JP5523160B2 - Processing agent for polyester fiber structure and method for producing polyester fiber structure - Google Patents

Processing agent for polyester fiber structure and method for producing polyester fiber structure Download PDF

Info

Publication number
JP5523160B2
JP5523160B2 JP2010075039A JP2010075039A JP5523160B2 JP 5523160 B2 JP5523160 B2 JP 5523160B2 JP 2010075039 A JP2010075039 A JP 2010075039A JP 2010075039 A JP2010075039 A JP 2010075039A JP 5523160 B2 JP5523160 B2 JP 5523160B2
Authority
JP
Japan
Prior art keywords
polyester fiber
fiber structure
polyester
processing agent
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010075039A
Other languages
Japanese (ja)
Other versions
JP2011208294A (en
Inventor
輝文 岩城
大 原田
恵司 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikyo Chemical Co Ltd
Toray Industries Inc
Original Assignee
Daikyo Chemical Co Ltd
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikyo Chemical Co Ltd, Toray Industries Inc filed Critical Daikyo Chemical Co Ltd
Priority to JP2010075039A priority Critical patent/JP5523160B2/en
Publication of JP2011208294A publication Critical patent/JP2011208294A/en
Application granted granted Critical
Publication of JP5523160B2 publication Critical patent/JP5523160B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ポリエステル系繊維構造物の加工剤、およびそれを用いた、耐加水分解性に優れるポリエステル系繊維構造物の製造方法に関するものである。   TECHNICAL FIELD The present invention relates to a processing agent for a polyester fiber structure, and a method for producing a polyester fiber structure having excellent hydrolysis resistance using the same.

近年は環境意識の高まりから、プラスチック廃棄物が問題となり、酵素や微生物による分解が期待される生分解性プラスチックが注目されている。また、地球温暖化の観点から、二酸化炭素の大気中への排気を抑制することが重要になっており、カーボンニュートラルという概念で表されるように、天然資源から作られる材料の使用が推奨される様になってきている。上記の問題から、特に非石油原料のポリ乳酸が脚光を浴びているが、ポリ乳酸は室温や高温の水中における加水分解性が非常に高く、さらには空気中の水分によっても分解されるという性質を持っている。これはポリ乳酸繊維だけの問題ではなく、ポリエステル系繊維に共通の問題であり、末端カルボキシル基から放出されるプロトンがエステルの加水分解の自己触媒として働くために加水分解が促進される。このため、熱水の存在下、高温、高湿度条件化で分解による強度低下が著しく、使用が制限されてきた。   In recent years, due to increasing environmental awareness, plastic waste has become a problem, and biodegradable plastics that are expected to be decomposed by enzymes and microorganisms have attracted attention. In addition, from the viewpoint of global warming, it is important to suppress the emission of carbon dioxide into the atmosphere, and the use of materials made from natural resources is recommended as represented by the concept of carbon neutral. It is becoming like this. Due to the above problems, polylactic acid, which is a non-petroleum raw material, is in the spotlight, but polylactic acid has a very high hydrolyzability in room temperature and high temperature water, and is also decomposed by moisture in the air. have. This is not only a problem with polylactic acid fibers but also a problem common to polyester fibers, and protons released from terminal carboxyl groups act as autocatalysts for ester hydrolysis, so that hydrolysis is accelerated. For this reason, in the presence of hot water, the strength is significantly reduced due to decomposition under high temperature and high humidity conditions, and its use has been limited.

これを解決する方法として、末端封鎖加工剤を添加することより末端カルボキシル基濃度を低下させる方法が特許文献1や特許文献2で開示されている。しかしながら、これらの方法は紡糸前にポリマーチップに混練・添加するため、紡糸時の高温により、末端封鎖加工剤が蒸発や分解による発煙を起こし、悪臭や有毒なガスを発生するという問題点があった。また、このために末端封鎖加工剤を過剰に添加しなければならないという問題もある。さらに紡糸性が悪化し生産性も低下する恐れもある。   As a method for solving this, Patent Document 1 and Patent Document 2 disclose a method of reducing the terminal carboxyl group concentration by adding a terminal blocking agent. However, since these methods are kneaded and added to the polymer chip before spinning, there is a problem in that the end-capping agent causes fuming due to evaporation or decomposition due to high temperature at the time of spinning, generating bad odor or toxic gas. It was. For this reason, there is also a problem that the end-capping agent must be added excessively. Further, the spinnability is deteriorated and the productivity may be lowered.

別の解決する方法としては、末端封鎖加工剤を溶媒を用いて溶解あるいは乳化剤にてエマルジョン化したものを被処理物に直接接触させて、被処理物の表面に末端封鎖を付加する方法が特許文献3で開示されている。しかしながら、この方法は処理物表面近傍にのみ末端封鎖加工剤が存在するため、末端封鎖加工剤の付与量が十分なものではなく、長期間の湿熱に対する耐加水分解性は不十分なものである。   As another method for solving the problem, there is a method in which an end-capping agent dissolved in a solvent or emulsified with an emulsifier is brought into direct contact with the object to be treated and a terminal block is added to the surface of the object to be treated. It is disclosed in Document 3. However, in this method, since the end-capping agent exists only in the vicinity of the treated surface, the amount of the end-capping agent is not sufficient, and the hydrolysis resistance to long-term wet heat is insufficient. .

長期間にわたる湿熱に対する耐加水分解性を向上させる方法としては、湿熱が直接接触する構造物の表面に高濃度で末端封鎖加工剤を付与し、かつ構造物の内部にも一定の濃度で末端封鎖加工剤を付与することが考えられている。構造物の表面近傍に高濃度で末端封鎖加工剤を付加し、かつ構造物内部にも末端封鎖加工剤を一定以上の濃度で付加する方法が特許文献4で開示されている。しかしながら、末端封鎖加工剤の被処理物への吸尽効率が低いため、使用濃度が高く、末端封鎖加工剤に係るコストが高くなるという問題がある。   As a method for improving the hydrolysis resistance against wet heat over a long period of time, a high-concentration end-capping agent is applied to the surface of the structure in direct contact with wet heat, and the end-capping is also performed at a constant concentration inside the structure. It is considered to apply a processing agent. Patent Document 4 discloses a method of adding an end-blocking agent at a high concentration near the surface of a structure and adding an end-blocking agent at a certain concentration or more inside the structure. However, since the exhaustion efficiency of the end-capping agent to the object to be processed is low, there is a problem that the use concentration is high and the cost related to the end-capping agent is increased.

特開2001-261797号公報JP 2001-261797 特開2002-30208号公報JP 2002-30208 A 特開2009-249450号公報JP 2009-249450 JP 特開2009-263840号公報JP 2009-263840

本発明は、かかる従来の背景に鑑み、被処理物に対して効率的に末端封鎖加工剤等の加工剤を吸尽させることが可能なポリエステル系繊維構造物の加工剤およびそれを用いた耐加水分解性に優れるポリエステル系繊維構造物の製造方法を提供せんとするものである。   In view of such a conventional background, the present invention provides a processing agent for a polyester fiber structure capable of efficiently exhausting a processing agent such as an end-capping processing agent to an object to be processed, and a resistance using the same. It is an object of the present invention to provide a method for producing a polyester fiber structure having excellent hydrolyzability.

本発明は、上記目的を達成するために下記の構成を有する。   In order to achieve the above object, the present invention has the following configuration.

(1) カルボジイミド化合物および脂肪族炭化水素系相溶化剤を水または溶剤に乳化または分散させてなり、前記カルボジイミド化合物が下記一般式(I)で表され、前記脂肪族炭化水素系相溶化剤が、イソパラフィン系溶剤、ノルマルパラフィン系溶剤、流動パラフィン系溶剤およびパラフィン/ナフテン混合系溶剤から選ばれる少なくとも1種であることを特徴とするポリエステル系繊維構造物の加工剤。 (1) a carbodiimide compound and an aliphatic hydrocarbon compatibilizer Ri name is emulsified or dispersed in water or solvent, the carbodiimide compound is represented by the following formula (I), the aliphatic hydrocarbon compatibilizer but isoparaffinic solvents, normal paraffinic solvents, processing agent of a polyester-based fiber structure, wherein at least one Tanedea Rukoto selected from liquid paraffin-based solvents and paraffin / naphthene mixed solvent.

Figure 0005523160
Figure 0005523160

一般式(I)において、
は炭素原子数1から20のアルキル基、炭素原子数5から12のシクロアルキル基、炭素原子数6から20のアリール基、アリル基または炭素原子数7から20のアラルキル基を示す。
In general formula (I):
R 1 represents an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 5 to 12 carbon atoms, an aryl group having 6 to 20 carbon atoms, an allyl group, or an aralkyl group having 7 to 20 carbon atoms.

) 前記カルボジイミド化合物がN,N´−ジ−2,6−ジイソプロピルフェニルカルボジイミド、N,N´−ジ−シクロヘキシルカルボジイミドおよびN,N′−ジイソプロピルカルボジイミドから選ばれる少なくとも1種であることを特徴とする()に記載のポリエステル系繊維構造物の加工剤。 ( 2 ) The carbodiimide compound is at least one selected from N, N′-di-2,6-diisopropylphenylcarbodiimide, N, N′-di-cyclohexylcarbodiimide and N, N′-diisopropylcarbodiimide. And ( 1 ) A processing agent for a polyester fiber structure.

) (1)または(2)に記載の加工剤をポリエステル系繊維構造物の内部に吸尽させることを特徴とするポリエステル系繊維構造物の製造方法。 ( 3 ) A method for producing a polyester fiber structure, wherein the processing agent according to (1) or (2) is exhausted into the polyester fiber structure.

) (1)または(2)に記載の加工剤を含有する処理液をポリエステル系繊維に付与した後、乾燥処理および熱処理をすることを特徴とするポリエステル系繊維構造物の製造方法。 ( 4 ) A method for producing a polyester fiber structure, comprising applying a treatment liquid containing the processing agent according to (1) or (2) to a polyester fiber, followed by drying treatment and heat treatment.

) (1)または(2)に記載の加工剤を含有する処理液にポリエステル系繊維を投入し、該処理液を循環させながら浴中加工することを特徴とするポリエステル系繊維構造物の製造方法。 ( 5 ) A polyester fiber structure characterized in that polyester fiber is put into a treatment liquid containing the processing agent according to (1) or (2) and processed in a bath while circulating the treatment liquid. Production method.

) (1)または(2)に記載の加工剤を含有する処理液をポリエステル系繊維に付与した後、湿熱処理をすることを特徴とするポリエステル系繊維構造物の製造方法。 ( 6 ) A method for producing a polyester fiber structure, comprising applying a treatment liquid containing the processing agent according to (1) or (2) to a polyester fiber, followed by wet heat treatment.

) 前記ポリエステル系繊維がポリ乳酸を主成分とするものであることを特徴とする()〜()のいずれかに記載のポリエステル系繊維構造物の製造方法。 ( 7 ) The method for producing a polyester fiber structure according to any one of ( 3 ) to ( 6 ), wherein the polyester fiber contains polylactic acid as a main component.

) 前記ポリエステル系繊維の単繊維断面において、前記カルボジイミド化合物の濃度が、外層から内層に向けて小さくなることを特徴とする()〜()のいずれかに記載の方法で得られるポリエステル系繊維構造物。 ( 8 ) In the single fiber cross section of the polyester fiber, the concentration of the carbodiimide compound decreases from the outer layer toward the inner layer, and is obtained by the method according to any one of ( 3 ) to ( 7 ). Polyester fiber structure.

本発明によれば、ポリエステル系繊維を含む繊維構造物に対して効率的に末端封鎖加工剤等の加工剤を繊維構造物表面および繊維構造物内部に付与することができ、高い耐加水分解性を与えることができる。   ADVANTAGE OF THE INVENTION According to this invention, processing agents, such as a terminal blocker, can be efficiently provided to the fiber structure surface and the inside of a fiber structure with respect to the fiber structure containing a polyester fiber, and high hydrolysis resistance Can be given.

本発明によれば、カルボジイミド化合物および脂肪族炭化水素系相溶化剤を、例えばノニオン系界面活性剤またはアニオン系界面活性剤から選ばれる少なくとも1種の界面活性剤にて乳化または分散させた加工剤にてポリエステル系繊維構造物を処理することにより、効率的に繊維構造体内部に対してカルボジイミド化合物が吸尽され、該繊維構造体を構成するポリマー中のカルボキシル末端基と反応し、末端カルボキシル基濃度が低下するために耐加水分解性が付与される。   According to the present invention, a processing agent obtained by emulsifying or dispersing a carbodiimide compound and an aliphatic hydrocarbon-based compatibilizer with at least one surfactant selected from, for example, nonionic surfactants or anionic surfactants. By treating the polyester fiber structure with, the carbodiimide compound is efficiently exhausted to the inside of the fiber structure, and reacts with the carboxyl end group in the polymer constituting the fiber structure, and the terminal carboxyl group Since the concentration is lowered, hydrolysis resistance is imparted.

本発明においては、ポリエステル系繊維として、脂肪族ポリエステル、芳香族ポリエステルが好ましく用いられる。   In the present invention, aliphatic polyesters and aromatic polyesters are preferably used as the polyester fibers.

脂肪族ポリエステルとしては、脂肪族ジカルボン酸と脂肪族ジオールとの重縮合によって得られる重合体、脂肪族オキシカルボン酸の重合体、環状エステルを開環重合して得られる重合体などが挙げられる。さらに、脂肪族ジカルボン酸と脂肪族ジオールと、脂肪族オキシカルボン酸及び/又は環状エステルとの共重合体、脂肪族オキシカルボン酸と環状エステルとの共重合体であってもよい。これらの中でも、汎用性の点でポリ乳酸が好適に用いられる。   Examples of the aliphatic polyester include a polymer obtained by polycondensation of an aliphatic dicarboxylic acid and an aliphatic diol, a polymer of an aliphatic oxycarboxylic acid, and a polymer obtained by ring-opening polymerization of a cyclic ester. Further, it may be a copolymer of an aliphatic dicarboxylic acid, an aliphatic diol, an aliphatic oxycarboxylic acid and / or a cyclic ester, or a copolymer of an aliphatic oxycarboxylic acid and a cyclic ester. Among these, polylactic acid is preferably used from the viewpoint of versatility.

ポリ乳酸としては、ポリ(D−乳酸)、ポリ(L−乳酸)、D−乳酸とL−乳酸との共重合体、D−乳酸とヒドロキシカルボン酸との共重合体、L−乳酸とヒドロキシカルボン酸との共重合体、DL−乳酸とヒドロキシカルボン酸との共重合体から選ばれる重合体、あるいはこれらのブレンド体等が用いられる。中でも、汎用性の面からは、L−乳酸を主成分とするポリ乳酸が好ましく使用される。L−乳酸を主成分とするとは、脂肪族ポリエステル中、50重量%以上がL−乳酸であることを意味する。また、この脂肪族ポリエステルは紡糸時に末端封鎖加工剤が添加されることにより、末端カルボキシル基の一部が封鎖されていてもよい。   Examples of polylactic acid include poly (D-lactic acid), poly (L-lactic acid), a copolymer of D-lactic acid and L-lactic acid, a copolymer of D-lactic acid and hydroxycarboxylic acid, and L-lactic acid and hydroxy. A copolymer selected from a copolymer of carboxylic acid, a copolymer of DL-lactic acid and hydroxycarboxylic acid, or a blend thereof is used. Among these, from the viewpoint of versatility, polylactic acid mainly composed of L-lactic acid is preferably used. L-lactic acid as the main component means that 50% by weight or more of L-lactic acid is L-lactic acid. In addition, the aliphatic polyester may be partially blocked with a terminal carboxyl group by adding a terminal blocking agent during spinning.

かかるポリ乳酸の製造方法としては、乳酸を原料としていったん環状二量体であるラクチドを生成せしめ、その後開環重合を行なう二段階のラクチド法と、乳酸を原料として溶媒中で直接脱水縮合を行なう一段階の直接重合法が知られている。本発明で用いられるポリ乳酸は、いずれの製法によって得られたものであってもよい。   As a method for producing such polylactic acid, a lactide, which is a cyclic dimer, is first produced from lactic acid as a raw material, and then ring-opening polymerization is performed, and direct dehydration condensation is performed in a solvent using lactic acid as a raw material. One-step direct polymerization methods are known. The polylactic acid used in the present invention may be obtained by any production method.

芳香族ポリエステルとしては、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレートなどが用いられる。また、これらの芳香族ポリエステルは他の共重合成分を含んでいても良い。   As the aromatic polyester, polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, or the like is used. Moreover, these aromatic polyesters may contain other copolymerization components.

本発明に用いるポリエステル系繊維は、通常のフラットヤーン以外に、仮撚り加工糸、強撚糸、タスラン加工糸、太細糸、混繊糸などのフィラメントヤーンであってもよく、ステープルファイバーやトウ、紡績糸、あるいは布帛など各種形態の繊維であってもよい。   The polyester fibers used in the present invention may be filament yarns such as false twisted yarns, strong twisted yarns, taslan processed yarns, thick yarns, mixed yarns, etc. in addition to ordinary flat yarns, staple fibers, tows, Various forms of fibers such as spun yarn or fabric may be used.

本発明に用いるポリエステル系繊維は、ポリアミドなど他のポリマーとアロイを形成していてもよい。   The polyester fiber used in the present invention may form an alloy with other polymers such as polyamide.

本発明に用いるポリエステル系繊維には、天然繊維、再生繊維、半合成繊維、合成繊維などを混用することができる。複合の形態としては、混紡、交織、交編等いかなる形態でも良い。繊維構造物の形態としては、フィラメント、紡績糸、そしてそれらより得られる織物、編物、不織布、製品などの繊維構造物が挙げられるが、これらに制限されるものではない。   Natural fibers, regenerated fibers, semi-synthetic fibers, synthetic fibers, and the like can be mixed in the polyester fibers used in the present invention. The composite form may be any form such as mixed spinning, union, knitting. Examples of the fiber structure include, but are not limited to, filaments, spun yarns, and fiber structures such as woven fabrics, knitted fabrics, nonwoven fabrics, and products obtained therefrom.

天然繊維とは、綿、カポック、麻、亜麻、大麻、苧麻、羊毛、アルパカ、カシミヤ、モヘヤ、シルクなどが挙げられる。再生繊維とは、ビスコース、キュプラ、ポリノジック、ハイウエットモジュラスレーヨン、溶剤紡糸セルロース繊維などが挙げられる。半合成繊維とは、アセテート、ジアセテート、トリアセテートなどが挙げられる。合成繊維とは、ポリアミド、アクリル、ビニロン、ポリプロピレン、ポリウレタン、ポリ塩化ビニル、ポリエチレン、プロミックスなどが挙げられる。   Examples of natural fibers include cotton, kapok, hemp, flax, cannabis, hemp, wool, alpaca, cashmere, mohair, silk, and the like. Examples of the recycled fiber include viscose, cupra, polynosic, high wet modulus rayon, and solvent-spun cellulose fiber. Semi-synthetic fibers include acetate, diacetate, triacetate and the like. Synthetic fibers include polyamide, acrylic, vinylon, polypropylene, polyurethane, polyvinyl chloride, polyethylene, promix and the like.

本発明では、ポリエステル系繊維に他の繊維を任意の手法で混用して良いが、ポリエステル系繊維の混率が小さいと本発明の効果が小さくなるため、ポリエステル系繊維の混率は30重量%以上が好ましく、50重量%以上がさらに好ましい。   In the present invention, other fibers may be mixed with the polyester fiber by any method. However, since the effect of the present invention is reduced when the mixing ratio of the polyester fiber is small, the mixing ratio of the polyester fiber is 30% by weight or more. Preferably, 50% by weight or more is more preferable.

本発明においては、ポリエステル系繊維構造物を特定の加工剤で処理する。すなわち、カルボジイミド化合物および脂肪族炭化水素系相溶化剤を、例えばノニオン系界面活性剤またはアニオン系界面活性剤から選ばれる少なくとも1種の界面活性剤にて水または溶剤へ乳化または分散させた加工剤で処理することにより、カルボジイミド化合物がポリエステル系繊維構造物の内部に吸尽される。   In the present invention, the polyester fiber structure is treated with a specific processing agent. That is, a processing agent obtained by emulsifying or dispersing a carbodiimide compound and an aliphatic hydrocarbon-based compatibilizer in water or a solvent with at least one surfactant selected from, for example, a nonionic surfactant or an anionic surfactant. By treating with, the carbodiimide compound is exhausted inside the polyester fiber structure.

加工剤の製造方法としては、カルボジイミド化合物と脂肪族炭化水素系相溶化剤と界面活性剤及び、必要に応じて、有機溶剤と混合し、加熱して、均一な溶融物とした後、放冷することにより、常温で液状の自己乳化型の加工剤を得ることができる。ポリエステル系繊維構造物の加工を行うに際しては、上記自己乳化型の加工剤に水を加えて、攪拌すれば、分散媒が水である加工剤の乳化物を得ることができる。   As a manufacturing method of the processing agent, a carbodiimide compound, an aliphatic hydrocarbon-based compatibilizer, a surfactant, and, if necessary, an organic solvent are mixed, heated to a uniform melt, and then allowed to cool. By doing so, a liquid self-emulsifying type processing agent can be obtained at room temperature. When processing the polyester fiber structure, if the water is added to the self-emulsifying type processing agent and stirred, an emulsion of the processing agent whose dispersion medium is water can be obtained.

他方、有機溶剤を用いずに、例えば、カルボジイミド化合物を上述した脂肪族炭化水素系相溶化剤と界面活性剤と混合し、加熱して、均一な溶融物とした後、均一な溶融物とし、これを温水中に攪拌しながら、徐々に加えて乳化させ、放冷すれば、上記と同様に分散媒が水であるカルボジイミド化合物の乳化物を得ることができる。   On the other hand, without using an organic solvent, for example, a carbodiimide compound is mixed with the above-described aliphatic hydrocarbon-based compatibilizer and a surfactant, heated to obtain a uniform melt, and then a uniform melt. If this is gradually added and emulsified with stirring in warm water and allowed to cool, an emulsion of a carbodiimide compound in which the dispersion medium is water can be obtained in the same manner as described above.

本発明において、カルボジイミド化合物の乳化物を得るときに、上述のとおり必要に応じて、得られる乳化物を均一に保持したり、また、そのカルボジイミド化合物の乳化性を向上させるために、カルボジイミド化合物の吸尽率に影響しない範囲で、有機溶剤を用いることができる。この有機溶剤としては、例えば、トルエン、キシレン、アルキルナフタレン等の芳香族炭化水素類、アセトン、メチルエチルケトン等のケトン類、メチルアルコール、エチルアルコール等のアルコール類、エチレングリコール、プロピレングリコール等のグリコール類、ジオキサン等のエーテル類、エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノイソブチルエーテル等のアルキレングリコールアルキルエーテル類、ジメチルホルムアミド等のアミド類、ジメチルスルホキシド等のスルホキシド類、メチレンクロライド、クロロホルム等のハロゲン化炭化水素類を挙げることができる。これらの有機溶剤は、単独で用いてもよく、また、必要に応じて、2種以上を組み合わせて用いてもよい。   In the present invention, when obtaining an emulsion of a carbodiimide compound, as described above, in order to maintain the obtained emulsion uniformly or to improve the emulsifiability of the carbodiimide compound, as described above, An organic solvent can be used as long as it does not affect the exhaustion rate. Examples of the organic solvent include aromatic hydrocarbons such as toluene, xylene and alkylnaphthalene, ketones such as acetone and methyl ethyl ketone, alcohols such as methyl alcohol and ethyl alcohol, glycols such as ethylene glycol and propylene glycol, Ethers such as dioxane, ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, alkylene glycol alkyl ethers such as ethylene glycol monoisobutyl ether, amides such as dimethylformamide, sulfoxides such as dimethyl sulfoxide, halogens such as methylene chloride and chloroform Hydrocarbons can be mentioned. These organic solvents may be used alone or in combination of two or more as required.

ノニオン系界面活性剤としては、例えば、高級アルコールアルキレンオキサイド付加物、アルキルフェノールアルキレンオキサイド付加物、スチレン化フェノールアルキレンオキサイド付加物、脂肪酸アルキレンオキサイド付加物、多価アルコール脂肪族エステルアルキレンオキサイド付加物、高級アルキルアミンアルキレンオキサイド付加物、脂肪酸アミドアルキレンオキサイド付加物等のポリオキシアルキレン型非イオン系界面活性剤や、アルキルグリコキシド、ショ糖脂肪酸エステル等の多価アルコール型非イオン系界面活性剤を挙げることができる。これらのノニオン系界面活性剤は、単独で用いてもよく、また、必要に応じて、2種以上を組み合わせて用いてもよい。   Examples of nonionic surfactants include higher alcohol alkylene oxide adducts, alkylphenol alkylene oxide adducts, styrenated phenol alkylene oxide adducts, fatty acid alkylene oxide adducts, polyhydric alcohol aliphatic ester alkylene oxide adducts, and higher alkyls. Examples include polyoxyalkylene type nonionic surfactants such as amine alkylene oxide adducts and fatty acid amide alkylene oxide adducts, and polyhydric alcohol type nonionic surfactants such as alkylglycoxides and sucrose fatty acid esters. it can. These nonionic surfactants may be used alone or in combination of two or more as required.

アニオン系界面活性剤としては、例えば、脂肪酸石鹸等のカルボン酸塩、高級アルコール硫酸エステル塩、高級アルキルポリアルキレングリコールエーテル硫酸エステル塩、スチレン化フェノールアルキレンオキサイド付加物の硫酸エステル塩、アルキルフェノールアルキレンオキサイド付加物の硫酸エステル塩、硫酸化油、硫酸化脂肪酸エステル、硫酸化脂肪酸、硫酸化オレフィン等の硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、ナフタレンスルホン酸塩、ナフタレンスルホン酸等のホルマリン縮合物、α−オレフィンスルホン酸塩、パラフィンスルホン酸塩、スルホ琥珀酸ジエステル塩等のスルホン酸塩、高級アルコールリン酸エステル塩等を挙げることができる。これらのアニオン系界面活性剤は、単独で用いてもよく、また、必要に応じて、2種以上を組み合わせて用いてもよい。   Anionic surfactants include, for example, carboxylates such as fatty acid soaps, higher alcohol sulfates, higher alkyl polyalkylene glycol ether sulfates, sulfate esters of styrenated phenol alkylene oxide adducts, and alkylphenol alkylene oxide additions. Sulfate salts of products, sulfated oils, sulfated fatty acid esters, sulfated fatty acids, sulfated olefins such as sulfated olefins, formalins such as alkylbenzenesulfonates, alkylnaphthalenesulfonates, naphthalenesulfonates, naphthalenesulfonates Examples include condensates, α-olefin sulfonates, paraffin sulfonates, sulfonates such as sulfosuccinic acid diester salts, higher alcohol phosphate salts, and the like. These anionic surfactants may be used alone or in combination of two or more as required.

また、必要に応じて、ノニオン系界面活性剤とアニオン系界面活性剤を組み合わせても良い。   Moreover, you may combine a nonionic surfactant and an anionic surfactant as needed.

界面活性剤の添加量は、カルボジイミド化合物10重量部に対し、通常0.1〜3.5重量部、好ましくは0.1〜3重量部、更に好ましくは、0.1〜2.5重量部である。   The addition amount of the surfactant is usually 0.1 to 3.5 parts by weight, preferably 0.1 to 3 parts by weight, and more preferably 0.1 to 2.5 parts by weight with respect to 10 parts by weight of the carbodiimide compound. It is.

界面活性剤が0.1重量部より少ないとカルボジイミド化合物が十分に乳化分散されず、3.5重量部より多いとカルボジイミド化合物の吸尽率が低下する恐れがある。   If the surfactant is less than 0.1 parts by weight, the carbodiimide compound is not sufficiently emulsified and dispersed, and if it is more than 3.5 parts by weight, the exhaustion rate of the carbodiimide compound may decrease.

本発明において、乳化物を得るために乳化分散に使用する設備としては、プロペラ型攪拌機、ピストン型高圧乳化機、ホモミキサー、超音波式乳化分散機、加圧ノズル式乳化機、高速回転高せん断型攪拌分散機などが使用でき、これら2種以上の設備を組み合せて使用することもできる。   In the present invention, the equipment used for emulsification dispersion to obtain an emulsion includes a propeller type stirrer, piston type high pressure emulsifier, homomixer, ultrasonic emulsification disperser, pressure nozzle emulsifier, high speed rotation high shear. A mold stirrer and the like can be used, and these two or more types of equipment can be used in combination.

本発明の加工剤により、ポリエステル系繊維構造物を処理する方法としては、加工剤を含有する本発明の処理液にポリエステル系繊維を投入し、処理液を循環させながら浴中加工する方法が挙げられる。   Examples of a method for treating a polyester fiber structure with the processing agent of the present invention include a method in which polyester fibers are added to the processing solution of the present invention containing a processing agent and processed in a bath while circulating the processing solution. It is done.

被処理物であるポリエステル系繊維構造物の形態としては、布帛、糸、製品、トウ、ワタ等を例示できるが、それらに限定されるものではない。浴中加工の処理装置としては、ウインス染色機、ジッガー染色機、パドル染色機、ドラム型染色機、液流染色機、気流染色機、ビーム染色機、チーズ染色機、オーバーマイヤー等の装置が利用できるが、これらに限定されるものではない。   Examples of the form of the polyester fiber structure to be treated include cloth, yarn, product, tow, cotton and the like, but are not limited thereto. As processing equipment for processing in the bath, equipment such as Wins dyeing machine, jigger dyeing machine, paddle dyeing machine, drum type dyeing machine, liquid dyeing machine, airflow dyeing machine, beam dyeing machine, cheese dyeing machine, and overmeyer are used. However, it is not limited to these.

具体的には、カルボジイミド化合物を含有する処理液にポリエステル系繊維構造物を浸し、常圧または加圧の下、80〜130℃で加熱処理することが好ましい。その加熱処理時間は10〜120分間が好ましい。脂肪族ポリエステルの場合、90〜110℃で20〜60分間処理することがより好ましい。芳香族ポリエステルの場合、110〜130℃で20〜60分間処理することがより好ましい。このときにカルボジイミド化合物が繊維に付着し、繊維内部に吸尽・拡散する。処理時間が短い場合には、カルボジイミド化合物の繊維内部への吸尽・拡散が十分ではなく、満足できる耐加水分解性を得ることができない。また、処理時間が長すぎる場合は、処理中にポリエステルの加水分解が進行してしまう。   Specifically, it is preferable to immerse the polyester fiber structure in a treatment liquid containing a carbodiimide compound and heat-treat at 80 to 130 ° C. under normal pressure or pressure. The heat treatment time is preferably 10 to 120 minutes. In the case of aliphatic polyester, it is more preferable to treat at 90 to 110 ° C. for 20 to 60 minutes. In the case of aromatic polyester, it is more preferable to treat at 110 to 130 ° C. for 20 to 60 minutes. At this time, the carbodiimide compound adheres to the fiber and is exhausted and diffused inside the fiber. When the treatment time is short, exhaustion / diffusion of the carbodiimide compound into the fiber is not sufficient, and satisfactory hydrolysis resistance cannot be obtained. Moreover, when processing time is too long, hydrolysis of polyester will advance during a process.

また、加工剤により、ポリエステル系繊維構造物を処理する方法として、加工剤を含有する処理液をポリエステル系繊維に付与した後、乾燥処理および熱処理をする方法が挙げられる。   In addition, as a method for treating a polyester fiber structure with a processing agent, there may be mentioned a method in which a treatment liquid containing a processing agent is applied to the polyester fiber, followed by a drying treatment and a heat treatment.

ポリエステル系繊維構造物に、カルボジイミド化合物および脂肪族炭化水素系相溶化剤の乳化または分散液を付与する装置としては、通常のマングルが液付与装置として好適に用いられるが、繊維に均一に液を付与できる装置であれば良く、装置を限定するものではない。泡加工機や、プリント法、インクジェット、スプレー法、コーティング法等で付与しても良い。   As an apparatus for applying an emulsified or dispersed liquid of a carbodiimide compound and an aliphatic hydrocarbon-based compatibilizer to a polyester fiber structure, an ordinary mangle is preferably used as the liquid applying apparatus. Any device can be used as long as it can be applied, and the device is not limited. You may give by a foam processing machine, a printing method, an inkjet, a spray method, a coating method.

かかる方法において処理液を付与した後、乾燥、熱処理を行う。   In this method, after applying the treatment liquid, drying and heat treatment are performed.

乾燥処理は、80〜130℃で行うことが好ましい。その乾燥時間は30秒〜5分間が好ましい。脂肪族ポリエステルの場合、90〜110℃で1〜3分間処理することがより好ましい。芳香族ポリエステルの場合、110〜130℃で1〜3分間処理することがより好ましい。   It is preferable to perform a drying process at 80-130 degreeC. The drying time is preferably 30 seconds to 5 minutes. In the case of aliphatic polyester, it is more preferable to treat at 90 to 110 ° C. for 1 to 3 minutes. In the case of aromatic polyester, it is more preferable to treat at 110 to 130 ° C. for 1 to 3 minutes.

熱処理は、80〜170℃で行うことが好ましい。その熱処理時間は15秒〜8分間が好ましい。脂肪族ポリエステルの場合、90〜130℃で30秒〜5分間熱処理することがより好ましい。芳香族ポリエステルの場合、130〜170℃で30秒〜5分間熱処理することがより好ましい。熱処理時間が短い場合には、カルボジイミド化合物の繊維内部への吸尽・拡散・反応が十分ではなく、満足できる耐加水分解性を得ることができない。   It is preferable to perform heat processing at 80-170 degreeC. The heat treatment time is preferably 15 seconds to 8 minutes. In the case of aliphatic polyester, it is more preferable to heat-treat at 90 to 130 ° C. for 30 seconds to 5 minutes. In the case of aromatic polyester, it is more preferable to heat-treat at 130-170 degreeC for 30 second-5 minutes. When the heat treatment time is short, exhaustion / diffusion / reaction of the carbodiimide compound into the fiber is not sufficient, and satisfactory hydrolysis resistance cannot be obtained.

乾燥、熱処理装置としては、テンター、ショートループ、シュリンクサーファー、スチーマー、シリンダー乾燥機等が利用できるが、該繊維に均一に熱を付与できる装置であればこれらに限定されるものではない。   As a drying and heat treatment apparatus, a tenter, a short loop, a shrink surfer, a steamer, a cylinder dryer, and the like can be used. However, the apparatus is not limited to these as long as the apparatus can uniformly apply heat to the fiber.

また、加工剤により、ポリエステル系繊維構造物を処理する方法として、加工剤を含有する処理液をポリエステル系繊維に付与した後、湿熱処理をする方法が挙げられる。   Further, as a method of treating a polyester fiber structure with a processing agent, a method of performing a heat treatment after applying a treatment liquid containing a processing agent to the polyester fiber can be mentioned.

湿熱処理は、80〜130℃で行うことが好ましい。その湿熱処理時間は1〜20分間が好ましい。脂肪族ポリエステルの場合、90〜110℃で3〜10分間処理することがより好ましい。芳香族ポリエステルの場合、100〜130℃で3〜10分間処理することがより好ましい。   The wet heat treatment is preferably performed at 80 to 130 ° C. The wet heat treatment time is preferably 1 to 20 minutes. In the case of aliphatic polyester, it is more preferable to treat at 90 to 110 ° C. for 3 to 10 minutes. In the case of aromatic polyester, it is more preferable to treat at 100 to 130 ° C. for 3 to 10 minutes.

処理時間が短い場合には、カルボジイミド化合物の繊維内部への吸尽・拡散・反応が十分ではなく、満足できる耐加水分解性を得ることができない。   When the treatment time is short, exhaustion / diffusion / reaction of the carbodiimide compound into the fiber is not sufficient, and satisfactory hydrolysis resistance cannot be obtained.

また、処理時間が長すぎる場合は、処理中にポリエステルの加水分解が進行してしまう。   Moreover, when processing time is too long, hydrolysis of polyester will advance during a process.

湿熱処理装置としては、スチーマー、オートクレーブ等が利用できるが、該繊維に均一に湿熱を付与できる装置であればこれらに限定されるものではない。   As the wet heat treatment apparatus, a steamer, an autoclave, or the like can be used. However, the wet heat treatment apparatus is not limited to these as long as the apparatus can uniformly apply wet heat to the fibers.

本発明の加工剤に分散染料に代表される疎水性染料を混合すると、末端封鎖処理とともに染色を行うことができる。末端封鎖処理を染色と同時に行うと染色濃度が高くなる。さらに湿熱処理工程を通る回数が減るため、ポリエステル系繊維構造物の加水分解が抑制される。   When the processing agent of the present invention is mixed with a hydrophobic dye typified by a disperse dye, dyeing can be performed together with the end-capping treatment. When the end-capping treatment is performed simultaneously with the staining, the staining concentration becomes high. Furthermore, since the frequency | count which passes a wet heat treatment process reduces, the hydrolysis of a polyester-type fiber structure is suppressed.

疎水性染料としては、バット染料、インジゴ染料、ナフトール染料等も用いることができる。   As the hydrophobic dye, vat dyes, indigo dyes, naphthol dyes, and the like can also be used.

本発明のカルボジイミド化合物は、少なくとも1つのカルボジイミド基を有している化合物であり、次の一般式(I)で示される化合物である。
一般式(I):
The carbodiimide compound of the present invention is a compound having at least one carbodiimide group, and is a compound represented by the following general formula (I).
Formula (I):

Figure 0005523160
Figure 0005523160

一般式(I)において、
は炭素原子数1から20のアルキル基、炭素原子数5から12のシクロアルキル基、炭素原子数6から20のアリール基、アリル基、炭素原子数7から20のアラルキル基のいずれかを示す。
In general formula (I):
R 1 is any one of an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 5 to 12 carbon atoms, an aryl group having 6 to 20 carbon atoms, an allyl group, and an aralkyl group having 7 to 20 carbon atoms. Show.

具体的には、N,N´−ジ−o−トリルカルボジイミド、N,N´−ジフェニルカルボジイミド、N,N´−ジオクチルデシルカルボジイミド、N,N´−ジ−2,6−ジメチルフェニルカルボジイミド、N−トリル−N´−シクロヘキシルカルボジイミド、N,N´−ジ−2,6−ジイソプロピルフェニルカルボジイミド、N,N´−ジ−2,6−ジ−tert.−ブチルフェニルカルボジイミド、N,N´−ジ−p−ニトロフェニルカルボジイミド、N,N´−ジ−p−アミノフェニルカルボジイミド、N,N´−ジ−p−ヒドロキシフェニルカルボジイミド、N,N´−ジ−シクロヘキシルカルボジイミド、N,N´−ジ−p−トリルカルボジイミド、p−フェニレン−ビス−ジ−o−トリルカルボジイミド、p−フェニレン−ビス−ジシクロヘキシルカルボジイミド、ヘキサメチレン−ビス−ジシクロヘキシルカルボジイミド、エチレン−ビス−ジフェニルカルボジイミド,N,N′−ベンジルカルボジイミド、N−オクタデシル−N′−フェニルカルボジイミド、N−ベンジル−N′−フェニルカルボジイミド、N−オクタデシル−N′−トリルカルボジイミド、N−フェニル−N′−トリルカルボジイミド、N−ベンジル−N′−トリルカルボジイミド、N,N′−ジ−o−エチルフェニルカルボジイミド、N,N′−ジ−p−エチルフェニルカルボジイミド、N,N′−ジ−o−イソプロピルフェニルカルボジイミド、N,N′−ジ−p−イソプロピルフェニルカルボジイミド、N,N′−ジ−o−イソブチルフェニルカルボジイミド、N,N′−ジ−p−イソブチルフェニルカルボジイミド、N,N′−ジ−2,6−ジエチルフェニルカルボジイミド、N,N′−ジ−2−エチル−6−イソプロピルフェニルカルボジイミド、N,N′−ジ−2−イソブチル−6−イソプロピルフェニルカルボジイミド、N,N′−ジ−2,4,6−トリメチルフェニルカルボジイミド、N,N′−ジ−2,4,6−トリイソプロピルフェニルカルボジイミド、N,N′−ジ−2,4,6−トリイソブチルフェニルカルボジイミド、N,N′−ジイソプロピルカルボジイミドなどが挙げられる。   Specifically, N, N′-di-o-tolylcarbodiimide, N, N′-diphenylcarbodiimide, N, N′-dioctyldecylcarbodiimide, N, N′-di-2,6-dimethylphenylcarbodiimide, N -Tolyl-N'-cyclohexylcarbodiimide, N, N'-di-2,6-diisopropylphenylcarbodiimide, N, N'-di-2,6-di-tert.-butylphenylcarbodiimide, N, N'-di -P-nitrophenylcarbodiimide, N, N'-di-p-aminophenylcarbodiimide, N, N'-di-p-hydroxyphenylcarbodiimide, N, N'-di-cyclohexylcarbodiimide, N, N'-di- p-tolylcarbodiimide, p-phenylene-bis-di-o-tolylcarbodiimide, p-phenylene-bis-dicyclohexyl Carbodiimide, hexamethylene-bis-dicyclohexylcarbodiimide, ethylene-bis-diphenylcarbodiimide, N, N'-benzylcarbodiimide, N-octadecyl-N'-phenylcarbodiimide, N-benzyl-N'-phenylcarbodiimide, N-octadecyl-N '-Tolylcarbodiimide, N-phenyl-N'-tolylcarbodiimide, N-benzyl-N'-tolylcarbodiimide, N, N'-di-o-ethylphenylcarbodiimide, N, N'-di-p-ethylphenylcarbodiimide N, N'-di-o-isopropylphenylcarbodiimide, N, N'-di-p-isopropylphenylcarbodiimide, N, N'-di-o-isobutylphenylcarbodiimide, N, N'-di-p-isobutyl Phenylcarbo Diimide, N, N'-di-2,6-diethylphenylcarbodiimide, N, N'-di-2-ethyl-6-isopropylphenylcarbodiimide, N, N'-di-2-isobutyl-6-isopropylphenylcarbodiimide N, N'-di-2,4,6-trimethylphenylcarbodiimide, N, N'-di-2,4,6-triisopropylphenylcarbodiimide, N, N'-di-2,4,6-tri Examples thereof include isobutylphenyl carbodiimide, N, N′-diisopropylcarbodiimide and the like.

さらには、これらのカルボジイミド化合物の中から1種または2種以上の化合物を任意に選択してポリエステルのカルボキシル末端を封鎖してもよい。   Further, one or more compounds may be arbitrarily selected from these carbodiimide compounds to block the carboxyl terminal of the polyester.

また、上記の中でも、工業的に入手可能なカルボジイミド化合物として、N,N´−ジ−2,6−ジイソプロピルフェニルカルボジイミド(TIC)、N,N´−ジ−シクロヘキシルカルボジイミド(DCC)、N,N′−ジイソプロピルカルボジイミド(DIC)等が挙げられ、好適に使用できる。これら化合物としては、ラインケミージャパン株式会社より「スタバクゾール」の商品名で販売されている、「スタバクゾール」I、「スタバクゾール」I LF、「スタバクゾール」P、「スタバクゾール」P−100が好適に例示される。   Among the above, as industrially available carbodiimide compounds, N, N′-di-2,6-diisopropylphenylcarbodiimide (TIC), N, N′-di-cyclohexylcarbodiimide (DCC), N, N '-Diisopropylcarbodiimide (DIC) etc. are mentioned and can be used conveniently. As these compounds, “STABAXOL” I, “STABAKZOL” I LF, “STABAKZOL” P, and “STABAKZOL” P-100, which are sold under the trade name “STABAKZOL” by Rhein Chemie Japan, are preferably exemplified. The

カルボジイミド化合物の相溶化剤としては、カルボジイミド化合物の溶解度が比較的低く、一方ポリエステル系繊維構造物との親和性に優れることから、脂肪族炭化水素系相溶化剤が用いられる。一般に用いられる線状または環状のアルコール類、ケトン類、エステル類、エーテル類、芳香族炭化水素系溶剤はカルボジイミド化合物の溶解性が良好であるが、溶剤とカルボジイミド化合物の親和性が強く、カルボジイミド化合物のポリエステルへの移行がスムースに起こらないために、カルボジイミド化合物の吸尽率の低下の原因となる。   As the compatibilizer for the carbodiimide compound, an aliphatic hydrocarbon compatibilizer is used because the solubility of the carbodiimide compound is relatively low, while it is excellent in affinity with the polyester fiber structure. Commonly used linear or cyclic alcohols, ketones, esters, ethers, and aromatic hydrocarbon solvents have good carbodiimide compound solubility, but the affinity between the solvent and carbodiimide compound is strong, and carbodiimide compounds Since the transition to polyester does not occur smoothly, it causes a decrease in the exhaustion rate of the carbodiimide compound.

本発明で用いられる脂肪族炭化水素系相溶化剤としては、ノルマルパラフィン系溶剤、イソパラフィン系溶剤、流動パラフィン系溶剤、パラフィン/ナフテン混合系溶剤が挙げられる。 Examples of the aliphatic hydrocarbon-based compatibilizer used in the present invention, Roh Rumaru paraffinic solvents, isoparaffinic solvents, liquid paraffin-based solvents, paraffin / naphthene mixed system SOLVENTS.

さらには、これらの脂肪族炭化水素系相溶化剤の中から1種または2種類以上の相溶化剤を混合して用いてもよい。   Furthermore, you may mix and use 1 type, or 2 or more types of compatibilizer out of these aliphatic hydrocarbon type compatibilizers.

ノルマルパラフィンとしては、日本石油化学社製の「ノルマルパラフィンSL,L,M,H」などが挙げられる。イソパラフィンとしては、エクソンモービル社製の「アイソパーG,H,L,M」、出光石油化学社製の「IPソルベント1620,2028」などが挙げられる。流動パラフィンとしては松村石油研究所製の「モレスコホワイト」、「モスコバイオレス」などが挙げられる。また、ナフテンとしては、エクソンモービル社製の「エクソールD110,D130」などが挙げられる。   Examples of the normal paraffin include “Normal Paraffin SL, L, M, H” manufactured by Nippon Petrochemical Co., Ltd. Examples of the isoparaffin include “Isopar G, H, L, M” manufactured by ExxonMobil Corporation, “IP Solvent 1620, 2028” manufactured by Idemitsu Petrochemical Co., Ltd., and the like. Examples of liquid paraffin include “Moresco White” and “Mosco Bioless” manufactured by Matsumura Oil Research Institute. Examples of naphthenes include “Exsol D110, D130” manufactured by ExxonMobil.

上記脂肪族炭化水素系相溶化剤の添加量は、カルボジイミド化合物10重量部に対し、通常1.0〜15.0重量部、好ましくは1.5〜10.0重量部、更に好ましくは、3.0〜8.0重量部である。   The addition amount of the aliphatic hydrocarbon-based compatibilizer is usually 1.0 to 15.0 parts by weight, preferably 1.5 to 10.0 parts by weight, more preferably 3 parts per 10 parts by weight of the carbodiimide compound. 0.0 to 8.0 parts by weight.

本発明で用いるカルボジイミド化合物の加工剤中に含有されるべき量は対象となるポリエステル系繊維構造物の末端カルボキシル基の量にあわせて決定すればよい。   What is necessary is just to determine the quantity which should be contained in the processing agent of the carbodiimide compound used by this invention according to the quantity of the terminal carboxyl group of the polyester-type fiber structure used as object.

本発明においては、カルボジイミド化合物をポリエステル系繊維構造物の内部に吸尽により付与することから、吸尽された後のポリエステル系繊維の単繊維断面においては、カルボジイミド化合物は、外層から内層に向けてその濃度が小さくなった状態で存在する。   In the present invention, the carbodiimide compound is applied to the inside of the polyester fiber structure by exhaustion, so in the single fiber cross section of the polyester fiber after exhaustion, the carbodiimide compound is directed from the outer layer toward the inner layer. It exists in a state where its concentration is reduced.

本発明により得られたポリエステル系繊維構造物は、耐加水分解性に優れ、ドレスシャツ、ブラウス、パンツ、スカート、ポロシャツ、Tシャツ、トレーニングウェア、コート、セーター、パジャマ、スクールユニフォーム、作業着、白衣、クリーンルームウェア、浴衣、肌着、裏地、芯地等として好ましく用いられる。   The polyester fiber structure obtained by the present invention is excellent in hydrolysis resistance, dress shirt, blouse, pants, skirt, polo shirt, T-shirt, training wear, coat, sweater, pajamas, school uniform, work clothes, lab coat , Clean room wear, yukata, underwear, lining, interlining and the like.

以下、実施例によって本発明をさらに具体的に説明するが、本発明はこれら実施例により限定されるものではない。なお、実施例中の物性は以下のようにして測定をおこなった。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. In addition, the physical property in an Example was measured as follows.

(各種物性の測定)
(1)ポリ乳酸の末端カルボキシル基濃度(当量/103kg):精秤した試料をo−クレゾール(水分5%)調整液に溶解し、この溶液にジクロロメタンを適量添加の後、0.02規定の水酸化カリウムメタノール溶液にて滴定することにより測定した。
(Measurement of various physical properties)
(1) Terminal carboxyl group concentration of polylactic acid (equivalent / 103 kg): A precisely weighed sample was dissolved in an o-cresol (water 5%) adjusting solution, and an appropriate amount of dichloromethane was added to this solution. It measured by titrating with a potassium hydroxide methanol solution.

(2)ポリエチレンテレフタレートの末端カルボキシル基濃度(当量/103kg):精秤した試料をベンジルアルコールに溶解後、クロロホルムを加えた後、0.1規定の水酸化カリウムベンジルアルコール溶液で滴定することにより測定した。 (2) Terminal carboxyl group concentration of polyethylene terephthalate (equivalent / 103 kg): measured by dissolving a precisely weighed sample in benzyl alcohol, adding chloroform, and titrating with a 0.1 N potassium hydroxide benzyl alcohol solution. did.

(3)ポリ乳酸の分子量:試料をクロロホルムに浸漬させ、PLA部のみを溶解させたクロロホルム溶液を測定溶液とする。これをゲルパーミテーションクロマトグラフィー(GPC)で測定し、ポリスチレン換算で重量平均分子量を求めた。 (3) Molecular weight of polylactic acid: A sample solution is immersed in chloroform, and a chloroform solution in which only the PLA portion is dissolved is used as a measurement solution. This was measured by gel permeation chromatography (GPC), and the weight average molecular weight was determined in terms of polystyrene.

(4)強度(cN/dtex):島津オートグラフAG−1Sを用い、試料長20cm、引張り速度20cm/分の条件で測定した。 (4) Strength (cN / dtex): Measured using Shimadzu Autograph AG-1S under the conditions of a sample length of 20 cm and a tensile speed of 20 cm / min.

(5)強度保持率(%):末端封鎖処理後の試料の強度をA、(株)東洋製作所製恒温恒湿試験機THN064PBを用い、70℃、90%RHの条件下で7日間加水分解処理した試料の強度をBとしたとき、以下の式から強度保持率を算出した。
強度保持率(%)={(加水分解処理後の強度A)/(末端封鎖処理後の強度B)}×100
(5) Strength retention (%): The strength of the sample after end-capping treatment is A, and hydrolysis is performed for 7 days under conditions of 70 ° C. and 90% RH using a constant temperature and humidity tester THN064PB manufactured by Toyo Manufacturing Co., Ltd. When the strength of the treated sample was B, the strength retention was calculated from the following formula.
Strength retention (%) = {(Strength A after hydrolysis treatment) / (Strength B after end-capping treatment)} × 100

本実施例で用いたポリエステル布帛について以下に説明する。   The polyester fabric used in this example will be described below.

(ポリ乳酸布帛の作製)
融点166℃のL−ポリ乳酸チップを105℃に設定した真空乾燥機で12時間乾燥した。乾燥したチップを溶融紡糸機に投入し、溶融温度210℃にて溶融紡糸し紡糸温度220℃、紡糸速度4500m/分で品種100dtex−26フィラメントの未延伸糸を得た。この未延伸糸を予熱温度100℃、熱セット温度130℃にて延伸倍率1.2倍で延伸し、84dtex−26フィラメントの延伸糸を得た。得られた延伸糸でタフタを製織し、80℃で精練した後、130℃で1分間乾熱セットを行い、ポリ乳酸織物を得た。
(Production of polylactic acid fabric)
An L-polylactic acid chip having a melting point of 166 ° C. was dried for 12 hours by a vacuum dryer set at 105 ° C. The dried chip was put into a melt spinning machine and melt-spun at a melting temperature of 210 ° C. to obtain an undrawn yarn having a variety of 100 dtex-26 filaments at a spinning temperature of 220 ° C. and a spinning speed of 4500 m / min. The undrawn yarn was drawn at a preheating temperature of 100 ° C. and a heat setting temperature of 130 ° C. at a draw ratio of 1.2 times to obtain a drawn yarn of 84 dtex-26 filament. After weaving taffeta with the obtained drawn yarn and scouring at 80 ° C., dry heat setting was performed at 130 ° C. for 1 minute to obtain a polylactic acid woven fabric.

(ポリエチレンテレフタレート布帛の作製)
公知の方法で84dtex−26フィラメントのポリエチレンテレフタレート(PET)の延伸糸を得た。得られたフィラメントでタフタを製織し、80℃、20分で精練した後、170℃で1分間乾熱セットを行い、PET織物を得た。
(Production of polyethylene terephthalate fabric)
An 84 dtex-26 filament polyethylene terephthalate (PET) drawn yarn was obtained by a known method. After weaving taffeta with the obtained filaments and scouring at 80 ° C. for 20 minutes, dry heat setting was performed at 170 ° C. for 1 minute to obtain a PET fabric.

本実施例で使用した末端封鎖加工剤の作製方法について、以下に説明する。   A method for producing the end-capping agent used in this example will be described below.

(末端封鎖加工剤1の調製)
ビス(2,6−ジイソプロピルフェニル)カルボジイミド15.0重量部、流動パラフィン{モレスコホワイトP−350P(松村石油)}10.0重量部、ステアリルアルコールエチレンオキサイド7モル付加物1.8重量部、ソルビタンモノステアレートエチレンオキサイド20モル付加体0.4重量部を混合し55℃まで加熱して均一に溶解し、70℃の水72.8重量部にプロペラ型攪拌機で攪拌下、徐々に加え乳化分散し放冷して、末端封鎖加工剤1を得た。
(Preparation of end-capping agent 1)
15.0 parts by weight of bis (2,6-diisopropylphenyl) carbodiimide, 10.0 parts by weight of liquid paraffin {Molesco White P-350P (Matsumura Oil)}, 1.8 parts by weight of stearyl alcohol ethylene oxide 7 mol adduct, 0.4 parts by weight of 20 moles of sorbitan monostearate ethylene oxide adduct is mixed, heated to 55 ° C. and uniformly dissolved, and gradually added to 72.8 parts by weight of water at 70 ° C. while stirring with a propeller-type stirrer to emulsify. Dispersed and allowed to cool to obtain end-capping agent 1.

(末端封鎖加工剤2の調製)
末端封鎖加工剤1の流動パラフィンをイソパラフィン系炭化水素{アイソパーL(エクソンモービル)}に変更した以外は、同様にして、末端封鎖加工剤2を得た。
(Preparation of end-capping agent 2)
The end-capping agent 2 was obtained in the same manner except that the liquid paraffin of the end-capping agent 1 was changed to isoparaffin hydrocarbon {Isopar L (ExxonMobil)}.

(末端封鎖加工剤3の調製)
末端封鎖加工剤1の流動パラフィンをパラフィン/ナフテン混合系炭化水素{エクソールD110(エクソンモービル)}に変更した以外は、同様にして、末端封鎖加工剤3を得た。
(Preparation of end-capping agent 3)
The end capping agent 3 was obtained in the same manner except that the liquid paraffin of the end capping agent 1 was changed to a paraffin / naphthene mixed hydrocarbon {Exsol D110 (ExxonMobil)}.

(末端封鎖加工剤4の調製)
末端封鎖加工剤1の流動パラフィンを脂肪族系炭化水素であるペガゾールAN45(エクソンモービル:ノルマルパラフィン、イソパラフィン、ナフテン系混合溶剤)に変更した以外は、同様にして、末端封鎖加工剤4を得た。
(Preparation of end-capping agent 4)
The end capping agent 4 was obtained in the same manner except that the liquid paraffin of the end capping agent 1 was changed to pegasol AN45 (exxon mobil: normal paraffin, isoparaffin, naphthenic mixed solvent) which is an aliphatic hydrocarbon. .

(末端封鎖加工剤5の調製)
末端封鎖加工剤1のビス(2,6−ジイソプロピルフェニル)カルボジイミドをジシクロヘキシルカルボジイミドに変更した以外は、同様にして、末端封鎖加工剤5を得た。
(Preparation of end-capping agent 5)
The end-blocking agent 5 was obtained in the same manner except that the bis (2,6-diisopropylphenyl) carbodiimide of the end-blocking agent 1 was changed to dicyclohexylcarbodiimide.

(末端封鎖加工剤6の調製)
ビス(2,6−ジイソプロピルフェニル)カルボジイミド15.0重量部、ステアリルアルコールエチレンオキサイド7モル付加物1.8重量部、ソルビタンモノステアレートエチレンオキサイド20モル付加体0.4重量部を混合し55℃まで加熱して均一に溶解し、70℃の水82.8重量部にプロペラ型攪拌機で攪拌下、徐々に加え乳化分散し放冷して、末端封鎖加工剤6を得た。
(Preparation of end-capping agent 6)
A mixture of 15.0 parts by weight of bis (2,6-diisopropylphenyl) carbodiimide, 1.8 parts by weight of an adduct of 7 moles of stearyl alcohol ethylene oxide and 0.4 parts by weight of an adduct of 20 moles of sorbitan monostearate ethylene oxide is 55 ° C. The resulting mixture was uniformly dissolved in 82.8 parts by weight of water at 70 ° C. while stirring with a propeller-type stirrer, and emulsified and dispersed.

(末端封鎖加工剤7の調製)
ビス(2,6−ジイソプロピルフェニル)カルボジイミド23.0重量部、2−ブチルオクタノールエチレンオキサイド5モルプロピレンオキサイド9モル付加物1.2重量部、2−ブチルオクタノールエチレンオキサイド20モルプロピレンオキサイド15モル付加物3.5重量部、ジスチレン化フェノールエチレンオキサイド10モル付加物2.3重量部を75℃下で混合し、均一化した後、冷却し、有機溶剤エチレングリコールモノイソブチルエーテル70.0重量部を添加し、上記末端封鎖加工剤を含む自己乳化型の末端封鎖加工剤7を得た。
(Preparation of end-capping agent 7)
Bis (2,6-diisopropylphenyl) carbodiimide 23.0 parts by weight, 2-butyloctanol ethylene oxide 5 mol propylene oxide 9 mol adduct 1.2 parts by weight 2-butyloctanol ethylene oxide 20 mol propylene oxide 15 mol adduct 3.5 parts by weight and 2.3 parts by weight of distyrenated phenol ethylene oxide 10-mol adduct are mixed at 75 ° C., homogenized, cooled, and 70.0 parts by weight of organic solvent ethylene glycol monoisobutyl ether is added. As a result, a self-emulsifying end-capping agent 7 containing the end-capping agent was obtained.

(末端封鎖加工剤8の調製)
ビス(2,6−ジイソプロピルフェニル)カルボジイミド15.0重量部、トルエン35.0重量部、ステアリルアルコールエチレンオキサイド7モル付加物3.6重量部、ソルビタンモノステアレートエチレンオキサイド20モル付加体0.8重量部を混合し55℃まで加熱して均一に溶解し、70℃の水45.6重量部にプロペラ型攪拌機で攪拌下、徐々に加え乳化分散し放冷して、末端封鎖加工剤8を得た。
(Preparation of end-capping agent 8)
Bis (2,6-diisopropylphenyl) carbodiimide 15.0 parts by weight, toluene 35.0 parts by weight, stearyl alcohol ethylene oxide 7 mol adduct 3.6 parts by weight, sorbitan monostearate ethylene oxide 20 mol adduct 0.8 Part by weight is mixed and heated to 55 ° C. to dissolve uniformly, gradually added to 45.6 parts by weight of water at 70 ° C. with stirring by a propeller-type stirrer, emulsified and dispersed, and allowed to cool. Obtained.

(末端封鎖加工剤9の調製)
末端封鎖加工剤6のビス(2,6−ジイソプロピルフェニル)カルボジイミドをジイソプロピルカルボジイミドに変更した以外は、同様にして、末端封鎖加工剤9を得た。
(Preparation of end-capping agent 9)
The end-capping agent 9 was obtained in the same manner except that the bis (2,6-diisopropylphenyl) carbodiimide of the end-capping agent 6 was changed to diisopropylcarbodiimide.

(末端封鎖加工剤10の調製)
末端封鎖加工剤7のビス(2,6−ジイソプロピルフェニル)カルボジイミドをジシクロヘキシルカルボジイミドに変更した以外は、同様にして、末端封鎖加工剤10を得た。
(Preparation of end-capping agent 10)
The end-capping agent 10 was obtained in the same manner except that the bis (2,6-diisopropylphenyl) carbodiimide of the end-capping agent 7 was changed to dicyclohexylcarbodiimide.

(末端封鎖加工剤11の調製)
末端封鎖加工剤8のビス(2,6−ジイソプロピルフェニル)カルボジイミドをジシクロヘキシルカルボジイミドに変更した以外は、同様にして、末端封鎖加工剤11を得た。
(Preparation of end-capping agent 11)
A terminal blocking agent 11 was obtained in the same manner except that the bis (2,6-diisopropylphenyl) carbodiimide of the terminal blocking agent 8 was changed to dicyclohexylcarbodiimide.

(末端封鎖加工剤12の調製)
カルボジイミド変性イソシアネート{カルボジライトLA−1(日清紡ケミカル)}15.0重量部、トルエン35.0重量部、流動パラフィン{モレスコホワイトP−350P(松村石油)}10.0重量部、ステアリルアルコールエチレンオキサイド7モル付加物4.5重量部、ソルビタンモノステアレートエチレンオキサイド20モル付加体1.0重量部を混合し55℃まで加熱して均一に溶解し、70℃の水34.5重量部にプロペラ型攪拌機で攪拌下、徐々に加え乳化分散し放冷して、末端封鎖加工剤12を得た。
(Preparation of end-capping agent 12)
Carbodiimide-modified isocyanate {carbodilite LA-1 (Nisshinbo Chemical)} 15.0 parts by weight, toluene 35.0 parts by weight, liquid paraffin {Molesco White P-350P (Matsumura Oil)} 10.0 parts by weight, stearyl alcohol ethylene oxide 7 parts adduct 4.5 parts by weight and sorbitan monostearate ethylene oxide 20 parts adduct 1.0 part by weight are mixed and heated to 55 ° C. to dissolve uniformly, and propeller is added to 34.5 parts by weight 70 ° C. water. While stirring with a mold stirrer, the mixture was gradually added, emulsified and dispersed, and allowed to cool to obtain a terminal blocking agent 12.

(末端封鎖加工剤13の調製)
末端封鎖加工剤8のビス(2,6−ジイソプロピルフェニル)カルボジイミドをカルボジイミド変性イソシアネート{カルボジライトLA−1(日清紡ケミカル)}に変更した以外は、同様にして、末端封鎖加工剤13を得た。
(Preparation of end-capping agent 13)
The end-capping agent 13 was obtained in the same manner except that the bis (2,6-diisopropylphenyl) carbodiimide of the end-capping agent 8 was changed to carbodiimide-modified isocyanate {carbodilite LA-1 (Nisshinbo Chemical)}.

(実施例1)
ポリ乳酸繊維織物を、高圧染色試験機を用い、末端封鎖加工剤1を末端封鎖加工剤の固形分として2%owf使用し、浴比1:20とした処理液中に浸し、UR・MINI−COLOR(赤外線ミニカラー(テクサム技研製))を用い、110℃、30分の条件で処理液を循環させながら加工を行った。さらに、ノニオン系界面活性剤グランアップUS−20(三洋化成工業株式会社)0.5g/L、ソーダ灰1.5g/L、ハイドロサルファイト2.0g/L、浴比1:20にて、60℃、20分の条件で還元洗浄をおこなった。遠心脱水後、110℃に設定したピンテンター中にて乾燥をおこなった。乾燥後、(株)東洋製作所製恒温恒湿試験機THN064PBを用い、70℃、90%RHの条件下で7日間加水分解処理をおこない、加水分解処理前後での糸強度の変化を確認した。
Example 1
The polylactic acid fiber woven fabric was immersed in a treatment solution with a bath ratio of 1:20 using 2% owf of the end-blocking agent 1 as a solid content of the end-blocking agent using a high-pressure dyeing tester, and UR · MINI- Processing was performed using COLOR (infrared mini color (manufactured by Tecsum Giken)) while circulating the treatment liquid at 110 ° C. for 30 minutes. Furthermore, nonionic surfactant Gran Up US-20 (Sanyo Chemical Industries, Ltd.) 0.5 g / L, soda ash 1.5 g / L, hydrosulfite 2.0 g / L, bath ratio 1:20, Reduction cleaning was performed at 60 ° C. for 20 minutes. After centrifugal dehydration, drying was performed in a pin tenter set to 110 ° C. After drying, using a constant temperature and humidity tester THN064PB manufactured by Toyo Seisakusho Co., Ltd., a hydrolysis treatment was performed for 7 days under the conditions of 70 ° C. and 90% RH, and changes in the yarn strength before and after the hydrolysis treatment were confirmed.

(実施例2)
実施例1において、末端封鎖加工剤1を末端封鎖加工剤2に変更し、同様の処理をおこなった。
(Example 2)
In Example 1, the end-blocking agent 1 was changed to the end-blocking agent 2, and the same treatment was performed.

(実施例3)
実施例1において、末端封鎖加工剤1を末端封鎖加工剤3に変更し、同様の処理をおこなった。
(Example 3)
In Example 1, the end-blocking agent 1 was changed to the end-blocking agent 3, and the same treatment was performed.

(実施例4)
実施例1において、末端封鎖加工剤1を末端封鎖加工剤4に変更し、同様の処理をおこなった。
Example 4
In Example 1, the end-blocking agent 1 was changed to the end-blocking agent 4, and the same treatment was performed.

(実施例5)
実施例1において、末端封鎖加工剤1を末端封鎖加工剤5に変更し、同様の処理をおこなった。
(Example 5)
In Example 1, the end-blocking agent 1 was changed to the end-blocking agent 5, and the same treatment was performed.

(比較例1)
実施例1において、ビス(2,6−ジイソプロピルフェニル)カルボジイミドと流動パラフィンとを添加せず、同様の処理をおこなった。
(Comparative Example 1)
In Example 1, the same treatment was performed without adding bis (2,6-diisopropylphenyl) carbodiimide and liquid paraffin.

(比較例2)
実施例1において、末端封鎖加工剤1を末端封鎖加工剤6に変更し、同様の処理をおこなった。
(Comparative Example 2)
In Example 1, the end-blocking agent 1 was changed to the end-blocking agent 6 and the same treatment was performed.

(比較例3)
実施例1において、末端封鎖加工剤1を末端封鎖加工剤7に変更し、同様の処理をおこなった。
(Comparative Example 3)
In Example 1, the end-blocking agent 1 was changed to the end-blocking agent 7, and the same treatment was performed.

(比較例4)
実施例1において、末端封鎖加工剤1を末端封鎖加工剤8に変更し、同様の処理をおこなった。
(Comparative Example 4)
In Example 1, the end-blocking agent 1 was changed to the end-blocking agent 8, and the same treatment was performed.

(比較例5)
実施例1において、末端封鎖加工剤1を末端封鎖加工剤9に変更し、同様の処理をおこなった。
(Comparative Example 5)
In Example 1, the end-blocking agent 1 was changed to the end-blocking agent 9, and the same treatment was performed.

(比較例6)
実施例1において、末端封鎖加工剤1を末端封鎖加工剤10に変更し、同様の処理をおこなった。
(Comparative Example 6)
In Example 1, the end-blocking agent 1 was changed to the end-blocking agent 10 and the same treatment was performed.

(比較例7)
実施例1において、末端封鎖加工剤1を末端封鎖加工剤11に変更し、同様の処理をおこなった。
(Comparative Example 7)
In Example 1, the end-blocking agent 1 was changed to the end-blocking agent 11, and the same treatment was performed.

(比較例8)
実施例1において、末端封鎖加工剤1を末端封鎖加工剤12に変更し、同様の処理をおこなった。
(Comparative Example 8)
In Example 1, the end-blocking agent 1 was changed to the end-blocking agent 12, and the same treatment was performed.

(比較例9)
実施例1において、末端封鎖加工剤1を末端封鎖加工剤13に変更し、同様の処理をおこなった。
(Comparative Example 9)
In Example 1, the end-blocking agent 1 was changed to the end-blocking agent 13, and the same treatment was performed.

実施例1から5においては、強度保持率が85%以上と良好な耐加水分解性を有しており、かつ加水分解処理後のポリ乳酸の分子量低下も抑制されている。一方で、比較例1から7においては、加水分解試験によって大幅な強度低下およびポリ乳酸の分子量低下を起こしており、カルボジイミド系末端封鎖加工剤を脂肪族炭化水素系相溶化剤に相溶させることの優位性を示す結果となった(表1)。   In Examples 1 to 5, the strength retention is 85% or more, which is a good hydrolysis resistance, and the decrease in the molecular weight of polylactic acid after the hydrolysis treatment is also suppressed. On the other hand, in Comparative Examples 1 to 7, a significant decrease in strength and molecular weight of polylactic acid were caused by the hydrolysis test, and the carbodiimide end-capping agent was made compatible with the aliphatic hydrocarbon compatibilizer. (Table 1).

Figure 0005523160
Figure 0005523160

また、比較例8および9に示したポリカルボジイミドは、処理後の風合いが紙のように硬く、かつ耐加水分解性に乏しい結果となった(表1)。   Further, the polycarbodiimides shown in Comparative Examples 8 and 9 were as hard as paper and had poor hydrolysis resistance (Table 1).

(実施例6)
実施例1において、処理液として、末端封鎖加工剤1に、分散染料DENAPLA BLACK GSを4.5%owf、PH調整剤、均染剤イオネットRAP−250を0.5g/L(三洋化成工業株式会社)を追加して同様の処理をおこなった。
(Example 6)
In Example 1, as the treatment liquid, the end-capping agent 1 was added with a disperse dye DENAPLA BLACK GS of 4.5% owf, a pH adjusting agent, and a leveling agent Ionette RAP-250 of 0.5 g / L (Sanyo Chemical Industries Co., Ltd.) Company) was added and the same processing was performed.

(実施例7)
実施例2において、処理液として、末端封鎖加工剤2に、分散染料DENAPLA BLACK GSを4.5%owf、PH調整剤、均染剤イオネットRAP−250を0.5g/L(三洋化成工業株式会社)を追加して同様の処理をおこなった。
(Example 7)
In Example 2, the end-capping agent 2 was treated with a disperse dye DENAPLA BLACK GS of 4.5% owf, a pH adjusting agent, and a leveling agent Ionette RAP-250 of 0.5 g / L (Sanyo Chemical Industries Co., Ltd.) Company) was added and the same processing was performed.

(実施例8)
実施例3において、処理液として、末端封鎖加工剤3に、分散染料DENAPLA BLACK GSを4.5%owf、PH調整剤、均染剤イオネットRAP−250を0.5g/L(三洋化成工業株式会社)を追加して同様の処理をおこなった。
(Example 8)
In Example 3, as a treatment liquid, the end-capping agent 3 was added with a disperse dye DENAPLA BLACK GS of 4.5% owf, a pH adjusting agent, and a leveling agent Ionette RAP-250 of 0.5 g / L (Sanyo Chemical Industries Co., Ltd.) Company) was added and the same processing was performed.

(実施例9)
実施例4において、処理液として、末端封鎖加工剤4に、分散染料DENAPLA BLACK GSを4.5%owf、PH調整剤、均染剤イオネットRAP−250を0.5g/L(三洋化成工業株式会社)を追加して同様の処理をおこなった。
Example 9
In Example 4, as the treatment liquid, the end-capping agent 4 was added with a disperse dye DENAPLA BLACK GS of 4.5% owf, a pH adjusting agent, and a leveling agent Ionette RAP-250 of 0.5 g / L (Sanyo Chemical Industries Co., Ltd.) Company) was added and the same processing was performed.

(実施例10)
実施例5において、処理液として、末端封鎖加工剤5に、分散染料DENAPLA BLACK GSを4.5%owf、PH調整剤、均染剤イオネットRAP−250を0.5g/L(三洋化成工業株式会社)を追加して同様の処理をおこなった。
(Example 10)
In Example 5, as the treatment liquid, the end-capping agent 5 was added with a disperse dye DENAPLA BLACK GS of 4.5% owf, a pH adjusting agent, and a leveling agent Ionette RAP-250 of 0.5 g / L (Sanyo Chemical Industries Co., Ltd.) Company) was added and the same processing was performed.

実施例6から10においても、良好な耐加水分解性を有しており、加工後の試料においては染色ムラは確認されなかった。すなわち、染色と末端封鎖加工を同時におこなえることを示している(表2)。   Examples 6 to 10 also have good hydrolysis resistance, and no staining unevenness was observed in the processed samples. That is, it shows that dyeing and end-capping can be performed simultaneously (Table 2).

Figure 0005523160
Figure 0005523160

(実施例11)
ポリ乳酸布帛を以下の処理液中に浸漬させ、マングルで余分な処理液を絞った後(ピックアップ率:52%)、110℃に設定したテンターにて3分間乾燥させ、さらに130℃に設定したテンターにて3分間熱処理をした。熱処理後のポリ乳酸布帛を、ノニオン系界面活性剤グランアップUS−20(三洋化成工業株式会社)0.5g/Lを添加した60℃の湯にて10分間洗浄をおこなった。洗浄後のポリ乳酸布帛を110℃に設定したテンターにて3分間乾燥させた。
(Example 11)
The polylactic acid fabric was immersed in the following treatment liquid, and after excess treatment liquid was squeezed with mangle (pickup rate: 52%), it was dried for 3 minutes in a tenter set at 110 ° C., and further set at 130 ° C. Heat treatment was performed for 3 minutes with a tenter. The polylactic acid fabric after the heat treatment was washed with 60 ° C. hot water to which 0.5 g / L of nonionic surfactant Gran Up US-20 (Sanyo Chemical Industries, Ltd.) was added for 10 minutes. The washed polylactic acid fabric was dried for 3 minutes with a tenter set at 110 ° C.

(処理液)末端封鎖加工剤1:250g/L
イソプロピルアルコール:10g/L
(Treatment solution) End-capping agent 1: 250 g / L
Isopropyl alcohol: 10 g / L

(実施例12)
実施例11において、熱処理工程を102℃の飽和蒸気によるスチーミングに変更し、同様の処理をおこなった。
(Example 12)
In Example 11, the heat treatment step was changed to steaming with saturated steam at 102 ° C., and the same treatment was performed.

実施例11および12においても、良好な耐加水分解性を有しており、乾熱および湿熱処理による末端封鎖にも本発明が有効であることが示された(表3)。   Examples 11 and 12 also have good hydrolysis resistance, indicating that the present invention is also effective for end-capping by dry heat and wet heat treatment (Table 3).

Figure 0005523160
Figure 0005523160

(実施例13)
ポリエチレンテレフタレート織物を、高圧染色試験機を用い、末端封鎖加工剤1を末端封鎖加工剤の固形分として2%owf使用し、浴比1:20とした処理液中に浸し、UR・MINI−COLOR(赤外線ミニカラー(テクサム技研製))を用い、130℃、30分の条件で処理液を循環させながら加工を行った。さらに、ノニオン系界面活性剤グランアップUS−20(三洋化成工業株式会社)0.5g/L、ソーダ灰1.5g/L、ハイドロサルファイト2.0g/L、浴比1:20にて、80℃、20分の条件で還元洗浄をおこなった。遠心脱水後、110℃に設定したピンテンター中にて乾燥をおこなった。乾燥後の試料を、UR・MINI−COLORを用いて、130℃、40時間の条件でPET織物の加水分解処理をおこなった。
(Example 13)
The polyethylene terephthalate fabric is immersed in a treatment solution using a high-pressure dyeing tester, using 2% owf of the end-blocking agent 1 as the solid content of the end-blocking agent, and a bath ratio of 1:20, and UR · MINI-COLOR. (Infrared mini color (manufactured by Tecsum Giken)) was used, and processing was performed while circulating the treatment liquid at 130 ° C. for 30 minutes. Furthermore, nonionic surfactant Gran Up US-20 (Sanyo Chemical Industries, Ltd.) 0.5 g / L, soda ash 1.5 g / L, hydrosulfite 2.0 g / L, bath ratio 1:20, Reduction cleaning was performed at 80 ° C. for 20 minutes. After centrifugal dehydration, drying was performed in a pin tenter set to 110 ° C. The dried sample was hydrolyzed with PET fabric using UR · MINI-COLOR under conditions of 130 ° C. and 40 hours.

(比較例10)
実施例13において、ジシクロヘキシルカルボジイミドと流動パラフィンとを添加せず同様の処理をおこなった。
(Comparative Example 10)
In Example 13, the same treatment was performed without adding dicyclohexylcarbodiimide and liquid paraffin.

比較例10においては、加水分解処理後のPET織物は強度測定が不可能なほど劣化していたのに対して、実施例13においては、良好な耐加水分解性を有しており、PET織物に対しても本発明が有効であることが示された(表4)。   In Comparative Example 10, the PET fabric after the hydrolysis treatment had deteriorated so that the strength could not be measured, whereas in Example 13, the PET fabric had good hydrolysis resistance, It was also shown that the present invention is effective against (Table 4).

Figure 0005523160
Figure 0005523160

本発明は、耐加水分解性に優れたポリエステル系繊維構造物を製造するために広く利用可能である。   The present invention can be widely used for producing a polyester fiber structure excellent in hydrolysis resistance.

Claims (8)

カルボジイミド化合物および脂肪族炭化水素系相溶化剤を水または溶剤に乳化または分散させてなり、前記カルボジイミド化合物が下記一般式(I)で表され、前記脂肪族炭化水素系相溶化剤が、イソパラフィン系溶剤、ノルマルパラフィン系溶剤、流動パラフィン系溶剤およびパラフィン/ナフテン混合系溶剤から選ばれる少なくとも1種であることを特徴とするポリエステル系繊維構造物の加工剤。
一般式(I):
Figure 0005523160

一般式(I)において、
は炭素原子数1から20のアルキル基、炭素原子数5から12のシクロアルキル基、炭素原子数6から20のアリール基、アリル基または炭素原子数7から20のアラルキル基を示す。
Carbodiimide compounds and aliphatic hydrocarbon compatibilizer Ri name is emulsified or dispersed in water or solvent, the carbodiimide compound is represented by the following formula (I), the aliphatic hydrocarbon compatibilizer, isoparaffin system solvent, normal paraffinic solvents, processing agent of a polyester-based fiber structure, wherein at least one Tanedea Rukoto selected from liquid paraffin-based solvents and paraffin / naphthene mixed solvent.
Formula (I):
Figure 0005523160

In general formula (I):
R 1 represents an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 5 to 12 carbon atoms, an aryl group having 6 to 20 carbon atoms, an allyl group, or an aralkyl group having 7 to 20 carbon atoms.
前記カルボジイミド化合物がN,N´−ジ−2,6−ジイソプロピルフェニルカルボジイミド、N,N´−ジ−シクロヘキシルカルボジイミドおよびN,N′−ジイソプロピルカルボジイミドから選ばれる少なくとも1種であることを特徴とする請求項に記載のポリエステル系繊維構造物の加工剤。 The carbodiimide compound is at least one selected from N, N'-di-2,6-diisopropylphenylcarbodiimide, N, N'-di-cyclohexylcarbodiimide and N, N'-diisopropylcarbodiimide. Item 12. A processing agent for a polyester-based fiber structure according to Item 1 . 請求項1または2に記載の加工剤をポリエステル系繊維構造物の内部に吸尽させることを特徴とするポリエステル系繊維構造物の製造方法。 A method for producing a polyester fiber structure, comprising exhausting the processing agent according to claim 1 or 2 into the polyester fiber structure. 請求項1または2に記載の加工剤を含有する処理液をポリエステル系繊維に付与した後、乾燥処理および熱処理をすることを特徴とするポリエステル系繊維構造物の製造方法。 A method for producing a polyester fiber structure, comprising applying a treatment liquid containing the processing agent according to claim 1 or 2 to a polyester fiber, followed by drying treatment and heat treatment. 請求項1または2に記載の加工剤を含有する処理液にポリエステル系繊維を投入し、該処理液を循環させながら浴中加工することを特徴とするポリエステル系繊維構造物の製造方法。 A method for producing a polyester-based fiber structure, wherein polyester fibers are added to a treatment liquid containing the processing agent according to claim 1 or 2 , and the treatment is performed in a bath while circulating the treatment liquid. 請求項1または2に記載の加工剤を含有する処理液をポリエステル系繊維に付与した後、湿熱処理をすることを特徴とするポリエステル系繊維構造物の製造方法。 A method for producing a polyester fiber structure, comprising applying a treatment liquid containing the processing agent according to claim 1 or 2 to a polyester fiber, followed by wet heat treatment. 前記ポリエステル系繊維がポリ乳酸を主成分とするものであることを特徴とする請求項3〜6のいずれかに記載のポリエステル系繊維構造物の製造方法。 The method for producing a polyester fiber structure according to any one of claims 3 to 6 , wherein the polyester fiber is mainly composed of polylactic acid. 前記ポリエステル系繊維の単繊維断面において、前記カルボジイミド化合物の濃度が、外層から内層に向けて小さくなることを特徴とする請求項3〜7のいずれかに記載の方法で得られるポリエステル系繊維構造物。 The polyester fiber structure obtained by the method according to any one of claims 3 to 7 , wherein a concentration of the carbodiimide compound decreases from an outer layer toward an inner layer in a single fiber cross section of the polyester fiber. .
JP2010075039A 2010-03-29 2010-03-29 Processing agent for polyester fiber structure and method for producing polyester fiber structure Active JP5523160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010075039A JP5523160B2 (en) 2010-03-29 2010-03-29 Processing agent for polyester fiber structure and method for producing polyester fiber structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010075039A JP5523160B2 (en) 2010-03-29 2010-03-29 Processing agent for polyester fiber structure and method for producing polyester fiber structure

Publications (2)

Publication Number Publication Date
JP2011208294A JP2011208294A (en) 2011-10-20
JP5523160B2 true JP5523160B2 (en) 2014-06-18

Family

ID=44939636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010075039A Active JP5523160B2 (en) 2010-03-29 2010-03-29 Processing agent for polyester fiber structure and method for producing polyester fiber structure

Country Status (1)

Country Link
JP (1) JP5523160B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3440915B2 (en) * 2000-03-14 2003-08-25 東レ株式会社 Polylactic acid resin and molded products
JP5098930B2 (en) * 2007-09-26 2012-12-12 東レ株式会社 Polyester fiber, method for producing the same, and fiber structure using the same
JP2009249450A (en) * 2008-04-03 2009-10-29 Teijin Ltd Polylactic acid molded article and manufacturing method
JP2010043373A (en) * 2008-08-12 2010-02-25 Unitika Ltd Polyester fiber of high moist heat resistance
JP5051060B2 (en) * 2008-08-20 2012-10-17 東レ株式会社 Method for producing polyester fiber

Also Published As

Publication number Publication date
JP2011208294A (en) 2011-10-20

Similar Documents

Publication Publication Date Title
CN101809223B (en) Polyester fiber, process for producing the same, and textile structure employing the same
CN100398709C (en) A fiber article comprising a biodegradable plastic
JP5575240B2 (en) Process for producing spinnable and dyeable polyester fibers
JPH1025621A (en) Polyester elastic fiber and extensible wet-type nonwoven fabric
KR100808724B1 (en) Fibre and its production
JP5098930B2 (en) Polyester fiber, method for producing the same, and fiber structure using the same
JP5928333B2 (en) Processing agent for polyester fiber structure and method for producing polyester fiber structure using the same
JP5523160B2 (en) Processing agent for polyester fiber structure and method for producing polyester fiber structure
JP5051060B2 (en) Method for producing polyester fiber
JP2010203022A (en) Core-sheath conjugated polyester-based fiber, and fiber structure using the same
WO1990001520A1 (en) Aromatic polyester resin composition and fibers thereof
JP2013096021A (en) Flame retardant and method for producing flame retardant aliphatic polyester fiber structure
JP2010222751A (en) Method of manufacturing polyester fabric structure
JPH043446B2 (en)
JPH0357227B2 (en)
JP2017166102A (en) Polyester-based fiber structure
JP4839174B2 (en) FIBER STRUCTURE, PROCESS FOR PRODUCING THE SAME AND APPAREL
JP4572528B2 (en) Method for producing fabric made of polylactic acid fiber
JP4556290B2 (en) Method for producing aliphatic polyester fiber-containing fiber structure
JP4002158B2 (en) Cationic dye-dyeable cellulosic fiber and woven or knitted fabric thereof
JP4684054B2 (en) Method for producing aliphatic polyester fiber structure
JP2011241519A (en) Flame-retardant processing agent and flame-retardant processing method for polyester fiber product
JP2008063676A (en) Polyester fiber structural product and method for producing the same
JP2002227034A (en) Polylactic acid fiber structure having excellent black color development and method for producing the same
JP2003049364A (en) Aliphatic polyester fiber structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140408

R150 Certificate of patent or registration of utility model

Ref document number: 5523160

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250