized water to form 1000-20000 parts of graphite oxide dispersion of 0.05wt%-1wt%, add 2.66-15.93 parts of chloroplatinic acid and mix evenly to make platinum in platinum/ The loading in the graphene catalyst is 10wt%-60wt%, adjust the pH value to 9-13 with 0.5M-4M potassium hydroxide aqueous solution, add 160-640 parts of sodium borohydride and 5000-10000 parts of deionized water, and reduce 1- 18 hours, then suction-filtered, washed with deionized water, and dried at 60-100° C. for 6-24 hours to obtain a platinum/graphene catalyst for proton exchange membrane fuel cells;
或B.乙二醇还原法:取氧化石墨超声分散于乙二醇中形成0.05wt%-1wt%的氧化石墨分散液1000-20000份,加入2.66-15.93份氯铂酸混合均匀,使铂在铂/石墨烯催化剂中载量为10wt%-60wt%,用0.5M-4M氢氧化钾乙二醇溶液调节pH值至9-13,90-150℃下还原3-12小时,然后抽滤,并用去离子水洗涤,将产物60-100℃干燥6-24小时,得到一种质子交换膜燃料电池用的铂/石墨烯催化剂。Or B. Ethylene glycol reduction method: Get graphite oxide and ultrasonically disperse it in ethylene glycol to form 1000-20000 parts of graphite oxide dispersion liquid of 0.05wt%-1wt%, add 2.66-15.93 parts of chloroplatinic acid and mix evenly, make platinum in The loading of the platinum/graphene catalyst is 10wt%-60wt%, and the pH value is adjusted to 9-13 with 0.5M-4M potassium hydroxide ethylene glycol solution, reduced at 90-150°C for 3-12 hours, and then suction filtered, and washing with deionized water, and drying the product at 60-100° C. for 6-24 hours to obtain a platinum/graphene catalyst for proton exchange membrane fuel cells.
本发明中原料氧化石墨是根据Chemistry ofMaterials杂志1999年11卷771页文献报导制备的,具体制备方法如下:将1份石墨搅拌分散于80份98wt%浓硫酸中,在25℃水浴条件下加入4.5份高锰酸钾进行反应,反应5天后,加入去离子水和10份30wt%过氧化氢水溶液终止反应,然后离心,并用去离子水洗涤16次,80℃干燥24小时得到氧化石墨。The raw material graphite oxide in the present invention is prepared according to the literature report on page 771 of volume 11 of Chemistry of Materials magazine in 1999. The specific preparation method is as follows: 1 part of graphite is stirred and dispersed in 80 parts of 98wt% concentrated sulfuric acid, and 4.5 After reacting for 5 days, add deionized water and 10 parts of 30wt% aqueous hydrogen peroxide solution to terminate the reaction, then centrifuge, wash 16 times with deionized water, and dry at 80°C for 24 hours to obtain graphite oxide.
本发明一种质子交换膜燃料电池用铂/石墨烯催化剂的制备方法中,采用石墨烯为载体,利用石墨烯特有的量子效应在石墨烯表面形成电负中心,在催化剂制备过程中吸附铂粒子,使铂粒子能更稳定地负载于载体表面,不易迁移;同时由于石墨烯很大的比表面积,负载的铂粒子不易相互接触团聚,可以更好地保持催化剂的催化活性。本发明中制备的一种质子交换膜燃料电池用铂/石墨烯催化剂在3000次循环伏安测试后催化剂性能衰减为18.4%,比E-TEK公司的商业催化剂铂/XC-72所表现出的44.5%具有更好的稳定性。In the preparation method of a platinum/graphene catalyst for a proton exchange membrane fuel cell of the present invention, graphene is used as a carrier, and the unique quantum effect of graphene is used to form an electronegative center on the surface of graphene, and platinum particles are adsorbed in the catalyst preparation process , so that the platinum particles can be more stably loaded on the surface of the carrier and are not easy to migrate; at the same time, due to the large specific surface area of graphene, the supported platinum particles are not easy to contact and agglomerate, which can better maintain the catalytic activity of the catalyst. A kind of platinum/graphene catalyst for proton exchange membrane fuel cell prepared in the present invention is 18.4% after 3000 cycles of cyclic voltammetry tests, and the catalyst performance decay is 18.4%, which is shown by the commercial catalyst platinum/XC-72 of E-TEK Company 44.5% has better stability.
