JP5518411B2 - Rooftop cooling system - Google Patents
Rooftop cooling system Download PDFInfo
- Publication number
- JP5518411B2 JP5518411B2 JP2009217061A JP2009217061A JP5518411B2 JP 5518411 B2 JP5518411 B2 JP 5518411B2 JP 2009217061 A JP2009217061 A JP 2009217061A JP 2009217061 A JP2009217061 A JP 2009217061A JP 5518411 B2 JP5518411 B2 JP 5518411B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- rooftop
- limestone
- water
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Building Environments (AREA)
Description
本発明は、建築物の冷却を行うものとして、屋上部の冷却装置に関するものである。 The present invention relates to a rooftop cooling device for cooling a building.
一般に都市部では、コンクリート建築物が多く、また、道路などの路面はコンクリートやアスファルトで覆われている。これらのコンクリート面は、太陽熱によって温度が上昇し、夏季には例えば建築物の屋根で65〜70℃にも達することから、都市のヒートアイランド現象を引き起こす要因のひとつとなっている。 In general, there are many concrete buildings in urban areas, and road surfaces such as roads are covered with concrete or asphalt. These concrete surfaces rise in temperature due to solar heat and reach 65 to 70 ° C., for example, on the roof of a building in the summer, which is one of the factors causing the urban heat island phenomenon.
特に、コンクリート造の建物では、内部の温度も上昇するため、室内環境が悪化するうえ、冷房などの電力エネルギーの消費増加が問題となっている。 In particular, in a concrete building, the internal temperature also rises, so that the indoor environment is deteriorated and the consumption of electric power energy such as cooling is a problem.
このような建物の温度上昇問題の対策としては、様々な対策が提案され、反射率の高い塗料で塗装することにより、太陽熱を反射させる方法、水の気化熱で建築物を冷却する方法などである。このうち、塗料による方法では、熱線の入射量を減らす効果はあるが太陽熱により温まった物体を冷ます効果はない。 Various countermeasures have been proposed as countermeasures against the temperature rise problem of such buildings, such as a method of reflecting solar heat by painting with a highly reflective paint, a method of cooling buildings with the heat of vaporization of water, etc. is there. Of these methods, the paint method has the effect of reducing the amount of incident heat, but does not cool the object warmed by solar heat.
また、水の気化熱で建築物を冷却する方法には、打ち水をする方法、保水性のある材料を設ける方法、あるいは緑化する方法などがある。 Moreover, as a method of cooling a building with the heat of vaporization of water, there are a method of watering, a method of providing a material having water retention, a method of greening, and the like.
このうち、打ち水をする方法は効果が高いとして試みられているが、与えた水が流れ去るため、多量の水を必要とする上効果が持続しない。 Of these, the water spraying method has been tried because it is highly effective, but since the supplied water flows away, the effect of requiring a large amount of water is not sustained.
緑化する方法では、屋上緑化の施工に際しては、屋上のモルタル面にコンクリートによる植裁基盤を設け、躯体面から植裁基盤を完全に分離して、土壌を敷き詰めることが行われている。コンクリートには、ポルトランドセメントと単粒度の粗骨材で形成される連続空隙を備えたポーラス・コンクリートを用いることが一般的であり、植裁基盤とすべき法面打設後、保水性充填材として空隙部表面側にピートモス等の天然有機系材料を土とともに充填する。 In the method of revegetation, when planting rooftops, a concrete planting base is provided on the mortar surface of the roof, and the soil is spread by completely separating the planting base from the frame surface. For concrete, it is common to use porous concrete with continuous voids formed of Portland cement and single-grain coarse aggregate. As described above, a natural organic material such as peat moss is filled with the soil on the surface side of the gap.
保水性のある材料を設ける方法も種々提案されているが、下記特許文献1は、屋上を緑化した場合と同様な冷却・断熱効果を奏する透水性、保水性が優れた軽量なコンクリート舗装方法および保水性・透水性コンクリート・ブロックであり、強度を補う添加剤を添加することなく、粒度3〜20mmの軽石11、50〜62重量%とポルトランドセメント50〜38重量%との配合物に、水40〜50重量%を散布した混練した状態の保水性・透水性コンクリートからなる生コンクリートを敷き詰める。
特許文献1では、保水性・透水性コンクリートを打設する際に、多数の小穴をあけた合成樹脂製のパイプを埋設しておき、乾燥したときに、このパイプに水を注入することにより、保水性・透水性コンクリートに水を含浸させる。使用する水として、貯水槽に貯えた雨水などを使用すればよいとされる。 In Patent Document 1, when placing water-retaining and water-permeable concrete, a synthetic resin pipe having a large number of small holes is buried, and when it is dried, water is poured into this pipe, Impregnate water retaining and water permeable concrete with water. It is said that rain water stored in a water tank may be used as water to be used.
このように、従来の屋上の高温化防止方法では、遮熱・反射系塗料などの塗装による方法を除けば、屋上緑化のように保水を前提とした根保持基盤、また、ポーラス状の吸水・保水する材料を屋上や屋根に設置し、保水層による遮熱効果を利用して高温化防止する仕組みが一般的になっている。 In this way, in conventional methods for preventing high temperatures on the roof, except for methods such as heat-shielding / reflective coatings, a root-holding base that assumes water retention, such as rooftop greening, and porous water absorption / It is common to install water retaining materials on the rooftop or roof and use the heat shielding effect of the water retaining layer to prevent high temperatures.
これらは、保水層を設けるため、一定の水分を保つことでの厚さが必要で、また、水分が含まれることで、重量を制限する遮熱効果が低下することなど、そして最大の問題は晴天が続くと、水分が蒸発して遮熱効果が低下する為、水の供給が必要でその装置の設置、維持管理が必要で経費もかかる。 These require a water retention layer to maintain a certain amount of moisture, and the inclusion of moisture reduces the heat shielding effect that limits weight, and the biggest problems are When clear weather continues, moisture evaporates and the heat shielding effect decreases, so water supply is required, installation and maintenance of the equipment is necessary, and costs are high.
さらに保水することでの問題点は、晴天がつづくことで、保水層に残った水分が熱蓄積を起こし、保水層全体が高温化し、その高温が屋上床面に伝導し遮熱効果が低下することが起きる。 The problem with water retention is that the clear water continues, moisture remaining in the water retention layer causes heat accumulation, the entire water retention layer becomes hot, and the high temperature is conducted to the rooftop floor surface, reducing the heat shielding effect. Things happen.
これに加えて、ポーラス状の吸水・保水する材料としては、ポーラス・コンクリートが一般であるが、ポーラス・コンクリートは、セメントと砕石などの天然骨材を使用しているので重量が重く材料の運搬、取り扱い、施工が不便である。 In addition, porous concrete is generally used for porous water absorption / retention, but porous concrete is made of natural aggregate such as cement and crushed stone. , Handling and construction are inconvenient.
前記特許文献1のポルトランドセメントは、強アルカリ性で植物の種子の発芽を妨げたり、充填した植物繊維や種子などが雨水で流失しやすい。 The Portland cement of Patent Document 1 is strongly alkaline and prevents the germination of plant seeds, or the plant fibers and seeds filled are easily washed away by rainwater.
また、屋上の緑化に際しては屋上に対する荷重や排水を特に考慮する必要があり、現実問題として既存のビルにおいて屋上の緑化の際は、建築基準法施工令による屋上広場の積載荷重のうち地震力荷重である130kg/m2が限度と言われている。また、屋上緑化の必要性がある高層ビルの屋上には、概ね周囲に手摺りが無い陸屋根であり、屋根には荷重がかかることが設計上考慮されてはいない。 In addition, it is necessary to consider the load and drainage on the roof especially when rooftop is greened. As a matter of fact, in the case of rooftop greening in existing buildings, the seismic force It is said that 130 kg / m 2 is the limit. In addition, the rooftops of high-rise buildings where rooftop greening is necessary are generally flat roofs without handrails around them, and it is not considered in design that loads are applied to the roofs.
そのために、このような場所を緑化する際には、荷重が軽量な方法でなければならない。 Therefore, when greening such a place, the load must be a lightweight method.
また、植裁のためには土壌の水分の排出経路を確保する必要があり、植裁を囲む壁の下部に、適宜排水口を設け、土壌の流出を防ぐために網で排水口を覆うなどの手段を設けている。 In addition, it is necessary to secure a drainage route for soil for vegetation, and an appropriate drainage port is provided in the lower part of the wall surrounding the planting, and the drainage port is covered with a net to prevent the outflow of soil. Means are provided.
しかし、このような方法では排水効率が悪く、排水口を網で覆っているとはいえ土壌からの塵埃をすべて遮断することは不可能であり、屋上に設けたドレインの詰まりを頻発させるという問題があった。 However, with such a method, drainage efficiency is poor, and even though the drain outlet is covered with a net, it is impossible to block all dust from the soil, and the drain on the roof is frequently clogged. was there.
水の供給設備を必要とする場合、水貯留による屋上への静荷重増加が問題となることもあり、散水装置を有しない雨水貯留タイプは、雨水供給が途絶し半乾燥状態となると、粒状物による層内の水蒸気により、熱蓄積が発生し、かえって冷却作用が阻害される欠点もある。 When water supply facilities are required, an increase in static load on the roof due to water storage may become a problem.For rainwater storage types that do not have a sprinkler, rainwater supply is interrupted and the product becomes semi-dry. Due to the water vapor in the layer, heat accumulation occurs and the cooling action is hindered.
本発明の目的は前記従来例の不都合を解消し、メンテナンスが殆ど不要で、ランニングコストも掛らず、さらに、保水機能を付加するための散水装置・屋上防水等の設備もいらず、比較的容易に、しかも安価に冷却機能を備えさせることができる屋上部の冷却装置を提供することにある。 The object of the present invention is to eliminate the inconvenience of the conventional example, almost no maintenance is required, no running cost is required, and there are no facilities such as a watering device or a roof waterproof for adding a water retention function. An object of the present invention is to provide a rooftop cooling device that can be provided with a cooling function easily and inexpensively.
前記目的を達成するため、請求項1記載の本発明は、ビル等の屋上部において、多孔質かつ比重2.1〜2.4で、粒径20〜60mmのサンゴ石灰岩による粒状物または塊状物を排水・通風手段を有する拘束体で層構造を維持するように囲み、飛散防止ネットで覆って、敷設したことをビル等の屋上部において、多孔質かつ比重2.1〜2.4で、粒径20〜60mmの石灰岩による粒状物または塊状物を層状に敷設したことを要旨とするものである。 In order to achieve the above-mentioned object, the present invention according to claim 1 is a granule or lump made of coral limestone having a porous shape, a specific gravity of 2.1 to 2.4 and a particle size of 20 to 60 mm on the roof of a building or the like . Is covered with a restraint body having drainage / ventilating means so as to maintain the layer structure, covered with a scattering prevention net, and laid on the rooftop of a building or the like with a porous and specific gravity of 2.1 to 2.4, The gist is that a granular or lump of limestone having a particle size of 20 to 60 mm is laid in layers.
請求項1記載の本発明によれば、石灰岩からなる粒状物を層状(2層以上)に敷設することにより、
(1)軽い比重(2.3程度)のため、屋上敷設で荷重増加が少ない。
(2)石灰岩が多孔質のため、粒状物自体の熱伝導性が低い。
(3)粒状物が相互に点接触状態となり、直射日光による入射熱の伝導率が低下し、屋根・屋上面への熱入力量が低下する。
(4)粒状物間に空気流通路が広範囲に構成されることから、層内で熱せられた空気の上昇気流の生成が促進される。
(5)上昇気流により、屋根・屋上面には日陰外気(層の下部は日陰となるため)と同等の温度の空気(低温:概ね35度以下)が常時接することとなり、温度上昇を抑制できる。
According to this invention of Claim 1, by laying the granular material which consists of limestone in layered form (two or more layers),
(1) Because of the light specific gravity (about 2.3), there is little increase in load on the roof.
(2) Since the limestone is porous, the thermal conductivity of the granular material itself is low.
(3) The granular materials are in a point contact state with each other, the conductivity of incident heat due to direct sunlight is reduced, and the amount of heat input to the roof / roof is reduced.
(4) Since the air flow passage is configured in a wide range between the granular materials, the generation of the upward air flow of the air heated in the layer is promoted.
(5) Due to the rising airflow, the air at the same temperature (low temperature: approximately 35 degrees or less) as the shaded outside air (because the lower part of the layer is shaded) is always in contact with the roof / top surface, and the temperature rise can be suppressed. .
また、このような多孔質かつ比重2.1〜2.4で、粒径20〜60mmの石灰岩として、琉球石灰岩が、中でもサンゴ石灰岩が好適なものである。 Further , Ryukyu limestone, particularly coral limestone, is suitable as such a porous limestone having a specific gravity of 2.1 to 2.4 and a particle size of 20 to 60 mm.
これに加えて、排水・通風手段を有する拘束体で囲むことで、層状が維持でき、かつ、粒状物の層内に空気が常に供給されることにより、ドライ状態が保たれることで、層内の水蒸気で生ずる熱蓄積が生じない。また、通風手段により、粒状物の層自体の温度低下が生ずる。さらに、雨水等を受けても排水ができ、層間に水がたまることもない。 In addition to this, it is possible to maintain a layered shape by surrounding it with a restraint body having drainage / ventilating means, and to maintain a dry state by constantly supplying air into the layer of granular material, so that the layer can be maintained. There is no heat accumulation caused by water vapor inside. The temperature of the granular material layer itself is reduced by the ventilation means. Furthermore, drainage is possible even when rainwater is received, and water does not accumulate between layers.
また、飛散防止ネットで覆うことにより風散の対策を簡単に行うことができる。 Further, it is possible to easily take measures against air scattering by covering with a scattering prevention net.
請求項2記載の本発明によれば、各敷設層の役目は、上層である遮熱層は、表面層として太陽の直射を受け高温化(45〜55℃)部分となる。この高温により、表面から熱放射を引き起こし、上昇流を生む。この上昇流によって下層からの空気を引き上げる。(35℃以下)(遮熱・高温体) According to the second aspect of the present invention, each laying layer serves as an upper layer, and the heat shielding layer is a surface layer that is subjected to direct sunlight and becomes a high temperature (45 to 55 ° C.) portion. This high temperature causes heat radiation from the surface and creates an upward flow. This upward flow pulls up air from the lower layer. (35 ℃ or less) (heat shield, high temperature body)
中層を熱伝導阻害層は、表面層を支え、そして、表面層からの熱伝導を受けるが、接触面が小さいことで、屋上床、屋根面への熱伝導を低減させる(35〜40℃)役目を持つ。 The heat conduction blocking layer supports the surface layer and receives heat conduction from the surface layer, but the contact surface is small to reduce heat conduction to the rooftop and roof surface (35 to 40 ° C.) Have a role.
下層の冷却層は、敷設層全体の太陽光の通射がないため、陰の低温(35℃以下)空気量を確保し、その空気を表層へと供給する。そして、敷設層外からの新しい空気(35℃以下)の流入が起きる。(陰の空気低温層・冷却体) Since the lower cooling layer does not emit sunlight through the entire laying layer, it secures a shadowy low-temperature (35 ° C. or lower) air amount and supplies the air to the surface layer. And inflow of the new air (35 degrees C or less) from the outside of a laying layer occurs. (Shadow air low temperature layer / cooling body)
以上述べたように本発明の屋上部の冷却装置は、メンテナンスが殆ど不要で、ランニングコストも掛らず、さらに、保水機能を付加するための散水装置・屋上防水等の設備もいらず、比較的容易に、しかも安価に冷却機能を備えさせることができるものである。 As described above, the rooftop cooling device of the present invention requires almost no maintenance, does not require running costs, and does not require watering equipment or rooftop waterproofing equipment for adding a water retention function. Therefore, the cooling function can be provided easily and inexpensively.
以下、図面について本発明の実施の形態を詳細に説明する。図1は本発明の屋上部の冷却装置の概要を示す縦断側面図で、図中1は屋上床で、コンクリート面が多い。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a longitudinal side view showing an outline of a cooling apparatus for a rooftop according to the present invention. In the figure, reference numeral 1 denotes a rooftop with many concrete surfaces.
本発明は、石灰岩、特に、琉球石灰岩2を2層以上の層状にして屋上床1上に敷設した。
In the present invention, limestone, particularly Ryukyu
琉球石灰岩は、多孔質かつ比重2.3程度で、本発明では図2に示すように粒径20〜60mmの粒状物または塊状物として使用する。 Ryukyu limestone is porous and has a specific gravity of about 2.3. In the present invention, Ryukyu limestone is used as a granular material or a mass having a particle size of 20 to 60 mm as shown in FIG.
琉球石灰岩2は、南西諸島に広く分布する石灰岩の地層。更新世にサンゴ礁のはたらきで形成された。1925年(大正14年)に矢部長克と半沢正四郎によって命名された。南西諸島中部から南部にかけて広く分布しており、特に沖縄県においては土地の約30パーセントを占めている。最大の厚さは150メートルにもなる。多くの気孔を含んでおり大量の地下水を浸透させる性質がある。
さらに、この琉球石灰岩2の粒状物または塊状物の層構造を維持し、かつ、粒状物層の排水・通風手段を有する拘束体3で囲んだ。
Furthermore, the layered structure of the granular material or block of the
琉球石灰岩2は、その種類は、形成される海域の水深によって異なり、サンゴ石灰岩、石灰藻球石灰岩、サイクロペリウス石灰岩、砕屑石灰岩などがある。
The type of
サンゴ石灰岩は、造礁サンゴの化石を多く含む石灰岩であり、石灰藻球石灰岩は石灰藻球を多く含む石灰岩であり、サイクロペリウス石灰岩はサイクロペリウスやオパキュリナなど大型の有孔虫を多く含む石灰岩であり、砕屑石灰岩は有孔虫、サンゴ、藻類、コケムシなどの破片を多く含む石灰岩である。また、含まれる生物化石の種類によってサンゴ石灰岩・貝殻石灰岩・有孔虫石灰岩などにも分類される。 Coral limestone is a limestone that contains a lot of fossil reef-building coral, limestone sphere limestone is a limestone that contains many limestone spheres, and cycloperius limestone contains many large foraminifera such as cycloperius and opaculina. Limestone is a limestone that contains many debris such as foraminifera, corals, algae, and bryozoans. It is also classified into coral limestone, shell limestone, and foraminiferal limestone according to the types of biofossil contained.
本発明においては、どの種類の琉球石灰岩でもよいが、入手の容易性などからサンゴ石灰岩が好適である。 In the present invention, any type of Ryukyu limestone may be used, but coral limestone is preferred because of its availability.
拘束体3の一例としては、排水、通風用の透孔4を穿設した枠体5であり、粒状物または塊状物である琉球石灰岩2の層構造を維持するため、所定の高さと適度な縦横の大きさを持つ、矩形若しくはその他の多角形の枠体である。
An example of the
枠体5は内部に琉球石灰岩2を層状に詰めたものを、相互に間隔6を存して並べる。この間隔6は、枠体5の排水、通風の機能を確保できるだけの幅があればよい。図中7は天井部、8は室内を示す。
The
また、層構造の琉球石灰岩2の上面は風散対策として飛散防止ネット9で覆う。この飛散防止ネット9にはカラス等の鳥よけ用合成樹脂製ネットが利用でき、覆い方としては、枠体5の上面開口をこれで覆う場合や、飛散防止ネット9を袋状としてこれで琉球石灰岩2を包み、枠体5に詰める場合などである。飛散防止ネット9は金網でもよい。
Further, the upper surface of the layered
図3は、このような琉球石灰岩2を層構造に詰めた枠体5の単体を示す。
FIG. 3 shows a
枠体5の形状は図示のような矩形のみならず、円形、多角形でもよく、図示は省略するが、8角形とし、これを前記間隔6を存して並べることで、亀甲模様となるような配置も可能である。
The shape of the
さらに、図4は枠体5の排水・通風手段として枠体5を網底14としたものであり、網底14の網の目が排水、通風用の透孔となる。この場合は、枠体5には脚部5aを設け、下方空間15を確保するようにする。図4において、琉球石灰岩2の詰み込みの図示や飛散防止ネット9の図示は省略したが、図3と同じようにあるものである。
Further, FIG. 4 shows the
このようにして、前記琉球石灰岩2による粒状物または塊状物の層は、図1に示すように上層αを遮熱層、中層βを熱伝導阻害層、下層γを冷却層として構成する。
Thus, as shown in FIG. 1, the granular or massive layer of
層状での各固体の接触面は、点もしくは、断続した線で構成され、各個体の外面60%以上が非接触面で、空気に直接触れる構造となっている。 The contact surface of each solid in the form of a layer is composed of dots or intermittent lines, and 60% or more of the outer surface of each individual is a non-contact surface and has a structure that directly contacts air.
次に使用法および作用について説明すると、前記接触点では、上層αである遮熱層は、太陽の直射を受ける敷設層表面の熱(45〜50℃)は、次層への伝導は点部分に集中するが、その面積が小さいため、伝導の量は低減(35〜40℃)され、また表面層固体の外面から、空気中に熱放射される。 Next, the usage and action will be described. At the contact point, the heat shielding layer, which is the upper layer α, heats the surface of the laying layer that receives direct sunlight (45 to 50 ° C.), and the conduction to the next layer is a point portion. However, since the area is small, the amount of conduction is reduced (35 to 40 ° C.), and heat is radiated into the air from the outer surface of the surface layer solid.
ここでは、高温であるため上昇流が生じ、上層αより上空へ放熱され、その空気の流れによって、中層βを熱伝導阻害層、下層γの低温空気(35℃以下)が中層β内を通過し、層内を冷却する効果が起きる。 Here, because of the high temperature, an upward flow is generated and the heat is dissipated from the upper layer α to the sky, and the air flow causes the middle layer β to pass through the heat conduction-inhibiting layer and the lower layer γ to pass through the middle layer β. Then, the effect of cooling the inside of the layer occurs.
屋上床1、もしくは屋根面への固体の接触も、固体同士と同様、点もしくは、不連続の線で構成され、床面の60%以上が空気に直接触れる構造となっている。 The solid contact with the rooftop floor 1 or the roof surface is also composed of dots or discontinuous lines like the solids, and 60% or more of the floor surface is in direct contact with air.
中層βは熱伝導阻害層表面層として、上層αを支え、そして、上層αからの熱伝導を受けるが、接触面が小さいことで、屋上床1もしくは屋根面への熱伝導を低減させる(35〜40℃)役目を持つ。 The middle layer β supports the upper layer α as a surface layer of the heat conduction-inhibiting layer and receives heat conduction from the upper layer α. However, the small contact surface reduces heat conduction to the rooftop floor 1 or the roof surface (35 ~ 40 ° C).
中層βおよび下層γは、敷設層全体の太陽光の通射がないため、陰の低温(35℃以下)空気量を確保し、その空気を上層αへと供給する。そして、敷設層外からの新しい空気(35℃以下)の流入が起きる。(陰の空気低温層・冷却体) Since the middle layer β and the lower layer γ are not exposed to sunlight across the entire laying layer, the amount of air at a low temperature (below 35 ° C.) is secured, and the air is supplied to the upper layer α. And inflow of the new air (35 degrees C or less) from the outside of a laying layer occurs. (Shadow air low temperature layer / cooling body)
このような敷設層による構造機能によって屋上床1または屋根面に流入する空気の温度、気温は、最高で40℃で陰部分に入ると35℃以下となる。この35℃以下の空気温度によって屋上床1または屋根面は、35℃以上にはならず、それ以下の天上はより低温化が起こり、室内への熱伝導は小さくなる。 The temperature and temperature of the air flowing into the rooftop floor 1 or the roof surface by the structural function of the laying layer is 40 ° C. at the maximum and 35 ° C. or less when entering the shaded portion. Due to the air temperature of 35 ° C. or lower, the rooftop floor 1 or the roof surface does not become 35 ° C. or higher, and the temperature of the ceiling below that temperature is lowered, and heat conduction into the room is reduced.
図11にサーモグラフィーによる測定結果を示すが、●は屋上床1の温度、■は天井部7の温度、□は室内8の温度である。(図1参照)
FIG. 11 shows the results of thermography measurement, where ● is the temperature of the rooftop floor 1, ■ is the temperature of the
ちなみに、前記琉球石灰岩2による粒状物または塊状物の層がない場合には、屋上床1の表面温度は60℃、内部温度は平均45℃、天井部7の温度は42℃、室内8の温度は40℃となる。
By the way, when there is no granular or lump layer of
これに対して、琉球石灰岩2による粒状物または塊状物の層がある場合、上層αの温度は45℃〜50℃であり、中層βの温度は40℃、下層γの温度は35℃以下で、屋上床1の内部温度は平均35℃以下、天井部7の温度は30℃以下、室内8の温度は28℃以下となる。
On the other hand, when there is a granular or massive layer of
また、風がある時は敷設層表面の凹凸によって、上空を通過する風(空気)の一部が敷設層内へ進入し、一部は底層部にたして、敷設層内全体を気温温度で冷却する作用を持っている。 Also, when there is wind, due to the unevenness of the surface of the laying layer, a part of the wind (air) passing through the sky enters the laying layer, and part of it reaches the bottom layer, and the entire temperature in the laying layer is Has the effect of cooling with.
このため風上部分は、気温に近い温度を呈するが、風下部分は敷設層を通過して熱を吸収した空気によって、風上部分より2〜3℃高熱となる。このため、敷設層を全体に敷き詰めることをせず、2〜4m程度間隔に敷設層から空気を逃す隙間を設けることがよい。 For this reason, although an upwind part exhibits the temperature close | similar to temperature, a leeward part becomes 2 to 3 degreeC hotter than an upwind part with the air which passed the laying layer and absorbed the heat. For this reason, it is good to provide the clearance gap which escapes air from a laying layer at intervals of about 2-4 m, without laying down a laying layer in the whole.
一方、屋上床1もしくは屋根面に対し保水性を求めないので雨水に対しては、このまま透水させることができる。雨水は排水、通風用の透孔4から排出される。
On the other hand, since water retention is not requested | required with respect to the roof floor 1 or a roof surface, it can permeate | transmit water with respect to rainwater as it is. Rainwater is discharged from the through
図5は本発明の他の実施形態を示すもので、琉球石灰岩2の粒状物または塊状物の層構造を維持し、かつ、粒状物層の排水・通風手段を有する拘束体3としてメッシュネットによる袋10を用いた。このメッシュネットによる袋10内で層状をつくり、かつ、フトン状にして敷き込み個々のメッシュネットによる袋10を結束し一体にして固定すれば飛散防止ネットは必要ない。
FIG. 5 shows another embodiment of the present invention, which uses a mesh net as a
敷設層を屋上に設置する場合、より簡易にする方法として、枠体5の代わりに敷設材料を袋に詰めたものを利用した。
In the case where the laying layer is installed on the roof, as a simpler method, a material in which a laying material is packed in a bag instead of the
また、フトン状に分別する場合には表面と底面を縫い合せることで、袋10内で、琉球石灰岩2の粒状物または塊状物の層状が片よることを防止できる。なお、袋10内で琉球石灰岩2の粒状物または塊状物の層を維持するには、これが30mm〜60mm程度の大きさであることが望ましい。
Further, when separating into a futon shape, it is possible to prevent the granular or lump of the
この袋状のものは折半屋根や変形の屋上床に有効である。図6は折半屋根11に設置した場合であり、敷設層底面に空気を通すため場合によっては、下方に図10に示すような透孔12aを多数形成したメッシュパイプ12を設置し、このメッシュパイプ12でかさ上げをして通気をよくする。
This bag-like one is effective for folding roofs and deformed rooftops. FIG. 6 shows a case where it is installed on the
また、敷設層の面積が広い場合には図7、図8に示すように、前記メッシュパイプ12等の通気する部材を用い、区分して通気をよくする。この区分は敷設層のくずれや片側へのより等を防止する安定化の方法としても役立つ。
Further, when the area of the laying layer is large, as shown in FIGS. 7 and 8, a ventilation member such as the
この場合、さらに図1、図3で示すような枠体5で囲うようにしてもよいが、図9に示すように、前記メッシュパイプ12等の通気する部材を直接枠体5として用いてもよい。
In this case, it may be further surrounded by a
図12は屋上床1もしくは屋根面へ本発明の琉球石灰岩2の粒状物または塊状物の層構造を敷設し、さらに、その上にクーリングタワーや空調室外機13を設置した場合である。琉球石灰岩2を設けない場合との比較を温度数値によって示した。
FIG. 12 shows a case where a layered structure of granular or lump of
なお、図示は省略するが、本発明におけるビル等の屋上部とは、クーリングタワーの上を言い、クーリングタワー上に本発明の琉球石灰岩2の粒状物または塊状物の層構造を敷設することもできる。
In addition, although illustration is abbreviate | omitted, the rooftops, such as a building in this invention, say on a cooling tower, and the layered structure of the granular material or block of the
1…屋上床 2…琉球石灰岩
3…拘束体 4…排水、通風用の透孔
5…枠体 5a…脚部
6…間隔 7…天井部
8…室内 9…飛散防止ネット
10…メッシュネットによる袋 11…折半屋根
12…メッシュパイプ 12a…透孔
13…空調室外機 14…網底
15…下方空間
DESCRIPTION OF SYMBOLS 1 ...
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009217061A JP5518411B2 (en) | 2009-09-18 | 2009-09-18 | Rooftop cooling system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009217061A JP5518411B2 (en) | 2009-09-18 | 2009-09-18 | Rooftop cooling system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011064031A JP2011064031A (en) | 2011-03-31 |
JP5518411B2 true JP5518411B2 (en) | 2014-06-11 |
Family
ID=43950543
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009217061A Active JP5518411B2 (en) | 2009-09-18 | 2009-09-18 | Rooftop cooling system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5518411B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5661396B2 (en) * | 2010-09-22 | 2015-01-28 | 株式会社Lixil | Water retention structure |
JP5687957B2 (en) * | 2011-05-31 | 2015-03-25 | 大林道路株式会社 | Road spraying device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2882757B2 (en) * | 1994-09-13 | 1999-04-12 | 朝英 喜友名 | Insulation member for roof, method for manufacturing the same, and insulation structure for roof |
JP3954708B2 (en) * | 1997-11-25 | 2007-08-08 | 株式会社フジタ | Surface finishing method for concrete structures |
JPH11200336A (en) * | 1998-01-13 | 1999-07-27 | Sanchuu:Kk | Surface temperature rising control method and artificial beach nourishment material |
JP4253807B1 (en) * | 2007-09-26 | 2009-04-15 | 栄造 八津川 | A heat ray blocking plate that cuts a metal or synthetic resin into a thin helical flat narrow plate and then overmolds it into a cotton shape or a linear shape, and can cut off heat from the sun and radiate heat without heat. |
-
2009
- 2009-09-18 JP JP2009217061A patent/JP5518411B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011064031A (en) | 2011-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Osmond et al. | Guide to urban cooling strategies | |
US20100126066A1 (en) | Modular Green Roof System | |
CN202577790U (en) | Roof greening structure | |
CN105781031A (en) | Green roof structure with rainwater retaining ability | |
CN102720308A (en) | Roof greening structure | |
JP5518411B2 (en) | Rooftop cooling system | |
JP2007197914A (en) | Coolant and cooling method for building | |
KR20110062730A (en) | Extensive green roof system and construction method | |
Vengala et al. | Thermal analysis of building model with acrylic and aluminium based roof coating materials | |
KR100426321B1 (en) | Putting Green on the Rooftop and Method Constructing the same | |
KR100777104B1 (en) | Roof tree-planting system | |
CN206851454U (en) | Plantation layer and domatic roofing applied to slope structure | |
Misni et al. | Sustainable residential building issues in urban heat islands–the potential of albedo and vegetation | |
JP2000316382A (en) | Impervious sheet and greening of slope by using the same | |
Subramanian et al. | Solar passive architecture cooling techniques | |
CN107035076A (en) | Roof greening construction method | |
JP2012012769A (en) | Solar light reflecting and heat insulating structure | |
KR20110086275A (en) | Greening structure | |
JP2012241411A (en) | Roof greening system | |
JP2006125015A (en) | Thermal insulating material making use of vaporizing heat, heat insulation method making use thereof and planting ground water retainable mat | |
JP3669946B2 (en) | Structure greening structure | |
JP6709128B2 (en) | Heat exchange system | |
JP2007077660A (en) | External wall material and laying material containing diatom shale, building using the same, and functional solid containing diatom shale and holding functional substance inside | |
Friedman | Design strategies for integration of green roofs in sustainable housing | |
Bica et al. | What characteristics define ecological building materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120220 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130325 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130416 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130617 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140401 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140402 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5518411 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |