JP5526145B2 - 混合されたdc電源および単相ac電源からの三相回生駆動装置の作動 - Google Patents

混合されたdc電源および単相ac電源からの三相回生駆動装置の作動 Download PDF

Info

Publication number
JP5526145B2
JP5526145B2 JP2011537402A JP2011537402A JP5526145B2 JP 5526145 B2 JP5526145 B2 JP 5526145B2 JP 2011537402 A JP2011537402 A JP 2011537402A JP 2011537402 A JP2011537402 A JP 2011537402A JP 5526145 B2 JP5526145 B2 JP 5526145B2
Authority
JP
Japan
Prior art keywords
phase
current
source
power
bus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011537402A
Other languages
English (en)
Other versions
JP2012509655A (ja
Inventor
ブラスコ,ウラディミール
アギルマン,イスマイル
オッギアヌ,ステラ,エム.
ソーントン,ロバート,ケー.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otis Elevator Co
Original Assignee
Otis Elevator Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otis Elevator Co filed Critical Otis Elevator Co
Publication of JP2012509655A publication Critical patent/JP2012509655A/ja
Application granted granted Critical
Publication of JP5526145B2 publication Critical patent/JP5526145B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/08Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor
    • H02P3/14Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor by regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • B66B1/30Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on driving gear, e.g. acting on power electronics, on inverter or rectifier controlled motor
    • B66B1/302Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on driving gear, e.g. acting on power electronics, on inverter or rectifier controlled motor for energy saving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • B66B1/30Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on driving gear, e.g. acting on power electronics, on inverter or rectifier controlled motor
    • B66B1/308Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on driving gear, e.g. acting on power electronics, on inverter or rectifier controlled motor with AC powered elevator drive
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2201/00Indexing scheme relating to controlling arrangements characterised by the converter used
    • H02P2201/03AC-DC converter stage controlled to provide a defined DC link voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2201/00Indexing scheme relating to controlling arrangements characterised by the converter used
    • H02P2201/07DC-DC step-up or step-down converter inserted between the power supply and the inverter supplying the motor, e.g. to control voltage source fluctuations, to vary the motor speed

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Multiple Motors (AREA)
  • Rectifiers (AREA)