附图说明Description of drawings
图1是实施例3与对比例1得到的一种质子交换膜燃料电池用铂/石墨烯催化剂和铂/XC-72催化剂的循环伏安图。1 is a cyclic voltammogram of a platinum/graphene catalyst and a platinum/XC-72 catalyst for a proton exchange membrane fuel cell obtained in Example 3 and Comparative Example 1.
图2是实施例3与对比例1得到的一种质子交换膜燃料电池用铂/石墨烯催化剂和铂/XC-72催化剂性能衰减对比。Fig. 2 is a performance decay comparison of a platinum/graphene catalyst for a proton exchange membrane fuel cell and a platinum/XC-72 catalyst obtained in Example 3 and Comparative Example 1.
具体实施方式Detailed ways
下面的实施例有助于进一步详细阐述本发明,而不应被解释为限制本发明的范围。The following examples help to further illustrate the present invention in detail, but should not be construed as limiting the scope of the present invention.
本发明得到的一种质子交换膜燃料电池用铂/石墨烯催化剂的电化学活性表面积和稳定性的检测方法是通过在标准三电极体系中进行循环伏安测试完成的。采用铂丝作为对电极,饱和甘汞电极(SCE)作为参比电极,直径3mm的玻碳电极为工作电极,电解质为0.5mol/L硫酸溶液。测试在CH50A(上海辰华公司)系统上进行,具体操作过程为:准确称取5mg催化剂粉体,加入50μl 5wt%(Du Pont公司)溶液,超声分散于1ml去离子水中。移取6μl滴于玻碳电极表面,室温干燥。测试前先在浸入三电极的硫酸体系中通入氩气半小时,以50mV/s的扫描速率在-0.2V到0.8V(SCE)区间内进行多次循环伏安扫描,直至曲线稳定,并将其转化为相对于标准氢电极(SHE)的数值。电化学稳定性测试也在该三电极体系中完成。对体系进行扫描至稳定,以50mV/s的速率扫描3000次。对每次循环伏安数据计算得到相应的电化学活性表面积。The method for detecting the electrochemically active surface area and stability of a platinum/graphene catalyst used in a proton exchange membrane fuel cell obtained in the present invention is completed by performing a cyclic voltammetry test in a standard three-electrode system. A platinum wire was used as the counter electrode, a saturated calomel electrode (SCE) was used as the reference electrode, a glassy carbon electrode with a diameter of 3 mm was used as the working electrode, and the electrolyte was 0.5 mol/L sulfuric acid solution. The test is carried out on the CH50A (Shanghai Chenhua Company) system. The specific operation process is: accurately weigh 5mg of catalyst powder, add 50μl of 5wt% (Du Pont Company) solution, ultrasonically dispersed in 1 ml deionized water. Pipette 6 μl drops on the surface of the glassy carbon electrode and dry at room temperature. Before the test, argon gas was passed through the sulfuric acid system immersed in the three electrodes for half an hour, and multiple cyclic voltammetry scans were performed in the range of -0.2V to 0.8V (SCE) at a scan rate of 50mV/s until the curve was stable, and This is converted to a value relative to a standard hydrogen electrode (SHE). Electrochemical stability tests were also done in this three-electrode system. Scan the system until it is stable, and scan 3000 times at a rate of 50mV/s. The corresponding electrochemically active surface area was calculated for each cyclic voltammetry data.
实施例1.硼氢化钠还原法Embodiment 1. sodium borohydride reduction method
取氧化石墨超声分散于去离子水中形成0.45wt%的氧化石墨分散液2g,加入2.66mg氯铂酸混合均匀,使铂在铂/石墨烯催化剂中载量为10wt%。以0.5M氢氧化钾水溶液调节pH值至9,加入0.16g硼氢化钠及5g去离子水,还原1小时,然后抽滤,并用去离子水洗涤,100℃干燥6小时,得到一种质子交换膜燃料电池用的铂/石墨烯催化剂。其电化学活性表面积结果列于表1。Get graphite oxide and ultrasonically disperse it in deionized water to form 2g of 0.45wt% graphite oxide dispersion, add 2.66mg of chloroplatinic acid and mix evenly, so that the loading of platinum in the platinum/graphene catalyst is 10wt%. Adjust the pH value to 9 with 0.5M potassium hydroxide aqueous solution, add 0.16g sodium borohydride and 5g deionized water, reduce for 1 hour, then filter with suction, wash with deionized water, and dry at 100°C for 6 hours to obtain a proton exchange Platinum/graphene catalysts for membrane fuel cells. The electrochemically active surface area results are listed in Table 1.
实施例2.硼氢化钠还原法Embodiment 2. Sodium borohydride reduction method
取氧化石墨超声分散于去离子水中形成0.05wt%的氧化石墨分散液16g,加入5.31mg氯铂酸混合均匀,使铂在铂/石墨烯催化剂中载量为20wt%。以4M氢氧化钾水溶液调节混合液pH值至10,加入0.64g硼氢化钠和10g去离子水,还原2小时,然后抽滤,并用去离子水洗涤,60℃干燥24小时,得到一种质子交换膜燃料电池用的铂/石墨烯催化剂。其电化学活性表面积结果列于表1。Graphite oxide was ultrasonically dispersed in deionized water to form 16g of a 0.05wt% graphite oxide dispersion, and 5.31mg of chloroplatinic acid was added and mixed uniformly so that the loading of platinum in the platinum/graphene catalyst was 20wt%. Adjust the pH value of the mixture to 10 with 4M potassium hydroxide aqueous solution, add 0.64g sodium borohydride and 10g deionized water, reduce for 2 hours, then filter with suction, wash with deionized water, and dry at 60°C for 24 hours to obtain a proton Platinum/graphene catalysts for exchange membrane fuel cells. The electrochemically active surface area results are listed in Table 1.
实施例3.硼氢化钠还原法Embodiment 3. Sodium borohydride reduction method
取氧化石墨超声分散于去离子水中形成0.08wt%的氧化石墨分散液10g,加入5.31mg氯铂酸混合均匀,使铂在铂/石墨烯催化剂中载量为20wt%。以1M氢氧化钾水溶液调节pH值至10,加入0.4g硼氢化钠和5g去离子水,还原4小时,然后抽滤,并用去离子水洗涤,80℃干燥12小时,得到一种质子交换膜燃料电池用的铂/石墨烯催化剂。其电化学活性表面积结果列于表1,初始电化学活性及循环后的电化学活性循环伏安测试结果如图1所示,催化剂性能衰减如图2所示。Graphite oxide was ultrasonically dispersed in deionized water to form 10 g of a 0.08 wt % graphite oxide dispersion, and 5.31 mg of chloroplatinic acid was added and mixed uniformly so that the loading of platinum in the platinum/graphene catalyst was 20 wt %. Adjust the pH value to 10 with 1M potassium hydroxide aqueous solution, add 0.4g sodium borohydride and 5g deionized water, reduce for 4 hours, then filter with suction, wash with deionized water, and dry at 80°C for 12 hours to obtain a proton exchange membrane Platinum/graphene catalysts for fuel cells. The results of the electrochemically active surface area are listed in Table 1, the cyclic voltammetry test results of the initial electrochemical activity and electrochemical activity after cycling are shown in Figure 1, and the performance decay of the catalyst is shown in Figure 2.
表1和图1说明了铂/XC-72催化剂和铂/石墨烯催化剂初始电化学活性与3000次循环后的电化学活性,其中,铂/XC-72催化剂电化学活性表面积的初始值为54.94m2/g,循环后为30.26m2/g,铂/石墨烯催化剂电化学活性表面积的初始值为47.54m2/g,循环后为38.8m2/g,可见铂/石墨烯催化剂在循环后具有更高的电化学活性。Table 1 and Figure 1 illustrate the initial electrochemical activity of the platinum/XC-72 catalyst and the platinum/graphene catalyst and the electrochemical activity after 3000 cycles, wherein the initial value of the electrochemically active surface area of the platinum/XC-72 catalyst is 54.94 m 2 /g, 30.26m 2 /g after circulation, the initial value of the electrochemically active surface area of the platinum/graphene catalyst is 47.54m 2 /g, and 38.8m 2 /g after circulation, it can be seen that the platinum/graphene catalyst is in circulation with higher electrochemical activity.
图2说明了虽然本发明所制备的铂/石墨烯催化剂初始电化学活性表面积比铂/XC-72催化剂小,但是在3000次循环伏安测试操作中具有更高的稳定性,铂/石墨烯催化剂仪衰减18.4%,而铂/XC-72催化剂性能衰减为44.5%,说明铂/石墨烯催化剂更适用于质子交换膜燃料电池。Fig. 2 illustrates that although the initial electrochemically active surface area of the platinum/graphene catalyst prepared by the present invention is smaller than the platinum/XC-72 catalyst, it has higher stability in 3000 cyclic voltammetric test operations, platinum/graphene The catalyst meter decays by 18.4%, while the platinum/XC-72 catalyst performance decays by 44.5%, indicating that the platinum/graphene catalyst is more suitable for proton exchange membrane fuel cells.
实施例4.硼氢化钠还原法Embodiment 4. sodium borohydride reduction method
取氧化石墨超声分散于去离子水中形成0.05wt%的氧化石墨分散液12g,加入10.62mg氯铂酸混合均匀,使铂在铂/石墨烯催化剂中载量为40wt%。以1M氢氧化钾水溶液调节pH值至13,加入0.64g硼氢化钠和5g去离子水,还原18小时,然后抽滤,并用去离子水洗涤,80℃干燥12小时,得到一种质子交换膜燃料电池用的铂/石墨烯催化剂。其电化学活性表面积结果列于表1。Graphite oxide was ultrasonically dispersed in deionized water to form 12g of a 0.05wt% graphite oxide dispersion, and 10.62mg of chloroplatinic acid was added to mix evenly, so that the loading of platinum in the platinum/graphene catalyst was 40wt%. Adjust the pH value to 13 with 1M potassium hydroxide aqueous solution, add 0.64g sodium borohydride and 5g deionized water, reduce for 18 hours, then filter with suction, wash with deionized water, and dry at 80°C for 12 hours to obtain a proton exchange membrane Platinum/graphene catalysts for fuel cells. The electrochemically active surface area results are listed in Table 1.
实施例5.硼氢化钠还原法Embodiment 5. sodium borohydride reduction method
取氧化石墨超声分散于去离子水中形成0.1wt%的氧化石墨分散液4g,加入15.93mg氯铂酸混合均匀,使铂在铂/石墨烯催化剂中载量为60wt%。以4M氢氧化钾水溶液调节pH值至10,加入0.64g硼氢化钠和7.5g去离子水,还原4小时,然后抽滤,并用去离子水洗涤,80℃干燥18小时,得到一种质子交换膜燃料电池用的铂/石墨烯催化剂。其电化学活性表面积结果列于表1。Get graphite oxide and ultrasonically disperse it in deionized water to form 4g of 0.1wt% graphite oxide dispersion, add 15.93mg of chloroplatinic acid and mix evenly, so that the loading of platinum in the platinum/graphene catalyst is 60wt%. Adjust the pH value to 10 with 4M potassium hydroxide aqueous solution, add 0.64g sodium borohydride and 7.5g deionized water, reduce for 4 hours, then filter with suction, wash with deionized water, and dry at 80°C for 18 hours to obtain a proton exchange Platinum/graphene catalysts for membrane fuel cells. The electrochemically active surface area results are listed in Table 1.
实施例6.乙二醇还原法Embodiment 6. Ethylene glycol reduction method
取氧化石墨超声分散于乙二醇中形成0.05wt%的氧化石墨分散液16g,加入5.31mg氯铂酸混合均匀,使铂在铂/石墨烯催化剂中载量为20wt%。以0.5M氢氧化钾乙二醇溶液调节pH值至9,90℃下还原3小时,然后抽滤,并用去离子水洗涤,将产物100℃干燥6小时,得到一种质子交换膜燃料电池用的铂/石墨烯催化剂。其电化学活性表面积结果列于表1。Graphite oxide was ultrasonically dispersed in ethylene glycol to form 16g of a 0.05wt% graphite oxide dispersion, and 5.31mg of chloroplatinic acid was added to mix evenly, so that the loading of platinum in the platinum/graphene catalyst was 20wt%. Adjust the pH value to 9 with 0.5M potassium hydroxide ethylene glycol solution, reduce at 90°C for 3 hours, then filter with suction, wash with deionized water, and dry the product at 100°C for 6 hours to obtain a proton exchange membrane fuel cell. platinum/graphene catalyst. The electrochemically active surface area results are listed in Table 1.
实施例7.乙二醇还原法Embodiment 7. Ethylene glycol reduction method
取氧化石墨超声分散于乙二醇中形成0.4wt%的氧化石墨分散液1g,加入15.93mg氯铂酸混合均匀,使铂在铂/石墨烯催化剂中载量为60%。以4M氢氧化钾乙二醇溶液调节pH值至13,150℃下还原12小时,然后抽滤,并用去离子水洗涤,将产物80℃干燥24小时,得到一种质子交换膜燃料电池用的铂/石墨烯催化剂。其电化学活性表面积结果列于表1。Get graphite oxide and ultrasonically disperse it in ethylene glycol to form 1g of 0.4wt% graphite oxide dispersion, add 15.93mg of chloroplatinic acid and mix evenly, so that the loading of platinum in the platinum/graphene catalyst is 60%. Adjust the pH value to 13 with 4M potassium hydroxide ethylene glycol solution, reduce at 150°C for 12 hours, then suction filter, wash with deionized water, and dry the product at 80°C for 24 hours to obtain a proton exchange membrane fuel cell. Platinum/graphene catalyst. The electrochemically active surface area results are listed in Table 1.
对比例1Comparative example 1
对比例中使用的催化剂是E-TEK公司的商业铂/碳催化剂,其载体为XC-72,铂载量为20wt%,使用上述测试方法得到的电化学活性表面积结果列于表1,初始电化学活性及循环后的电化学活性循环伏安测试结果如图1所示,催化剂性能衰减如图2所示。The catalyst used in the comparative example is the commercial platinum/carbon catalyst of E-TEK Company, and its carrier is XC-72, and the platinum loading is 20wt%. The cyclic voltammetry test results of chemical activity and electrochemical activity after cycling are shown in Figure 1, and the performance decay of the catalyst is shown in Figure 2.
表1Table 1
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010149141A CN101814607A (en) | 2010-04-17 | 2010-04-17 | Preparation method of platinum/graphen catalyst for proton exchange membrane fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010149141A CN101814607A (en) | 2010-04-17 | 2010-04-17 | Preparation method of platinum/graphen catalyst for proton exchange membrane fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101814607A true CN101814607A (en) | 2010-08-25 |
Family
ID=42621778
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201010149141A Pending CN101814607A (en) | 2010-04-17 | 2010-04-17 | Preparation method of platinum/graphen catalyst for proton exchange membrane fuel cell |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101814607A (en) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101966453A (en) * | 2010-10-28 | 2011-02-09 | 南昌大学 | Method for preparing graphene-loaded platinum nano catalyst |
CN102021573A (en) * | 2010-12-27 | 2011-04-20 | 湖南大学 | Self-assembly preparation method of noble metal-graphene double-layer composite conductive film |
CN102266770A (en) * | 2011-06-28 | 2011-12-07 | 南京大学 | Preparation method of platinum/graphene nanometer electro-catalyst used for proton exchange membrane fuel cell |
WO2012088681A1 (en) * | 2010-12-29 | 2012-07-05 | 海洋王照明科技股份有限公司 | Pt/graphene catalyst, preparation method and use thereof |
CN102709517A (en) * | 2012-06-13 | 2012-10-03 | 上海空间电源研究所 | Flexible integrated precious-metal-contained particle-carbon electrode and preparation method thereof |
CN102738476A (en) * | 2012-07-29 | 2012-10-17 | 刘嘉斌 | Production technology of nitrogen-doped graphene supported transition metal cathode of sodium borohydride fuel cell |
CN102989450A (en) * | 2012-12-03 | 2013-03-27 | 中国科学院大连化学物理研究所 | Preparation method, structural feature and application of carrying type nanometer electrocatalyst |
CN103007927A (en) * | 2012-12-13 | 2013-04-03 | 北京化工大学常州先进材料研究院 | Preparation method of platinum/graphene catalyst for lithium air battery |
CN103127931A (en) * | 2013-03-01 | 2013-06-05 | 北京化工大学常州先进材料研究院 | Lithium-air battery catalyst and preparation method |
CN103326032A (en) * | 2013-05-30 | 2013-09-25 | 上海交通大学 | Method for preparing platinum gradient-distribution catalyst layer structure of proton exchange membrane fuel cell |
JP2014511255A (en) * | 2010-12-29 | 2014-05-15 | オーシャンズ キング ライティング サイエンス アンド テクノロジー シーオー.,エルティーディー | Platinum-rubidium nanoalloy / graphene catalyst, method for producing the same, and method for using the same |
CN104475091A (en) * | 2014-12-17 | 2015-04-01 | 北京化工大学常州先进材料研究院 | Preparation method of Pt/graphene catalyst for lithium air battery |
CN104617313A (en) * | 2013-11-04 | 2015-05-13 | 中国科学院大连化学物理研究所 | Graphene supported two-dimensional branched platinum nanometer electrocatalyst, and preparation method and application thereof |
CN104916851A (en) * | 2015-05-11 | 2015-09-16 | 浙江高成绿能科技有限公司 | Production method of catalysis layer |
CN105594047A (en) * | 2014-03-28 | 2016-05-18 | 恩亿凯嘉股份有限公司 | Production method for electrode catalyst, electrode catalyst, composition for forming gas diffusion electrode, gas diffusion electrode, membrane-electrode assembly (MEA), and fuel cell stack |
CN108767270A (en) * | 2018-06-11 | 2018-11-06 | 佛山腾鲤新能源科技有限公司 | A kind of preparation method of fuel-cell catalyst |
CN108933264A (en) * | 2018-07-23 | 2018-12-04 | 中科院合肥技术创新工程院 | A kind of conductive black carried noble metal composite material and preparation method and application |
CN109216716A (en) * | 2018-08-06 | 2019-01-15 | 浙江高成绿能科技有限公司 | A kind of preparation method of the fuel cell Pt/C catalyst of high Pt carrying capacity |
WO2019218754A1 (en) * | 2018-05-14 | 2019-11-21 | 深圳市中科摩方科技有限公司 | Material having surface modified by super capacitance, preparation method therefor and application thereof |
CN112687901A (en) * | 2020-12-21 | 2021-04-20 | 松山湖材料实验室 | Three-dimensional graphene platinum-supported catalyst and preparation method and application thereof |
CN112717980A (en) * | 2020-12-31 | 2021-04-30 | 上海电气集团股份有限公司 | Composite catalyst and preparation method and application thereof |
CN113363515A (en) * | 2021-07-13 | 2021-09-07 | 北京未来氢能科技有限公司 | Carbon material loaded platinum catalyst and preparation method and application thereof |
CN116072941A (en) * | 2023-02-09 | 2023-05-05 | 深圳市氢瑞燃料电池科技有限公司 | Proton exchange membrane with fuel cell coating and preparation method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101289181A (en) * | 2008-05-29 | 2008-10-22 | 中国科学院化学研究所 | Doped graphene and preparation method thereof |
-
2010
- 2010-04-17 CN CN201010149141A patent/CN101814607A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101289181A (en) * | 2008-05-29 | 2008-10-22 | 中国科学院化学研究所 | Doped graphene and preparation method thereof |
Non-Patent Citations (2)
Title |
---|
《electrochemistry communications》 20090220 Yueming Li etal (Preparation and electrochemical performance for methanol oxidation of pt/grapheme nanocomposites 846-849 1 第11卷, 2 * |
《J.American.Chemical Society》 20070413 Yu Lin-hsin etal Poly(vinypyrrolidone)-Modified Graphite Carbon Nanofibers as Promising Supports for PtRu Catalysts in Direct Methanol Fuel Cells 9999-10010 1 第129卷, 2 * |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101966453A (en) * | 2010-10-28 | 2011-02-09 | 南昌大学 | Method for preparing graphene-loaded platinum nano catalyst |
CN102021573A (en) * | 2010-12-27 | 2011-04-20 | 湖南大学 | Self-assembly preparation method of noble metal-graphene double-layer composite conductive film |
CN102021573B (en) * | 2010-12-27 | 2013-01-02 | 湖南大学 | Self-assembly preparation method of noble metal-graphene double-layer composite conductive film |
CN103180039A (en) * | 2010-12-29 | 2013-06-26 | 海洋王照明科技股份有限公司 | Pt/graphene catalyst, preparation method and use thereof |
WO2012088681A1 (en) * | 2010-12-29 | 2012-07-05 | 海洋王照明科技股份有限公司 | Pt/graphene catalyst, preparation method and use thereof |
JP2014511255A (en) * | 2010-12-29 | 2014-05-15 | オーシャンズ キング ライティング サイエンス アンド テクノロジー シーオー.,エルティーディー | Platinum-rubidium nanoalloy / graphene catalyst, method for producing the same, and method for using the same |
JP2014507260A (en) * | 2010-12-29 | 2014-03-27 | オーシャンズ キング ライティング サイエンス アンド テクノロジー シーオー.,エルティーディー | Platinum / graphene catalyst, its preparation, and its use |
CN102266770A (en) * | 2011-06-28 | 2011-12-07 | 南京大学 | Preparation method of platinum/graphene nanometer electro-catalyst used for proton exchange membrane fuel cell |
CN102709517A (en) * | 2012-06-13 | 2012-10-03 | 上海空间电源研究所 | Flexible integrated precious-metal-contained particle-carbon electrode and preparation method thereof |
CN102738476A (en) * | 2012-07-29 | 2012-10-17 | 刘嘉斌 | Production technology of nitrogen-doped graphene supported transition metal cathode of sodium borohydride fuel cell |
CN102738476B (en) * | 2012-07-29 | 2014-07-23 | 浙江大学 | Production technology of nitrogen-doped graphene supported transition metal cathode of sodium borohydride fuel cell |
CN102989450A (en) * | 2012-12-03 | 2013-03-27 | 中国科学院大连化学物理研究所 | Preparation method, structural feature and application of carrying type nanometer electrocatalyst |
CN103007927A (en) * | 2012-12-13 | 2013-04-03 | 北京化工大学常州先进材料研究院 | Preparation method of platinum/graphene catalyst for lithium air battery |
CN103127931A (en) * | 2013-03-01 | 2013-06-05 | 北京化工大学常州先进材料研究院 | Lithium-air battery catalyst and preparation method |
CN103326032A (en) * | 2013-05-30 | 2013-09-25 | 上海交通大学 | Method for preparing platinum gradient-distribution catalyst layer structure of proton exchange membrane fuel cell |
CN103326032B (en) * | 2013-05-30 | 2015-07-15 | 上海交通大学 | Method for preparing platinum gradient-distribution catalyst layer structure of proton exchange membrane fuel cell |
CN104617313A (en) * | 2013-11-04 | 2015-05-13 | 中国科学院大连化学物理研究所 | Graphene supported two-dimensional branched platinum nanometer electrocatalyst, and preparation method and application thereof |
CN104617313B (en) * | 2013-11-04 | 2017-03-29 | 中国科学院大连化学物理研究所 | Two-dimentional branched platinum nanometer electrical catalyst and its prepare and apply that Graphene is supported |
CN105594047A (en) * | 2014-03-28 | 2016-05-18 | 恩亿凯嘉股份有限公司 | Production method for electrode catalyst, electrode catalyst, composition for forming gas diffusion electrode, gas diffusion electrode, membrane-electrode assembly (MEA), and fuel cell stack |
CN104475091A (en) * | 2014-12-17 | 2015-04-01 | 北京化工大学常州先进材料研究院 | Preparation method of Pt/graphene catalyst for lithium air battery |
CN104916851A (en) * | 2015-05-11 | 2015-09-16 | 浙江高成绿能科技有限公司 | Production method of catalysis layer |
CN104916851B (en) * | 2015-05-11 | 2018-03-20 | 浙江高成绿能科技有限公司 | A kind of preparation method of Catalytic Layer |
WO2019218754A1 (en) * | 2018-05-14 | 2019-11-21 | 深圳市中科摩方科技有限公司 | Material having surface modified by super capacitance, preparation method therefor and application thereof |
CN108767270A (en) * | 2018-06-11 | 2018-11-06 | 佛山腾鲤新能源科技有限公司 | A kind of preparation method of fuel-cell catalyst |
CN108767270B (en) * | 2018-06-11 | 2021-01-29 | 山东岱擎新能源科技有限公司 | Preparation method of fuel cell catalyst |
CN108933264A (en) * | 2018-07-23 | 2018-12-04 | 中科院合肥技术创新工程院 | A kind of conductive black carried noble metal composite material and preparation method and application |
CN109216716A (en) * | 2018-08-06 | 2019-01-15 | 浙江高成绿能科技有限公司 | A kind of preparation method of the fuel cell Pt/C catalyst of high Pt carrying capacity |
CN109216716B (en) * | 2018-08-06 | 2023-09-05 | 浙江高成绿能科技有限公司 | Preparation method of Pt/C catalyst for fuel cell with high Pt loading |
CN112687901A (en) * | 2020-12-21 | 2021-04-20 | 松山湖材料实验室 | Three-dimensional graphene platinum-supported catalyst and preparation method and application thereof |
CN112717980A (en) * | 2020-12-31 | 2021-04-30 | 上海电气集团股份有限公司 | Composite catalyst and preparation method and application thereof |
CN112717980B (en) * | 2020-12-31 | 2023-09-15 | 上海电气集团股份有限公司 | Composite catalyst and preparation method and application thereof |
CN113363515A (en) * | 2021-07-13 | 2021-09-07 | 北京未来氢能科技有限公司 | Carbon material loaded platinum catalyst and preparation method and application thereof |
CN116072941A (en) * | 2023-02-09 | 2023-05-05 | 深圳市氢瑞燃料电池科技有限公司 | Proton exchange membrane with fuel cell coating and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101814607A (en) | Preparation method of platinum/graphen catalyst for proton exchange membrane fuel cell | |
CN108579788B (en) | A composite cobalt vanadium nitride nanowire electrocatalyst and its preparation method and application | |
CN102790223B (en) | Carbon-carried multi-metal polypyrrole oxygen reduction catalyst and preparation method thereof | |
Yang et al. | Synthesis of size-selected Pt nanoparticles supported on sulfonated graphene with polyvinyl alcohol for methanol oxidation in alkaline solutions | |
CN106328960A (en) | ZIF-67 template method for preparing cobalt-platinum core-shell particle/porous carbon composite material and catalytic application of composite material in cathode of fuel cell | |
CN111261883B (en) | Preparation method and application of ionic liquid functionalized graphene oxide loaded nano cobaltosic oxide composite material | |
CN113437314B (en) | Nitrogen-doped carbon-supported low-content ruthenium and Co 2 Three-function electrocatalyst of P nano particle and preparation method and application thereof | |
CN104600326B (en) | Preparation method of carbon-supported nano platinum alloy catalyst | |
CN103022521A (en) | Palladium-cobalt/graphene nano electro-catalyst and preparation method thereof | |
CN102266770A (en) | Preparation method of platinum/graphene nanometer electro-catalyst used for proton exchange membrane fuel cell | |
CN108441885A (en) | A kind of composite material and its application in urea aoxidizes assistance Acid-Base electrolytic cell device for preparing hydrogen | |
CN109950566A (en) | A high-performance oxygen reduction catalyst based on enhanced surface function and its preparation method | |
CN111686743A (en) | La/NF hydrogen evolution material and preparation method and application thereof | |
CN101552345A (en) | Fuel cell using conductive polymer modified carbon based cobaltous hydroxide composite catalyst | |
CN101362093B (en) | Carbon supported platinum composite catalyst of fuel cell and preparation method thereof | |
CN103623817A (en) | High durability anode catalyst for vehicle-mounted fuel cell and preparation method of catalyst | |
Yu et al. | A robust electrocatalytic activity and stability of Pd electrocatalyst derived from carbon coating | |
CN104475091A (en) | Preparation method of Pt/graphene catalyst for lithium air battery | |
JP5288718B2 (en) | Electrode catalyst for electrochemical cell, method for producing the same, electrochemical cell, fuel cell and fuel cell | |
CN102133543B (en) | Preparation of tin dioxide-carbon nitrogen composite material | |
CN109638306B (en) | A kind of electrocatalytic material for ammonia catalytic oxidation and preparation method thereof | |
CN102814177B (en) | Preparation method of catalyst for direct methanol fuel cell and direct methanol fuel cell | |
CN102357362A (en) | Preparation method of anti-sulfide-poisoning fuel cell cathode catalyst | |
CN105680061A (en) | Catalyst for electrochemical reduction of carbon dioxide and preparation and application of catalyst | |
CN113265682B (en) | A kind of supported RuOx/F-TiO2 Oxygen evolution catalyst and its preparation method and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20100825 |