JP5517544B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP5517544B2
JP5517544B2 JP2009230119A JP2009230119A JP5517544B2 JP 5517544 B2 JP5517544 B2 JP 5517544B2 JP 2009230119 A JP2009230119 A JP 2009230119A JP 2009230119 A JP2009230119 A JP 2009230119A JP 5517544 B2 JP5517544 B2 JP 5517544B2
Authority
JP
Japan
Prior art keywords
refrigerant
refrigeration circuit
air conditioner
heat exchanger
auxiliary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009230119A
Other languages
Japanese (ja)
Other versions
JP2011075256A (en
Inventor
潤一郎 粕谷
靖明 狩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Holdings Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2009230119A priority Critical patent/JP5517544B2/en
Publication of JP2011075256A publication Critical patent/JP2011075256A/en
Application granted granted Critical
Publication of JP5517544B2 publication Critical patent/JP5517544B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

本発明は、空調装置に係り、詳しくは、内燃機関で圧縮機を駆動させるとともに内燃機関の廃熱を回収して利用する空調装置に関する。   The present invention relates to an air conditioner, and more particularly to an air conditioner that drives a compressor with an internal combustion engine and collects and uses waste heat of the internal combustion engine.

近年、内燃機関(ガソリンエンジン、ガスエンジン等)で圧縮機を駆動させ冷媒を冷凍回路内で相変化させながら循環させることで空調を行う空調装置が開発され、実用化されている。
このような空調装置では、内燃機関が熱を発することから、この熱を回収して利用するのが好ましく、作動流体の循環路に、内燃機関の廃熱により作動流体を加熱して蒸発させる蒸発器、該蒸発器を経由した作動流体を膨張させて回転駆動力を発生する膨張機、該膨張機にて発生した回転駆動力を伝達する被動力伝達装置、該膨張機を経由した作動流体を凝縮させる凝縮器、該凝縮器を経由した作動流体を前記蒸発器に送出するポンプが順次介装されたランキン回路を備えることが考えられている。
In recent years, air conditioners that perform air conditioning by driving a compressor in an internal combustion engine (gasoline engine, gas engine, etc.) and circulating a refrigerant while changing phase in a refrigeration circuit have been developed and put into practical use.
In such an air conditioner, since the internal combustion engine generates heat, it is preferable to recover and use this heat. Evaporation that heats and evaporates the working fluid by the waste heat of the internal combustion engine in the working fluid circulation path. An expander that expands the working fluid that passes through the evaporator to generate a rotational driving force, a driven transmission device that transmits the rotational driving force generated by the expander, and a working fluid that passes through the expander It is considered that a condenser to be condensed and a Rankine circuit in which a pump for sending a working fluid passing through the condenser to the evaporator is sequentially provided.

例えば、冷凍回路に上記圧縮機を主圧縮機とし、この主圧縮機と直列に補助圧縮機をランキン回路の上記被動力伝達装置として介装することで内燃機関の廃熱を利用する構成の空調装置が開発されている(特許文献1)。
一方、内燃機関(ガソリンエンジン、ガスエンジン等)で圧縮機を駆動させながら同時に発電機を作動させて冷凍回路や内燃機関の補機類の駆動に必要な電力を賄う構成の空調装置も開発されている(特許文献2)。
For example, an air conditioner configured to use waste heat of an internal combustion engine by using the compressor as a main compressor in a refrigeration circuit and interposing an auxiliary compressor as the driven transmission device of the Rankine circuit in series with the main compressor. An apparatus has been developed (Patent Document 1).
On the other hand, an air conditioner has been developed that covers the power required to drive the refrigeration circuit and the auxiliary components of the internal combustion engine by simultaneously operating the generator while driving the compressor in the internal combustion engine (gasoline engine, gas engine, etc.). (Patent Document 2).

特開2004−12110号公報JP 2004-12110 A 特開2007−252033号公報JP 2007-252033 A

しかしながら、上記特許文献1に記載の空調装置では、補助圧縮機を主圧縮機と直列に冷凍回路に配設するため、主圧縮機の冷媒流量と同量の冷媒を補助圧縮機にも流さざるを得ず、補助圧縮機が補助的なものでありながら大型化してしまうという問題がある。
また、上記特許文献2に記載の空調装置では、内燃機関で圧縮機を駆動させながら発電機をも作動させて発電を行うことから、発電を行う分だけ出力の大きな内燃機関を必要とし、内燃機関が大型化してしまうという問題がある。この場合、例えば発電機をランキン回路の被動力伝達装置とすることも考えられるが、通常は補機類の必要とする電力はそれほど大きくないため、発電機の発電電力が余剰となって無駄になったり、発電機の負荷が小さくなると膨張機が高回転になり過ぎて膨張機の破損に繋がったりするおそれがあり好ましいことではない。
However, in the air conditioner described in Patent Document 1, since the auxiliary compressor is arranged in the refrigeration circuit in series with the main compressor, the same amount of refrigerant as the refrigerant flow rate of the main compressor does not flow through the auxiliary compressor. There is a problem that the auxiliary compressor is increased in size while being auxiliary.
Further, the air conditioner described in Patent Document 2 generates power by operating the generator while driving the compressor with the internal combustion engine, and therefore requires an internal combustion engine having a large output for the amount of power generation. There is a problem that the engine becomes larger. In this case, for example, the generator may be a driven transmission device of a Rankine circuit, but normally the power required by the auxiliary equipment is not so large, so the power generated by the generator is redundant and wasted. If the load on the generator becomes small, the expander becomes too high in rotation and may cause damage to the expander, which is not preferable.

本発明は、このような課題に鑑みなされたもので、内燃機関で圧縮機を駆動させる空調装置において、内燃機関を含む空調装置の構成要素を大型化することなく、内燃機関の廃熱をランキン回路により回収して空調装置に必要な電力を確保でき、回収した廃熱の全てを無駄なく効率よく利用可能な空調装置を提供することを目的とする。   The present invention has been made in view of the above problems, and in an air conditioner that drives a compressor in an internal combustion engine, the waste heat of the internal combustion engine is Rankine-free without increasing the size of the components of the air conditioner including the internal combustion engine. An object of the present invention is to provide an air conditioner that can be recovered by a circuit to secure electric power necessary for the air conditioner and that can efficiently use all of the recovered waste heat without waste.

上記の目的を達成するべく、請求項1の空調装置は、内燃機関で主圧縮機を駆動させることで第1の冷媒を第1の冷凍回路内で第1熱源側熱交換器及び利用側熱交換器を介し相変化させながら循環させて冷房または暖房を行う空調装置において、作動流体の循環路に、前記内燃機関の廃熱により作動流体を加熱して蒸発させる蒸発器、該蒸発器を経由した作動流体を膨張させて回転駆動力を発電機に伝達する膨張機、該膨張機を経由した作動流体を凝縮させる凝縮器、該凝縮器を経由した作動流体を前記蒸発器に送出するポンプが順次介装されたランキン回路と、前記膨張機に前記発電機とともに連結された補助圧縮機を該膨張機の回転駆動力で駆動させることで第2の冷媒を相変化させながら循環させる第2の冷凍回路とを備え、前記第1の冷凍回路と前記第2の冷凍回路との間には前記第1の冷凍回路内の第1の冷媒と前記第2の冷凍回路内の第2の冷媒との熱交換を行う補助熱交換器が、第1の冷媒の流れ方向で視て前記第1の冷凍回路の第1熱源側熱交換器の下流側に該第1熱源側熱交換器と直列に配設されてなることを特徴とする。 In order to achieve the above object, an air conditioner according to claim 1 is configured to drive a main compressor in an internal combustion engine to obtain a first refrigerant in a first refrigeration circuit, a first heat source side heat exchanger, and a utilization side heat. In an air conditioner that performs cooling or heating by circulating while changing phase through an exchanger, an evaporator that heats and evaporates the working fluid by waste heat of the internal combustion engine in a circulation path of the working fluid, and passes through the evaporator An expander that expands the working fluid transmitted to the generator, a condenser that condenses the working fluid that passes through the expander, and a pump that sends the working fluid via the condenser to the evaporator A Rankine circuit sequentially disposed, and an auxiliary compressor coupled to the expander together with the generator are driven by the rotational driving force of the expander to circulate the second refrigerant while changing the phase. A refrigeration circuit, Auxiliary heat exchanger which performs heat exchange with the second refrigerant in the first refrigerant and the second refrigeration circuit in the first refrigeration circuit between said the refrigeration circuit the second refrigeration circuit The first heat source side heat exchanger is arranged in series downstream of the first heat source side heat exchanger of the first refrigeration circuit as viewed in the flow direction of the first refrigerant. .

請求項2の空調装置では、請求項1において、前記発電機の発電を制御する発電制御手段を有し、該発電制御手段は、空調装置に必要十分な所定の電力を賄うよう前記発電機の発電を制御することを特徴とする。
請求項3の空調装置では、請求項2において、前記第2の冷凍回路には前記補助圧縮機の負荷を可変させる補助圧縮機負荷可変手段を有し、該補助圧縮機負荷可変手段は、前記発電機の発電電力が前記所定の電力未満のときには前記補助圧縮機の負荷を軽減させることを特徴とする。
According to a second aspect of the present invention, the air conditioner includes a power generation control unit that controls power generation of the power generator according to the first aspect, and the power generation control unit is configured to supply the predetermined power necessary and sufficient for the air conditioner. The power generation is controlled.
According to a third aspect of the present invention, there is provided an air conditioner according to the second aspect, wherein the second refrigeration circuit includes auxiliary compressor load variable means for varying the load of the auxiliary compressor, and the auxiliary compressor load variable means includes: When the power generated by the generator is less than the predetermined power, the load on the auxiliary compressor is reduced.

請求項4の空調装置では、請求項3において、前記補助圧縮機負荷可変手段は、前記発電機の発電電力が前記所定の電力に達すると前記補助圧縮機負荷可変手段により前記補助圧縮機の負荷を増加させて前記膨張機の回転駆動力で該補助圧縮機を駆動させることを特徴とする。
請求項5の空調装置では、請求項1乃至4のいずれかにおいて、前記第1の冷凍回路の第1熱源側熱交換器は、冷房時には凝縮器として機能する一方、暖房時には蒸発器として機能するものであって、前記第1の冷凍回路には、前記第1の冷凍回路の第1熱源側熱交換器に冷房時及び暖房時のいずれにも同一方向に第1の冷媒が流れるよう第1の冷媒の流れを切り替える冷媒方向切替手段が設けられてなることを特徴とする。
According to a fourth aspect of the present invention, there is provided the air conditioner according to the third aspect, wherein the auxiliary compressor load varying means is configured such that when the generated power of the generator reaches the predetermined power, the auxiliary compressor load varying means causes the load of the auxiliary compressor to be changed. And the auxiliary compressor is driven by the rotational driving force of the expander.
In the air conditioner of claim 5, in any one of claims 1 to 4, the first heat source side heat exchanger of the first refrigeration circuit functions as a condenser during cooling, and functions as an evaporator during heating. In the first refrigeration circuit, the first refrigerant flows through the first heat source side heat exchanger of the first refrigeration circuit so that the first refrigerant flows in the same direction during both cooling and heating. refrigerant direction switching means for switching the flow of refrigerant, characterized in that is is al provided.

請求項6の空調装置では、請求項1乃至5のいずれかにおいて、前記ランキン回路と前記第1の冷凍回路とは一部分が共用化され、前記ランキン回路の作動流体と前記第1の冷凍回路の第1の冷媒とは同一であり、前記ランキン回路の前記凝縮器は、冷房時には前記第1の冷凍回路の第1熱源側熱交換器と兼用され、暖房時には前記第1の冷凍回路の利用側熱交換器と兼用されてなることを特徴とする。   In the air conditioner of claim 6, in any one of claims 1 to 5, the Rankine circuit and the first refrigeration circuit are partially shared, and the working fluid of the Rankine circuit and the first refrigeration circuit It is the same as the first refrigerant, and the condenser of the Rankine circuit is also used as the first heat source side heat exchanger of the first refrigeration circuit at the time of cooling, and the use side of the first refrigeration circuit at the time of heating. It is also used as a heat exchanger.

請求項7の空調装置では、請求項1乃至6のいずれかにおいて、前記内燃機関はガスエンジンであることを特徴とする。   In an air conditioner according to a seventh aspect, in any one of the first to sixth aspects, the internal combustion engine is a gas engine.

請求項1の空調装置によれば、ランキン回路は回収した内燃機関の廃熱を利用して膨張機を回転駆動させ、その回転駆動力で発電機とともに第2の冷凍回路の補助圧縮機を駆動させることになるが、この際、発電機によって発電が行われて内燃機関の廃熱が電力として利用されるとともに、補助圧縮機によって第2の冷凍回路内を第2の冷媒が相変化しながら循環することにより、冷房または暖房を行う第1の冷凍回路の第1の冷媒の放吸熱が当該第1の冷媒と第2の冷凍回路の第2の冷媒との間で補助熱交換器により熱交換されて補助される。即ち、冷房時には第1の冷媒が第2の冷凍回路内の冷却された第2の冷媒によって過冷却され、暖房時には第1の冷媒が第2の冷凍回路内の第2の冷媒の放熱によってさらに吸熱される。   According to the air conditioner of claim 1, the Rankine circuit uses the recovered waste heat of the internal combustion engine to rotationally drive the expander, and the rotational driving force drives the auxiliary compressor of the second refrigeration circuit together with the generator. In this case, power is generated by the generator and the waste heat of the internal combustion engine is used as electric power, and the second refrigerant is phase-changed in the second refrigeration circuit by the auxiliary compressor. By circulating, the heat released or absorbed by the first refrigerant in the first refrigeration circuit that performs cooling or heating is heated by the auxiliary heat exchanger between the first refrigerant and the second refrigerant in the second refrigeration circuit. Replaced and assisted. That is, during cooling, the first refrigerant is subcooled by the cooled second refrigerant in the second refrigeration circuit, and during heating, the first refrigerant is further radiated by the heat dissipation of the second refrigerant in the second refrigeration circuit. It absorbs heat.

これにより、内燃機関の廃熱を回収して電力として有効に利用できるとともに、回収した廃熱の全てを無駄なく効率よく冷房と暖房とに利用することができ、内燃機関を含めた空調装置の構成要素を大型化することなく、高効率な空調装置を実現することができる。
特に、補助熱交換器は第1の冷凍回路の第1熱源側熱交換器の下流側に該第1熱源側熱交換器と直列に配設されているので、回収した廃熱により第1の冷凍回路の第1の冷媒の放吸熱を確実に補助するようにできる。即ち、冷房時には第1熱源側熱交換器で凝縮させた後の第1の冷媒を過冷却して冷房効率の向上を図ることができ、暖房時には第1の冷媒が低温の外気から吸熱した後、第2の冷凍回路において外気よりも高温になった第2の冷媒の熱を吸熱して暖房効率の向上を図ることができる。
As a result, the waste heat of the internal combustion engine can be recovered and used effectively as electric power, and all of the recovered waste heat can be efficiently used for cooling and heating without waste. A highly efficient air conditioner can be realized without increasing the size of the components.
In particular, since the auxiliary heat exchanger is arranged in series with the first heat source side heat exchanger on the downstream side of the first heat source side heat exchanger of the first refrigeration circuit, the first heat source recovers the first heat exchanger. It is possible to reliably assist the heat release and absorption of the first refrigerant in the refrigeration circuit. That is, during cooling, the first refrigerant after being condensed in the first heat source side heat exchanger can be supercooled to improve the cooling efficiency, and during heating, after the first refrigerant absorbs heat from the low temperature outside air In the second refrigeration circuit, the efficiency of heating can be improved by absorbing the heat of the second refrigerant that is higher than the outside air.

請求項3の空調装置によれば、発電機の発電電力が所定の電力未満のときには補助圧縮機の負荷が軽減されるので、補助圧縮機の負荷を減らし或いは無くすことで発電機の作動を優先でき、空調装置に必要な所定の電力を発電機で確実に発電して賄うようにできる。
請求項4の空調装置によれば、発電機の発電電力が所定の電力に達すると補助圧縮機の負荷が増加されるので、発電機の作動を優先しつつ、余剰の電力を無駄に生起させることなく発電機の負荷の低下により膨張機を無駄に高回転させて破損させることもなく、回収した廃熱の全てを極めて効率よく冷房と暖房とに利用することができる。
According to the air conditioner of claim 3, since the load on the auxiliary compressor is reduced when the power generated by the generator is less than the predetermined power, the operation of the generator is prioritized by reducing or eliminating the load on the auxiliary compressor. The predetermined power required for the air conditioner can be reliably generated by the generator and covered.
According to the air conditioner of the fourth aspect, since the load of the auxiliary compressor is increased when the generated power of the generator reaches a predetermined power, surplus power is generated wastefully while giving priority to the operation of the generator. In addition, the recovered waste heat can be used for cooling and heating extremely efficiently without causing the expander to rotate unnecessarily at high speed due to a decrease in the load on the generator.

請求項5の空調装置によれば、第1の冷凍回路には第1の冷凍回路の第1熱源側熱交換器に冷房時及び暖房時のいずれにも同一方向に第1の冷媒が流れるよう第1の冷媒の流れを切り替える冷媒方向切替手段が設けられ、補助熱交換器は第1の冷凍回路の第1熱源側熱交換器の下流側に該第1熱源側熱交換器と直列に配設されているので、冷媒方向切替手段を切り替えることにより、一つの補助熱交換器で、冷房時には第1熱源側熱交換器で凝縮させた後の第1の冷媒を過冷却して冷房効率の向上を図ることができ、暖房時には第1の冷媒が低温の外気から吸熱した後、第2の冷凍回路において外気よりも高温になった第2の冷媒の熱を吸熱して暖房効率の向上を図ることができる。 According to the air conditioner of the fifth aspect, the first refrigerant flows through the first refrigeration circuit in the same direction in the first heat source side heat exchanger of the first refrigeration circuit both during cooling and during heating. A refrigerant direction switching means for switching the flow of the first refrigerant is provided, and the auxiliary heat exchanger is arranged in series with the first heat source side heat exchanger downstream of the first heat source side heat exchanger of the first refrigeration circuit. Therefore, by switching the refrigerant direction switching means, the cooling efficiency is improved by supercooling the first refrigerant after being condensed by the first heat source side heat exchanger in one auxiliary heat exchanger during cooling. The first refrigerant absorbs heat from the low-temperature outside air during heating, and then the second refrigeration circuit absorbs the heat of the second refrigerant that is higher than the outside air to improve the heating efficiency. Can be planned.

請求項6の空調装置によれば、ランキン回路と第1の冷凍回路とは一部分が共用化されてランキン回路の作動流体と第1の冷凍回路の第1の冷媒とは同一であり、ランキン回路の凝縮器は第1の冷凍回路の第1熱源側熱交換器及び利用側熱交換器と兼用されているので、空調装置をコンパクトに構成できるとともに、特に暖房時において、回収した廃熱を直接的にしてより一層効率よく暖房に利用することができる。   According to the air conditioner of claim 6, the Rankine circuit and the first refrigeration circuit are partially shared, and the working fluid of the Rankine circuit and the first refrigerant of the first refrigeration circuit are the same, and the Rankine circuit The condenser is used also as the first heat source side heat exchanger and the use side heat exchanger of the first refrigeration circuit, so that the air conditioner can be made compact, and the recovered waste heat can be directly used especially during heating. Therefore, it can be used for heating more efficiently.

請求項7の空調装置によれば、内燃機関は燃費がよくメンテナンスが容易なガスエンジンであるので、ガスエンジンを用いた高効率な空調装置を実現することができる。   According to the air conditioner of the seventh aspect, since the internal combustion engine is a gas engine with good fuel efficiency and easy maintenance, a highly efficient air conditioner using the gas engine can be realized.

本発明に係る空調装置の冷房時の状態を示す模式図である。It is a schematic diagram which shows the state at the time of air_conditioning | cooling of the air conditioner which concerns on this invention. 本発明に係る空調装置の暖房時の状態を示す模式図である。It is a schematic diagram which shows the state at the time of the heating of the air conditioner which concerns on this invention.

以下、図面により本発明の一実施形態について説明する。
本発明に係る空調装置は、図1、2の模式図に示されるように、主圧縮機12、第1熱源側熱交換器(室外機)14、膨張弁15及び利用側熱交換器(室内機)16からなり冷媒(第1の冷媒)を相変化させながら管路11内で循環させて冷房及び暖房を行う主冷凍回路(第1の冷凍回路)10と、主冷凍回路10の圧縮機12を駆動するエンジン(内燃機関)1と、エンジン1の冷却水通路2を流れる冷却水の熱(廃熱)を蒸発器22を介して管路21内を流れる冷媒(作動流体)に回収し膨張機24を回転駆動させて回転駆動力を発電機26に伝達するランキン回路20と、発電機26とともに膨張機24に連結された補助圧縮機32、第2熱源側熱交換器(室外機)34、膨張弁35及び補助熱交換器36からなり冷媒(第2の冷媒)を相変化させながら管路31内で循環させる補助冷凍回路(第2の冷凍回路)30とから構成されている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
1 and 2, the air conditioner according to the present invention includes a main compressor 12, a first heat source side heat exchanger (outdoor unit) 14, an expansion valve 15 and a use side heat exchanger (indoors). A main refrigeration circuit (first refrigeration circuit) 10 that performs cooling and heating by circulating the refrigerant (first refrigerant) in the pipeline 11 while changing the phase of the refrigerant (first refrigerant), and a compressor of the main refrigeration circuit 10 The heat (waste heat) of the cooling water flowing through the engine (internal combustion engine) 1 driving the engine 12 and the cooling water passage 2 of the engine 1 is recovered into the refrigerant (working fluid) flowing through the pipe line 21 via the evaporator 22. A Rankine circuit 20 that rotates the expander 24 to transmit the rotational driving force to the generator 26, an auxiliary compressor 32 that is connected to the expander 24 together with the generator 26, and a second heat source side heat exchanger (outdoor unit). 34, an expansion valve 35 and an auxiliary heat exchanger 36, a refrigerant (second refrigerant) And an auxiliary refrigeration circuit (the second refrigeration circuit) 30 for circulating in the pipe 31 while the phase change.

エンジン1としては、ここでは燃費がよくメンテナンスが容易なガスエンジンが採用される。
詳しくは、主冷凍回路10には、冷媒の流れ方向で視て主圧縮機12の下流に位置して、冷媒の流れ方向を主圧縮機12から第1熱源側熱交換器14或いは利用側熱交換器16のいずれか一方に切り替える四方弁17が設けられている。四方弁17は即ち空調装置を冷房状態と暖房状態とに切り替えるものであり、冷媒の流れ方向が主圧縮機12から第1熱源側熱交換器14となるように四方弁17を切り替えることで空調装置が冷房状態とされ(図1の状態)、冷媒の流れ方向が主圧縮機12から利用側熱交換器16となるように四方弁17を切り替えることで空調装置が暖房状態とされる(図2の状態)。これより、空調装置が冷房状態であるときには、第1熱源側熱交換器14が凝縮器として機能し利用側熱交換器16が蒸発器として機能する一方、空調装置が暖房状態であるときには、逆に利用側熱交換器16が凝縮器として機能し第1熱源側熱交換器14が蒸発器として機能することとなる。
As the engine 1, a gas engine having good fuel consumption and easy maintenance is adopted here.
Specifically, the main refrigeration circuit 10 is located downstream of the main compressor 12 as viewed in the refrigerant flow direction, and the refrigerant flow direction is changed from the main compressor 12 to the first heat source side heat exchanger 14 or use side heat. A four-way valve 17 that switches to either one of the exchangers 16 is provided. That is, the four-way valve 17 switches the air conditioner between a cooling state and a heating state, and the air-conditioning is performed by switching the four-way valve 17 so that the refrigerant flow direction changes from the main compressor 12 to the first heat source side heat exchanger 14. The apparatus is in a cooling state (the state shown in FIG. 1), and the air conditioner is brought into a heating state by switching the four-way valve 17 so that the flow direction of the refrigerant is changed from the main compressor 12 to the use side heat exchanger 16 (see FIG. 1). 2 state). Thus, when the air conditioner is in the cooling state, the first heat source side heat exchanger 14 functions as a condenser and the use side heat exchanger 16 functions as an evaporator, while when the air conditioner is in the heating state, In addition, the use side heat exchanger 16 functions as a condenser, and the first heat source side heat exchanger 14 functions as an evaporator.

図1及び図2に示すように、主冷凍回路10とランキン回路20とは、管路11の一部分と管路21の一部分とが共用されており、ここでは主冷凍回路10の冷媒(第1の冷媒)とランキン回路20の冷媒(作動流体)とは同一とされている。具体的には、四方弁17を含む主圧縮機12の下流から第1熱源側熱交換器14までの間と主圧縮機12の下流から利用側熱交換器16までの間において管路11と管路21とが共用化されている。   As shown in FIGS. 1 and 2, the main refrigeration circuit 10 and the Rankine circuit 20 share a part of the pipe line 11 and a part of the pipe line 21. And the refrigerant (working fluid) of the Rankine circuit 20 are the same. Specifically, between the downstream side of the main compressor 12 including the four-way valve 17 and the first heat source side heat exchanger 14 and between the downstream side of the main compressor 12 and the utilization side heat exchanger 16, The pipe 21 is shared.

つまり、主冷凍回路10の第1熱源側熱交換器14と利用側熱交換器16とは、同時にランキン回路20の凝縮器としての第1熱源側熱交換器14、利用側熱交換器16でもあり、冷房時には、開閉弁28を開弁し開閉弁29を閉弁することで第1熱源側熱交換器14がランキン回路20における凝縮器としても機能し、暖房時には、逆に開閉弁29を開弁し開閉弁28を閉弁することで利用側熱交換器16がランキン回路20における凝縮器としても機能する。
ランキン回路20には、上記の他、冷媒の流れ方向で視て蒸発器22の上流側に位置して、ポンプ27が介装されており、このポンプ27によって冷媒が管路21内を循環する。
That is, the first heat source side heat exchanger 14 and the use side heat exchanger 16 of the main refrigeration circuit 10 are also the first heat source side heat exchanger 14 and the use side heat exchanger 16 as condensers of the Rankine circuit 20 at the same time. Yes, at the time of cooling, the on-off valve 28 is opened and the on-off valve 29 is closed so that the first heat source side heat exchanger 14 also functions as a condenser in the Rankine circuit 20. The use side heat exchanger 16 also functions as a condenser in the Rankine circuit 20 by opening the valve and closing the on-off valve 28.
In the Rankine circuit 20, in addition to the above, a pump 27 is interposed on the upstream side of the evaporator 22 as viewed in the refrigerant flow direction, and the refrigerant circulates in the pipe line 21 by the pump 27. .

補助冷凍回路30には、冷媒の流れ方向で視て補助圧縮機32の下流に位置して冷媒の流れ方向を補助圧縮機32から第2熱源側熱交換器34或いは補助熱交換器36のいずれか一方に切り替える四方弁37が設けられている。四方弁37は上記四方弁17と同様の機能を有し、空調装置が冷房状態にあるときには、冷媒の流れ方向が補助圧縮機32から第2熱源側熱交換器34となるように四方弁37を切り替えることで補助熱交換器36を蒸発器として機能させることが可能であり(図1の状態)、空調装置が暖房状態にあるときには、冷媒の流れ方向が補助圧縮機32から補助熱交換器36となるように四方弁37を切り替えることで補助熱交換器36を凝縮器として機能させることが可能である(図2の状態)。   The auxiliary refrigeration circuit 30 is located downstream of the auxiliary compressor 32 as viewed in the refrigerant flow direction, and the refrigerant flow direction is changed from the auxiliary compressor 32 to the second heat source side heat exchanger 34 or the auxiliary heat exchanger 36. A four-way valve 37 for switching to either one is provided. The four-way valve 37 has a function similar to that of the four-way valve 17. When the air conditioner is in the cooling state, the four-way valve 37 so that the flow direction of the refrigerant changes from the auxiliary compressor 32 to the second heat source side heat exchanger 34. It is possible to cause the auxiliary heat exchanger 36 to function as an evaporator (the state shown in FIG. 1), and when the air conditioner is in the heating state, the refrigerant flow direction changes from the auxiliary compressor 32 to the auxiliary heat exchanger. The auxiliary heat exchanger 36 can function as a condenser by switching the four-way valve 37 so as to be 36 (state of FIG. 2).

図1及び図2に示すように、補助冷凍回路30の補助熱交換器36は、補助冷凍回路30の管路31と主冷凍回路10の管路11とに跨って設けられており、主冷凍回路10の冷媒(第1の冷媒)と補助冷凍回路30の冷媒(第2の冷媒)との間で熱交換するように構成されている。詳しくは、主冷凍回路10の管路11にはブリッジ回路部19が設けられ、冷房時及び暖房時において第1熱源側熱交換器14を流れる冷媒の方向が常に一方向となるように構成されており、補助熱交換器36は、主冷凍回路10において冷媒の流れ方向で視て常に第1熱源側熱交換器14の下流側となる位置に設けられている。ここに、上記四方弁17とブリッジ回路部19とが冷媒方向切替手段を構成する。   As shown in FIGS. 1 and 2, the auxiliary heat exchanger 36 of the auxiliary refrigeration circuit 30 is provided across the pipe line 31 of the auxiliary refrigeration circuit 30 and the pipe line 11 of the main refrigeration circuit 10. Heat is exchanged between the refrigerant of the circuit 10 (first refrigerant) and the refrigerant of the auxiliary refrigeration circuit 30 (second refrigerant). Specifically, a bridge circuit unit 19 is provided in the pipe line 11 of the main refrigeration circuit 10 so that the direction of the refrigerant flowing through the first heat source side heat exchanger 14 is always one direction during cooling and heating. The auxiliary heat exchanger 36 is always provided at a position downstream of the first heat source side heat exchanger 14 as viewed in the refrigerant flow direction in the main refrigeration circuit 10. Here, the four-way valve 17 and the bridge circuit portion 19 constitute a refrigerant direction switching means.

また、補助冷凍回路30の補助圧縮機32は、例えば斜板の角度を変えることで容量を可変可能な可変容量圧縮機である(補助圧縮機負荷可変手段)。
また、発電機26には、発電機26が十分に発電駆動していないときに空調装置の各種補機類、例えば第1熱源側熱交換器14、利用側熱交換器16、第2熱源側熱交換器34の各ファンモータ、ポンプ27等に電力を供給するバッテリ(二次電池)25が接続されており、発電機26により発電した電力をバッテリ25に充電可能である。
The auxiliary compressor 32 of the auxiliary refrigeration circuit 30 is a variable capacity compressor whose capacity can be changed by changing the angle of the swash plate, for example (auxiliary compressor load varying means).
Further, the generator 26 includes various accessories of the air conditioner when the generator 26 is not sufficiently driven to generate power, such as the first heat source side heat exchanger 14, the use side heat exchanger 16, and the second heat source side. A battery (secondary battery) 25 that supplies power to each fan motor, pump 27, and the like of the heat exchanger 34 is connected, and the battery 25 can be charged with the power generated by the generator 26.

電子制御ユニット(ECU)40は、本発明に係る空調装置の種々の制御を行う制御装置であり、冷房と暖房の切り替え、即ち四方弁17や四方弁37の切り替え、エンジン1の出力制御、発電機26の発電制御や開閉弁28や開閉弁29の開閉の他、補助圧縮機32の斜板の角度制御が可能に構成されている(発電制御手段、補助圧縮機負荷可変手段)。
以下、このように構成された本発明に係る空調装置の作用について説明する。
The electronic control unit (ECU) 40 is a control device that performs various controls of the air conditioner according to the present invention. Switching between cooling and heating, that is, switching of the four-way valve 17 and the four-way valve 37, output control of the engine 1, power generation In addition to power generation control of the machine 26 and opening / closing of the on-off valve 28 and on-off valve 29, it is possible to control the angle of the swash plate of the auxiliary compressor 32 (power generation control means, auxiliary compressor load variable means).
Hereinafter, an operation of the air conditioner according to the present invention configured as described above will be described.

「冷房時」
ECU40により、エンジン1が作動され、図1に示すように四方弁17及び四方弁37が切り替えられて空調装置が冷房状態に切り替えられると、主冷凍回路10の管路11を冷媒が矢印の方向に流れ、上述したように第1熱源側熱交換器14が凝縮器として機能するとともに利用側熱交換器16が蒸発器として機能して冷房が行われる。
"When cooling"
When the engine 1 is operated by the ECU 40 and the four-way valve 17 and the four-way valve 37 are switched as shown in FIG. 1 and the air conditioner is switched to the cooling state, the refrigerant passes through the pipe line 11 of the main refrigeration circuit 10 in the direction of the arrow. As described above, the first heat source side heat exchanger 14 functions as a condenser and the use side heat exchanger 16 functions as an evaporator for cooling.

このとき、ランキン回路20では冷媒がポンプ27の作動によって管路21を矢印の方向に流れ、エンジン1が暖機して冷却水通路2を流れる冷却水が昇温すると、冷却水の熱(廃熱)が蒸発器22を介して管路21内の冷媒に回収され、冷媒が昇温し蒸発する。
このように管路21内の冷媒が昇温し蒸発すると冷媒は高圧ガスとなり、この高圧の冷媒が膨張機24で膨張仕事をして膨張機24が回転駆動され、発電機26が発電駆動させられる。
At this time, in the Rankine circuit 20, the refrigerant flows in the direction of the arrow 21 by the operation of the pump 27, and when the engine 1 is warmed up and the temperature of the cooling water flowing through the cooling water passage 2 rises, Heat) is recovered by the refrigerant in the pipe line 21 through the evaporator 22, and the refrigerant is heated and evaporated.
Thus, when the refrigerant in the pipe line 21 rises in temperature and evaporates, the refrigerant becomes a high-pressure gas. The high-pressure refrigerant performs expansion work in the expander 24, the expander 24 is driven to rotate, and the generator 26 is driven to generate power. It is done.

発電機26による発電はECU40によって制御され、発電機26により上記第1熱源側熱交換器14、利用側熱交換器16、第2熱源側熱交換器34の各ファンモータやポンプ27等に必要十分な電力の発電が行われる。なお、バッテリ25の充電電力量が規定値(例えば、満充電値)より低下している場合には、バッテリ25への充電に必要な電力の発電も行われる。いずれにしても、発電機26は空調装置に必要十分な所定の電力を賄うべく発電が行われる。   The power generation by the generator 26 is controlled by the ECU 40, and is required by the generator 26 for each fan motor, pump 27, etc. of the first heat source side heat exchanger 14, the use side heat exchanger 16, and the second heat source side heat exchanger 34. Sufficient power is generated. In addition, when the charge electric energy of the battery 25 is lower than a specified value (for example, a full charge value), power generation necessary for charging the battery 25 is also performed. In any case, the generator 26 generates power so as to cover the predetermined power necessary and sufficient for the air conditioner.

膨張機24の回転駆動力は補助圧縮機32にも伝達され、補助冷凍回路30の補助圧縮機32も膨張機24によって駆動される。補助圧縮機32が駆動されると、補助冷凍回路30の管路31内を冷媒が矢印の方向に循環し、冷房時には冷媒の流れ方向が補助圧縮機32から第2熱源側熱交換器34となるよう四方弁37は切り替えられているので、補助熱交換器36が蒸発器として機能する。   The rotational driving force of the expander 24 is also transmitted to the auxiliary compressor 32, and the auxiliary compressor 32 of the auxiliary refrigeration circuit 30 is also driven by the expander 24. When the auxiliary compressor 32 is driven, the refrigerant circulates in the pipe line 31 of the auxiliary refrigeration circuit 30 in the direction of the arrow, and during cooling, the refrigerant flow direction changes from the auxiliary compressor 32 to the second heat source side heat exchanger 34. Since the four-way valve 37 is switched, the auxiliary heat exchanger 36 functions as an evaporator.

補助熱交換器36が蒸発器として機能すると、主冷凍回路10の凝縮器としての第1熱源側熱交換器14を経た後の冷媒が補助冷凍回路30の管路31内の冷媒によって過冷却(サブクール)されることになる。即ち、冷房時には、主冷凍回路10にて凝縮された冷媒が補助冷凍回路30にて蒸発した冷媒によってさらに冷却される。つまり、主冷凍回路10の冷媒の冷却が補助冷凍回路30の冷媒との熱交換によって補助される。   When the auxiliary heat exchanger 36 functions as an evaporator, the refrigerant after passing through the first heat source side heat exchanger 14 as the condenser of the main refrigeration circuit 10 is supercooled by the refrigerant in the pipe line 31 of the auxiliary refrigeration circuit 30 ( Sub-cool). That is, during cooling, the refrigerant condensed in the main refrigeration circuit 10 is further cooled by the refrigerant evaporated in the auxiliary refrigeration circuit 30. That is, the cooling of the refrigerant in the main refrigeration circuit 10 is assisted by heat exchange with the refrigerant in the auxiliary refrigeration circuit 30.

このように、本発明に係る空調装置では、エンジン1の廃熱がランキン回路20を介して回収され、発電機26によって空調装置に必要十分な所定の電力の発電が行われるが、冷房時には、回収して発電に利用されなかった残りの廃熱についても補助冷凍回路30を介して効率よく冷房に利用され、空調装置の冷房効率の向上が図られる。
ところで、エンジン1が未だ暖機しておらずエンジン1の廃熱が十分でなく発電機26の発電能力が低い場合や、空調装置に必要十分な所定の電力が大き過ぎて発電機26の発電能力が追いつかないような場合のように、発電機26の発電電力が所定の電力未満のときには、ECU40によって発電機26の発電駆動が優先的に最大限実施され、バッテリ25の充放電をも考慮して空調装置に必要十分な所定の電力が確保される。
As described above, in the air conditioner according to the present invention, the waste heat of the engine 1 is recovered through the Rankine circuit 20, and the generator 26 generates power with a predetermined and sufficient power necessary for the air conditioner. The remaining waste heat that is recovered and not used for power generation is also efficiently used for cooling via the auxiliary refrigeration circuit 30, and the cooling efficiency of the air conditioner is improved.
By the way, when the engine 1 is not yet warmed up and the waste heat of the engine 1 is not sufficient and the power generation capacity of the generator 26 is low, or the predetermined power necessary and sufficient for the air conditioner is too large, When the generated power of the generator 26 is less than the predetermined power as in the case where the capacity cannot catch up, the ECU 40 preferentially implements the power generation drive of the generator 26 preferentially and also considers charging / discharging of the battery 25. Thus, necessary and sufficient predetermined power is secured for the air conditioner.

このように発電機26の発電駆動が優先的に実施される場合、補助圧縮機32が駆動されると却って負荷となり発電機26による発電の妨げとなる。そこで、ここでは、発電機26の発電駆動を優先的に実施する際、補助圧縮機32の斜板の角度を小さく制御する。これにより、補助圧縮機32の負荷が軽減されて発電機26による発電が促進され、空調装置に必要十分な所定の電力が確保される。   Thus, when the power generation drive of the generator 26 is preferentially performed, when the auxiliary compressor 32 is driven, it becomes a load and prevents power generation by the generator 26. Therefore, here, when the power generation drive of the generator 26 is preferentially performed, the angle of the swash plate of the auxiliary compressor 32 is controlled to be small. Thereby, the load of the auxiliary compressor 32 is reduced, power generation by the generator 26 is promoted, and necessary and sufficient predetermined power is secured for the air conditioner.

「暖房時」
ECU40により、エンジン1が作動され、図2に示すように四方弁17及び四方弁37が切り替えられて空調装置が暖房状態に切り替えられると、主冷凍回路10の管路11を冷媒が矢印の方向に流れ、上述したように利用側熱交換器16が凝縮器として機能するとともに第1熱源側熱交換器14が蒸発器として機能して暖房が行われる。
"When heating"
When the engine 1 is operated by the ECU 40 and the four-way valve 17 and the four-way valve 37 are switched as shown in FIG. 2 and the air conditioner is switched to the heating state, the refrigerant passes through the pipe line 11 of the main refrigeration circuit 10 in the direction of the arrow. As described above, the use side heat exchanger 16 functions as a condenser and the first heat source side heat exchanger 14 functions as an evaporator to perform heating.

このとき、ランキン回路20では冷媒がポンプ27の作動によって管路21を矢印の方向に流れ、エンジン1が暖機して冷却水通路2を流れる冷却水が昇温すると、冷却水の熱(廃熱)が蒸発器22を介して管路21内の冷媒に回収され、冷媒が昇温し蒸発する。これにより、上記同様、膨張機24が回転駆動され、発電機26が発電駆動させられるとともに補助圧縮機32が駆動される。なお、発電機26の作動は上記冷房時と同様であり、説明を省略する。   At this time, in the Rankine circuit 20, the refrigerant flows in the direction of the arrow 21 by the operation of the pump 27, and when the engine 1 is warmed up and the temperature of the cooling water flowing through the cooling water passage 2 rises, Heat) is recovered by the refrigerant in the pipe line 21 through the evaporator 22, and the refrigerant is heated and evaporated. As a result, similarly to the above, the expander 24 is driven to rotate, the generator 26 is driven to generate power, and the auxiliary compressor 32 is driven. The operation of the generator 26 is the same as that at the time of cooling, and a description thereof is omitted.

膨張機24によって補助圧縮機32が駆動されると、補助冷凍回路30の管路31内を冷媒が矢印の方向に循環し、暖房時には冷媒の流れ方向が補助圧縮機32から補助熱交換器36となるよう四方弁37は切り替えられているので、補助熱交換器36が凝縮器(放熱器)として機能する。
補助熱交換器36が凝縮器として機能すると、主冷凍回路10の蒸発器としての第1熱源側熱交換器14で外気より吸熱された冷媒が補助冷凍回路30の管路31内の冷媒によってさらに吸熱されることになる。即ち、暖房時には、主冷凍回路10にて吸熱された冷媒が補助冷凍回路30にて凝縮された冷媒によってさらに吸熱される。つまり、主冷凍回路10の冷媒の吸熱が補助冷凍回路30の冷媒との熱交換によって補助される。
When the auxiliary compressor 32 is driven by the expander 24, the refrigerant circulates in the pipe line 31 of the auxiliary refrigeration circuit 30 in the direction of the arrow, and the flow direction of the refrigerant is changed from the auxiliary compressor 32 to the auxiliary heat exchanger 36 during heating. Since the four-way valve 37 is switched so as to become, the auxiliary heat exchanger 36 functions as a condenser (heat radiator).
When the auxiliary heat exchanger 36 functions as a condenser, the refrigerant absorbed from the outside air by the first heat source side heat exchanger 14 as the evaporator of the main refrigeration circuit 10 is further increased by the refrigerant in the pipe 31 of the auxiliary refrigeration circuit 30. The heat is absorbed. That is, during heating, the refrigerant absorbed in the main refrigeration circuit 10 is further absorbed by the refrigerant condensed in the auxiliary refrigeration circuit 30. That is, the heat absorption of the refrigerant in the main refrigeration circuit 10 is assisted by heat exchange with the refrigerant in the auxiliary refrigeration circuit 30.

このように、上記冷房時と同様、エンジン1の廃熱がランキン回路20を介して回収され、発電機26によって空調装置に必要十分な所定の電力の発電が行われるが、暖房時には、回収して発電に利用されなかった残りの廃熱についても補助冷凍回路30を介して効率よく暖房に利用され、空調装置の暖房効率の向上が図られる。
また、上記冷房時と同様、発電機26の発電電力が所定の電力未満であり発電機26の発電駆動を優先的に実施する際には、補助圧縮機32の斜板の角度を小さく制御すればよく、これにより空調装置に必要十分な所定の電力が確保される。
As described above, the waste heat of the engine 1 is recovered through the Rankine circuit 20 and the generator 26 generates a predetermined amount of power necessary and sufficient for the air conditioner, but is recovered during heating. The remaining waste heat that has not been used for power generation is also efficiently used for heating via the auxiliary refrigeration circuit 30, and the heating efficiency of the air conditioner is improved.
As in the case of cooling, when the power generated by the generator 26 is less than the predetermined power and the generator 26 is driven preferentially, the angle of the swash plate of the auxiliary compressor 32 is controlled to be small. In this way, necessary and sufficient predetermined power is secured for the air conditioner.

以上のように、本発明に係る空調装置によれば、エンジン1により主冷凍回路10の主圧縮機12を駆動させて冷房または暖房を行うものにおいて、ランキン回路20を用いてエンジン1の廃熱を回収し、膨張機24を回転駆動させて発電機26を発電駆動させて空調装置に必要十分な所定の電力を確保するとともに、膨張機24の回転駆動力で補助冷凍回路30の補助圧縮機32をも駆動させて主冷凍回路10の冷媒の放吸熱を補助するようにしている。   As described above, according to the air conditioner according to the present invention, the engine 1 drives the main compressor 12 of the main refrigeration circuit 10 to perform cooling or heating, and the Rankine circuit 20 is used to waste heat of the engine 1. And the expander 24 is rotationally driven to drive the generator 26 to generate power, ensuring a necessary and sufficient predetermined power for the air conditioner, and the auxiliary compressor of the auxiliary refrigeration circuit 30 by the rotational driving force of the expander 24 32 is also driven to assist in releasing and absorbing heat of the refrigerant in the main refrigeration circuit 10.

これにより、エンジン1の廃熱をランキン回路20で回収して電力として有効に利用できるとともに、発電機26で余剰の電力を生起させることもなく、発電機26の負荷の低下により膨張機24を無駄に高回転させて破損させることもなく、回収して発電に利用されなかった残りの廃熱の全てを補助冷凍回路30を介して無駄なく効率よく冷房と暖房とに利用することができる。   As a result, the waste heat of the engine 1 can be recovered by the Rankine circuit 20 and used effectively as electric power, and the expander 24 can be reduced by reducing the load on the generator 26 without causing surplus electric power to be generated by the generator 26. The remaining waste heat that is recovered and not used for power generation can be efficiently and efficiently used for cooling and heating via the auxiliary refrigeration circuit 30 without causing unnecessary high rotation and damage.

このようにエンジン1の廃熱を効率よく冷房と暖房とに利用することができることになると、エンジン1や主圧縮機12等の空調装置の構成要素にそれほど高い能力を要求する必要がなくなり、これらエンジン1を含めた空調装置の構成要素を大型化することなく高効率な空調装置を実現することができる。
また、発電機26の発電電力が所定の電力未満であるときには、発電機26の発電駆動を優先的に実施し、この際、補助圧縮機32の斜板の角度を小さく制御するので、補助圧縮機32の負荷を軽減して発電機26による発電を促進でき、空調装置に必要十分な所定の電力を確保するようにできる。この場合、発電機26の発電電力が所定の電力に達したときには、補助圧縮機32の斜板の角度を大きく制御して補助圧縮機32の負荷を増加させるので、発電機26の発電駆動を優先的に実施しつつ、回収された廃熱の全てを極めて効率よく冷房と暖房とに利用することができる。
If the waste heat of the engine 1 can be efficiently used for cooling and heating in this way, it is not necessary to request a high capacity for the components of the air conditioner such as the engine 1 and the main compressor 12. A highly efficient air conditioner can be realized without increasing the size of the components of the air conditioner including the engine 1.
Further, when the power generated by the generator 26 is less than the predetermined power, the power generation drive of the generator 26 is preferentially performed, and at this time, the angle of the swash plate of the auxiliary compressor 32 is controlled to be small. It is possible to reduce the load on the machine 32 and promote the power generation by the generator 26, and to ensure the necessary and sufficient predetermined power for the air conditioner. In this case, when the generated power of the generator 26 reaches a predetermined power, the angle of the swash plate of the auxiliary compressor 32 is largely controlled to increase the load of the auxiliary compressor 32. While implementing with priority, all of the recovered waste heat can be used for cooling and heating extremely efficiently.

また、主冷凍回路10の管路11とランキン回路20の管路21とは一部分が共用化され、主冷凍回路10の第1熱源側熱交換器14、利用側熱交換器16は同時にランキン回路20の凝縮器と兼用されているので、空調装置をコンパクトに構成できる。そして、このように共用化することで、特に暖房時において、廃熱を回収した冷媒が凝縮器としての利用側熱交換器16に直接流入することになり、回収した廃熱を直接的にしてより一層効率よく暖房に利用することができる。   Further, the pipe line 11 of the main refrigeration circuit 10 and the pipe line 21 of the Rankine circuit 20 are partially shared, and the first heat source side heat exchanger 14 and the use side heat exchanger 16 of the main refrigeration circuit 10 are simultaneously provided with the Rankine circuit. Since it is shared with 20 condensers, the air conditioner can be made compact. And by sharing in this way, especially during heating, the refrigerant from which the waste heat has been recovered will flow directly into the use side heat exchanger 16 as a condenser, and the recovered waste heat will be made direct. It can be used for heating even more efficiently.

また、ここでは、主冷凍回路10の管路11にブリッジ回路部19を設け、主冷凍回路10において補助熱交換器36を冷媒の流れ方向で視て常に第1熱源側熱交換器(室外機)14の下流側に位置させるようにしているので、冷房時及び暖房時共に補助熱交換器36を利用側熱交換器(室内機)16の直上流側に位置させるようにでき、ランキン回路20で回収した廃熱により主冷凍回路10の冷媒の放吸熱を確実に補助するようにできる。   In addition, here, the bridge circuit unit 19 is provided in the pipe line 11 of the main refrigeration circuit 10, and the first heat source side heat exchanger (outdoor unit) is always viewed in the main refrigeration circuit 10 when the auxiliary heat exchanger 36 is viewed in the refrigerant flow direction. 14), the auxiliary heat exchanger 36 can be positioned immediately upstream of the use side heat exchanger (indoor unit) 16 during both cooling and heating, and the Rankine circuit 20 It is possible to reliably assist the heat release and absorption of the refrigerant in the main refrigeration circuit 10 by the waste heat recovered in step (b).

以上で本発明の実施形態についての説明を終えるが、本発明は上記実施形態に限定されるものではない。
例えば、上記実施形態では、補助圧縮機32の斜板の角度を変えることで補助圧縮機負荷可変手段を構成するようにしたが、補助圧縮機32を例えば多気筒式として気筒数を可変する等して補助圧縮機負荷可変手段を構成することもでき、このようにしても上記同様の効果を得ることができる。
This is the end of the description of the embodiment of the present invention, but the present invention is not limited to the above embodiment.
For example, in the above embodiment, the auxiliary compressor load variable means is configured by changing the angle of the swash plate of the auxiliary compressor 32. However, the auxiliary compressor 32 is, for example, a multi-cylinder type and the number of cylinders is changed. Thus, the auxiliary compressor load variable means can be configured, and even in this way, the same effect as described above can be obtained.

また、上記実施形態では、エンジン1としてガスエンジンを採用したが、廃熱を利用可能であればエンジン1はガソリンエンジン、ディーゼルエンジン等であってもよい。
また、上記実施形態では、エンジン1の冷却水通路2から廃熱を回収しているが、これとは別に或いはこれと共に、エンジン1の排気通路から廃熱を回収するように構成してもよい。
Moreover, in the said embodiment, although the gas engine was employ | adopted as the engine 1, if the waste heat can be utilized, the engine 1 may be a gasoline engine, a diesel engine, etc.
Moreover, in the said embodiment, although waste heat is collect | recovered from the cooling water path 2 of the engine 1, you may comprise so that waste heat may be collect | recovered from the exhaust path of the engine 1 separately or with this. .

また、上記実施形態では、主冷凍回路10の管路11とランキン回路20の管路21とを部分的に共用化するようにしているが、必ずしも共用化しなくてもよい。   Moreover, in the said embodiment, although the pipe line 11 of the main refrigeration circuit 10 and the pipe line 21 of the Rankine circuit 20 are partially shared, it does not necessarily need to be shared.

1 エンジン
2 冷却水通路
10 主冷凍回路(第1の冷凍回路)
14 第1熱源側熱交換器
16 利用側熱交換器
20 ランキン回路
22 蒸発器
24 膨張機
26 発電機
30 補助冷凍回路(第2の冷凍回路)
32 補助圧縮機
34 第2熱源側熱交換器
36 補助熱交換器
40 電子制御ユニット(ECU)(発電制御手段、補助圧縮機負荷可変手段)
1 Engine 2 Cooling water passage 10 Main refrigeration circuit (first refrigeration circuit)
14 first heat source side heat exchanger 16 use side heat exchanger 20 Rankine circuit 22 evaporator 24 expander 26 generator 30 auxiliary refrigeration circuit (second refrigeration circuit)
32 Auxiliary compressor 34 Second heat source side heat exchanger 36 Auxiliary heat exchanger 40 Electronic control unit (ECU) (power generation control means, auxiliary compressor load variable means)

Claims (7)

内燃機関で主圧縮機を駆動させることで第1の冷媒を第1の冷凍回路内で第1熱源側熱交換器及び利用側熱交換器を介し相変化させながら循環させて冷房または暖房を行う空調装置において、
作動流体の循環路に、前記内燃機関の廃熱により作動流体を加熱して蒸発させる蒸発器、該蒸発器を経由した作動流体を膨張させて回転駆動力を発電機に伝達する膨張機、該膨張機を経由した作動流体を凝縮させる凝縮器、該凝縮器を経由した作動流体を前記蒸発器に送出するポンプが順次介装されたランキン回路と、
前記膨張機に前記発電機とともに連結された補助圧縮機を該膨張機の回転駆動力で駆動させることで第2の冷媒を相変化させながら循環させる第2の冷凍回路とを備え、
前記第1の冷凍回路と前記第2の冷凍回路との間には前記第1の冷凍回路内の第1の冷媒と前記第2の冷凍回路内の第2の冷媒との熱交換を行う補助熱交換器が、第1の冷媒の流れ方向で視て前記第1の冷凍回路の第1熱源側熱交換器の下流側に該第1熱源側熱交換器と直列に配設されてなることを特徴とする空調装置。
By driving the main compressor in the internal combustion engine, the first refrigerant is circulated while changing the phase in the first refrigeration circuit via the first heat source side heat exchanger and the use side heat exchanger, thereby performing cooling or heating. In the air conditioner,
An evaporator that heats and evaporates the working fluid by waste heat of the internal combustion engine in the working fluid circulation path; an expander that expands the working fluid that passes through the evaporator and transmits a rotational driving force to the generator; A Rankine circuit in which a condenser that condenses the working fluid that has passed through the expander, and a pump that sequentially sends the working fluid that has passed through the condenser to the evaporator;
A second refrigeration circuit that circulates while changing the phase of the second refrigerant by driving an auxiliary compressor connected to the expander together with the generator by the rotational driving force of the expander;
Wherein between the first refrigeration circuit and the second refrigeration circuit, performs heat exchange with the second refrigerant of the first of the first within the second refrigeration circuit the refrigerant in the refrigerant circuit An auxiliary heat exchanger is arranged in series with the first heat source side heat exchanger on the downstream side of the first heat source side heat exchanger of the first refrigeration circuit as viewed in the flow direction of the first refrigerant. An air conditioner characterized by that.
前記発電機の発電を制御する発電制御手段を有し、
該発電制御手段は、空調装置に必要十分な所定の電力を賄うよう前記発電機の発電を制御することを特徴とする、請求項1記載の空調装置。
Power generation control means for controlling the power generation of the generator,
2. The air conditioner according to claim 1, wherein the power generation control means controls the power generation of the generator so as to cover the predetermined power necessary and sufficient for the air conditioner.
前記第2の冷凍回路には前記補助圧縮機の負荷を可変させる補助圧縮機負荷可変手段を有し、
該補助圧縮機負荷可変手段は、前記発電機の発電電力が前記所定の電力未満のときには前記補助圧縮機の負荷を軽減させることを特徴とする、請求項2記載の空調装置。
The second refrigeration circuit has auxiliary compressor load varying means for varying the load of the auxiliary compressor,
The air conditioner according to claim 2, wherein the auxiliary compressor load variable means reduces the load of the auxiliary compressor when the power generated by the generator is less than the predetermined power.
前記補助圧縮機負荷可変手段は、前記発電機の発電電力が前記所定の電力に達すると前記補助圧縮機負荷可変手段により前記補助圧縮機の負荷を増加させて前記膨張機の回転駆動力で該補助圧縮機を駆動させることを特徴とする、請求項3記載の空調装置。   The auxiliary compressor load variable means increases the load of the auxiliary compressor by the auxiliary compressor load variable means when the generated power of the generator reaches the predetermined power, and uses the rotational driving force of the expander to increase the load of the auxiliary compressor. The air conditioner according to claim 3, wherein the auxiliary compressor is driven. 前記第1の冷凍回路の第1熱源側熱交換器は、冷房時には凝縮器として機能する一方、暖房時には蒸発器として機能するものであって、
前記第1の冷凍回路には、前記第1の冷凍回路の第1熱源側熱交換器に冷房時及び暖房時のいずれにも同一方向に第1の冷媒が流れるよう第1の冷媒の流れを切り替える冷媒方向切替手段が設けられてなることを特徴とする、請求項1乃至4のいずれか記載の空調装置。
The first heat source side heat exchanger of the first refrigeration circuit functions as a condenser during cooling, and functions as an evaporator during heating,
The first refrigerant flows in the first refrigeration circuit so that the first refrigerant flows in the same direction in the first heat source side heat exchanger of the first refrigeration circuit during both cooling and heating. wherein the refrigerant direction switching means comprises been found provided to switch, the air conditioner according to any one of claims 1 to 4.
前記ランキン回路と前記第1の冷凍回路とは一部分が共用化され、前記ランキン回路の作動流体と前記第1の冷凍回路の第1の冷媒とは同一であり、
前記ランキン回路の前記凝縮器は、冷房時には前記第1の冷凍回路の第1熱源側熱交換器と兼用され、暖房時には前記第1の冷凍回路の利用側熱交換器と兼用されてなることを特徴とする、請求項1乃至5のいずれか記載の空調装置。
The Rankine circuit and the first refrigeration circuit are partially shared, and the working fluid of the Rankine circuit and the first refrigerant of the first refrigeration circuit are the same,
The condenser of the Rankine circuit is used also as a first heat source side heat exchanger of the first refrigeration circuit during cooling, and also used as a use side heat exchanger of the first refrigeration circuit during heating. The air conditioner according to any one of claims 1 to 5, wherein the air conditioner is characterized.
前記内燃機関はガスエンジンであることを特徴とする、請求項1乃至6のいずれか記載の空調装置。   The air conditioner according to any one of claims 1 to 6, wherein the internal combustion engine is a gas engine.
JP2009230119A 2009-10-02 2009-10-02 Air conditioner Active JP5517544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009230119A JP5517544B2 (en) 2009-10-02 2009-10-02 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009230119A JP5517544B2 (en) 2009-10-02 2009-10-02 Air conditioner

Publications (2)

Publication Number Publication Date
JP2011075256A JP2011075256A (en) 2011-04-14
JP5517544B2 true JP5517544B2 (en) 2014-06-11

Family

ID=44019426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009230119A Active JP5517544B2 (en) 2009-10-02 2009-10-02 Air conditioner

Country Status (1)

Country Link
JP (1) JP5517544B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012233461A (en) * 2011-05-09 2012-11-29 Toyota Industries Corp Rankine cycle apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726362A (en) * 1980-07-24 1982-02-12 Matsushita Electric Ind Co Ltd Air conditioner
JPS5925060U (en) * 1982-08-10 1984-02-16 株式会社東芝 Rankine cycle air conditioning system
JPH04143559A (en) * 1990-10-02 1992-05-18 Matsushita Electric Ind Co Ltd Heat pumping installation
JPH09273824A (en) * 1996-04-08 1997-10-21 Daikin Ind Ltd Air conditioning apparatus
JP4463659B2 (en) * 2004-10-29 2010-05-19 株式会社デンソー Refrigeration equipment with waste heat utilization device
JP2007078260A (en) * 2005-09-14 2007-03-29 Sanden Corp Thermal drive power generation air conditioning device

Also Published As

Publication number Publication date
JP2011075256A (en) 2011-04-14

Similar Documents

Publication Publication Date Title
CN109228824B (en) Integrated battery, motor and electric control integrated heat management system based on heat pump air conditioner and method thereof
JP6916600B2 (en) Vehicle battery cooling system
JP7250658B2 (en) Vehicle heat pump system
US7536869B2 (en) Vapor compression refrigerating apparatus
KR102533382B1 (en) Thermal management system
CN101918695A (en) Waste heat utilizing device for internal combustion engine
JP2008008224A (en) Waste heat utilization device
US7155927B2 (en) Exhaust heat utilizing refrigeration system
KR102537052B1 (en) Thermal management system
JP2008308080A (en) Heat absorption and radiation system for automobile, and control method thereof
RU2753503C1 (en) Vehicle temperature control system
US20210276398A1 (en) Vehicle heat exchange system
JP5517544B2 (en) Air conditioner
CN112046237A (en) Thermal management system, control method and electric vehicle
JP6351478B2 (en) Air conditioning system
JP5182561B2 (en) Heat utilization device
JP4240837B2 (en) Refrigeration equipment
JP5842668B2 (en) Rankine cycle
JP4660908B2 (en) Air conditioner
JP6448295B2 (en) Air conditioning system
JP4791055B2 (en) Waste heat recovery air conditioner and railway vehicle
JP3664587B2 (en) Air conditioner
JP2004293881A (en) Engine driven heat pump device
JP4631426B2 (en) Vapor compression refrigerator
JP4463659B2 (en) Refrigeration equipment with waste heat utilization device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140401

R150 Certificate of patent or registration of utility model

Ref document number: 5517544

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350