Description

本発明は一般に電力制御システムに関する。本発明は特に三相回生駆動装置の作動に関する。
三相回生駆動装置は産業上、頻繁に加速や減速が必要とされる用途や、重力の支配下にある物質を移動させる際の用途に使用される。このような用途の例には、クレーンやエレベータが含まれる。これらの用途では、モータ駆動モードにおける大量のエネルギーが加速力または重力を受ける物質に貯蔵される。この貯蔵されたエネルギーは、減速中または重力方向に一致する移動中に戻される。回生駆動装置は一般に、入力または電力ユーティリティ側にコンバータと、モータ側にインバータとを備える。コンバータおよびインバータ両方が、共通DCバスを共有する。インバータの電力需要は、回生駆動装置の設計において入力側のコンバータの適切な電力能力に適合する。
回生駆動装置は、昇降路内でエレベータかごを昇降させるエレベータ昇降モータを作動させるようにエレベータシステムに導入されている。エレベータを作動させる電力需要は、外部で生成された電力(電力ユーティリティからのものなど)が使用される正から、エレベータの荷重がモータを駆動してモータが発電機として電力を生成する負までの範囲で変動する。発電機として電気を生成するのにモータを使用することは一般に回生と呼ばれる。従来のシステムでは、回生エネルギーがエレベータシステムの別の構成要素に供給されることも、ユーティリティ送電線網に戻されることもない場合、回生エネルギーは、ダイナミックブレーキ抵抗器または他の負荷を介して散逸する。この構成では、最大電力条件(例えば、複数のモータが同時にまたは高需要の期間に始動するとき)であっても、全ての需要は、エレベータシステムに電力を供給するように電力ユーティリティに存在し続ける。従って、電力ユーティリティから電力を供給するエレベータシステムの構成要素は、最大電力需要に適合する大きさにする必要があるが、それは、より費用が掛かることも、またより大きな空間を必要とすることもある。また、散逸する回生エネルギーは使用されず、そのため電力システムの効率が低下する。また、エレベータ駆動システムは一般に、電源からの特定の入力電圧範囲で作動するように設計されている。駆動装置の構成要素は、電源が指定された入力電圧範囲に留まる間は駆動装置が連続的に作動できるような定格の電圧および電流を有する。
回生駆動装置は一般に、平衡三相電力入力で作動する。しかしながら、三相電力入力が利用可能でない時がある。例えば、最初のエレベータシステムの設置の際は、建設現場への三相電源が利用可能でないことがある。エレベータシステムの設置の際にはせいぜい単相電力だけが利用可能となることがある。また、単相電力が長期間に亘って利用可能な唯一のAC電力である状況もあり得る。
三相電力が利用可能でないエレベータ設置の際でも三相回生駆動装置機械を利用することができる必要がある。また、三相電力が利用可能でない時でさえ三相回生駆動装置が有用になるであろう他の状況もある。PCT特許出願第WO2006/022725号は、単相電力を用いて三相回生駆動装置を作動させることができる必要性に対処している。
単相AC源は一般に、平衡三相AC源から利用可能な電圧レベルの1.73分の1〜2分の1の電圧レベルを有することになり、電力は、三相の代わりに単相だけから供給される。その結果、単相AC源は、回生駆動装置の通常作動に必要な電力を供給できない可能性がある。単相AC源から引き出される電流が負荷需要を満たすために増加される場合、電圧が一般により低く、利用できるのも三相の代わりに単相だけなので、増加される電流が回生駆動装置の入力/コンバータ側の電流能力を超えることがある。従って、三相コンバータは、単相システムから作動される時は、負荷(例えば、エレベータ昇降モータ)の通常の作動条件を満足させるのに十分な電力を供給できない可能性がある。
三相回生駆動装置は、三相コンバータと、三相インバータと、コンバータおよびインバータを接続するDCバスと、三相コンバータおよび三相インバータを作動させる制御信号を供給した制御装置とを備える。本発明では、従来は三相源に接続される三相コンバータが、単相AC電源と、DC電源とに接続される入力端子を有する。制御装置は、単相AC電源およびDC源に対するそれぞれの電流寄与を表す寄与係数に基づいてコンバータの作動を制御する。寄与係数に応じて、三相回生駆動装置は、単相AC電力だけ、DC電力だけ、または単相AC電力とDC電力の組み合わせを用いて作動できる。
混合された単相AC電源およびDC電源から作動可能な三相回生駆動装置を備えるエレベータ電力システムの概略図。 三相AC入力電力を用いて三相コンバータを作動させるコンバータ制御器を示すブロック図。 単相AC電源およびDC電源両方からの電力を用いて三相コンバータを作動させるコンバータ制御器を示すブロック図。 DCバス電圧リップルがDC電源の電流によって制御される、混合された単相AC電源およびDC電源のための三相コンバータ制御器のブロック図。 AC電源として使用されるバッテリまたはスーパーキャパシタのための充電平衡制御を有する、混合された単相AC電源およびDC電源のための三相コンバータ制御器を示すブロック図。
図1は、電力システム10の概略図を示しており、電力システム10は、単相AC電源12、DC電源14、入力ラインインダクタ16R、16S、16T、入力電流センサ18、回生駆動装置20(電力コンバータ22、DCバス24、平滑コンデンサ26、および電力インバータ28を備える)、電流センサ30、エレベータ32(昇降モータ34、エレベータかご36、つり合いおもり38、ロープ40、およびモータ位置/速度センサ42を備える)、および制御装置44(コンバータ制御器46、インバータ制御器48、および監視制御器50を備える)を備える。電力システム10は、AC電源12からの単相AC電力とDC電源14からのDC電力の組み合わせを用いてエレベータ昇降モータ34を作動させる。制御装置44は、電力コンバータ22および電力インバータ28の作動を制御し、昇降モータ34を駆動するのに使用されるAC電源12およびDC電源14からの電流の相対的寄与を決定する。モータ34が電力を回生している時、制御装置44は、AC電源12およびDC電源14それぞれに戻されるべき電流の相対的寄与に従って回生電力をAC電源12およびDC電源14に供給し戻すようにコンバータ22およびインバータ24を制御する。モータ駆動および回生時の相対的寄与は、同じでも、異なっているのでもよい。例えば、DC電源14は、その充電状態に応じてより大きな割合またはより小さな割合の回生エネルギーを受け取ることができる。
AC電源12は例えば、電力ユーティリティ送電線網から供給される単相電力を表す。単相AC電力は一般に、対応する三相電力の1.73分の1〜2分の1の電圧レベルである。単相AC源12から供給可能な電力の総量は、三相AC電力が利用可能であったとすれば、作動可能な三相AC電力の3分の1になるであろう。電力システム10は、ユーティリティ電力送電線網からの三相電力が利用可能でないが、単相AC電力およびDC電力が利用可能な状況で、三相回生駆動装置20を作動させる能力を提供する。
DC電源14は、直列または並列に接続され、電気エネルギーを貯蔵することができる1つまたは複数の装置を備えることができる。いくつかの実施例では、DC電源14は、少なくとも1つのスーパーキャパシタを備えており、このスーパーキャパシタは、対称または非対称スーパーキャパシタを含むことができる。別の実施例では、DC電源14は、少なくとも1つの二次または再充電可能バッテリを備えており、この再充電可能バッテリは、ニッケル−カドミウム(NiCd)、鉛酸、ニッケル−金属水素化物(NiMH)、リチウムイオン(Liイオン)、リチウムイオンポリマー(Liポリ)、鉄電極、ニッケル−亜鉛、亜鉛/アルカリ/二酸化マンガン、亜鉛−臭素流、バナジウム流、およびナトリウム−硫黄バッテリのいずれかを含むことができる。別の実施例では、フライホイールなどの他の種類の電気的または機械的装置がエネルギーを貯蔵するのに使用可能であり、このエネルギーは、次いで、DC電気エネルギーとしてDC電源14から利用可能である。DC電源14は、一種類の貯蔵装置を備えることができ、あるいは、いくつかの貯蔵装置の組み合わせを備えることができる。
単相AC電源12は、インダクタ16R、16Sを介してコンバータ22の入力端子R、Sに接続される。DC電源14の正の端子は、インダクタ16Tを介してコンバータ22の入力端子Tに接続される。DC電源14の負の端子は、コンバータ22の負(−)の端子に接続される。
電流センサ18は、AC電源12と電力コンバータ22の間の電流およびDC電源14と電力コンバータ22の間の電流を検出する。検出された電流信号(Irt)は、制御装置44に供給され、そこで電流信号は、電力コンバータ22の作動を制御する際にコンバータ制御器46によって使用される。
電力コンバータ22は、三相二方向電力コンバータであり、この三相二方向電力コンバータは、DCバスリンク電圧Vdcを制御し、R、S、T入力端子に接続された入力ラインから回生駆動装置20への有効電力/電流の流れを制御することでDCバスリンク電圧Vdcを選択されたレベルに維持する。回生中に、コンバータ22は、R、S、T端子から電源12、14へと戻る電力の流れを制御することでDCバス24上の電圧Vdcを制御する。図1に示される実施例では、コンバータ22は、パワートランジスタ60R、62Rで構成された第1のパワートランジスタ回路と、パワートランジスタ60S、62Sで構成された第2の回路と、パワートランジスタ60T、62Tで構成された第3の回路とを備える。各パワートランジスタ60R〜60T、62R〜62Tは例えば、関連するダイオードを有する絶縁ゲートバイポーラトランジスタ(IGBT)とすることができる。各パワートランジスタ60R〜60T、62R〜62Tの制御電極(すなわち、ゲートまたはベース)は、コンバータ制御器46に接続される。
パワートランジスタ60Rは、電力コンバータ22の正(+)の端子と電力コンバータ22の入力端子Rとの間に接続される。パワートランジスタ62Rは、入力端子Rと負(−)の端子との間に接続される。
同様に、パワートランジスタ60Sは、正の端子と入力端子Sとの間に接続される。パワートランジスタ62Sは、入力端子Sと負の端子との間に接続される。
パワートランジスタ60R、60S、62R、62Sは一緒に、AC電源12からの単相AC電力をDCバス24上のDC電圧に整流するAC−DCコンバータ回路を構成する。回生中に、トランジスタ60R、60S、62R、62Sで構成された回路は、DCバス24からのDC電力を、端子R、Sを介して単相AC電源12に供給し戻されるAC電力に変換するのに使用可能である。
パワートランジスタ60T、62Tは、DC電源14からのDC電力をDCバス24上のDC電圧に変換するDC−DCコンバータ回路を構成する。パワートランジスタ60Tは、正の端子と入力端子Tとの間に接続され、パワートランジスタ62Tは、入力端子Tと負の端子との間に接続される。回生中に、トランジスタ60T、62Tで構成された回路は、DCバス24からの回生されたDC電力を、DC電源14のためのDC充電電流に変換するのに使用可能である。
一実施例では、コンバータ制御器46は、AC源12およびDC源14からの入力電力をDCバス24上のDC電力に変換するようトランジスタ60R〜60T、62R〜62Tを周期的にスイッチングするゲートパルスを生成するようにパルス幅変調(PWM)を用いる。回生中に、コンバータ制御器46は、DCバス24からの電力をAC電源12、DC電源14、またはこれら両方の組み合わせへと供給し戻すようコンバータ22の作動を制御するようにPWMゲートパルスを用いる。
電力インバータ28は、三相電力インバータであり、この三相電力インバータは、DCバス24からのDC電力を、端子A、B、Cを介して昇降モータ34に供給される三相AC電力に変換するように作動可能である。インバータ28は、モータ34からの回生電力を端子A、B、Cで受け取って、DCバス24に供給されるDC電力に変換するように、二方向作動が可能である。
図1に示される実施例では、電力インバータ28は、パワートランジスタ64A、66Aで構成された第1のパワートランジスタ回路と、パワートランジスタ64B、66Bで構成された第2の回路と、パワートランジスタ64C、66Cで構成された第3の回路とを備える。各パワートランジスタ64A〜64C、66A〜66Cは、図1に示されるように、関連するダイオードを有する絶縁ゲートバイポーラトランジスタとすることができる。各トランジスタ64A〜64C、66A〜66Cの制御電極は、DCバス24上のDC電力を三相AC出力電力に変換するように、または、三相AC回生電力を、DCバス24に供給されるDC電力に整流するように、インバータ制御器48によって制御される。インバータ制御器48は、端子A、B、Cにおける三相AC出力電力を供給するようトランジスタ64A〜64C、66A〜66Cを周期的にスイッチングするPWMゲートパルスを用いる。
電流センサ30が、端子A、B、Cにおいてインバータ28からの、またはインバータ28への電流を検出する。検出された電流信号は、制御装置44に供給され、そこで電流信号は、インバータ28の作動を制御する際にインバータ制御装置48によって使用される。電流信号はまた、コンバータ制御器46へのフィードフォワード制御信号を生成するのに使用可能である。
昇降モータ34は、エレベータかご36とつり合いおもり38の間の移動の速度および方向を制御する。昇降モータ34を駆動するのに必要とされる電力は、エレベータかご36の加速および方向、およびエレベータかご36内の負荷とともに変動する。例えば、エレベータかご36が加速されていて、つり合いおもり38の重量より大きな負荷(すなわち、重負荷)で上昇しているか、あるいはつり合いおもり38の重量より小さな負荷(すなわち、軽負荷)で下降している場合、昇降モータ34を駆動するのに電力が必要とされる。この場合、昇降モータ34の電力需要は正である。エレベータかご36が重負荷で下降しているか、あるいは軽負荷で上昇している場合、エレベータかご36は、昇降モータ34を駆動し、エネルギーを回生する。この負の電力需要の場合、昇降モータ34は、インバータ制御器48の制御下で電力インバータ28によってDC電力に変換されるAC電力を生成する。上述したように、変換されたDC電力は、単相AC電源12に戻されること、DC電源14を再充電するのに使用されること、および/または、DCバス24を横断して接続されるダイナミックブレーキ抵抗器(図示せず)で散逸されることができる。エレベータ32が床合わせしているか、あるいは釣り合った負荷で定速で走行している場合、エレベータ32は、より小さな量の電力を使用していることが可能となる。昇降モータ34が駆動作動も電力回生も行っていない場合、昇降モータ34の電力需要はほぼゼロである。
単一のエレベータ32が電力システム10に接続されて示されているとはいえ、電力システム10が、複数のエレベータ32および昇降モータ34に電力供給するように修正可能であることに留意されたい。例えば、複数の電力インバータ28が、複数の昇降モータ34に電力を供給するようにDCバス24を横断して並列に接続可能である。
センサ42が、昇降モータ34に関連しており、位置フィードバック信号posmまたはモータ速度フィードバック信号vm、またはこれら両方を制御装置44に供給する。監視制御器50が、エレベータ走行中にエレベータ32の速度を制御することでエレベータ32の移動を制御する。監視制御器50は、モータ34の最大加速度、最大定常速度、および最大減速度を定義するエレベータ運動プロフィールを生成することができる。モータ位置(posm)、モータ速度(vm)およびモータ電流(Iabc)のフィードバック値に基づいて、監視制御器50は、DCバス24上の電圧を調整し、また、インバータ28の作動を制御するように、コンバータ制御器46およびインバータ制御器48に信号を供給する。
上述したように、電力コンバータ22は、端子R、S、Tにおける三相AC電力をDCバス24におけるDC電力に変換することができる三相二方向電力コンバータである。しかしながら、図1において、三相AC源は、単相源12およびDC源14に置き換えられている。単相AC源12およびDC源14の組み合わせからの混合作動に基づく電力システム10の作動を述べる前に、平衡三相AC電力での、また、単相AC電力だけでの電力コンバータ22の作動を簡単に検討することは役に立つであろう。
図2は、三相AC電力が端子R、S、Tにおいて利用可能な場合に、電力コンバータ22を制御する際のコンバータ制御器46の基本的機能を示す。コンバータ制御器46は、選択されたレベルで電力バス24上のバス電圧Vdcを制御するためにパルス幅変調(PWM)制御パルスを電力コンバータ22に供給する。これは、回生駆動装置20への有効電力/電流の流れを制御することで達成される。有効電流Iqは、位相電圧と位相が同じであり、一方、無効電流Idは、位相電圧より90電気角度だけ遅れる。
コンバータ制御器46は、電流センサ18から電流センサ信号Irtを受け取る。電流変換ブロック70が、センサ信号Irtを有効電流フィードバック信号Iq fおよび無効電流フィードバック信号Id fに変換する。電流調整は、フィードバック電流が電流変換70によって三相静止座標系(R,S,T)から変換されている二相同期座標系における有効電流調整器72および無効電流調整器74によって実行される。電流調整器72、74の出力は、PWMゲートパルスをトランジスタ60R〜60T、62R〜62Tに提供するパルス幅変調パルス発生器76に提供される。
基準電流Iq *(DCバス電圧を維持するのに必要とされる有効電力/電流の需要)が、DC電圧調整器78によって生成される。この場合、有効電流命令が、DCバス電圧フィードバックにおける誤差の結果として生成される。電圧調整器78は、全ての有効電流基準Iq *における補正項ΔIq *だけを生成する。DCバス電圧調整の作動を助けるために、電流基準のためのフィードフォワード命令(Iqff *)が既知の負荷電力需要から生成される。フィードフォワード命令Iqff *は、インバータ制御器48によって提供可能であり、基準電流Iq *を生成するように加算連結部80においてΔIq *に加算される。
三相回生コンバータへの入力電力P3phは、
Figure 0005526145
であり、ここで、
llは、ライン間の電圧(通常は380V〜480V、いくつかの国ではおよそ220V)であり、
Iは、入力ライン電流であり、
PFは、力率(power factor)であり、しばしばおよそ1に維持される。
三相入力電力は、3つの正弦波電圧および電流の積である。平衡非歪曲システム(balanced and non−distorted system)では、電力は、定常条件下のいずれの瞬間でも一定である。平衡条件下における回生駆動装置への一定の電力の流れによって、なんらの高調波もなしにちょうどDC成分でDCバス24上に一定の電圧が維持される。
単相AC入力電力を用いた三相電力コンバータの作動は、参照することによって組み込まれる、アジルマン(Agirman)、ブラスコ(Blasko)、およびチェルヴィンスキ(Czerwinski)によるPCT出願第WO2006/022725号に記載されている。単相の用途では、コンバータへの入力電力は、
1ph=VphIPF (2)
で計算することができ、ここで、
phは、ラインと接地間すなわち位相電圧(通常は220V)である。
単相AC源(例えば、Vll=380Vの代わりにVph=220V)により電力供給される三相回生駆動装置では、電力能力は、
Figure 0005526145
に減少するが、これは、単相AC源で作動される場合、回生駆動装置20は、もともと設計されていた電力の1/3だけを供給することができることを意味する。さらに、正弦波電圧および電流と力率1を仮定すると、単相AC源からの電力の瞬時値は、
Figure 0005526145
となる。
式(3)から、DCバス24へ供給される電力は、第2高調波成分を重ね合わせた、式(2)に相当するDC値を有すると見なすことができる。DCバス24からの出力電力は、連続(DC)なので、第2高調波電流によって平滑コンデンサ26上に電圧リップルが生じる。その結果、昇降モータ34上にかなり大きなトルクリップルと平滑コンデンサ26のさらなる装荷(loading)とが生じる。
以上から、三相回生駆動装置は、単相AC入力電力で電力供給される場合、二重の不利益すなわち、電力供給量の減少とDCバス平滑コンデンサ上の電圧リップルの増加とを有することが明らかである。
これらの不利益を補うために、DC源14が、図1に示されるように、回生駆動装置20のコンバータ22の入力端子Tと負の端子とに接続される。入力端子Tは、単相AC源12が入力端子R、Sに接続される場合に利用可能となる。この場合、DC源14は、付加的な電力を供給し、さらにコンバータ22を制御するのに電流基準の適切な整形が用いられると、DC源14は、DCバス24上の電圧リップルを低減または除去する。
図3は、電力の分担とともに混合されたAC源12およびDC源14を用いるコンバータ制御器46の機能ブロック図を示す。この実施例では、バッテリは、典型例であるDC源14として説明される。図3には、電圧調整器78、加算器80、基準分割器82、AC電流制御器84A、DC電流制御器84D、PWM−ACパルス発生器86A、およびPWM−DCパルス発生器86Dが示される。
電流基準Iq *が、図2に示される三相AC電力の場合と同じように生成され、2つの部分すなわち、(a)単相ACコンバータ電流基準Iq **と、(b)バッテリ制御装置電流基準Ib **とに分割される。係数kb∈{kb g,kb m}によって、所望の電流基準Iq *に対するDC電源14と単相AC源12の相対的な寄与が決定される(上付きのgは、回生を表し、下付きのmはモータ駆動を表し、下付きのbはバッテリを表す)。係数kbは、0〜1の値をとる。kb *=0の場合、トランジスタ60R、60S、62R、62Sで構成された単相ACコンバータのみがDCバス24を制御することになり、DC源14およびトランジスタ60T、62Tからの寄与はないことになる。kb *=0.5の場合、電流基準は、単相AC源12とDC源14の間で均等に分割されることになる。kb *=1の場合、DC電源14およびトランジスタ60T、62TがDCバス24上の電圧Vdcを制御することになる。負荷分担係数kb *=1に対するさまざまな値が、モータ駆動時および回生時に選択されることができ、さらにそれはバッテリの充電レベルに応じて変わることができる。
AC電流制御器82は、トランジスタ60R、60S、62R、62Sに対するゲートパルスを生成するようにPWM−ACパルス発生器86によって使用される制御信号を生成する。制御信号は、Iq **、Iq f、Id f、Id *の関数である。図3に示されるように、Iq **=(1−kb *)Iq *である。
DC電流制御器は、トランジスタ60T、62Tに対するゲートパルスを生成するようにPWM−DCパルス発生器によって使用される制御信号を生成する。制御信号は、kb *b *の関数である。
DC源からの付加的な電力の平均値Pb_dcは、
b_dc=Vbb (4)
である。
DC源14(すなわち、トランジスタ60T、62Tで構成された回路)で作動するコンバータ22の区画の負荷は、DCバス電圧に対するDC源電圧の比、IGBTモジュール設計、慣性回転電流定格、IGBT装置定格、電流の方向、その他などの複雑な関数である。全体のコンバータ電力Pcは、AC源12およびDC源14からの電力の合計すなわち、
c=Pb_dc+P1ph=Ibb+IVph (5)
である。
DCバス24上の電圧リップルを低減するために、単相AC源12(P1ph)およびDC源14(Pb_dc)からの瞬時電力は、一定すなわち、
1ph+Pb_ac=VphI(1−cos(2ωt))+Pb_ac
=VphI (6)
となる必要がある。
ここで、VphおよびIは、位相電圧および電流のRMS値である。式(6)から結果として、DC源からのAC電力成分は、
bacphIcos(2ωt))=Vbb_ac (7)
となる必要がある。
あるいは、DC源からの電流のAC成分は、
b_ac=(Vph/Vb)Icos(2ωt) (8)
となる必要がある。
このAC成分は、DC源14の適切な制御によって得ることができる。
DC電源14を追加し、併せて単相AC電源12とDC電源14との間で電力分担をすることで、DCバス24上の電圧リップルが低減される。図4は、図3に類似している機能ブロック図を示すが、フィードフォワード成分ブロック90リップル調整器92が追加されている。さらに図4には、DC電流調整器94、加算器(または加算装置)96、98(DC源電流制御器84を構成する)、加算器(または加算装置)100(電圧調整器78およびリップル調整器92への入力となる誤差信号εdc=Vdc *−Vdcを生成する)、および加算器102が示される。
図4では、DCバス電圧リップルは、DC源電流によって制御される。リップルは、フィードフォワード信号Ibff *によって制御/除去され、フィードフォワード信号Ibff *は、修正された電流基準Ib **をDC電流制御器84Dの入力端において生成するように加算器102においてDC源電流基準kb *q *に加算される。修正された電流基準Ib **は、構成要素すなわち加算器96によってフィードバック信号Ibfと比較される。差Ib **−Ibfが入力として電流調整器94に供給される。
電流調整器94の帯域幅は十分に高くまた処理遅れは無視できるほど小さいので、フィードフォワード電流値Ibff *は、AC電力の「深部(deeps)」を補うはずであり、DCバス24からリップルを除去するはずである。フィードフォワード項Ibff *(Ib_acに比例する)は、加算連結部102においてDC源電流基準kb *q *に加算される。フィードフォワード項Ibff *は、Ib_acからDC源電流制御のため閉ループ伝達関数の近似の逆数GIb -1を通過させて生成される。
DCバス電圧リップルはまた、図4のDCバス電圧リップル調整器92によって制御される。リップル調整器92の出力は、PWM−DCパルス発生器86Dへ入力される制御信号を生成するように加算装置/加算器98によって電流調整器94の出力に加算される。
リップル調整器92は、DCバス電圧誤差信号εdcのAC成分を制御することによりDCバス電圧からAC成分を除去するのに役立つ。誤差信号は、下記の種類のリップル調整器92、
Figure 0005526145
Figure 0005526145
に供給され、ここで、Kp、Kiは調整器のゲインであり、ω0=2π(2futil)は、DCバス電圧のリップル成分の角周波数(ユーティリティ周波数の2倍に等しい)である。DCバス電圧リップル調整器92の出力は、式(10)に示されており、図4に示されるように、加算装置/加算器98によって電流調整器94の出力から差し引かれる。
DC源14がバッテリまたはスーパーキャパシタの場合、回生駆動装置20の作動は、バッテリまたはスーパーキャパシタの充電レベルを所望の充電状態設定点または目標に維持するように制御装置44内に制御論理を備えることもできる。
図5は、図3に示される図に概略類似しているコンバータ制御器46の機能ブロック図を示すが、電力比較器110、乗算器112、インバータ114、乗算器116、充電状態モニタ118、および充電平衡制御器120(電流積分器122、加算器/加算装置124、および比例調整器として作動する時定数分割器126を備える)が追加されている。これらの付加的な構成要素によって充電レベルが充電状態目標に維持される。
電力比較器110は、負荷によって必要とされる電力の絶対値が予め設定された最小値より大きい場合、その出力端に論理「1」を提供し、そうでない場合、その出力端に「0」を提供する。この場合、DCバス電圧を維持するための(高い)電力需要は、単相AC源12とDC源14との間で分担されることになる。必要とされる電力が予め設定された最小値より小さい場合、比較器の出力kb *=0であり、その結果、kb *b *=0となり、DCバス電圧は、単相AC源12のみからのエネルギーによって制御されることになる。負荷需要が小さい時のこの作動モードは、バッテリの充電/放電に使用されることになる。電力の代わりに他の指標(例えば速度)も比較器110で使用可能である。
さらにDC源電流のための新たな基準が、DC源14の充電レベルをモニタしてそれを基準レベルΔQ*の付近に維持するために生成される。この目的のために、DC源電流IbがΔQを生成するように積分器122において積分され、ΔQは、(−)記号が付されて加算器124により基準ΔQ*に加算される。モニタ118は、検出されたバッテリ電圧Vb、バッテリ温度θ、および所望の充電状態に基づいて基準ΔQ*を生成する。
回生駆動装置のアイドル期間(すなわち、負荷への電力需要が小さいか、あるいは、電力比較器110の出力が0に等しい場合)では、充電平衡制御回路126が、DC源の電流に対する基準を設定し、充電/放電に向かって作動し、DC源14の充電を均等にする。アイドル期間は、用途に依存し、例えばエレベータでは、階床間で乗客を乗せている時または交通が鈍く、移動に対する要求がない時に生じる。時定数Teqおよび充電不均衡レベルが充電/放電電流基準ΔIb *を設定することになり、充電/放電電流基準ΔIb *は、電流制御器84Dのための電流基準Ib **を生成するように加算器102によってkb *b *に加算される。それは、充電/放電電流が増加され、DC源14がさらに充電/放電されることを意味する。充電平衡化速度は、時定数Teqに依存する。時定数が大きいほど、充電が平衡に達するのにより長い時間がかかることになるが、充電電流はより小さいものになる。
別の実施例では、DCバス電圧リップルを低減する図4の構成要素は、DC源14を充電状態目標に維持する図5の構成要素と組み合わされる。その結果、コンバータ制御器46は、AC源12とDC源14との電力分担によって電力能力を増加させ、DCバス電圧リップルを低減し、また、DC源14の充電状態を維持するように、コンバータ22を制御する。
単相AC源とDC源の組み合わせから三相回生駆動装置に電力供給することによって、単相AC源のみで電力供給される回生駆動装置に比較して駆動装置の能力が拡張される。駆動装置の電力定格は、AC源およびDC源両方を用いることで向上し、エネルギー源の1つが喪失するかまたは利用可能でない場合の冗長性を提供する。例えば、単相AC電力が喪失してもなお回生駆動装置は、負荷の電力需要に応じて最大または低減した性能レベルで作動可能である。三相AC電力の喪失または使用不能あるいは単相電力のみの利用可能性に対処する他の方法は、より費用のかかるシステムを必要とする。例えば、ユーティリティ電力送電線網からの三相AC電力不足の可能な解決策の1つは、ユーティリティ電力送電線網に対する代替の三相電源として設定されたディーゼルモータ/発電機など現場での三相電力発電機の追加を伴う。他の方法は、回生駆動装置のための電力の全てを供給するように高電圧DC源を回生駆動装置に直接接続するか、または低電圧DC源を別のDC/DCコンバータと接続することを伴う。これらの解決策もまた追加の費用を必要とする。別の方法では、回生駆動措置の入力電力コンバータは、回生駆動装置を作動させるのに十分大きな電力を供給するように単相源から必要とされるかなり大きな電流を処理することができるように再設計可能であろう。これはまた、回生駆動装置の電力需要を満足させるのに十分大きな電力を単相供給装置に供給する必要がある。これはまたしても、電力システム10に使用される混合された単相AC電源およびDC電源より費用のかかる方法を意味する。
図3〜図5に示されるように、コンバータ制御器46は、DCバス電圧調整器からの電流基準を2つの部分に分割する。一方の部分は、単相AC源12からまたは単相AC源12への電流を制御するために使用される。もう一方の部分は、DC源14からまたはDC源14への電流を制御するために使用される。寄与係数または分担係数kbを用いることによって、全体の電力需要に対するDC源14からの電力の割合が画定される。係数kbは、AC源12またはDC源14および関連する電力電子装置の能力、作動モード(例えば、発電、アイドル、またはモータ駆動)、DC電源の充電レベルまたは状態、交通プロファイル、季節または時間によるユーティリティ定格、その他などの関数として選択可能である。係数Kbの選択は例えば、監視制御器50によって行われ、コンバータ制御器46に提供可能である。
単相AC源12からの電力と共にDC源14からの電力を使用することで、DCバス24上の電圧リップルを低減する機会が得られる。リップルの低減は、いくつかの異なる態様で達成される。第1に、DC源14から付加的な電力を供給することは、電圧リップルの低減に役立つ。第2に、DC源14からの電流を制御する電流基準は、単相AC源12からの電力の流れの減少を補うように整形可能である。第3に、DCバス電圧リップルを含む信号を用い、それをリップル調整器に供給することで、DCバス電圧からのリップルを低減または除去するようにDC源電流のAC成分を調節可能である。第4に、DC源14へまたはDC源14からの電流を制御することで、DC源14に対する充電状態目標を考慮可能である。
本発明は、好ましい実施例に関連して説明したが、当業者は、本発明の趣旨および範囲から逸脱せずに、形態および詳細について変更が可能であることを理解するであろう。

Claims (20)

  1. 単相AC源およびDC源に接続するための入力端を有する三相コンバータと、
    モータに接続するための三相インバータと、
    三相コンバータと三相インバータの間に接続されたDCバスと、
    単相AC源およびDC源による電流需要に対するそれぞれの寄与を制御するように三相コンバータに制御信号を供給する制御装置と、
    を備えることを特徴とする三相回生駆動装置。
  2. 三相コンバータは、
    単相AC源とDCバスの間の電流を制御する第1の組のパワートランジスタを有する第1の回路と、
    DC源とDCバスの間の電流を制御する第2の組のパワートランジスタを有する第2の回路と、
    を備えることを特徴とする請求項1記載の三相回生駆動装置。
  3. 制御信号は、第1の組のパワートランジスタを制御する第1の組のパルス幅変調(PWM)信号と、第2の組のパワートランジスタを制御する第2の組のパルス幅変調(PWM)信号とを含むことを特徴とする請求項2記載の三相回生駆動装置。
  4. 制御装置は、
    DCバス電圧と基準電圧の関数として電流基準を生成する電圧調整器と、
    電流基準を単相AC源に関連する第1の基準とDC源に関連する第2の基準とに分割する基準分割器と、
    第1の基準に基づいてAC電流制御信号を生成するAC電流制御器と、
    AC電流制御信号の関数として第1の組のPWM信号を生成する第1のPWM発生器と、
    第2の基準に基づいてDC電流制御信号を生成するDC電流制御器と、
    DC電流制御信号の関数として第2の組のPWM信号を生成する第2のPWM発生器と、
    を備えることを特徴とする請求項3記載の三相回生駆動装置。
  5. 三相回生駆動装置は、DC源とDCバスの間の検出された電流の関数としてフィードバック信号を生成する電流センサをさらに備えており、
    DC電流制御器は、第2の基準と、フィードバック信号とに基づいてDC電流制御信号を生成することを特徴とする請求項4記載の三相回生駆動装置。
  6. 制御装置は、DCバス電圧リップルの関数としてリップル補正信号を生成するリップル調整器をさらに備えており、
    DC電流制御器は、第2の基準と、フィードバック信号と、リップル補正信号とに基づいてDC電流制御信号を生成することを特徴とする請求項5記載の三相回生駆動装置。
  7. DC源からの電流のAC成分の関数としてフィードフォワード信号を生成する回路と、
    フィードフォワード信号に基づいて第2の基準を修正する信号結合器と、
    をさらに備えることを特徴とする請求項4記載の三相回生駆動装置。
  8. DC源の充電状態と、DC源とDCバスの間の電流とに基づいて充電制御信号を供給する充電状態制御器と、
    充電制御信号に基づいて第2の基準を修正する信号結合器と、
    をさらに備えることを特徴とする請求項4記載の三相回生駆動装置。
  9. 基準分割器は、寄与係数に基づいて電流基準を分割することを特徴とする請求項4記載の三相回生駆動装置。
  10. 寄与係数は、三相回生駆動装置の作動モードの関数として選択可能であることを特徴とする請求項9記載の三相回生駆動装置。
  11. 寄与係数は、単相AC源の能力、DC源の能力、三相コンバータおよび三相インバータの構成要素の能力、DC源の充電状態、エレベータ交通プロファイル、およびユーティリティ定格のうちの少なくとも1つの関数として選択可能であることを特徴とする請求項9記載の三相回生駆動装置。
  12. 三相コンバータと、三相インバータと、三相コンバータと三相インバータの間に接続されたDCバスとを備える回生駆動装置を作動させる方法であって、
    単相AC源およびDC源を三相コンバータの入力端に接続し、
    DCバス電圧の関数として電流基準を生成し、
    電流基準を第1の基準と第2の基準とに分割し、
    第1の基準の関数として単相AC源とDCバスの間の三相コンバータの電流を制御し、
    第2の基準の関数としてDC源とDCバスの間の三相コンバータの電流を制御する、
    ことを含むことを特徴とする、回生駆動装置を作動させる方法。
  13. 電流基準を分割することは、寄与係数に基づくことを特徴とする請求項12記載の方法。
  14. 寄与係数は、回生駆動装置がモータ駆動モード、アイドルモード、または回生モードのいずれにあるかの関数であることを特徴とする請求項13記載の方法。
  15. 寄与係数は、単相AC源の能力、DC源の能力、三相コンバータおよび三相インバータの構成要素の能力、DC源の充電状態、およびユーティリティ定格のうちの少なくとも1つに基づいて選択可能であることを特徴とする請求項13記載の方法。
  16. DCバス電圧リップルの関数としてリップル補正信号を生成し、
    リップル補正信号に基づいてDC源とDCバスの間の電流を修正する、
    ことをさらに含むことを特徴とする請求項12記載の方法。
  17. DC源からの電流のAC成分の関数としてフィードフォワード信号を生成し、
    フィードフォワード信号に基づいて第2の基準を修正する、
    ことをさらに含むことを特徴とする請求項12記載の方法。
  18. DC源の充電状態の関数として充電制御信号を生成し、
    充電制御信号に基づいて第2の基準を修正する、
    ことをさらに含むことを特徴とする請求項12記載の方法。
  19. 回生駆動装置の電力需要を決定し、
    電力需要が閾値より小さい場合に第1の基準が電流基準に等しくなりかつ第2の基準がゼロになるように電流基準を分割する、
    ことをさらに含むことを特徴とする請求項12記載の方法。
  20. 三相インバータは、エレベータ昇降モータに接続されることを特徴とする請求項12記載の方法。
JP2011537402A 2008-11-21 2008-11-21 混合されたdc電源および単相ac電源からの三相回生駆動装置の作動 Expired - Fee Related JP5526145B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2008/012992 WO2010059141A1 (en) 2008-11-21 2008-11-21 Operation of a three-phase regenerative drive from mixed dc and single phase ac power sources

Publications (2)

Publication Number Publication Date
JP2012509655A JP2012509655A (ja) 2012-04-19
JP5526145B2 true JP5526145B2 (ja) 2014-06-18

Family

ID=42198381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011537402A Expired - Fee Related JP5526145B2 (ja) 2008-11-21 2008-11-21 混合されたdc電源および単相ac電源からの三相回生駆動装置の作動

Country Status (7)

Country Link
US (1) US8629637B2 (ja)
EP (1) EP2358623B1 (ja)
JP (1) JP5526145B2 (ja)
CN (1) CN102224097B (ja)
ES (1) ES2571939T3 (ja)
HK (1) HK1163044A1 (ja)
WO (1) WO2010059141A1 (ja)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010056226A1 (en) * 2008-11-17 2010-05-20 Otis Elevator Company Battery state-of-charge calibration
FI122048B (fi) * 2009-06-01 2011-07-29 Kone Corp Kuljetusjärjestelmä
US9296589B2 (en) * 2010-07-30 2016-03-29 Otis Elevator Company Elevator regenerative drive control referenced to DC bus
CN102255550B (zh) * 2011-07-04 2013-10-16 华北电力大学 基于三相桥式逆变电路的电源裂相装置及其控制方法
US9484808B2 (en) * 2011-08-24 2016-11-01 Abb Schweiz Ag Bidirectional unisolated DC-DC converter based on cascaded cells
RU2476331C1 (ru) * 2012-01-30 2013-02-27 Анатолий Александрович Рыбаков Способ стабилизации оптимальной угловой скорости якоря электрогенератора силовой установки при рекуперации кинетической энергии торможения
ITFI20120030A1 (it) * 2012-02-20 2013-08-21 Fulvio Soldaini Dispositivo di controllo e recupero dell'energia.
US8988026B2 (en) * 2012-07-31 2015-03-24 Rockwell Automation Technologies, Inc. Single phase operation of a three-phase drive system
CN103633892A (zh) * 2012-08-27 2014-03-12 成都酷玩网络科技有限公司 单阻尼混合三角连接无振制动变频装置
CN103633894A (zh) * 2012-08-28 2014-03-12 成都酷玩网络科技有限公司 双阻尼单电阻星形连接无振制动变频装置
KR101677784B1 (ko) * 2012-09-05 2016-11-18 엘에스산전 주식회사 회생형 인버터 장치 및 단위 전력 셀을 이용한 인버터 장치
KR101661379B1 (ko) * 2012-10-29 2016-09-29 엘에스산전 주식회사 인버터에서 직류단 커패시터의 용량 추정장치
US10343872B2 (en) * 2013-05-08 2019-07-09 Otis Elevator Company Elevator system having battery and energy storage device
WO2015023263A1 (en) 2013-08-13 2015-02-19 Otis Elevator Company Elevator braking in a battery powered elevator system
CN105829224B (zh) * 2013-12-18 2019-06-04 奥的斯电梯公司 多电平驱动器半dc总线电力供应
AU2013408357B2 (en) * 2013-12-18 2016-11-10 Otis Elevator Company PWM strategy for regenerative multilevel drive
PL406640A1 (pl) * 2013-12-23 2015-07-06 Politechnika Krakowska im. Tadeusza Kościuszki Energooszczędny system transportu wsadu w zespole prasa-piec
CN105393450B (zh) * 2014-06-26 2017-12-19 三菱电机株式会社 定位控制装置
WO2016100026A1 (en) * 2014-12-17 2016-06-23 Otis Elevator Company Conveyance system having paralleled drives
GB2538493B (en) * 2015-05-12 2017-05-10 Invertek Drives Ltd A control method and system
CN104843568A (zh) * 2015-05-29 2015-08-19 西继迅达(许昌)电梯有限公司 一种电梯数字化伺服驱动器
JP6797892B2 (ja) * 2015-07-28 2020-12-09 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 電気モータのための制動エネルギー回生システム、及び方法
US9800188B2 (en) * 2015-09-15 2017-10-24 Regal Beloit America, Inc. Hybrid drive circuit for variable speed induction motor
US10294070B2 (en) * 2015-11-18 2019-05-21 Premco, Inc. Regenerative electrical power supply for elevators
CN109075599B (zh) * 2016-04-14 2021-12-07 东芝三菱电机产业系统株式会社 不间断电源装置
GB201610369D0 (en) * 2016-06-15 2016-07-27 Rolls Royce Plc Control of an electrical converter
WO2018073909A1 (ja) * 2016-10-19 2018-04-26 三菱電機株式会社 インバータ装置及びインバータ装置の停止方法
DE102016122672B4 (de) * 2016-11-24 2018-11-22 Infineon Technologies Ag Verfahren zum Betreiben eines Sensors und Sensor
WO2018140902A1 (en) 2017-01-27 2018-08-02 Franklin Electric Co., Inc. Motor drive system including removable bypass circuit and/or cooling features
US10917029B2 (en) 2017-03-17 2021-02-09 Vitesco Technologies USA, LLC Pi source inverter-converter for hybrid electric vehicles
US10468968B2 (en) 2017-03-17 2019-11-05 Continental Powertrain USA, LLC Pi source inverter-converter for hybrid electric vehicles
EP3403971B1 (en) * 2017-05-19 2020-10-21 KONE Corporation Method for performing a manual drive in an elevator after mains power-off
CN110771028B (zh) * 2017-06-21 2023-05-23 东芝三菱电机产业系统株式会社 晶闸管起动装置
US11482942B2 (en) * 2017-10-31 2022-10-25 Otis Elevator Company Single phase operation of three phase regenerative drives
US10381968B2 (en) * 2017-12-05 2019-08-13 Otis Elevator Company Converter pulse width modulation strategies for three phase regenerative drives
US10320306B1 (en) 2017-12-22 2019-06-11 Hamilton Sundstrand Corporation Matrix converter system with current control mode operation
CN108599251A (zh) * 2018-05-21 2018-09-28 日立楼宇技术(广州)有限公司 电梯串联式能量回馈控制方法和系统
EP3640176B1 (en) * 2018-10-19 2022-02-16 Otis Elevator Company Power management in an elevator system
EP3898313A1 (en) * 2018-12-20 2021-10-27 Volvo Truck Corporation Improved method for controlling an energy storage system
US10587214B1 (en) * 2019-03-22 2020-03-10 Hamilton Sundstrand Corporation Matrix converter operation in current control mode with regulation of output voltage vector
WO2022213057A1 (en) * 2021-03-31 2022-10-06 Portland State University Ultra-dense modular multilevel power converter

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4386394A (en) * 1981-05-20 1983-05-31 General Electric Company Single phase and three phase AC to DC converters
JPS61135392A (ja) * 1984-12-03 1986-06-23 Hitachi Ltd エレベ−タ−駆動方式
JPS61248881A (ja) * 1985-04-22 1986-11-06 三菱電機株式会社 エレベ−タの制御装置
JPS63178789A (ja) * 1987-01-20 1988-07-22 Hitachi Elevator Eng & Serv Co Ltd エレベ−タの運転装置
US5058710A (en) * 1990-08-14 1991-10-22 Otis Elevator Company Elevator power source device
JPH0632553A (ja) * 1992-07-16 1994-02-08 Hitachi Ltd エレベータ装置
JP2791273B2 (ja) * 1993-09-07 1998-08-27 株式会社東芝 電力変換装置
GB9400499D0 (en) * 1994-01-12 1994-03-09 Magnum Power Solutions Ltd Improved uninterruptible power supply
JP2001008459A (ja) 1999-06-18 2001-01-12 Hitachi Ltd エレベーターの制御装置
EP1235323A4 (en) 1999-11-17 2008-08-06 Fujitec Kk POWER SUPPLY FOR AC ELEVATOR
JP4503750B2 (ja) * 1999-12-24 2010-07-14 フジテック株式会社 交流エレベータの電源装置
DE69942790D1 (de) * 1999-12-15 2010-11-04 Mitsubishi Electric Corp Regler zur Durchführung einer Entkopplungsregelung eines Blindleistungsserienkompensators
JP2003002562A (ja) * 2001-06-25 2003-01-08 Sugiyasu Industries Co Ltd 階段昇降機
US6636012B2 (en) 2001-09-28 2003-10-21 Rockwell Automation Technologies, Inc. Stator and rotor resistance identifier using high frequency injection
US20040262996A1 (en) * 2003-06-30 2004-12-30 Olsen Ib Ingemann Phase conversion device with built-in demand reduction / power boosting.
CN101208857B (zh) 2004-08-19 2011-03-09 奥蒂斯电梯公司 用单相功率操作三相设备
JP4634817B2 (ja) * 2005-02-22 2011-02-16 株式会社Ihi 負荷駆動装置

Also Published As

Publication number Publication date
US8629637B2 (en) 2014-01-14
CN102224097A (zh) 2011-10-19
JP2012509655A (ja) 2012-04-19
EP2358623A4 (en) 2014-11-05
EP2358623B1 (en) 2016-05-04
WO2010059141A1 (en) 2010-05-27
ES2571939T3 (es) 2016-05-27
WO2010059141A9 (en) 2011-06-23
CN102224097B (zh) 2014-04-16
US20110247900A1 (en) 2011-10-13
HK1163044A1 (en) 2012-09-07
EP2358623A1 (en) 2011-08-24

Similar Documents

Publication Publication Date Title
JP5526145B2 (ja) 混合されたdc電源および単相ac電源からの三相回生駆動装置の作動
US8230978B2 (en) Elevator regenerative drive with automatic rescue operation
CN102123927B (zh) 在电梯电力系统中来自多个来源的电力的管理
EP2326587B1 (en) Line current and energy storage control for an elevator drive
US8714313B2 (en) Electrical power system with power limiting to network
KR102605533B1 (ko) 엘리베이터 드라이브를 위한 자동 구조 및 충전 시스템
JP5385728B2 (ja) 制御方法及び制御装置
CN104418192A (zh) 电梯控制装置
Iannuzzi et al. Use of supercapacitors for energy saving in overhead travelling crane drives
Rao et al. Analysis of energy during regenerative modes
Raghava et al. Comparative study of recent advancements in regenerative drives in elevator systems
WO2010019123A1 (en) Management of power from multiple sources in an elevator power system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140414

R150 Certificate of patent or registration of utility model

Ref document number: 5526145

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees