JP5515305B2 - Power converter control method - Google Patents

Power converter control method Download PDF

Info

Publication number
JP5515305B2
JP5515305B2 JP2009019730A JP2009019730A JP5515305B2 JP 5515305 B2 JP5515305 B2 JP 5515305B2 JP 2009019730 A JP2009019730 A JP 2009019730A JP 2009019730 A JP2009019730 A JP 2009019730A JP 5515305 B2 JP5515305 B2 JP 5515305B2
Authority
JP
Japan
Prior art keywords
power
storage means
voltage
operation state
command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009019730A
Other languages
Japanese (ja)
Other versions
JP2010178534A (en
Inventor
翔 佐藤
貫太郎 吉本
祐樹 中島
研吾 毎川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009019730A priority Critical patent/JP5515305B2/en
Publication of JP2010178534A publication Critical patent/JP2010178534A/en
Application granted granted Critical
Publication of JP5515305B2 publication Critical patent/JP5515305B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電力変換装置の制御方法に係り、特に、1つの電源から他の電源へ効率良く供給する技術に関する。   The present invention relates to a method for controlling a power converter, and more particularly to a technique for efficiently supplying power from one power source to another power source.

複数電源を備え、各電源から供給する電力を任意の値に制御しモータを駆動する構成が特開2006−33956号公報(特許文献1)に開示されている。該特許文献1では、DC−DCコンバータを用いずに、複数電源を用いたモータ駆動システムをより低損失で、より小型に、より低コストにしつつ、各電源から供給する電力を任意の値に制御可能とすることを目的としている。   Japanese Patent Laying-Open No. 2006-33956 (Patent Document 1) discloses a configuration in which a plurality of power sources are provided, and the power supplied from each power source is controlled to an arbitrary value to drive a motor. In Patent Document 1, the power supplied from each power source is set to an arbitrary value while the motor drive system using a plurality of power sources is made to have a lower loss, a smaller size, and a lower cost without using a DC-DC converter. It is intended to be controllable.

特開2006−33956号公報JP 2006-33956 A

上述した特許文献1に記載された制御方法では、一方の電源から他方の電源に電力を供給する際に、一方の電源によるモータへの電圧指令値を大きく設定し、この大きく設定した分の電力を他方の電源に供給するようにしている。このため、モータが大きく力行して他方の電源で回生するため、モータの相電流リプルが大きくなるという問題が発生する。   In the control method described in Patent Document 1 described above, when power is supplied from one power source to the other power source, a voltage command value to the motor by one power source is set to be large, and the power corresponding to this large set power is set. Is supplied to the other power source. For this reason, since a motor carries out a big power and regenerates with the other power supply, the problem that the phase current ripple of a motor becomes large generate | occur | produces.

本発明は、このような従来の課題を解決するためになされたものであり、その目的とするところは、出力電圧が異なる2つの蓄電手段のうちの、一方の蓄電手段から他方の蓄電手段に、高効率で電力を供給することが可能な電力変換装置の制御方法を提供することにある。   The present invention has been made to solve such a conventional problem, and an object of the present invention is to change from one power storage unit to the other power storage unit of two power storage units having different output voltages. Another object of the present invention is to provide a method for controlling a power converter capable of supplying power with high efficiency.

本発明では、2つのDC電源の低電位側または高電位側のうちの一方の電極が共通電力線にて接続され、且つ、共通電力線とモータがグランドスイッチを介して接続され、更に、一方のDC電源の、低電位側または高電位側のうちの他方の電極とモータとが第1スイッチを介して接続され、且つ、他方のDC電源の、低電位側または高電位側のうちの他方の電極とモータとが第2スイッチを介して接続される。また、第1スイッチ、及び第2スイッチを制御する制御装置は、少なくとも1回の制御周期期間で、グランドスイッチを遮断すると共に、2つのDC電源の各出力電力を指令する電力指令と、2つのDC電源の各出力電圧と、電圧指令と、モータ電力とに基づき、第1スイッチ、第2スイッチの双方をオン、オフ操作する電源直列運転状態でモータの駆動電圧を出力する。   In the present invention, one of the electrodes on the low potential side or the high potential side of the two DC power sources is connected by a common power line, the common power line and the motor are connected via a ground switch, and one DC power source is further connected. The other electrode on the low potential side or the high potential side of the power source is connected to the motor via the first switch, and the other electrode on the low potential side or the high potential side of the other DC power source is connected. And the motor are connected via the second switch. In addition, the control device that controls the first switch and the second switch shuts off the ground switch in at least one control cycle period, and commands a power command that commands each output power of two DC power sources, Based on each output voltage of the DC power supply, voltage command, and motor power, the drive voltage of the motor is output in a power supply series operation state in which both the first switch and the second switch are turned on and off.

本発明によれば、電源直列運転状態を実行する場合に、グランドスイッチを遮断した状態で、第1スイッチ、及び第2スイッチをオン、オフ操作することにより、モータに駆動電圧を出力する。このようにモータを駆動すると、第1の蓄電手段と第2の蓄電手段が逆直列に接続された状態でモータが駆動されるので、2つの電圧指令値を用いることなく一方の蓄電手段は放電、他方の蓄電手段は充電を行うため、相電流のリプル増加させず、更に、スイッチング電圧が各蓄電手段の電圧の差となるため、スイッチング損失を低減し高効率に蓄電手段間での電力の移動が可能となる。
According to the present invention, when the power supply series operation state is executed, the drive voltage is output to the motor by turning on and off the first switch and the second switch with the ground switch cut off. When the motor is driven in this way, the motor is driven in a state where the first power storage means and the second power storage means are connected in anti-series, so that one power storage means is discharged without using two voltage command values. Since the other power storage means is charged, the ripple of the phase current is not increased, and the switching voltage becomes the voltage difference between the power storage means, so that the switching loss is reduced and the power between the power storage means is highly efficient. Can be moved.

本発明に係る制御方法が適用される電力変換装置の構成を示すブロック図である。It is a block diagram which shows the structure of the power converter device to which the control method which concerns on this invention is applied. 本発明に係る電力変換装置の、電力変換器及びマルチ出力DC電源の構成を示すブロック図である。It is a block diagram which shows the structure of the power converter and multi-output DC power supply of the power converter device which concerns on this invention. 本発明に係る電力変換装置の、第1の運転状態における各スイッチの接続状態を示す説明図である。It is explanatory drawing which shows the connection state of each switch in the 1st driving | running state of the power converter device which concerns on this invention. 本発明に係る電力変換装置の、第2の運転状態における各スイッチの接続状態を示す説明図である。It is explanatory drawing which shows the connection state of each switch in the 2nd driving | running state of the power converter device which concerns on this invention. 本発明に係る電力変換装置の、第3の運転状態における各スイッチの接続状態を示す説明図である。It is explanatory drawing which shows the connection state of each switch in the 3rd driving | running state of the power converter device which concerns on this invention. 本発明に係る電力変換装置の、変調率補正のイメージを示す説明図である。It is explanatory drawing which shows the image of a modulation factor correction | amendment of the power converter device which concerns on this invention. 本発明に係る電力変換装置の、電流・電力変換手段の構成を示すブロック図である。It is a block diagram which shows the structure of the electric current / power conversion means of the power converter device which concerns on this invention. 本発明に係る電力変換装置の、変調率演算手段の構成を示すブロック図である。It is a block diagram which shows the structure of the modulation factor calculating means of the power converter device which concerns on this invention. 本発明に係る電力変換装置の、運転割合生成手段の構成を示すブロック図である。It is a block diagram which shows the structure of the driving | running | working ratio production | generation means of the power converter device which concerns on this invention. 本発明に係る電力変換装置の、電圧分配手段の構成を示すブロック図である。It is a block diagram which shows the structure of the voltage distribution means of the power converter device which concerns on this invention. 本発明に係る電力変換装置の、最終運転割合生成手段の構成を示すブロック図である。It is a block diagram which shows the structure of the final operation ratio production | generation means of the power converter device which concerns on this invention. 本発明の第2実施形態に係る電力変換装置の、最終運転割合生成手段の構成を示すブロック図である。It is a block diagram which shows the structure of the final operation ratio production | generation means of the power converter device which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る電力変換装置の、最終運転割合生成手段の構成を示すブロック図である。It is a block diagram which shows the structure of the final operation ratio production | generation means of the power converter device which concerns on 3rd Embodiment of this invention. 本発明に係る電力変換装置の、選択運転状態の設定条件を示す対応マップである。It is a corresponding | compatible map which shows the setting conditions of the selection driving | running state of the power converter device which concerns on this invention. 本発明に係る電力変換装置の、選択電源の設定条件を示す対応マップである。It is a correspondence map which shows the setting conditions of the selected power supply of the power converter device which concerns on this invention.

以下、本発明の実施形態を図面に基づいて説明する。図1は、本発明の第1実施形態に係る制御方法が適用される電力変換装置の構成を示すブロックである。図1に示すように、この電力変換装置は、出力電圧が異なる2つのDC電源1-1(第1の蓄電手段)、1-2(第2の蓄電手段)を備えるマルチ出力DC電源1と、3相交流モータ2(以下、単に「モータ」と称する)と、マルチ出力DC電源1より出力される電圧を用いてモータ2に印加する電圧を生成する電力変換器3と、該電力変換器3を駆動してモータ2のトルクを制御すると共に、2つのDC電源1-1、1-2のそれぞれから供給される電力の分配比率を制御する制御装置4と、を備えている。なお、第1の蓄電手段、及び第2の蓄電手段として、コンデンサを用いることも可能である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram illustrating a configuration of a power conversion device to which a control method according to a first embodiment of the present invention is applied. As shown in FIG. 1, this power conversion apparatus includes a multi-output DC power source 1 including two DC power sources 1-1 (first power storage unit) and 1-2 (second power storage unit) having different output voltages. A three-phase AC motor 2 (hereinafter simply referred to as “motor”), a power converter 3 that generates a voltage to be applied to the motor 2 using a voltage output from the multi-output DC power source 1, and the power converter 3 and a control device 4 for controlling the torque of the motor 2 and controlling the distribution ratio of the electric power supplied from each of the two DC power sources 1-1 and 1-2. Note that a capacitor may be used as the first power storage unit and the second power storage unit.

マルチ出力DC電源1は、DC電源1-1の低電位側端子と、DC電源1-2の低電位側端子が接続されて共通電位(以下、「GND電位」と称する)が構成されている。このマルチ出力DC電源1は、GND電位、DC電源1-1の電位Vdc_1、DC電源1-2の電位Vdc_2の、3通りの電位の電圧を出力する電源である。モータ2は、後述する電力変換器3より出力される交流電圧により駆動される。   In the multi-output DC power source 1, a low potential side terminal of the DC power source 1-1 and a low potential side terminal of the DC power source 1-2 are connected to form a common potential (hereinafter referred to as “GND potential”). . The multi-output DC power source 1 is a power source that outputs three potential voltages: a GND potential, a potential Vdc_1 of the DC power source 1-1, and a potential Vdc_2 of the DC power source 1-2. The motor 2 is driven by an AC voltage output from a power converter 3 described later.

電力変換器3は、マルチ出力DC電源1より出力される3通りの電位による電圧に基づき、モータ2に印加する電圧を生成する直流・交流電力変換器である。図2は、電力変換器3及びマルチDC電源1の回路図である。図示のように、この電力変換器3は、U、V、Wの各相で同一の構成を有するスイッチ手段3-3、3-4、3-5を備えている。   The power converter 3 is a DC / AC power converter that generates a voltage to be applied to the motor 2 on the basis of voltages based on three potentials output from the multi-output DC power source 1. FIG. 2 is a circuit diagram of the power converter 3 and the multi-DC power supply 1. As shown in the figure, this power converter 3 includes switch means 3-3, 3-4, and 3-5 having the same configuration in each of the U, V, and W phases.

以下、U相のスイッチ手段3-3について説明すると、DC電源1-1のプラス側端子が、電線16を介してスイッチ104a、104bに接続され、更に、スイッチ107a、電線15(共通電力線)を介してDC電源1-1のマイナス側端子に接続されている。また、スイッチ104a、104bと、スイッチ107aとの接続点は、モータ2のU相入力端子に接続されている。同様に、DC電源1-2のプラス側端子が、電線14を介してスイッチ101a、101bに接続され、更に、モータ2のU相入力端子に接続されている。   Hereinafter, the U-phase switch means 3-3 will be described. The positive terminal of the DC power source 1-1 is connected to the switches 104a and 104b via the electric wire 16, and the switch 107a and the electric wire 15 (common power line) are connected. To the negative terminal of the DC power supply 1-1. The connection point between the switches 104 a and 104 b and the switch 107 a is connected to the U-phase input terminal of the motor 2. Similarly, the plus side terminal of the DC power source 1-2 is connected to the switches 101a and 101b via the electric wire 14, and further connected to the U-phase input terminal of the motor 2.

スイッチ107aには、ダイオード107bが接続されている。また、電線15は、2つのDC電源1-1、1-2のそれぞれのマイナス側端子に接続されている。更に、電線14と電線15の間には、平滑用のコンデンサ12が設けられ、電線16と電線15の間には、平滑用のコンデンサ13が設けられている。なお、V相、W相のスイッチ手段3-4、3-5についても同様の構成を備えている。   A diode 107b is connected to the switch 107a. Moreover, the electric wire 15 is connected to the minus side terminals of the two DC power sources 1-1 and 1-2. Further, a smoothing capacitor 12 is provided between the electric wires 14 and 15, and a smoothing capacitor 13 is provided between the electric wires 16 and 15. The V-phase and W-phase switching means 3-4 and 3-5 have the same configuration.

そして、スイッチ手段3-3は、モータ2のU相に出力する電圧を生成するために、3通りの電位、即ち、Vdc_1、Vdc_2、及びこれらの差分(Vdc_1−Vdc_2)のうちの一つを選択して接続する機能を備えており、各電位に接続する時間の割合を変化させることで、モータ2に必要な電圧を供給する。V相のスイッチ手段3-4、W相のスイッチ手段3-5も同様である。本実施例ではVdc_2よりもVdc_1の方が大きい場合を例に挙げて説明する。   The switch means 3-3 generates one of three potentials, that is, Vdc_1, Vdc_2, and a difference (Vdc_1−Vdc_2) in order to generate a voltage to be output to the U phase of the motor 2. A function of selecting and connecting is provided, and a necessary voltage is supplied to the motor 2 by changing a ratio of time to connect to each potential. The same applies to the V-phase switching means 3-4 and the W-phase switching means 3-5. In the present embodiment, a case where Vdc_1 is larger than Vdc_2 will be described as an example.

以下、本発明の特徴部分である電力変換器3における3通りの運転状態について説明する。本発明の特徴は、図2に示した電力変換器3を用いてモータ2のトルクを制御しつつ、3通りの運転状態を切り替えて、各DC電源1-1、1-2より供給される電力の割合を指令値に応じて自由に変更することである。   Hereinafter, three operation states in the power converter 3 which is a characteristic part of the present invention will be described. The feature of the present invention is that the power converter 3 shown in FIG. 2 is used to control the torque of the motor 2 and the three operating states are switched to be supplied from the DC power sources 1-1 and 1-2. The power ratio is freely changed according to the command value.

以下、3通りの運転状態、即ち、第1の運転状態(電源単独運転状態)、第2の運転状態(電源単独運転状態)、及び第3の運転状態(電源直列運転状態)について詳細に説明する。なお、以下では簡単のためU相のみを取り挙げて説明する。V相、W相についても同様である。   Hereinafter, the three operation states, that is, the first operation state (power supply single operation state), the second operation state (power supply single operation state), and the third operation state (power supply series operation state) will be described in detail. To do. In the following description, only the U phase will be described for simplicity. The same applies to the V phase and the W phase.

[第1の運転状態]
まず、第1の運転状態について図3を参照して説明する。第1の運転状態は、DC電源1-2の正極からモータ2へ向かう経路に設けられるスイッチ101a(第2スイッチ)をオフとし、DC電源1-1の正極からモータ2へ向かう経路に設けられるスイッチ104a(第1スイッチ)、及びモータ2から共通の負極に向かう経路に設けられるスイッチ107a(グランドスイッチ)をオン・オフ操作することにより、電圧Vdc_1[V]と0[V]で変化するパルス状電圧をモータ2へ供給する運転状態である。このとき、瞬時変調率指令は、mu_vdc1_cが用いられる。なお、瞬時変調率指令については後述する。また、図3において、点線で囲むスイッチ101aは、オフ状態であることを示している。
[First operation state]
First, the first operating state will be described with reference to FIG. In the first operating state, the switch 101a (second switch) provided in the path from the positive electrode of the DC power supply 1-2 to the motor 2 is turned off, and the switch is provided in the path from the positive electrode of the DC power supply 1-1 to the motor 2. A pulse that changes between voltages Vdc_1 [V] and 0 [V] by turning on / off the switch 104a (first switch) and the switch 107a (ground switch) provided in the path from the motor 2 toward the common negative electrode. This is an operation state in which a voltage is supplied to the motor 2. At this time, mu_vdc1_c is used as the instantaneous modulation rate command. The instantaneous modulation rate command will be described later. Further, in FIG. 3, the switch 101a surrounded by a dotted line indicates that it is in an OFF state.

[第2の運転状態]
次に、第2の運転状態について図4を参照して説明する。第2の運転状態は、DC電源1-1の正極からモータ2へ向かう経路に設けられるスイッチ104aをオフとし、DC電源2の正極からモータ2へ向かう経路に設けられるスイッチ101a、及びモータ2から共通の負極に向かう経路に設けられるスイッチ107aをオン・オフ操作することによりVdc_2[V]と0[V]で変化するパルス状電圧をモータ2へ供給する運転状態である。このとき、瞬時変調率指令は、mu_vdc2_cが用いられる。なお、瞬時変調率指令については後述する。また、図4において、点線で囲むスイッチ104aは、オフ状態であることを示している。
[Second operating state]
Next, the second operating state will be described with reference to FIG. In the second operation state, the switch 104a provided in the path from the positive electrode of the DC power supply 1-1 to the motor 2 is turned off, and the switch 101a provided in the path from the positive electrode of the DC power supply 2 to the motor 2 and the motor 2 This is an operation state in which a pulse voltage that changes between Vdc_2 [V] and 0 [V] is supplied to the motor 2 by turning on and off the switch 107a provided on the path toward the common negative electrode. At this time, mu_vdc2_c is used as the instantaneous modulation rate command. The instantaneous modulation rate command will be described later. Further, in FIG. 4, the switch 104a surrounded by a dotted line indicates that it is in an OFF state.

[第3の運転状態]
次に、第3の運転状態について図5を参照して説明する。第3の運転状態は、Vdc_1の方がVdc_2よりも大きい場合に、モータ2から共通の負極に向かう経路に設けられるスイッチ107aをオフとし、DC電源1-1の正極からモータ2へ向かう経路に設けられるスイッチ104a、及びモータ2からDC電源1-2の正極へ向かう経路に設けられるスイッチ101bをオン・オフ操作することにより、電圧Vdc_2[V]と電圧Vdc_1[V]の間で変化するパルス状電圧をモータ2へ供給する運転状態である。
[Third operation state]
Next, the third operating state will be described with reference to FIG. In the third operating state, when Vdc_1 is larger than Vdc_2, the switch 107a provided in the path from the motor 2 toward the common negative electrode is turned off, and the path from the positive electrode of the DC power source 1-1 to the motor 2 is switched off. A pulse that changes between the voltage Vdc_2 [V] and the voltage Vdc_1 [V] by turning on / off the switch 104a provided and the switch 101b provided on the path from the motor 2 toward the positive electrode of the DC power supply 1-2. This is an operation state in which a state voltage is supplied to the motor 2.

他方、Vdc_2の方がVdc_1よりも大きい場合には、モータ2から共通の負極に向かう経路に設けられるスイッチ107aをオフとし、DC電源1-2の正極からモータ2へ向かう経路に設けられるスイッチ101a、及びモータ2からDC電源1-1の正極へ向かう経路に設けられるスイッチ104bをオン・オフ操作することにより、電圧Vdc_1[V]と電圧Vdc_2[V]の間で変化するパルス状電圧をモータ2へ供給する運転状態である。なお、図5において、点線で囲むスイッチ107aは、オフ状態であることを示している。  On the other hand, when Vdc_2 is larger than Vdc_1, the switch 107a provided in the path from the motor 2 toward the common negative electrode is turned off, and the switch 101a provided in the path from the positive electrode of the DC power supply 1-2 to the motor 2 is turned off. , And a switch 104b provided on the path from the motor 2 to the positive electrode of the DC power source 1-1 is turned on / off to generate a pulsed voltage that changes between the voltage Vdc_1 [V] and the voltage Vdc_2 [V]. 2 is an operation state to be supplied to 2. In FIG. 5, the switch 107a surrounded by a dotted line indicates that it is in an OFF state.

また、図1に示す制御装置4は、トルク制御手段4-1と、電流・電力制御手段4-2と、変調率演算手段4-3と、変調率補正手段4-4と、PWMパルス生成手段4-5、及び3相/dq変換手段4-6を備えている。   1 includes a torque control means 4-1, a current / power control means 4-2, a modulation rate calculation means 4-3, a modulation rate correction means 4-4, and a PWM pulse generator. Means 4-5 and three-phase / dq conversion means 4-6 are provided.

トルク制御手段4-1は、外部より与えられるトルク指令Te*、及びモータ2の回転速度ωに基づいて、モータ2のd軸電流の指令id*、及びq軸電流の指令iq*を演算する。   The torque control means 4-1 calculates the d-axis current command id * and the q-axis current command iq * of the motor 2 based on the torque command Te * and the rotational speed ω of the motor 2 given from the outside. .

電流・電力制御手段4-2は、上述のdq軸電流指令id*、iq*と、dq軸電流値id、iqと、各DC電源1-1、1-2の電圧Vdc_1、Vdc_2と、各DC電源1-1、1-2の出力電力指令Pcmd_vdc1、Pcmd_vdc2と、に基づき、前述の各運転状態(第1〜第3の運転状態)に応じたU相電圧指令Vu_vdc1、Vu_vdc2、Vu_vdc_s、V相電圧指令Vv_vdc1、Vv_vdc2、Vv_vdc_s、W相電圧指令Vw_vdc1、Vw_vdc2、Vw_vdc_sを生成する。dq軸電流値id、iqは、3相/dq変換手段4-6により、3相電流iu、ivに基づいて求められる。各DC電源1-1、1-2の出力電力指令Pcmd_vdc1、Pcmd_vdc2と、モータ2に供給されるモータ電力Pmの関係は、次の(1)式で示される。
Pm=Pcmd_vdc1+Pcmd_vdc2 ・・・(1)
The current / power control means 4-2 includes the dq axis current commands id * and iq *, the dq axis current values id and iq, the voltages Vdc_1 and Vdc_2 of the DC power supplies 1-1 and 1-2, Based on the output power commands Pcmd_vdc1 and Pcmd_vdc2 of the DC power sources 1-1 and 1-2, the U-phase voltage commands Vu_vdc1, Vu_vdc2, Vu_vdc_s, V corresponding to the above-described operating states (first to third operating states). Phase voltage commands Vv_vdc1, Vv_vdc2, Vv_vdc_s, and W phase voltage commands Vw_vdc1, Vw_vdc2, and Vw_vdc_s are generated. The dq-axis current values id and iq are obtained based on the three-phase currents iu and iv by the three-phase / dq conversion means 4-6. The relationship between the output power commands Pcmd_vdc1 and Pcmd_vdc2 of the DC power sources 1-1 and 1-2 and the motor power Pm supplied to the motor 2 is expressed by the following equation (1).
Pm = Pcmd_vdc1 + Pcmd_vdc2 (1)

変調率演算手段4-3は、DC電源1-1の電圧Vdc_1、DC電源1-2の電圧Vdc_2を入力し、前述した各電圧指令Vu_vdc1、Vu_vdc2、Vu_vdc_s、Vv_vdc1、Vv_vdc2、Vv_vdc_s、Vw_vdc1、Vw_vdc2、Vw_vdc_sを正規格化した電圧指令である瞬時変調率指令mu_vdc1、mu_vdc2、mu_vdc_s、mv_vdc1、mv_vdc2、mv_vdc_s、mw_vdc1、mw_vdc2、mw_vdc_sを生成する。   The modulation factor calculating means 4-3 receives the voltage Vdc_1 of the DC power supply 1-1 and the voltage Vdc_2 of the DC power supply 1-2, and each of the voltage commands Vu_vdc1, Vu_vdc2, Vu_vdc_s, Vv_vdc1, Vv_vdc2, Vv_vdc_s, Vw_vdc1, Vw_vdc2 , Vw_vdc_s are generated as instantaneous modulation rate commands mu_vdc1, mu_vdc2, mu_vdc_s, mv_vdc1, mv_vdc2, mv_vdc_s, mw_vdc1, mw_vdc2, and mw_vdc_s.

変調率補正手段4-4は、入力された瞬時変調率指令(mu_vdc1、mu_vdc2、mu_vdc_s、mv_vdc1、mv_vdc2、mv_vdc_s、mw_vdc1、mw_vdc2、mw_vdc_s)に対して、PWMを行う前の処理を行い、最終的な瞬時変調率指令mu_vdc1_c、mv_vdc1_c、mw_vdc1_c、mu_vdc2_c、mv_vdc2_c、mw_vdc2_c、mu_vdc_s_c、mv_vdc_s_c、mw_vdc_s_cを生成する。   Modulation rate correction means 4-4 performs processing before PWM for the input instantaneous modulation rate command (mu_vdc1, mu_vdc2, mu_vdc_s, mv_vdc1, mv_vdc2, mv_vdc_s, mw_vdc1, mw_vdc2, mw_vdc_s) and finally Instantaneous modulation factor commands mu_vdc1_c, mv_vdc1_c, mw_vdc1_c, mu_vdc2_c, mv_vdc2_c, mw_vdc2_c, mu_vdc_s_c, mv_vdc_s_c, and mw_vdc_s_c are generated.

PWMパルス生成手段4-5は、上記の最終的な瞬時変調率指令(mu_vdc1_c、mv_vdc1_c、mw_vdc1_c、mu_vdc2_c、mv_vdc2_c、mw_vdc2_c、mu_vdc_s_c、mv_vdc_s_c、mw_vdc_s_c)に基づいて、電力変換器3の各スイッチ(図2に示す101a,101b〜109a,109b)をオン、オフ操作するためのPWMパルス信号を生成する。   The PWM pulse generation means 4-5 uses the above-mentioned final instantaneous modulation rate commands (mu_vdc1_c, mv_vdc1_c, mw_vdc1_c, mu_vdc2_c, mv_vdc2_c, mw_vdc2_c, mu_vdc_s_c, mv_vdc_s_c, mw_vdc_s_, based on the power of the mw_vdc_s_ 2 generates a PWM pulse signal for turning on and off 101a, 101b to 109a, 109b) shown in FIG.

次に、電流・電力制御手段4-2の構成について説明する。図7は、電流・電力制御手段4-2の詳細な構成を示すブロックである。該電流・電力制御手段4-2は、電流制御手段5-1と、dq/3相変換手段5-2と、運転割合生成手段5-3と、電圧分配手段5-4と、を備えている。   Next, the configuration of the current / power control means 4-2 will be described. FIG. 7 is a block diagram showing a detailed configuration of the current / power control means 4-2. The current / power control means 4-2 includes a current control means 5-1, a dq / 3-phase conversion means 5-2, an operation ratio generation means 5-2, and a voltage distribution means 5-4. Yes.

電流制御手段5-1は、dq軸電流指令id*、iq*と、dq軸電流値id、iqに基づき、これらを一致させるためのdq軸電圧指令vd*、vq*を演算する。id、iqは、図1に示した3相/dq変換手段4-6にて、3相電流iu、ivに基づいて算出される。   Based on the dq axis current commands id * and iq * and the dq axis current values id and iq, the current control means 5-1 calculates dq axis voltage commands vd * and vq * for matching them. id and iq are calculated based on the three-phase currents iu and iv by the three-phase / dq conversion means 4-6 shown in FIG.

dq/3相変換手段5-2は、上述のdq軸電圧指令vd*、vq*を、3相電圧指令Vu*、Vv*、Vw*に変換し、更に、3相電圧指令の振幅Vupkを生成する。   The dq / 3-phase conversion means 5-2 converts the above dq-axis voltage commands vd * and vq * into the three-phase voltage commands Vu *, Vv * and Vw *, and further converts the amplitude Vupk of the three-phase voltage command. Generate.

運転割合生成手段5-3は、電圧Vdc_1、Vdc_2と、各DC電源1-1、1-2の出力電力指令Pcmd_vdc1、Pcmd_vdc2と、上述した3相電圧指令の振幅Vupkと、電流指令id*、iq*、及びdq軸電圧指令vd*、vq*に基づき、各運転状態(第1、第2、第3の運転状態)における電力配分指令rto_vdc1、rto_vdc2、rto_vdc_sを生成する。この際、次の(2)式に示すように、すべての電力配分指令の和は1となる。
1=rto_vdc1+rto_vdc2+rto_vdc_s ・・・(2)
The operation ratio generation means 5-3 includes voltages Vdc_1 and Vdc_2, output power commands Pcmd_vdc1 and Pcmd_vdc2 of the DC power sources 1-1 and 1-2, the amplitude Vupk of the above-described three-phase voltage command, a current command id *, Based on iq * and dq-axis voltage commands vd * and vq *, power distribution commands rto_vdc1, rto_vdc2, and rto_vdc_s in each operation state (first, second, and third operation states) are generated. At this time, as shown in the following equation (2), the sum of all the power distribution commands is 1.
1 = rto_vdc1 + rto_vdc2 + rto_vdc_s (2)

次に、電圧分配手段5-4について説明する。図10は、電圧分配手段5-4の内部構成を示す説明図である。図示ように、電圧分配手段5-4は、3相電圧指令Vu*、Vv*、Vw*、及び、電力配分指令rto_vdc1、rto_vdc2、rto_vdc_sに基づいて乗算を行い、各運転状態に応じたU相電圧指令Vu_vdc1、Vu_vdc2、Vu_vdc_s、V相電圧指令Vv_vdc1、Vv_vdc2、Vv_vdc_s、W相電圧指令Vw_vdc1、Vw_vdc2、Vw_vdc_sを生成する。即ち、複数の電圧指令からなる電圧指令群を生成する。そして、U相電圧指令は、次の(3a)〜(3c)式で示すことができる。
Vu_vdc1 =Vu*×rto_vdc1 ・・・(3a)
Vu_vdc2 =Vu*×rto_vdc2 ・・・(3b)
Vu_vdc_s=Vu*×rto_vdc_s ・・・(3c)
Next, the voltage distribution means 5-4 will be described. FIG. 10 is an explanatory diagram showing the internal configuration of the voltage distribution means 5-4. As shown in the figure, the voltage distribution means 5-4 performs multiplication based on the three-phase voltage commands Vu *, Vv *, Vw * and the power distribution commands rto_vdc1, rto_vdc2, rto_vdc_s, and the U phase corresponding to each operation state. Voltage commands Vu_vdc1, Vu_vdc2, Vu_vdc_s, V-phase voltage commands Vv_vdc1, Vv_vdc2, Vv_vdc_s, and W-phase voltage commands Vw_vdc1, Vw_vdc2, and Vw_vdc_s are generated. That is, a voltage command group composed of a plurality of voltage commands is generated. The U-phase voltage command can be expressed by the following equations (3a) to (3c).
Vu_vdc1 = Vu * × rto_vdc1 (3a)
Vu_vdc2 = Vu * × rto_vdc2 (3b)
Vu_vdc_s = Vu * × rto_vdc_s (3c)

また、V相電圧指令Vv_vdc1、Vv_vdc2、Vv_vdc_s、W相電圧指令Vw_vdc1、Vw_vdc2、Vw_vdc_sも同様に計算することができる。   Also, the V-phase voltage commands Vv_vdc1, Vv_vdc2, Vv_vdc_s, and the W-phase voltage commands Vw_vdc1, Vw_vdc2, and Vw_vdc_s can be calculated in the same manner.

また、各運転状態の相電圧指令の和は、3相電圧指令と等しい。即ち、次の(4a)〜(4c)式が成立する。
Vu*=Vu_vdc1+Vu_vdc2+Vu_vdc_s ・・・(4a)
Vv*=Vv_vdc1+Vv_vdc2+Vv_vdc_s ・・・(4b)
Vw*=Vw_vdc1+Vw_vdc2+Vw_vdc_s ・・・(4c)
Further, the sum of the phase voltage commands in each operation state is equal to the three-phase voltage command. That is, the following equations (4a) to (4c) are established.
Vu * = Vu_vdc1 + Vu_vdc2 + Vu_vdc_s (4a)
Vv * = Vv_vdc1 + Vv_vdc2 + Vv_vdc_s (4b)
Vw * = Vw_vdc1 + Vw_vdc2 + Vw_vdc_s (4c)

次に、図1に示した変調率演算手段4-3について説明する。図8は、変調率演算手段4-3の内部構成を示す説明図である。図8、及び下記(5a)〜(5c)式に示すように、該変調率演算手段4-3は、DC電源1-1の電圧Vdc_1、DC電源1-2の電圧Vdc_2を入力し、Vu_vdc1、Vu_vdc2、Vu_vdc_s、Vv_vdc1、Vv_vdc2、Vv_vdc_s、Vw_vdc1、Vw_vdc2、Vw_vdc_sを正規格化した電圧指令である瞬時変調率指令mu_vdc1、mu_vdc2、mu_vdc_s、mv_vdc1、mv_vdc2、mv_vdc_s、mw_vdc1、mw_vdc2、mw_vdc_sを生成する。   Next, the modulation factor calculating means 4-3 shown in FIG. 1 will be described. FIG. 8 is an explanatory diagram showing the internal configuration of the modulation factor calculation means 4-3. As shown in FIG. 8 and the following equations (5a) to (5c), the modulation factor calculation means 4-3 inputs the voltage Vdc_1 of the DC power supply 1-1 and the voltage Vdc_2 of the DC power supply 1-2, and Vu_vdc1 , Vu_vdc2, Vu_vdc_s, Vv_vdc1, Vv_vdc2, Vv_vdc_s, Vw_vdc1, Vw_vdc2, Vw_vdc_s

Figure 0005515305
なお、上記の(5a)〜(5c)式ではU相の瞬時変調率指令の演算式についてのみ示しているが、変調率演算手段4-3はこれと同様に、V相、及びW相の瞬時変調率指令mv_vdc1、mv_vdc2、mv_vdc_s、mw_vdc1、mw_vdc2、mw_vdc_sを生成する。
Figure 0005515305
In the above equations (5a) to (5c), only the arithmetic expression of the U-phase instantaneous modulation rate command is shown, but the modulation rate calculation means 4-3 is similar to this for V-phase and W-phase. Instantaneous modulation rate commands mv_vdc1, mv_vdc2, mv_vdc_s, mw_vdc1, mw_vdc2, and mw_vdc_s are generated.

図1に示す変調率補正手段4-4では、電源電圧Vdc_1、Vdc_2と、電力配分指令rto_vdc1、rto_vdc2、rto_vdc_sを用いて、変調率の補正を行う。まず、次の(6a)〜(6c)式に基づいて変調率のオフセット値m_vdc1_off、m_vdc2_off、m_vdcs_offを求める。

Figure 0005515305
The modulation factor correction means 4-4 shown in FIG. 1 corrects the modulation factor using the power supply voltages Vdc_1 and Vdc_2 and the power distribution commands rto_vdc1, rto_vdc2, and rto_vdc_s. First, the modulation factor offset values m_vdc1_off, m_vdc2_off, and m_vdcs_off are obtained based on the following equations (6a) to (6c).
Figure 0005515305

更に、上述の(6a)〜(6c)式で求められたオフセット値m_vdc1_off、m_vdc2_off、m_vdcs_offを瞬時変調率指令に加算することにより、最終的な瞬時変調率指令mu_vdc1_c、mu_vdc2_c、mu_vdc_s_cを生成する。即ち、次の(7a)〜(7c)式により、最終的な瞬時変調率指令を求める。   Further, the final instantaneous modulation rate commands mu_vdc1_c, mu_vdc2_c, and mu_vdc_s_c are generated by adding the offset values m_vdc1_off, m_vdc2_off, and m_vdcs_off obtained by the above equations (6a) to (6c) to the instantaneous modulation rate command. That is, the final instantaneous modulation rate command is obtained by the following equations (7a) to (7c).

mu_vdc1_c=mu_vdc_1+m_vdc1_off ・・・(7a)
mu_vdc2_c=mu_vdc_2+m_vdc2_off ・・・(7b)
mu_vdc_s_c=mu_vdc_s+m_vdcs_off ・・・(7c)
なお、(7a)〜(7c)式では、U相についてのみ示しているが、これと同様に、mv_vdc1_c、mw_vdc1_c、mv_vdc2_c、mw_vdc2_c、mv_vdc_s_c、mw_vdc_s_cも生成する。変調率補正のイメージ図を図6に示す。
mu_vdc1_c = mu_vdc_1 + m_vdc1_off (7a)
mu_vdc2_c = mu_vdc_2 + m_vdc2_off (7b)
mu_vdc_s_c = mu_vdc_s + m_vdcs_off (7c)
In the equations (7a) to (7c), only the U phase is shown. Similarly, mv_vdc1_c, mw_vdc1_c, mv_vdc2_c, mw_vdc2_c, mv_vdc_s_c, and mw_vdc_s_c are also generated. An image of modulation rate correction is shown in FIG.

このように、運転状態に応じた瞬時変調率にオフセット値を加算することで、分配電力目標値の大きさが大きい運転状態から生成する電圧を大きくできるようにしている。   In this way, by adding the offset value to the instantaneous modulation rate corresponding to the operating state, the voltage generated from the operating state where the distribution power target value is large can be increased.

次に、図1に示したPWMパルス生成手段4-5の動作を説明する。該PWMパルス生成手段4-5は、上述の(7a)〜(7c)式で求められた各運転状態(第1〜第3の運転状態)の瞬時変調率指令と、それに対応したキャリアを用いて比較を行い、PWMパルス生成を行う。   Next, the operation of the PWM pulse generating means 4-5 shown in FIG. 1 will be described. The PWM pulse generating means 4-5 uses the instantaneous modulation rate command of each operation state (first to third operation states) obtained by the above equations (7a) to (7c) and the carrier corresponding thereto. The PWM pulse generation is performed.

まず、第1の運転状態分瞬時変調率指令mu_vdc1_cと、第1の運転状態用キャリアを比較し、判定値pwm_vdc1を生成する。比較時の判定値pwm_vdc1の生成は、次のように行う。
mu_vdc1_c >第1の運転状態用キャリアならば、pwm_vdc1=ON
mu_vdc1_c ≦第1の運転状態用キャリアならば、pwm_vdc1=OFF
First, the instantaneous modulation factor command mu_vdc1_c for the first operating state is compared with the first operating state carrier to generate the determination value pwm_vdc1. The determination value pwm_vdc1 at the time of comparison is generated as follows.
If mu_vdc1_c> carrier for the first operating state, pwm_vdc1 = ON
If mu_vdc1_c ≤ carrier for the first operating state, pwm_vdc1 = OFF

また、第2の運転状態分瞬時変調率指令mu_vdc2_cと、第2の運転状態用キャリアを比較し、判定値pwm_vdc2を生成する。比較時の判定値pwm_vdc2の生成は、次のように行う。
mu_vdc2_c >第2の運転状態用キャリアならば、pwm_vdc2=ON
mu_vdc2_c ≦第2の運転状態用キャリアならば、pwm_vdc2=OFF
Further, the instantaneous modulation factor command mu_vdc2_c for the second operating state is compared with the second operating state carrier to generate a determination value pwm_vdc2. The determination value pwm_vdc2 at the time of comparison is generated as follows.
If mu_vdc2_c> second operating state carrier, pwm_vdc2 = ON
If mu_vdc2_c ≤ carrier for the second operating state, pwm_vdc2 = OFF

更に、第3の運転状態分瞬時変調率指令mu_vdc_s_cと、第3の運転状態用キャリアを比較し、判定値pwm_vdcsを生成する。比較時の判定値pwm_vdcsの生成は、次のように行う。
mu_vdc_s_c >第3の運転状態用キャリアならば、pwm_vdcs=ON
mu_vdc_s_c ≦第3の運転状態用キャリアならば、pwm_vdcs=OFF
Furthermore, the instantaneous modulation factor command mu_vdc_s_c for the third operating state is compared with the third operating state carrier to generate a determination value pwm_vdcs. The determination value pwm_vdcs at the time of comparison is generated as follows.
If mu_vdc_s_c> third operating state carrier, pwm_vdcs = ON
If mu_vdc_s_c ≤ third operating state carrier, pwm_vdcs = OFF

また、第3の運転状態を使用する際は、第3の運転状態の駆動中を示す変調率mthと第3の運転状態用キャリアを比較し、判定値pwm_thを生成する。   When using the third operating state, the modulation factor mth indicating that the third operating state is being driven is compared with the third operating state carrier to generate the determination value pwm_th.

変調率mthは、前述した(6c)式で求めた変調率オフセットm_vdcs_offより演算し、次の(8)式で示すことができる。
mth=m_vdcs_off×2 ・・・(8)
The modulation factor mth can be calculated from the modulation factor offset m_vdcs_off obtained by the above-described equation (6c) and expressed by the following equation (8).
mth = m_vdcs_off × 2 (8)

比較時における判定値pwm_thの生成は次のように行う。
mth>第3の運転状態用キャリアならば、pwm_th=ON
mth≦第3の運転状態用キャリアならば、pwm_th=OFF
そして、上述した各判定値pwm_vdc1, pwm_vdc2,pwm_vdcs, pwm_thを用いて、図3に示した各スイッチ101a,101b,104a,104b,107aに与える駆動信号を生成する。
The determination value pwm_th at the time of comparison is generated as follows.
If mth> third operating state carrier, pwm_th = ON
If mth ≦ third carrier carrier, pwm_th = OFF
Then, using the above-described determination values pwm_vdc1, pwm_vdc2, pwm_vdcs, and pwm_th, drive signals to be given to the respective switches 101a, 101b, 104a, 104b, and 107a shown in FIG. 3 are generated.

スイッチ101aに加える信号をA、スイッチ107bに加える信号をB、スイッチ101bに加える信号をC、スイッチ104aに加える信号をD、スイッチ104bに加える信号をEとした場合の、各信号を次の(9)式に示す。なお、記号A〜Eは、図2に示すA〜Eに対応している。
A=pwm_th or pwm_vdc2
B=not(A) and not(D)
C=not(D)
D=pwm_vdcs or pwm_vdc1
E=pwm_th or not(A) ・・・(9)
When the signal applied to the switch 101a is A, the signal applied to the switch 107b is B, the signal applied to the switch 101b is C, the signal applied to the switch 104a is D, and the signal applied to the switch 104b is E, It is shown in the formula 9). Symbols A to E correspond to A to E shown in FIG.
A = pwm_th or pwm_vdc2
B = not (A) and not (D)
C = not (D)
D = pwm_vdcs or pwm_vdc1
E = pwm_th or not (A) (9)

次に、図9を参照して図7に示した運転割合生成手段5-3の詳細な構成について説明する。図9は、請求項6に対応している。図示のように、運転割合生成手段5-3は、電圧状態比較手段6-1と、モータ電力演算手段6-2と、モータ運転状態判断手段6-3と、移動電力生成手段6-4と、電力比較手段6-5と、運転状態・蓄電手段選択手段6-6、及び最終運転割合生成手段6-7を備えている。そして、前述したように、該運転割合生成手段5-3は、各DC電源の電圧Vdc_1、Vdc_2と、各DC電源の出力電力指令Pcmd_vdc1、Pcmd_vdc2と、電圧指令振幅Vupkと、電流指令id*、iq*、及びdq軸電圧指令vd*、vq*を入力し、各運転状態における最終運転割合指令rto_vdc1、rto_vdc2、rto_vdc_sを生成する。そして、最終的な関係としては、次の(10)式に示すように、すべての電力配分指令の和は1となる。
1=rto_vdc1+rto_vdc2+rto_vdc_s ・・・(10)
なお、(10)式は、前述した(2)式と同一である。
Next, with reference to FIG. 9, the detailed structure of the driving | running | working ratio production | generation means 5-3 shown in FIG. 7 is demonstrated. FIG. 9 corresponds to claim 6. As shown in the figure, the operation ratio generation unit 5-3 includes a voltage state comparison unit 6-1, a motor power calculation unit 6-2, a motor operation state determination unit 6-3, and a moving power generation unit 6-4. , An electric power comparison means 6-5, an operating state / power storage means selection means 6-6, and a final operation ratio generation means 6-7. As described above, the operation ratio generation means 5-3 includes the voltages Vdc_1 and Vdc_2 of each DC power supply, the output power commands Pcmd_vdc1 and Pcmd_vdc2 of each DC power supply, the voltage command amplitude Vupk, the current command id *, iq * and dq axis voltage commands vd * and vq * are input to generate final operation ratio commands rto_vdc1, rto_vdc2 and rto_vdc_s in each operation state. As a final relationship, the sum of all power distribution commands is 1 as shown in the following equation (10).
1 = rto_vdc1 + rto_vdc2 + rto_vdc_s (10)
Note that equation (10) is the same as equation (2) described above.

電圧状態比較手段6-1では、電圧指令の振幅Vupkと、第3の運転状態を用いたときの電力変換器3の入力電圧Vdc_sとの比較を行う。   The voltage state comparison means 6-1 compares the amplitude Vupk of the voltage command with the input voltage Vdc_s of the power converter 3 when the third operation state is used.

第3の運転状態では、DC電源1-1と、DC電源1-2を逆直列接続し、一つの電源として扱うため、次の(11)式に示すように、各DC電源1-1、1-2の電圧の差が入力電圧Vdc_sとなる。
Vdc_s=|Vdc_1−Vdc_2| ・・・(11)
In the third operation state, the DC power source 1-1 and the DC power source 1-2 are connected in reverse series and are handled as one power source. Therefore, as shown in the following equation (11), each DC power source 1-1, The voltage difference of 1-2 is the input voltage Vdc_s.
Vdc_s = | Vdc_1−Vdc_2 | (11)

この入力電圧Vdc_sは、電圧指令の振幅の2倍以上の大きさがなければ電力変換器3を駆動することができない。従って、下記のように条件を設定して、判定値V_comを出力する。
Vdc_s≧Vupk×2ならば、V_com =1
Vdc_s<Vupk×2ならば、V_com =0
The input voltage Vdc_s cannot drive the power converter 3 unless the input voltage Vdc_s is greater than twice the amplitude of the voltage command. Accordingly, conditions are set as follows, and the determination value V_com is output.
If Vdc_s ≧ Vupk × 2, V_com = 1
If Vdc_s <Vupk × 2, V_com = 0

即ち、各蓄電手段の電圧を比較して電圧状態を取得する処理は、前記各蓄電手段の電圧の差分と、前記電圧指令の振幅を2倍した値と、を比較することにより行われる。   That is, the process of acquiring the voltage state by comparing the voltage of each power storage means is performed by comparing the voltage difference of each power storage means with a value obtained by doubling the amplitude of the voltage command.

モータ電力演算手段6-2は、次の(12)式により、dq軸電流指令id*、iq*、及びdq軸電圧指令vd*、vq*を用いて、モータ電力Pmを演算する。
Pm=(id*×vd*)+(iq*×vq*) ・・・(12)
The motor power calculation means 6-2 calculates the motor power Pm using the dq axis current commands id * and iq * and the dq axis voltage commands vd * and vq * according to the following equation (12).
Pm = (id * × vd *) + (iq * × vq *) (12)

モータ運転状態判断手段6-3は、モータ2の運転状態(力行運転、回生運転)を判断し、モータ2の運転状態Pm_comを出力する。   The motor operation state determination means 6-3 determines the operation state (power running operation, regenerative operation) of the motor 2, and outputs the operation state Pm_com of the motor 2.

Pm≧0ならば、Pm_com =1
Pm<0ならば、Pm_com =0
移動電力生成手段6-4は、次の(13a)、(13b)式を用いて、第3の運転状態のみで電力変換器3を駆動し、モータ2に電力を供給したときの移動電力Pmove1、及びPmove2を計算する。
If Pm ≧ 0, Pm_com = 1
If Pm <0, Pm_com = 0
The moving power generation means 6-4 uses the following equations (13a) and (13b) to drive the power converter 3 only in the third operating state and supply the power to the motor 2 as the moving power Pmove1 , And Pmove2.

Figure 0005515305
そして、(13a)、(13b)式で求められるPmove1とPmove2を比較し、より小さいほうを移動電力Pmoveとする。ここで、移動電力Pmoveは、一方の電源に充電される電力と等しいので、負の値となる。
Figure 0005515305
Then, Pmove1 and Pmove2 obtained by the equations (13a) and (13b) are compared, and the smaller one is set as the moving power Pmove. Here, the moving power Pmove is a negative value because it is equal to the power charged in one of the power sources.

電力比較部6-5は、モータ2の運転状態Pm_com、各電源の出力電力指令Pcmd_vdc1、Pcmd_vdc2、移動電力Pmoveに基づき、第3の運転状態での移動電力と、各電源の出力電力指令の大小関係を比較する。そして、下記のように、判定値Pcmd_comを決定する。   The power comparison unit 6-5 calculates the magnitude of the moving power in the third operating state and the output power command of each power source based on the operating state Pm_com of the motor 2, the output power commands Pcmd_vdc1, Pcmd_vdc2, and the moving power Pmove of each power source. Compare relationships. Then, the determination value Pcmd_com is determined as described below.

[Pm_com=1の場合]
Pcmd_vdc2<Pmoveの場合、Pcmd_com=2
Pcmd_vdc2≒Pmoveの場合、Pcmd_com=1
0>Pcmd_vdc2>Pmoveの場合、Pcmd_com=0
Pcmd_vdc2≧0の場合、Pcmd_com=3
[Pm_com=0の場合]
Pcmd_vdc1<Pmoveの場合、Pcmd_com=2
Pcmd_vdc1≒Pmoveの場合、Pcmd_com=1
0>Pcmd_vdc1>Pmoveの場合、Pcmd_com=0
Pcmd_vdc1≧0の場合、Pcmd_com=3
[When Pm_com = 1]
If Pcmd_vdc2 <Pmove, Pcmd_com = 2
When Pcmd_vdc2 ≒ Pmove, Pcmd_com = 1
If 0>Pcmd_vdc2> Pmove, Pcmd_com = 0
When Pcmd_vdc2 ≧ 0, Pcmd_com = 3
[When Pm_com = 0]
If Pcmd_vdc1 <Pmove, Pcmd_com = 2
When Pcmd_vdc1 ≒ Pmove, Pcmd_com = 1
If 0>Pcmd_vdc1> Pmove, Pcmd_com = 0
When Pcmd_vdc1 ≧ 0, Pcmd_com = 3

また、図9に示す運転状態・蓄電手段選択手段6-6は、電圧状態比較手段6-1より出力されるV_com、電力比較手段6-5より出力される判定値Pcmd_com、モータ運転状態判断手段6-3より出力される運転状態Pm_comを用いて、モータ2を駆動する際の運転状態(電源直列運転状態、または電源単独運転状態)を示す信号である選択運転状態Drive_sele、及び選択した電源(DC電源1-1またはDC電源1-2)を決定する信号である選択電源Vdc_seleを出力する。   Further, the operation state / power storage means selection means 6-6 shown in FIG. 9 includes V_com output from the voltage state comparison means 6-1, determination value Pcmd_com output from the power comparison means 6-5, motor operation state determination means. Using the operation state Pm_com output from 6-3, the selected operation state Drive_sele, which is a signal indicating the operation state (power supply series operation state or power supply single operation state) when driving the motor 2, and the selected power source ( The selected power source Vdc_sele which is a signal for determining the DC power source 1-1 or the DC power source 1-2) is output.

そして、図14に示す条件により、選択運転状態Drive_seleが、0,1,2のうちのいずれかに設定される。例えば、Pm_com=1、V_com=1、Pcmd_com=3の場合には、Drive_sele=0に設定される。   Then, the selected operation state Drive_sele is set to one of 0, 1, and 2 according to the conditions shown in FIG. For example, when Pm_com = 1, V_com = 1, and Pcmd_com = 3, Drive_sele = 0 is set.

その結果、Drive_sele=2に設定された場合には、第3の運転状態に加え、他の運転状態を組み合わせてモータ2を駆動する。Drive_sele=1に設定された場合には、第3の運転状態のみでモータ2を駆動する。Drive_sele=0に設定された場合には、第3の運転状態は用いずに、他の運転状態のみでモータを駆動する。   As a result, when Drive_sele = 2 is set, the motor 2 is driven in combination with other operating states in addition to the third operating state. When Drive_sele = 1 is set, the motor 2 is driven only in the third operating state. When Drive_sele = 0 is set, the third driving state is not used, and the motor is driven only in other driving states.

また、運転状態・蓄電手段選択手段6-6では、図15に示すように、選択電源Vdc_seleが、0,1,2,3のうちのいずれかに設定される。例えば、Pm_com=1、V_com=1、Pcmd_com=3の場合には、選択電源Vdc_sele=3に設定される。そして、上述した選択運転状態Drive_seleによる決定事項に加えて、Vdc_seleの条件を加える。   Further, in the operating state / power storage means selecting means 6-6, as shown in FIG. 15, the selected power source Vdc_sele is set to one of 0, 1, 2, and 3. For example, when Pm_com = 1, V_com = 1, and Pcmd_com = 3, the selected power supply Vdc_sele = 3 is set. Then, in addition to the items determined by the selected operation state Drive_sele described above, the condition of Vdc_sele is added.

Vdc_sele=3に設定された場合には、第1の運転状態と、第2の運転状態を用いてモータ2を駆動する。Vdc_sele=2に設定された場合には、第2の運転状態を用いてモータ2を駆動する。Vdc_sele=1に設定された場合には、第1の運転状態を用いてモータ2を駆動する。上述した如くの条件設定の下で、選択運転状態Drive_sele、選択電源Vdc_seleを出力する。   When Vdc_sele = 3 is set, the motor 2 is driven using the first operation state and the second operation state. When Vdc_sele = 2 is set, the motor 2 is driven using the second operating state. When Vdc_sele = 1 is set, the motor 2 is driven using the first operating state. Under the condition setting as described above, the selected operation state Drive_sele and the selected power source Vdc_sele are output.

最終運転割合生成手段6-7は、選択運転状態Drive_seleと、選択電源Vdc_seleと、各DC電源の電圧Vdc_1、Vdc_2と、各DC電源の出力電力指令Pcmd_vdc1、Pcmd_vdc2と、モータ電力Pm、及び電圧指令の振幅Vupkに基づき、最終運転割合rto_vdc1、rto_vdc2、rto_vdc_sを生成して出力する。ここで、rto_vdc1は第1の運転状態の運転割合指令であり、rto_vdc2は第2の運転状態の運転割合指令であり、rto_vdc_sは第3の運転状態の運転割合指令である。   The final operation ratio generation means 6-7 includes the selected operation state Drive_sele, the selected power source Vdc_sele, the voltages Vdc_1 and Vdc_2 of each DC power source, the output power commands Pcmd_vdc1 and Pcmd_vdc2 of each DC power source, the motor power Pm, and the voltage command. The final operation ratios rto_vdc1, rto_vdc2, and rto_vdc_s are generated and output based on the amplitude Vupk. Here, rto_vdc1 is an operation ratio command in the first operation state, rto_vdc2 is an operation ratio command in the second operation state, and rto_vdc_s is an operation ratio command in the third operation state.

このような流れで運転割合までを求めることによって、第3の運転状態のみを用いた場合には、第1の電源(DC電源1-1)と第2の電源(DC電源1-2)が逆直列に接続された状態でモータ2を駆動するので、電圧指令を2つ用いることなく、一方の電源は放電、他方の電源は充電を行うため、相電流のリプル低減することができる。   By obtaining the operation ratio in such a flow, when only the third operation state is used, the first power supply (DC power supply 1-1) and the second power supply (DC power supply 1-2) are used. Since the motor 2 is driven in a state of being connected in reverse series, one power source is discharged and the other power source is charged without using two voltage commands, so that the ripple of the phase current can be reduced.

更に、スイッチング電圧が各DC電源1-1、1-2の出力電圧の差となるため、スイッチング損失を低減し高効率に各蓄電手段間での電力の移動が可能となる。また、運転状態を切り替えて行うときには、電力を配分することができるので、各DC電源1-1、1-2(蓄電手段)の電力を調整することができる。   Furthermore, since the switching voltage is the difference between the output voltages of the DC power sources 1-1 and 1-2, it is possible to reduce the switching loss and transfer power between the power storage means with high efficiency. In addition, when the operation state is switched, power can be distributed, so that the power of each DC power source 1-1, 1-2 (power storage means) can be adjusted.

また、モータ2が力行(正トルク)している場合には、電圧が大きい蓄電手段(DC電源1-1)を用いて電圧が小さい蓄電手段(DC電源1-2)を高効率に充電することが、モータ2が回生(負トルク)している場合には電圧が小さい蓄電手段を用いて電圧が大きい蓄電手段を高効率に充電することができる。   Further, when the motor 2 is in power running (positive torque), the power storage means (DC power supply 1-2) having a small voltage is charged with high efficiency using the power storage means (DC power supply 1-1) having a large voltage. However, when the motor 2 is regenerating (negative torque), the power storage means having a large voltage can be charged with high efficiency using the power storage means having a small voltage.

更に、条件に応じて運転状態を切り替えるので、第1の運転状態のみでは出力できない場合であっても第2,第3の運転状態とすることにより出力可能となる。また、電力の配分ができるので、各DC電源1-1、1-2の電力を調整することができる。   Furthermore, since the operation state is switched according to the conditions, even if the output cannot be performed only in the first operation state, the output can be performed by setting the second and third operation states. In addition, since power can be distributed, the power of each DC power source 1-1 and 1-2 can be adjusted.

また、高電圧であるDC電源1-1が放電を行い、低電圧であるDC電源1-2が充電を行なうことができ、モータ2が力行している場合に、高電圧電源から低電圧電源へ効率良く充電することができる。   Further, when the high voltage DC power supply 1-1 is discharged and the low voltage DC power supply 1-2 can be charged, and the motor 2 is powered, the high voltage power supply is switched to the low voltage power supply. Can be charged efficiently.

更に、低電圧であるDC電源1-2が放電を行い、高電圧であるDC電源1-1が充電を行なうことができ、モータ2が回生している場合に、低電圧電源から高電圧電源へ効率良く充電することができる。   Further, when the DC power supply 1-2 having a low voltage discharges and the DC power supply 1-1 having a high voltage can be charged and the motor 2 is regenerating, the DC power supply 1-2 is regenerated. Can be charged efficiently.

また、電力指令値、モータ電圧、運転割合により、各運転状態に応じた電圧指令値群を生成し、最終的なパルス信号を作成するので、電力指令値に高応答に追従する出力パルスを出力することができる。   In addition, a voltage command value group corresponding to each operation state is generated based on the power command value, motor voltage, and operation ratio, and a final pulse signal is created, so output pulses that follow the power command value with a high response are output. can do.

更に、第1の運転状態、及び第2の運転状態に用いる各DC電源1-1、1-2を各種条件に基づいて選択するので、電力指令値、電圧指令値を満たす可能性の有るDC電源の組み合わせを取ることができる。   Furthermore, since each DC power supply 1-1, 1-2 used for the first operation state and the second operation state is selected based on various conditions, there is a possibility of satisfying the power command value and the voltage command value. A combination of power supplies can be taken.

また、予め組み合わせが決まっているので、様々な演算を行わなくても、電力指令値、電圧指令値を満たす可能性のあるDC電源の組み合わせを選択することができる。   Further, since the combination is determined in advance, it is possible to select a combination of DC power sources that may satisfy the power command value and the voltage command value without performing various calculations.

図11は、図9に示した最終運転割合生成手段6-7の詳細な構成を示すブロック図である。同図に示すように、該最終運転割合生成手段6-7は、最大運転割合算出手段7-1と、運転割合指令手段7-2と、運転割合比較手段7-3、及び最終運転割合指令手段7-4を備えている。   FIG. 11 is a block diagram showing a detailed configuration of the final operation ratio generating means 6-7 shown in FIG. As shown in the figure, the final operation ratio generation means 6-7 includes a maximum operation ratio calculation means 7-1, an operation ratio command means 7-2, an operation ratio comparison means 7-3, and a final operation ratio command. Means 7-4 is provided.

最大運転割合算出手段7-1は、選択運転状態Drive_sele、選択電源Vdc_sele、各DC電源の電圧Vdc_1、Vdc_2、及び電圧指令の振幅Vupkに基づき、選択された運転状態と各DC電源の組み合わせで、モータ2を駆動する際の第3の運転状態の最大運転割合rto_vdc_s_maxを生成する。   The maximum operation ratio calculation means 7-1 is based on the selected operation state Drive_sele, the selected power source Vdc_sele, the voltages Vdc_1 and Vdc_2 of each DC power source, and the amplitude Vupk of the voltage command. A maximum operation ratio rto_vdc_s_max in the third operation state when the motor 2 is driven is generated.

そして、Drive_sele=2で、且つVdc_sele=2の状態では、次の(14a)、(14b)式により、rto_vdc_s_maxを求める。   When Drive_sele = 2 and Vdc_sele = 2, rto_vdc_s_max is obtained by the following equations (14a) and (14b).

Figure 0005515305
上記(14a)、(14b)式で、rto_vdc_s_max ≦1の場合と、rto_vdc_s_max >1の場合で、使用する式を変更する。
Figure 0005515305
In the above formulas (14a) and (14b), the formula to be used is changed when rto_vdc_s_max ≦ 1 and when rto_vdc_s_max> 1.

また、Drive_sele=2で、且つVdc_sele=1の状態では、次の(15a)、(15b)式により、rto_vdc_s_maxを求める。   In the state where Drive_sele = 2 and Vdc_sele = 1, rto_vdc_s_max is obtained by the following equations (15a) and (15b).

Figure 0005515305
上記(15a)、(15b)式で、rto_vdc_s_max ≦1の場合と、rto_vdc_s_max >1の場合で、使用する式を変更する。
Figure 0005515305
In the above formulas (15a) and (15b), the formula to be used is changed when rto_vdc_s_max ≦ 1 and when rto_vdc_s_max> 1.

Drive_sele=1の状態では、rto_vdc_s_max=1とする。この場合には、第3の運転状態のみを使用するので、第3の運転状態は100%の運転割合となり、rto_vdc_s_maxは1となる。   In the state of Drive_sele = 1, rto_vdc_s_max = 1. In this case, since only the third operation state is used, the third operation state has an operation ratio of 100%, and rto_vdc_s_max is 1.

Drive_sele=0の状態では、rto_vdc_s_max=0とする。この場合には、第3の運転状態を使用しないので、第3の運転状態は0%の運転割合となり、rto_vdc_s_maxは0となる。   In the state of Drive_sele = 0, rto_vdc_s_max = 0. In this case, since the third operation state is not used, the third operation state has an operation ratio of 0%, and rto_vdc_s_max is 0.

以上のように、最大運転割合算出手段7-1は、選択された運転状態と各DC電源の組み合わせでモータ2を駆動する際の、第3の運転状態の最大運転割合を生成する処理を行う。   As described above, the maximum operation ratio calculation unit 7-1 performs processing for generating the maximum operation ratio of the third operation state when the motor 2 is driven with the combination of the selected operation state and each DC power source. .

他方、図11に示す運転割合指令手段7-2は、選択運転状態Drive_seleと、選択電源Vdc_seleと、各DC電源の電圧Vdc_1、Vdc_2と、各DC電源の出力電力指令Pcmd_vdc1、Pcmd_vdc2と、モータ電力Pm、及びモータ2の運転状態Pm_comを用いて、選択運転状態、選択電源、モータの運転状態に応じ、出力電力指令通り出力可能となる、第3の運転状態の必要運転割合rto_vdc_s_mustを演算し出力する。   On the other hand, the operation ratio command means 7-2 shown in FIG. 11 includes a selected operation state Drive_sele, a selected power source Vdc_sele, voltages Vdc_1 and Vdc_2 of each DC power source, output power commands Pcmd_vdc1 and Pcmd_vdc2 of each DC power source, and motor power. Using Pm and the operation state Pm_com of the motor 2, the required operation ratio rto_vdc_s_must in the third operation state that can be output according to the output power command according to the selected operation state, the selected power source, and the motor operation state is calculated and output. To do.

Drive_sele=2、Vdc_sele=2、Pm_com=1の状態では、次の(16)式によりrto_vdc_s_mustを求めて出力する。   In the state where Drive_sele = 2, Vdc_sele = 2, and Pm_com = 1, rto_vdc_s_must is obtained and output by the following equation (16).

Figure 0005515305
Drive_sele=2、Vdc_sele=2、Pm_com=0の状態では、次の(17)式によりrto_vdc_s_mustを求めて出力する。
Figure 0005515305
In a state where Drive_sele = 2, Vdc_sele = 2, and Pm_com = 0, rto_vdc_s_must is obtained and output by the following equation (17).

Figure 0005515305
Drive_sele=2、Vdc_sele=1、Pm_com=1の状態では、次の(18)式によりrto_vdc_s_mustを求めて出力する。
Figure 0005515305
In the state where Drive_sele = 2, Vdc_sele = 1, and Pm_com = 1, rto_vdc_s_must is obtained and output by the following equation (18).

Figure 0005515305
Drive_sele=2、Vdc_sele=1、Pm_com=0の状態では、次の(19)式によりrto_vdc_s_mustを求めて出力する。
Figure 0005515305
In a state where Drive_sele = 2, Vdc_sele = 1, and Pm_com = 0, rto_vdc_s_must is obtained and output by the following equation (19).

Figure 0005515305
Drive_sele=1の状態では、rto_vdc_s_must=1を出力する。
Drive_sele=0の状態では、rto_vdc_s_must=0を出力する。
Figure 0005515305
In the state of Drive_sele = 1, rto_vdc_s_must = 1 is output.
When Drive_sele = 0, rto_vdc_s_must = 0 is output.

上記の如く演算することで、第3の運転状態を用いたときの、必要運転割合を生成する。Drive_sele=0のときは第3の運転状態を使用しないので、第3の運転状態の必要運転割合は0となる。また、Drive_sele=1のときは第3の運転状態のみを使用するので、第3の運転状態の必要運転割合は1となる。   By calculating as described above, a required operation ratio when the third operation state is used is generated. Since the third operation state is not used when Drive_sele = 0, the required operation ratio in the third operation state is zero. Further, when Drive_sele = 1, only the third operation state is used, so the required operation ratio in the third operation state is 1.

図11に示す運転割合比較手段7-3は、第3の運転状態の必要運転割合rto_vdc_s_mustと、第3の運転状態の最大運転割合rto_vdc_s_maxとを比較し、下記の条件に基づいて第3の運転状態での運転割合指令rto_vdc_s_cmdを出力する。   The operation ratio comparison means 7-3 shown in FIG. 11 compares the required operation ratio rto_vdc_s_must in the third operation state with the maximum operation ratio rto_vdc_s_max in the third operation state, and performs the third operation based on the following conditions. The operation ratio command rto_vdc_s_cmd in the state is output.

rto_vdc_s_must ≦ rto_vdc_s_max の場合には、rto_vdc_s_cmd=rto_vdc_s_mustとする。また、rto_vdc_s_must > rto_vdc_s_max の場合には、rto_vdc_s_cmd=0とする。   When rto_vdc_s_must ≦ rto_vdc_s_max, rto_vdc_s_cmd = rto_vdc_s_must. Also, when rto_vdc_s_must> rto_vdc_s_max, rto_vdc_s_cmd = 0.

即ち、必要運転割合が最大運転割合以下であるならば、第3の運転状態を使用した状態で、電力指令を満たし、モータ2を駆動することができるため、運転割合指令として必要運転割合を出力する。他方、必要運転割合が最大運転割合を超える場合においては、第3の運転状態を使用すると電力指令を満たし、モータ2を駆動することは不可能であるため、第3の運転状態の運転割合を0とする。   That is, if the required operation ratio is less than or equal to the maximum operation ratio, the power command can be satisfied and the motor 2 can be driven in the state where the third operation state is used. To do. On the other hand, when the required operation ratio exceeds the maximum operation ratio, if the third operation state is used, the power command is satisfied and the motor 2 cannot be driven. 0.

最終運転割合指令算出手段7-4では、第3の運転状態の運転割合指令rto_vdc_s_cmdと、各DC電源の電圧Vdc_1、Vdc_2と、各DC電源の出力電力指令Pcmd_vdc1、Pcmd_vdc2と、モータ電力Pm、及び選択電源Vdc_seleを用いて、下記の(1)〜(4)に示す条件で、最終運転割合指令rto_vdc1(第1の運転状態用)、rto_vdc2(第2の運転状態用)、rto_vdc_s(第3の運転状態用)を出力する。   In the final operation ratio command calculation means 7-4, the operation ratio command rto_vdc_s_cmd in the third operation state, the voltages Vdc_1 and Vdc_2 of each DC power supply, the output power commands Pcmd_vdc1 and Pcmd_vdc2 of each DC power supply, the motor power Pm, and Using the selected power source Vdc_sele, the final operation ratio commands rto_vdc1 (for the first operation state), rto_vdc2 (for the second operation state), rto_vdc_s (the third operation state) under the conditions shown in the following (1) to (4) (For operation status) is output.

(1)rto_vdc_s_cmd≠0、rto_vdc_s_cmd≠1、Vdc_sele=1の場合
rto_vdc_s=rto_vdc_s_cmd
rto_vdc1 =1−rto_vdc_s
rto_vdc2 =0
(2)rto_vdc_s_cmd≠0、rto_vdc_s_cmd≠1、Vdc_sele=2の場合
rto_vdc_s=rto_vdc_s_cmd
rto_vdc1 =0
rto_vdc2 =1−rto_vdc_s
(3)rto_vdc_s_cmd=1の場合
rto_vdc_s=rto_vdc_s_cmd
rto_vdc1 =0
rto_vdc2 =0
(4)rto_vdc_s_cmd=0の場合
rto_vdc_s=rto_vdc_s_cmd
rto_vdc1 =Pcmd_vdc1/Pm
rto_vdc2 =1−rto_vdc1
(1) When rto_vdc_s_cmd ≠ 0, rto_vdc_s_cmd ≠ 1, and Vdc_sele = 1
rto_vdc_s = rto_vdc_s_cmd
rto_vdc1 = 1-rto_vdc_s
rto_vdc2 = 0
(2) When rto_vdc_s_cmd ≠ 0, rto_vdc_s_cmd ≠ 1, and Vdc_sele = 2
rto_vdc_s = rto_vdc_s_cmd
rto_vdc1 = 0
rto_vdc2 = 1-rto_vdc_s
(3) When rto_vdc_s_cmd = 1
rto_vdc_s = rto_vdc_s_cmd
rto_vdc1 = 0
rto_vdc2 = 0
(4) When rto_vdc_s_cmd = 0
rto_vdc_s = rto_vdc_s_cmd
rto_vdc1 = Pcmd_vdc1 / Pm
rto_vdc2 = 1-rto_vdc1

このように、第3の運転状態を使用する場合には、第3の運転状態と選択電源との間で運転割合を割り振り、出力することで、モータ2を駆動しながら各DC電源1-1、1-2の出力電力指令を満たすことができる。   As described above, when the third operation state is used, an operation ratio is allocated and output between the third operation state and the selected power source, and each DC power source 1-1 is driven while driving the motor 2. The output power command of 1-2 can be satisfied.

第3の運転状態を使用しない場合、或いは使用できない場合には、モータ2を駆動しながら出力電力指令を満たすために、第1の運転状態と、第2の運転状態のみで駆動する。以上のように行うことで、モータ2を駆動しながら、出力電力指令を満たすことができる。   When the third operating state is not used or cannot be used, the motor 2 is driven only in the first operating state and the second operating state in order to satisfy the output power command while driving. By performing as described above, the output power command can be satisfied while driving the motor 2.

また、各運転状態の運転割合rto_vdc1,rto_vdc2,rto_vdc_sが決定すると、各電源電圧Vdc_1,Vdc_2、キャリアの振幅Afc、キャリアの周波数fcに基づいて、次の(20)式により、1制御周期Tを求めることができる。   When the operation ratios rto_vdc1, rto_vdc2, and rto_vdc_s in each operation state are determined, one control cycle T is calculated by the following equation (20) based on the power supply voltages Vdc_1, Vdc_2, the carrier amplitude Afc, and the carrier frequency fc. Can be sought.

Figure 0005515305
このようにして、最大運転割合と、出力電力指令を満たす運転割合とを比較して配分割合を決定するので、出力電力指令に対して高応答に追従を行うことができる。また、第3の運転状態では条件を満たせない場合には、第3の運転状態を使わずに制御を行うので、運転不可能な状態を作らずに、確実にモータ2の制御を行うことができる。
Figure 0005515305
In this way, since the distribution ratio is determined by comparing the maximum operation ratio and the operation ratio that satisfies the output power command, it is possible to follow the output power command with high response. Further, when the condition cannot be satisfied in the third operation state, the control is performed without using the third operation state, so that the motor 2 can be reliably controlled without creating an inoperable state. it can.

また、キャリアの周波数fcと運転割合とから制御周期が分かるので、スイッチングの状態、各DC電源1-1、1-2(第1、第2の蓄電手段)の電力と制御周期より、この制御を使っているか否かの発見を行うことができる。   Further, since the control cycle can be determined from the carrier frequency fc and the operation ratio, this control is performed based on the switching state, the power of each DC power supply 1-1, 1-2 (first and second power storage means) and the control cycle. You can discover whether you are using or not.

次に、本発明の第2の実施形態について説明する。図12は、本発明の第2実施形態に係る最終運転割合生成手段6-7の構成を示すブロック図である。第2実施形態では、前述した第1実施形態と対比して運転割合生成手段5-3に設けられる電圧状態比較手段6-1(図9参照)での演算方法、及び最終運転割合生成手段6-7の構成のみが相違するので、その相違点について説明する。   Next, a second embodiment of the present invention will be described. FIG. 12 is a block diagram showing the configuration of the final operation ratio generation means 6-7 according to the second embodiment of the present invention. In the second embodiment, in contrast to the first embodiment described above, the calculation method in the voltage state comparison means 6-1 (see FIG. 9) provided in the operation ratio generation means 5-3 and the final operation ratio generation means 6 Since only the configuration of -7 is different, the difference will be described.

まず、電圧状態比較手段6-1での演算方法の相違点について説明する。   First, the difference in the calculation method in the voltage state comparison means 6-1 will be described.

図9に示す電圧状態比較手段6-1は、電圧指令の振幅Vupkと、第3の運転状態を用いたときの電力変換器の入力電圧Vdc_sとの比較を行う。第3の運転状態では、DC電源1-1と、DC電源1-2を直列接続して1つの電源として扱うため、各DC電源の電圧の差が入力電圧Vdc_sとなる。   The voltage state comparison means 6-1 shown in FIG. 9 compares the amplitude Vupk of the voltage command with the input voltage Vdc_s of the power converter when the third operation state is used. In the third operating state, since the DC power source 1-1 and the DC power source 1-2 are connected in series and handled as one power source, the voltage difference between the DC power sources becomes the input voltage Vdc_s.

そして、入力電圧の1/2の大きさが、電圧指令の振幅Vupk以上でなければ電力変換器を駆動することができず、第3の運転状態の以外の運転状態に切り替えて行う運転状態の選択の条件となる。そして、「Vdc_s/2≧Vupk」ならば「V_com=1」を出力し、「Vdc_s/2<Vupk」ならば「V_com=0」を出力する。   The power converter cannot be driven unless the half of the input voltage is equal to or greater than the amplitude Vupk of the voltage command, and the operating state is switched to an operating state other than the third operating state. This is a selection condition. If “Vdc_s / 2 ≧ Vupk”, “V_com = 1” is output, and if “Vdc_s / 2 <Vupk”, “V_com = 0” is output.

即ち、各蓄電手段(DC電源1-1、1-2)の電圧を比較して電圧状態を取得する処理は、各蓄電手段の電圧の差分を1/2倍した値と、電圧指令の振幅Vupkと、を比較することにより行われる。このように、各蓄電手段の電圧の差分を1/2倍した値を用いるので、前述した電圧指令の振幅Vupkを2倍する場合と比較して操作が簡単になる。   That is, the process of obtaining the voltage state by comparing the voltage of each power storage means (DC power supply 1-1, 1-2) is obtained by multiplying the voltage difference of each power storage means by 1/2 and the amplitude of the voltage command. This is done by comparing Vupk. In this way, since a value obtained by halving the voltage difference between the power storage units is used, the operation is simplified as compared with the case where the voltage command amplitude Vupk is doubled.

次に、最終運転割合生成手段6-7の構成について、図12を参照して説明する。第2実施形態に係る最終運転割合生成手段6-7は、最大運転割合算出手段8-1と、最大充電電力生成手段8-2と、充電電力指令比較手段8-3、及び最終運転割合指令手段8-4を備えている。   Next, the configuration of the final operation ratio generation means 6-7 will be described with reference to FIG. The final operation ratio generation means 6-7 according to the second embodiment includes a maximum operation ratio calculation means 8-1, maximum charge power generation means 8-2, charge power command comparison means 8-3, and final operation ratio command. Means 8-4 are provided.

最大運転割合算出手段8-1は、選択運転状態Drive_sele、選択電源Vdc_sele、各DC電源の電圧Vdc_1、Vdc_2、電圧指令の振幅Vupkに基づき、選択された運転状態と電源の組み合わせでモータ2を駆動する際の、第3の運転状態の最大運転割合rto_vdc_s_maxを生成する。   The maximum operation ratio calculation means 8-1 drives the motor 2 with a combination of the selected operation state and power source based on the selected operation state Drive_sele, the selected power source Vdc_sele, the voltages Vdc_1 and Vdc_2 of each DC power source, and the amplitude Vupk of the voltage command. The maximum operation ratio rto_vdc_s_max in the third operation state is generated.

Drive_sele=2で、且つVdc_sele=2の状態では、次の(21a)、(21b)式により、rto_vdc_s_maxを求める。   In the state of Drive_sele = 2 and Vdc_sele = 2, rto_vdc_s_max is obtained by the following equations (21a) and (21b).

Figure 0005515305
上記(21a)、(21b)式では、rto_vdc_s_max ≦1の場合と、rto_vdc_s_max >1の場合で、使用する式を変更する。
Figure 0005515305
In the above formulas (21a) and (21b), the formula to be used is changed when rto_vdc_s_max ≦ 1 and when rto_vdc_s_max> 1.

また、Drive_sele=2で、且つVdc_sele=1の状態では、次の(22a)、(22b)式により、rto_vdc_s_maxを求める。   Further, when Drive_sele = 2 and Vdc_sele = 1, rto_vdc_s_max is obtained by the following equations (22a) and (22b).

Figure 0005515305
上記(22a)、(22b)式では、rto_vdc_s_max ≦1の場合と、rto_vdc_s_max >1の場合で、使用する式を変更する。
Figure 0005515305
In the above formulas (22a) and (22b), the formula to be used is changed between rto_vdc_s_max ≦ 1 and rto_vdc_s_max> 1.

Drive_sele=1の状態では、rto_vdc_s_max=1とする。第3の運転状態のみを使用するので、第3の運転状態は100%の運転割合となり、rto_vdc_s_maxは1となる。   In the state of Drive_sele = 1, rto_vdc_s_max = 1. Since only the third operating state is used, the third operating state has an operating ratio of 100%, and rto_vdc_s_max is 1.

Drive_sele=0の状態では、rto_vdc_s_max=0とする。第3の運転状態を使用しないので、第3の運転状態は0%の運転割合となり、rto_vdc_s_maxは0となる。   In the state of Drive_sele = 0, rto_vdc_s_max = 0. Since the third operation state is not used, the third operation state has an operation ratio of 0%, and rto_vdc_s_max is 0.

以上のように、最大運転割合算出手段8-1は、選択された運転状態と電源の組み合わせでモータ2を駆動する際の、第3の運転状態の最大運転割合rto_vdc_s_maxを生成する処理を行う。   As described above, the maximum operation ratio calculation unit 8-1 performs processing for generating the maximum operation ratio rto_vdc_s_max in the third operation state when the motor 2 is driven with the selected combination of the operation state and the power source.

他方、最大充電電力生成手段8-2は、第3の運転状態の最大運転割合rto_vdc_s_max、モータ電力Pm、電源電圧Vdc_1、Vdc_2、選択電源Vdc_sele、モータ2の運転状態Pm_comを用いて、下記の手順で最大充電電力Pcharge_maxを算出し出力する。   On the other hand, the maximum charge power generation means 8-2 uses the maximum operation ratio rto_vdc_s_max, the motor power Pm, the power supply voltages Vdc_1, Vdc_2, the selected power supply Vdc_sele, and the operation state Pm_com of the motor 2 in the third operation state as follows. To calculate and output the maximum charge power Pcharge_max.

(1)Pm_com=1、Vdc_sele=1の場合には、次の(23)式に基づいて最大充電電力Pcharge_maxを算出する。

Figure 0005515305
(1) When Pm_com = 1 and Vdc_sele = 1, the maximum charging power Pcharge_max is calculated based on the following equation (23).
Figure 0005515305

(2)Pm_com=1、Vdc_sele=2の場合には、次の(24)式に基づいて最大充電電力Pcharge_maxを算出する。

Figure 0005515305
(2) When Pm_com = 1 and Vdc_sele = 2, the maximum charging power Pcharge_max is calculated based on the following equation (24).
Figure 0005515305

(3)Pm_com=0、Vdc_sele=1の場合には、次の(25)式に基づいて最大充電電力Pcharge_maxを算出する。

Figure 0005515305
(3) When Pm_com = 0 and Vdc_sele = 1, the maximum charge power Pcharge_max is calculated based on the following equation (25).
Figure 0005515305

(4)Pm_com=0、Vdc_sele=2の場合には、次の(26)式に基づいて最大充電電力Pcharge_maxを算出する。

Figure 0005515305
(4) When Pm_com = 0 and Vdc_sele = 2, the maximum charging power Pcharge_max is calculated based on the following equation (26).
Figure 0005515305

(5)Pm_com=1、Vdc_sele=0の場合には、次の(27)式に基づいて最大充電電力Pcharge_maxを算出する。

Figure 0005515305
(5) When Pm_com = 1 and Vdc_sele = 0, the maximum charging power Pcharge_max is calculated based on the following equation (27).
Figure 0005515305

(6)Pm_com=0、Vdc_sele=0の場合には、次の(28)式に基づいて最大充電電力Pcharge_maxを算出する。

Figure 0005515305
(6) When Pm_com = 0 and Vdc_sele = 0, the maximum charging power Pcharge_max is calculated based on the following equation (28).
Figure 0005515305

上述の如く演算することにより、モータ2の運転状態、選択電源に合わせた最大充電電力Pcharge_maxを出力する。   By calculating as described above, the maximum charging power Pcharge_max that matches the operating state of the motor 2 and the selected power source is output.

充電電力指令比較手段8-3は、最大充電電力Pcharge_max、各電源の出力電力指令Pcmd_vdc1、Pcmd_vdc2、及びモータ2の運転状態Pm_comに基づき、下記の条件により充電電力比較Pcharge_comを算出して出力する。   Based on the maximum charge power Pcharge_max, the output power commands Pcmd_vdc1 and Pcmd_vdc2 of each power source, and the operation state Pm_com of the motor 2, the charge power command comparison means 8-3 calculates and outputs a charge power comparison Pcharge_com under the following conditions.

[Pm_com=1の場合]
Pcmd_vdc2<Pcharge_maxの場合に、Pcharge_com=1
0>Pcmd_vdc2≧Pcharge_maxの場合に、Pcharge_com=0
Pcmd_vdc2≧0の場合に、Pcharge_com=1
[Pm_com=0の場合]
Pcmd_vdc1<Pcharge_maxの場合に、Pcharge_com=1
0>Pcmd_vdc1≧Pcharge_maxの場合に、Pcharge_com=0
Pcmd_vdc1≧0の場合に、Pcharge_com=1
[When Pm_com = 1]
Pcharge_com = 1 when Pcmd_vdc2 <Pcharge_max
When 0> Pcmd_vdc2 ≧ Pcharge_max, Pcharge_com = 0
Pcharge_com = 1 when Pcmd_vdc2 ≧ 0
[When Pm_com = 0]
Pcharge_com = 1 when Pcmd_vdc1 <Pcharge_max
When 0> Pcmd_vdc1 ≧ Pcharge_max, Pcharge_com = 0
Pcharge_com = 1 when Pcmd_vdc1 ≧ 0

Pcharge=0のときは、第3の運転状態を用いてモータ2を駆動することが可能な状態である。また、Pcharge=1のときは、第3の運転状態を用いた場合にはモータ2を駆動しながら、出力電力指令を満足できない状態である。   When Pcharge = 0, the motor 2 can be driven using the third operating state. Further, when Pcharge = 1, the output power command cannot be satisfied while driving the motor 2 when the third operation state is used.

また、最終運転割合指令手段8-4は、充電電力比較Pcharge_com、選択電源Vdc_sele、電源電圧Vdc_1、Vdc_2、各電源の出力電力指令Pcmd_vdc1、Pcmd_vdc2、モータ電力Pm、及びモータ2の運転状態Pm_comを用いて、下記の(1)〜(6)に示す条件で、最終運転割合指令rto_vdc1(第1の運転状態用)、rto_vdc2(第2の運転状態用)、rto_vdc_s(第3の運転状態用)を演算し出力する。   The final operation ratio command means 8-4 uses the charge power comparison Pcharge_com, the selected power supply Vdc_sele, the power supply voltages Vdc_1, Vdc_2, the output power commands Pcmd_vdc1, Pcmd_vdc2, the motor power Pm, and the operating state Pm_com of the motor 2. The final operation ratio commands rto_vdc1 (for the first operation state), rto_vdc2 (for the second operation state), and rto_vdc_s (for the third operation state) under the conditions shown in the following (1) to (6) Calculate and output.

(1)Pcharge_com=0、Vdc_sele=2、Pm_com=1の状態では、次の(29a)〜(29c)式により最終運転割合指令を演算する。

Figure 0005515305
(1) In the state of Pcharge_com = 0, Vdc_sele = 2, and Pm_com = 1, the final operation ratio command is calculated by the following equations (29a) to (29c).
Figure 0005515305

(2)Pcharge_com=0、Vdc_sele=2、Pm_com=0の状態では、次の(30a)〜(30c)式により最終運転割合指令を演算する。

Figure 0005515305
(2) In the state of Pcharge_com = 0, Vdc_sele = 2, and Pm_com = 0, the final operation ratio command is calculated by the following equations (30a) to (30c).
Figure 0005515305

(3)Pcharge_com=0、Vdc_sele=1、Pm_com=1の状態では、次の(31a)〜(31c)式により最終運転割合指令を演算する。

Figure 0005515305
(3) In the state of Pcharge_com = 0, Vdc_sele = 1, and Pm_com = 1, the final operation ratio command is calculated by the following equations (31a) to (31c).
Figure 0005515305

(4)Pcharge_com=0、Vdc_sele=1、Pm_com=0の状態では、次の(32a)〜(32c)式により最終運転割合指令を演算する。

Figure 0005515305
(4) In the state of Pcharge_com = 0, Vdc_sele = 1, and Pm_com = 0, the final operation ratio command is calculated by the following equations (32a) to (32c).
Figure 0005515305

(5)Pcharge_com=0、Vdc_sele=0の状態では、次の(33a)〜(33c)式により最終運転割合指令を演算する。

Figure 0005515305
(5) In the state of Pcharge_com = 0 and Vdc_sele = 0, the final operation ratio command is calculated by the following equations (33a) to (33c).
Figure 0005515305

(6)Pcharge_com=0の状態では、次の(34a)〜(34c)式により最終運転割合指令を演算する。

Figure 0005515305
(6) In the state of Pcharge_com = 0, the final operation ratio command is calculated by the following equations (34a) to (34c).
Figure 0005515305

このように、第3の運転状態を使用する際は、第3の運転状態と選択電源との間で運転割合を割り振り、出力することで、モータ2を駆動しながら電源の電力指令を満たすことができる。   As described above, when using the third operation state, the operation ratio is allocated between the third operation state and the selected power source and output to satisfy the power command of the power source while driving the motor 2. Can do.

第3の運転状態を使用しない場合、或いは使用できない場合には、モータ2を駆動しながら出力電力指令を満たすために、第1の運転状態と、第2の運転状態のみで駆動する。以上のように行うことで、モータ2を駆動しながら、出力電力指令を満たすことができる。   When the third operating state is not used or cannot be used, the motor 2 is driven only in the first operating state and the second operating state in order to satisfy the output power command while driving. By performing as described above, the output power command can be satisfied while driving the motor 2.

最大充電電力と、出力電力指令を比較して配分割合を決定するので、第1運転状態での充電限界値を確認するため、出力電力指令設定にFBを行うことができる。また、第1運転状態では条件を満たせない場合には、第1運転状態を使わずに制御を行うので、運転不可能な状態を作らずにモータの制御を行うことができる。   Since the distribution ratio is determined by comparing the maximum charge power and the output power command, FB can be performed for the output power command setting in order to confirm the charge limit value in the first operation state. Further, when the condition cannot be satisfied in the first operation state, the control is performed without using the first operation state, so that the motor can be controlled without creating an inoperable state.

次に、本発明の第3実施形態について説明する。図13は、第3実施形態に係る最終運転割合生成手段6-7の構成を示すブロック図である。第3実施形態では、前述した第1実施形態と対比して運転割合生成手段5-3に設けられる最終運転割合生成手段6-7の構成のみが相違するので、図13を用いて、その相違点について説明する。   Next, a third embodiment of the present invention will be described. FIG. 13 is a block diagram showing a configuration of the final operation ratio generation means 6-7 according to the third embodiment. In the third embodiment, only the configuration of the final operation ratio generation means 6-7 provided in the operation ratio generation means 5-3 is different from the first embodiment described above. The point will be described.

第3実施形態に係る最終運転割合生成手段6-7は、最大運転割合算出手段9-1と、最大放電電力生成手段9-2と、放電電力指令比較手段9-3、及び最終運転割合指令手段9-4を備えている。   The final operation ratio generation means 6-7 according to the third embodiment includes a maximum operation ratio calculation means 9-1, a maximum discharge power generation means 9-2, a discharge power command comparison means 9-3, and a final operation ratio command. Means 9-4 are provided.

最大運転割合算出手段9-1は、選択運転状態Drive_sele、選択電源Vdc_sele、電源電圧Vdc_1、Vdc_2、電圧指令の振幅Vupkに基づき、選択された運転状態と各DC電源の組み合わせでモータ2を駆動する際の、第3の運転状態の最大運転割合rto_vdc_s_maxを生成する。   The maximum operation ratio calculation means 9-1 drives the motor 2 with a combination of the selected operation state and each DC power source based on the selected operation state Drive_sele, the selected power source Vdc_sele, the power source voltages Vdc_1 and Vdc_2, and the amplitude Vupk of the voltage command. The maximum operation ratio rto_vdc_s_max in the third operation state is generated.

Drive_sele=2で、且つVdc_sele=2の状態では、次の(35a)、(35b)式により、rto_vdc_s_maxを求める。

Figure 0005515305
In a state where Drive_sele = 2 and Vdc_sele = 2, rto_vdc_s_max is obtained by the following equations (35a) and (35b).
Figure 0005515305

上記(35a)、(35b)式では、rto_vdc_s_max ≦1の場合と、rto_vdc_s_max >1の場合で、使用する式を変更する。   In the above expressions (35a) and (35b), the expression to be used is changed between rto_vdc_s_max ≦ 1 and rto_vdc_s_max> 1.

また、Drive_sele=2で、且つVdc_sele=1の状態では、次の(36a)、(36b)式により、rto_vdc_s_maxを求める。

Figure 0005515305
Further, when Drive_sele = 2 and Vdc_sele = 1, rto_vdc_s_max is obtained by the following equations (36a) and (36b).
Figure 0005515305

上記(36a)、(36b)式では、rto_vdc_s_max ≦1の場合と、rto_vdc_s_max >1の場合で、使用する式を変更する。   In the above expressions (36a) and (36b), the expression to be used is changed between rto_vdc_s_max ≦ 1 and rto_vdc_s_max> 1.

Drive_sele=1の状態では、rto_vdc_s_max=1とする。第3の運転状態のみを使用するので、第3の運転状態は100%の運転割合となり、rto_vdc_s_maxは1となる。   In the state of Drive_sele = 1, rto_vdc_s_max = 1. Since only the third operating state is used, the third operating state has an operating ratio of 100%, and rto_vdc_s_max is 1.

Drive_sele=0の状態では、rto_vdc_s_max=0とする。第3の運転状態を使用しないので、第3の運転状態は0%の運転割合となり、rto_vdc_s_maxは0となる。   In the state of Drive_sele = 0, rto_vdc_s_max = 0. Since the third operation state is not used, the third operation state has an operation ratio of 0%, and rto_vdc_s_max is 0.

以上のように、最大運転割合算出手段9-1は、選択された運転状態と各DC電源の組み合わせでモータ2を駆動する際の、第3の運転状態の最大運転割合rto_vdc_s_maxを生成する処理を行う。   As described above, the maximum operation ratio calculation means 9-1 generates the maximum operation ratio rto_vdc_s_max in the third operation state when the motor 2 is driven with the combination of the selected operation state and each DC power source. Do.

最大放電電力生成手段9-2は、第3の運転状態の最大運転割合rto_vdc_s_max、モータ電力Pm、電源電圧Vdc_1、Vdc_2、選択電源Vdc_sele、モータの運転状態Pm_comを用いて最大放電電力Pdischarge_maxを出力する。   The maximum discharge power generation means 9-2 outputs the maximum discharge power Pdischarge_max using the maximum operation ratio rto_vdc_s_max, motor power Pm, power supply voltage Vdc_1, Vdc_2, selected power supply Vdc_sele, and motor operation state Pm_com in the third operation state. .

(1)Pm_com=1、Vdc_sele=1の場合には、次の(37)式により最大放電電力Pdischarge_maxを演算する。

Figure 0005515305
(1) When Pm_com = 1 and Vdc_sele = 1, the maximum discharge power Pdischarge_max is calculated by the following equation (37).
Figure 0005515305

(2)Pm_com=1、Vdc_sele=2の場合には、次の(38)式により最大放電電力Pdischarge_maxを演算する。

Figure 0005515305
(2) When Pm_com = 1 and Vdc_sele = 2, the maximum discharge power Pdischarge_max is calculated by the following equation (38).
Figure 0005515305

(3)Pm_com=0、Vdc_sele=1の場合には、次の(39)式により最大放電電力Pdischarge_maxを演算する。

Figure 0005515305
(3) When Pm_com = 0 and Vdc_sele = 1, the maximum discharge power Pdischarge_max is calculated by the following equation (39).
Figure 0005515305

(4)Pm_com=0、Vdc_sele=2の場合には、次の(40)式により最大放電電力Pdischarge_maxを演算する。

Figure 0005515305
(4) When Pm_com = 0 and Vdc_sele = 2, the maximum discharge power Pdischarge_max is calculated by the following equation (40).
Figure 0005515305

(5)Pm_com=1、Vdc_sele=0の場合には、次の(41)式により最大放電電力Pdischarge_maxを演算する。

Figure 0005515305
(5) When Pm_com = 1 and Vdc_sele = 0, the maximum discharge power Pdischarge_max is calculated by the following equation (41).
Figure 0005515305

(6)Pm_com=0、Vdc_sele=0の場合には、次の(42)式により最大放電電力Pdischarge_maxを演算する。

Figure 0005515305
(6) When Pm_com = 0 and Vdc_sele = 0, the maximum discharge power Pdischarge_max is calculated by the following equation (42).
Figure 0005515305

以上のように演算することで、モータの運転状態、選択電源に合わせた最大放電電力Pdischarge_maxを出力する。   By calculating as described above, the maximum discharge power Pdischarge_max according to the operation state of the motor and the selected power source is output.

図13に示す放電電力指令比較手段9-3は、最大放電電力Pdischarge_maxと、各DC電源の出力電力指令Pcmd_vdc1、Pcmd_vdc2と、モータの運転状態Pm_comとに基づき、下記の条件で放電電力比較Pdischarge_comを出力する。   Based on the maximum discharge power Pdischarge_max, the output power commands Pcmd_vdc1 and Pcmd_vdc2 of each DC power supply, and the motor operating state Pm_com, the discharge power command comparison means 9-3 shown in FIG. 13 performs the discharge power comparison Pdischarge_com under the following conditions. Output.

[Pm_com=1の場合]
0<Pcmd_vdc1≦Pdischarge_maxの場合に、Pdischarge_com=0
Pcmd_vdc1>Pdischarge_maxの場合に、Pdischarge_com=1
Pcmd_vdc1≦0の場合Pdischarge_com=1
[Pm_com=0の場合]
0<Pcmd_vdc2≦Pdischarge_maxの場合に、Pdischarge_com=0
Pcmd_vdc2>Pdischarge_maxの場合に、Pdischarge_com=1
Pcmd_vdc2≦0の場合に、Pdischarge_com=1
[When Pm_com = 1]
When 0 <Pcmd_vdc1 ≦ Pdischarge_max, Pdischarge_com = 0
When Pcmd_vdc1> Pdischarge_max, Pdischarge_com = 1
When Pcmd_vdc1 ≦ 0, Pdischarge_com = 1
[When Pm_com = 0]
When 0 <Pcmd_vdc2 ≦ Pdischarge_max, Pdischarge_com = 0
When Pcmd_vdc2> Pdischarge_max, Pdischarge_com = 1
Pdischarge_com = 1 when Pcmd_vdc2 ≦ 0

Pdischarge=0のときは、第3の運転状態を用いてモータ2を駆動することが可能な状態である。また、Pdischarge=1のときは、第3の運転状態を用いた場合にはモータを駆動しながら、出力電力指令を満足できない状態である。   When Pdischarge = 0, the motor 2 can be driven using the third operating state. Further, when Pdischarge = 1, the output power command cannot be satisfied while driving the motor when the third operation state is used.

また、最終運転割合指令手段9-4は、放電電力比較Pdischarge_comと、選択電源Vdc_seleと、各DC電源の電圧Vdc_1、Vdc_2と、各DC電源の出力電力指令Pcmd_vdc1、Pcmd_vdc2と、モータ電力Pm、及びモータ2の運転状態Pm_comを用いて、下記の(1)〜(6)に示す条件で、最終運転割合指令rto_vdc1(第1の運転状態用)、rto_vdc2(第2の運転状態用)、rto_vdc_s(第3の運転状態用)を演算し出力する。   Further, the final operation ratio command means 9-4 includes the discharge power comparison Pdischarge_com, the selected power supply Vdc_sele, the voltages Vdc_1 and Vdc_2 of each DC power supply, the output power commands Pcmd_vdc1 and Pcmd_vdc2 of each DC power supply, the motor power Pm, and Using the operation state Pm_com of the motor 2, the final operation ratio commands rto_vdc1 (for the first operation state), rto_vdc2 (for the second operation state), rto_vdc_s (for the conditions shown in the following (1) to (6) 3rd operation state) is calculated and output.

(1)Pdischarge_com=0、Vdc_sele=2、Pm_com=1の状態では、次の(43a)〜(43c)式により最終運転割合指令を演算する。

Figure 0005515305
(1) In the state of Pdischarge_com = 0, Vdc_sele = 2, and Pm_com = 1, the final operation ratio command is calculated by the following equations (43a) to (43c).
Figure 0005515305

(2)Pdischarge_com=0、Vdc_sele=2、Pm_com=0の状態では、次の(44a)〜(44c)式により最終運転割合指令を演算する。

Figure 0005515305
(2) In the state where Pdischarge_com = 0, Vdc_sele = 2, and Pm_com = 0, the final operation ratio command is calculated by the following equations (44a) to (44c).
Figure 0005515305

(3)Pdischarge_com=0、Vdc_sele=1、Pm_com=1の状態では、次の(45a)〜(45c)式により最終運転割合指令を演算する。

Figure 0005515305
(3) In the state of Pdischarge_com = 0, Vdc_sele = 1, and Pm_com = 1, the final operation ratio command is calculated by the following equations (45a) to (45c).
Figure 0005515305

(4)Pdischarge_com=0、Vdc_sele=1、Pm_com=0の状態では、次の(46a)〜(46c)式により最終運転割合指令を演算する。

Figure 0005515305
(4) When Pdischarge_com = 0, Vdc_sele = 1, and Pm_com = 0, the final operation ratio command is calculated by the following equations (46a) to (46c).
Figure 0005515305

(5)Pdischarge_com=0、Vdc_sele=0の状態では、次の(47a)〜(47c)式により最終運転割合指令を演算する。

Figure 0005515305
(5) When Pdischarge_com = 0 and Vdc_sele = 0, the final operation ratio command is calculated by the following equations (47a) to (47c).
Figure 0005515305

(6)Pdischarge_com=0の状態では、次の(48a)〜(48c)式により最終運転割合指令を演算する。

Figure 0005515305
(6) In the state of Pdischarge_com = 0, the final operation ratio command is calculated by the following equations (48a) to (48c).
Figure 0005515305

このように、第3の運転状態を使用する際は、第3の運転状態と選択電源との間で運転割合を割り振り、出力することで、モータ2を駆動しながら電源の出力電力指令を満たすことができる。また、第3の運転状態を使用しない場合、或いは使用できない場合には、モータ2を駆動しながら出力電力指令を満たすために、第1の運転状態と、第2の運転状態のみで駆動する。以上のように行うことで、モータ2を駆動しながら、電力指令を満たすことができる。   As described above, when using the third operation state, the operation ratio is allocated between the third operation state and the selected power source and output to satisfy the output power command of the power source while driving the motor 2. be able to. Further, when the third operation state is not used or cannot be used, in order to satisfy the output power command while driving the motor 2, the drive is performed only in the first operation state and the second operation state. By performing as described above, the power command can be satisfied while driving the motor 2.

最大放電電力と、電力指令を比較して配分割合を決定するので、第1運転状態での放電限界値を確認するため、電力指令設定にFBを行うことができる。また、また、第1運転状態では条件を満たせない場合には、第1運転状態を使わずに制御を行うので、運転不可能な状態を作らずにモータ2の制御を行うことができる。   Since the distribution ratio is determined by comparing the maximum discharge power and the power command, FB can be performed for the power command setting in order to confirm the discharge limit value in the first operation state. Further, when the condition cannot be satisfied in the first operation state, the control is performed without using the first operation state, so that the motor 2 can be controlled without creating an inoperable state.

以上、本発明の電力変換装置の制御方法を図示の実施形態に基づいて説明したが、本発明はこれに限定されるものではなく、各部の構成は、同様の機能を有する任意の構成のものに置き換えることができる。   As mentioned above, although the control method of the power converter device of this invention was demonstrated based on embodiment of illustration, this invention is not limited to this, The structure of each part is the thing of arbitrary structures which have the same function Can be replaced.

本発明は、複数の電源を用いてモータを駆動する場合に利用することができる。   The present invention can be used when a motor is driven using a plurality of power supplies.

1 マルチ出力DC電源
2 3相交流モータ
3 電力変換器
4 制御装置
4-1 トルク制御手段
4-2 電流・電力制御手段
4-3 変調率演算手段
4-4 変調率補正手段
4-5 PWMパルス生成手段
4-6 3相/dq変換手段
5-1 電流制御手段
5-2 dq/3相変換手段
5-3 運転割合生成手段
5-4 電圧分配手段
6-1 電圧状態比較手段
6-2 モータ電力演算手段
6-3 モータ運転状態判断手段
6-4 移動電力生成手段
6-5 電力比較手段
6-6 運転状態・蓄電手段選択手段
6-7 最終運転割合生成手段
7-1 最大運転割合算出手段
7-2 運転割合指令手段
7-3 運転割合比較手段
7-4 最終運転割合指令手段
8-1 最大運転割合算出手段
8-2 最大充電電力生成手段
8-3 充電電力指令比較手段
8-4 最終運転割合指令手段
9-1 最大運転割合算出手段
9-2 最大放電電力生成手段
9-3 放電電力指令比較手段
9-4 最終運転割合指令手段
1 Multi-output DC power supply 2 3-phase AC motor 3 Power converter 4 Control device 4-1 Torque control means 4-2 Current / power control means 4-2 Modulation rate calculation means 4-4 Modulation rate correction means 4-5 PWM pulse Generation means 4-6 3-phase / dq conversion means 5-1 Current control means 5-2 dq / 3-phase conversion means 5-2 Operation ratio generation means 5.4 Voltage distribution means 6-1 Voltage state comparison means 6-2 Motor Electric power calculation means 6-3 Motor operation state determination means 6-4 Moving power generation means 6-5 Electric power comparison means 6-6 Operation state / storage means selection means 6-7 Final operation ratio generation means 7-1 Maximum operation ratio calculation means 7-2 Operation ratio command means 7-3 Operation ratio comparison means 7-4 Final operation ratio command means 8-1 Maximum operation ratio calculation means 8-1 Maximum charge power generation means 8-3 Charge power command comparison means 8-4 Final Operating ratio command means 9-1 Maximum operating ratio calculation means 9-2 Maximum discharge power generation means 9-3 Discharge power command comparison means 9-4 Final operation ratio command means

Claims (21)

第1の蓄電手段と、該第1の蓄電手段とは出力電圧が異なる第2の蓄電手段と、を備えた電力変換装置を制御する制御方法であって、
前記各蓄電手段の、低電位側または高電位側のうちの一方の電極が共通電力線にて接続され、且つ、前記共通電力線とモータがグランドスイッチを介して接続され、
更に、前記第1の蓄電手段の、低電位側または高電位側のうちの他方の電極と前記モータとが第1スイッチを介して接続され、且つ、前記第2の蓄電手段の、低電位側または高電位側のうちの他方の電極と前記モータとが第2スイッチを介して接続され、
前記第1スイッチ、及び第2スイッチを制御する制御手段は、
少なくとも1回の制御周期期間で、前記グランドスイッチを遮断すると共に、
前記第1の蓄電手段及び第2の蓄電手段の各出力電力を指令する電力指令と、前記第1の蓄電手段及び第2の蓄電手段の各出力電圧と、電圧指令と、モータ電力とに基づき、前記第1スイッチ、第2スイッチの双方をオン、オフ操作する電源直列運転状態と、
前記グランドスイッチをオンとし、且つ、前記第1スイッチ、または第2スイッチのいずれか一方をオン・オフ操作することにより、前記モータに電圧を供給する電源単独運転状態と、のいずれかの運転状態で制御を行い、
更に、前記制御手段は、
前記電力指令と、前記第1の蓄電手段及び第2の蓄電手段の各出力電圧と、前記電圧指令と、前記モータ電力に基づいて、前記電源直列運転状態、または前記電源単独運転状態を切り換えて前記モータの駆動電圧を出力し、
前記電圧指令と、前記電力指令と、前記第1蓄電手段及び第2蓄電手段の各出力電圧と、に基づき、前記電源直列運転状態及び前記電源単独運転状態の運転割合を生成し、
前記運転割合と前記電圧指令に基づいて、前記電源直列運転状態及び前記電源単独運転状態に対応した複数の電圧指令からなる電圧指令群を生成し、
前記電圧指令群に基づいて、前記各運転状態に対応した前記第1スイッチ、第2スイッチ、及びグランドスイッチのうちの少なくとも一つを駆動し、前記電圧指令群に応じたパルス状電圧を生成し、
前記電源直列運転状態、または前記電源単独運転状態のいずれかで前記モータの駆動電圧を出力し、
更に、前記制御手段は、前記運転割合を生成する際には、
前記第1の蓄電手段及び第2の蓄電手段の各電圧と、前記モータ電力とに基づき、前記電源直列運転状態のみで駆動した場合の、前記第1の蓄電手段と第2の蓄電手段との間で移動する電力である移動電力を生成し、
前記モータ電力が正トルクであるか、或いは負トルクであるかを判断してモータ運転状態判断結果を取得し、
前記移動電力、及び前記モータ運転状態判断結果に基づいて、各蓄電手段の電力指令の大きさを比較し、
前記第1の蓄電手段及び第2の蓄電手段の電圧と、前記電圧指令の振幅に基づいて、前記各蓄電手段の電圧を比較して電圧状態を取得し、
前記電力指令の大きさの比較結果と、前記モータ運転状態判断結果、及び、前記電圧状態に基づいて、前記モータを駆動するために使用する運転状態を選択し、この選択結果を選択運転状態として出力し、
前記電源単独運転状態が選択された場合に、前記第1の蓄電手段及び第2の蓄電手段のうち、使用する蓄電手段を選択した選択蓄電手段の決定信号を出力し、
前記選択運転状態と、前記選択蓄電手段の決定信号と、前記各蓄電手段の電圧と、前記モータ電力と、前記電圧指令の振幅と、前記電力指令、及び前記モータ運転状態判断結果に基づき、運転割合を生成すること
を特徴とする電力変換装置の制御方法。
A control method for controlling a power conversion device comprising: a first power storage means; and a second power storage means having an output voltage different from that of the first power storage means,
One of the low potential side or the high potential side of each power storage means is connected by a common power line, and the common power line and the motor are connected via a ground switch,
Furthermore, the other electrode on the low potential side or the high potential side of the first power storage means and the motor are connected via a first switch, and the low potential side of the second power storage means Alternatively, the other electrode on the high potential side and the motor are connected via a second switch,
The control means for controlling the first switch and the second switch includes:
Shutting off the ground switch in at least one control period;
Based on a power command for commanding each output power of the first power storage means and the second power storage means, each output voltage of the first power storage means and the second power storage means, a voltage command, and motor power. , A power supply series operation state in which both the first switch and the second switch are turned on and off ;
The ground switch is turned on, and either one of the first switch or the second switch is turned on / off, thereby operating the power supply alone to supply voltage to the motor. Control with
Furthermore, the control means includes
Based on the power command, the output voltages of the first power storage means and the second power storage means, the voltage command, and the motor power, the power supply series operation state or the power supply single operation state is switched. Output the driving voltage of the motor,
Based on the voltage command, the power command, and each output voltage of the first power storage means and the second power storage means, an operation ratio of the power supply series operation state and the power supply single operation state is generated,
Based on the operation ratio and the voltage command, generate a voltage command group consisting of a plurality of voltage commands corresponding to the power supply series operation state and the power supply single operation state,
Based on the voltage command group, at least one of the first switch, the second switch, and the ground switch corresponding to each operation state is driven to generate a pulsed voltage corresponding to the voltage command group. ,
Output the drive voltage of the motor in either the power supply series operation state or the power supply single operation state,
Furthermore, when the control means generates the operation ratio,
Based on each voltage of the first power storage means and the second power storage means and the motor power, the first power storage means and the second power storage means when driven only in the power supply series operation state Generate mobile power that is the power that travels between
Determining whether the motor power is positive torque or negative torque and obtaining a motor operation state determination result;
Based on the moving power and the motor operating state determination result, compare the magnitude of the power command of each power storage means,
Based on the voltage of the first power storage means and the second power storage means and the amplitude of the voltage command, the voltage of each power storage means is compared to obtain a voltage state;
Based on the comparison result of the magnitude of the electric power command, the determination result of the motor operation state, and the voltage state, an operation state to be used for driving the motor is selected, and this selection result is set as the selection operation state. Output,
When the single power supply operation state is selected, a determination signal of a selected power storage unit that selects a power storage unit to be used out of the first power storage unit and the second power storage unit is output;
Based on the selected operation state, the determination signal of the selected power storage unit, the voltage of each power storage unit, the motor power, the amplitude of the voltage command, the power command, and the motor operation state determination result A method for controlling a power conversion device, characterized by generating a ratio .
請求項1に記載の電力変換装置の制御方法において、
前記制御手段は、前記電源直列運転状態のときには、前記モータが正トルクの場合に、前記第1の蓄電手段と前記第2の蓄電手段のうち、電圧の高い方の蓄電手段が放電、電圧の低い方の蓄電手段が充電を行うことを特徴とする電力変換装置の制御方法。
In the control method of the power converter device according to claim 1,
In the power supply series operation state, when the motor has a positive torque, the control unit discharges the voltage of the first power storage unit and the second power storage unit, whichever has the higher voltage. A method for controlling a power conversion device, characterized in that a lower power storage means performs charging .
請求項1記載の電力変換装置の制御方法において、
前記制御手段は、前記電源直列運転状態のときには、前記モータがトルクの場合に、前記第1の蓄電手段と前記第2の蓄電手段のうち、電圧が低い方の蓄電手段が放電、電圧が高い方の蓄電手段が充電を行うことを特徴とする電力変換装置の制御方法。
In the control method of the power converter device according to claim 1,
Wherein, when the power series operation state, when the motor is negative torque, among the first electric storage means said second storage means, the voltage is lower in the storage means is discharged, the voltage A method for controlling a power converter, wherein a higher power storage means performs charging.
請求項1〜3のいずれか1項に記載の電力変換装置の制御方法において、
前記各蓄電手段の電圧を比較して電圧状態を取得する処理は、前記各蓄電手段の電圧の差分と、前記電圧指令の振幅を2倍した値と、を比較することにより行われることを特徴とする電力変換装置の制御方法。
In the control method of the power converter device of any one of Claims 1-3,
The process of acquiring the voltage state by comparing the voltage of each power storage means is performed by comparing the voltage difference of each power storage means with a value obtained by doubling the amplitude of the voltage command. A method for controlling the power conversion device.
請求項1〜3のいずれか1項に記載の電力変換装置の制御方法において、
前記各蓄電手段の電圧を比較して電圧状態を取得する処理は、前記各蓄電手段の電圧の差分を1/2倍した値と、前記電圧指令の振幅と、を比較することにより行われることを特徴とする電力変換装置の制御方法。
In the control method of the power converter device of any one of Claims 1-3 ,
The process of obtaining the voltage state by comparing the voltage of each power storage means is performed by comparing the value obtained by halving the voltage difference of each power storage means with the amplitude of the voltage command. A control method for a power conversion device.
請求項1〜5のいずれか1項に記載の電力変換装置の制御方法において、前記運転状態の選択、及び蓄電手段の選択は、
前記モータ運転状態判断結果が正トルクであり、
前記電圧状態の比較結果は、各蓄電手段電圧の差の方が、前記電圧指令の振幅の2倍よりも大きく、且つ、
前記各蓄電手段の電力指令の比較において、前記各蓄電手段に対応する各電力指令の方がともに、前記移動電力よりも大きいと判断した場合に、
前記電源直列運転状態と電源単独運転状態の双方を選択し、且つ、電源単独運転状態において、電圧の低い方の蓄電手段を選択することを特徴とする電力変換装置の制御方法。
In the control method of the power converter device according to any one of claims 1 to 5, the selection of the operation state and the selection of the power storage means include
The motor operating state determination result is a positive torque,
The comparison result of the voltage state is that the difference between the voltages of the storage means is larger than twice the amplitude of the voltage command, and
In the comparison of the power command of each power storage means, when it is determined that each power command corresponding to each power storage means is greater than the moving power,
A control method for a power converter, wherein both the power supply series operation state and the power supply single operation state are selected, and the power storage means having a lower voltage is selected in the power supply single operation state .
請求項1〜5のいずれか1項に記載の電力変換装置の制御方法において、前記運転状態の選択、及び蓄電手段の選択は、
前記モータ運転状態判断結果が正トルクであり、
前記電圧状態の比較結果は、各蓄電手段電圧の差の方が、前記電圧指令の振幅の2倍よりも大きく、且つ、
前記各蓄電手段の電力指令の比較において、前記各蓄電手段に対応する各電力指令と、前記移動電力とがほぼ同一であると判断した場合に、
前記電源直列運転状態のみを選択することを特徴とする電力変換装置の制御方法。
In the control method of the power converter device according to any one of claims 1 to 5, the selection of the operation state and the selection of the power storage means include
The motor operating state determination result is a positive torque,
The comparison result of the voltage state is that the difference between the voltages of the storage means is larger than twice the amplitude of the voltage command, and
In the comparison of the power command of each power storage means, when it is determined that each power command corresponding to each power storage means and the moving power are substantially the same,
A method for controlling a power converter, wherein only the power supply series operation state is selected .
請求項1〜5のいずれか1項に記載の電力変換装置の制御方法において、前記運転状態の選択、及び蓄電手段の選択は、
前記モータ運転状態判断結果が正トルクであり、
前記電圧状態の比較結果は、各蓄電手段電圧の差の方が、前記電圧指令の振幅の2倍よりも大きく、且つ、
前記各蓄電手段の電力指令の比較において、前記移動電力の方が前記各蓄電手段に対応する各電力指令よりも大きいと判断した場合に、
前記電源直列運転状態と電源単独運転状態の双方を選択し、且つ、電源単独運転状態において、電圧の高い方の蓄電手段を選択することを特徴とする電力変換装置の制御方法。
In the control method of the power converter device according to any one of claims 1 to 5, the selection of the operation state and the selection of the power storage means include
The motor operating state determination result is a positive torque,
The comparison result of the voltage state is that the difference between the voltages of the storage means is larger than twice the amplitude of the voltage command, and
In the comparison of the power command of each power storage means, when it is determined that the moving power is larger than each power command corresponding to each power storage means,
A control method for a power converter, wherein both the power supply series operation state and the power supply single operation state are selected, and the power storage means having a higher voltage is selected in the power supply single operation state .
請求項1〜5のいずれか1項に記載の電力変換装置の制御方法において、前記運転状態の選択、及び蓄電手段の選択は、
前記モータ運転状態判断結果が正トルクであり、
前記電圧状態の比較結果は、前記電圧指令の振幅の2倍の方が、各蓄電手段電圧の差よりも大きく、且つ、
前記各蓄電手段の電力指令の比較において、前記各蓄電手段に対応する各電力指令の方がともに、前記移動電力よりも大きいと判断した場合に、
前記電源直列運転状態と電源単独運転状態の双方を選択し、且つ、電源単独運転状態において、電圧の高い方の蓄電手段を選択することを特徴とする電力変換装置の制御方法。
In the control method of the power converter device according to any one of claims 1 to 5, the selection of the operation state and the selection of the power storage means include
The motor operating state determination result is a positive torque,
The comparison result of the voltage state shows that the twice of the amplitude of the voltage command is larger than the difference between the respective storage means voltages, and
In the comparison of the power command of each power storage means, when it is determined that each power command corresponding to each power storage means is greater than the moving power,
A control method for a power converter, wherein both the power supply series operation state and the power supply single operation state are selected, and the power storage means having a higher voltage is selected in the power supply single operation state .
請求項1〜5のいずれか1項に記載の電力変換装置の制御方法において、前記運転状態の選択、及び蓄電手段の選択は、
前記モータ運転状態判断結果が正トルクであり、
前記電圧状態の比較結果は、前記電圧指令の振幅の2倍の方が、各蓄電手段電圧の差よりも大きく、且つ、
前記各蓄電手段の電力指令の比較において、前記各蓄電手段に対応する各電力指令と、前記移動電力とがほぼ同一であると判断した場合に、
前記電源単独運転状態を選択し、且つ、該電源単独運転状態において、電圧の高い方の蓄電手段と電圧の低い方の蓄電手段の双方を選択することを特徴とする電力変換装置の制御方法。
In the control method of the power converter device according to any one of claims 1 to 5, the selection of the operation state and the selection of the power storage means include
The motor operating state determination result is a positive torque,
The comparison result of the voltage state shows that the twice of the amplitude of the voltage command is larger than the difference between the respective storage means voltages, and
In the comparison of the power command of each power storage means, when it is determined that each power command corresponding to each power storage means and the moving power are substantially the same,
A control method for a power converter, wherein the power supply single operation state is selected, and both the higher voltage storage means and the lower voltage storage means are selected in the power supply single operation state .
請求項1〜5のいずれか1項に記載の電力変換装置の制御方法において、前記運転状態の選択、及び蓄電手段の選択は、
前記モータ運転状態判断結果が正トルクであり、
前記電圧状態の比較結果は、前記電圧指令の振幅の2倍の方が、各蓄電手段電圧の差よりも大きく、且つ、
前記各蓄電手段の電力指令の比較において、前記移動電力の方が前記各蓄電手段に対応する各電力指令よりも大きいと判断した場合に、
前記電源単独運転状態を選択し、且つ、該電源単独運転状態において、電圧の高い方の蓄電手段、及び電圧の低い方の蓄電手段の双方を選択することを特徴とする電力変換装置の制御方法。
In the control method of the power converter device according to any one of claims 1 to 5, the selection of the operation state and the selection of the power storage means include
The motor operating state determination result is a positive torque,
The comparison result of the voltage state shows that the twice of the amplitude of the voltage command is larger than the difference between the respective storage means voltages, and
In the comparison of the power command of each power storage means, when it is determined that the moving power is larger than each power command corresponding to each power storage means,
A method for controlling a power conversion apparatus, wherein the power supply single operation state is selected, and in the power supply single operation state, both the higher voltage storage means and the lower voltage storage means are selected. .
請求項1〜5のいずれか1項に記載の電力変換装置の制御方法において、前記運転状態の選択、及び蓄電手段の選択は、
前記モータ運転状態判断結果が負トルクであり、
前記電圧状態の比較結果は、各蓄電手段電圧の差の方が、前記電圧指令の振幅の2倍よりも大きく、且つ、
前記各蓄電手段の電力指令の比較において、前記各蓄電手段に対応する各電力指令の方がともに、前記移動電力よりも大きいと判断した場合に、
前記電源直列運転状態と電源単独運転状態の双方を選択し、且つ、電源単独運転状態において、電圧の低い方の蓄電手段を選択することを特徴とする電力変換装置の制御方法。
In the control method of the power converter device according to any one of claims 1 to 5, the selection of the operation state and the selection of the power storage means include
The motor operating state determination result is negative torque,
The comparison result of the voltage state is that the difference between the voltages of the storage means is larger than twice the amplitude of the voltage command, and
In the comparison of the power command of each power storage means, when it is determined that each power command corresponding to each power storage means is greater than the moving power,
A control method for a power converter, wherein both the power supply series operation state and the power supply single operation state are selected, and the power storage means having a lower voltage is selected in the power supply single operation state .
請求項1〜5のいずれか1項に記載の電力変換装置の制御方法において、前記運転状態の選択、及び蓄電手段の選択は、
前記モータ運転状態判断結果が負トルクであり、
前記電圧状態の比較結果は、各蓄電手段電圧の差の方が、前記電圧指令の振幅の2倍よりも大きく、且つ、
前記各蓄電手段の電力指令の比較において、前記各蓄電手段に対応する各電力指令と、前記移動電力とがほぼ同一であると判断した場合に、
前記電源直列運転状態のみを選択することを特徴とする電力変換装置の制御方法。
In the control method of the power converter device according to any one of claims 1 to 5, the selection of the operation state and the selection of the power storage means include
The motor operating state determination result is negative torque,
The comparison result of the voltage state is that the difference between the voltages of the storage means is larger than twice the amplitude of the voltage command, and
In the comparison of the power command of each power storage means, when it is determined that each power command corresponding to each power storage means and the moving power are substantially the same,
A method for controlling a power converter, wherein only the power supply series operation state is selected .
請求項1〜5のいずれか1項に記載の電力変換装置の制御方法において、前記運転状態の選択、及び蓄電手段の選択は、
前記モータ運転状態判断結果が負トルクであり、
前記電圧状態の比較結果は、各蓄電手段電圧の差の方が、前記電圧指令の振幅の2倍よりも大きく、且つ、
前記各蓄電手段の電力指令の比較において、前記移動電力の方が前記各蓄電手段に対応する各電力指令よりも大きいと判断した場合に、
前記電源直列運転状態と電源単独運転状態の双方を選択し、且つ、電源単独運転状態において、電圧の低い方の蓄電手段を選択することを特徴とする電力変換装置の制御方法。
In the control method of the power converter device according to any one of claims 1 to 5, the selection of the operation state and the selection of the power storage means include
The motor operating state determination result is negative torque,
The comparison result of the voltage state is that the difference between the voltages of the storage means is larger than twice the amplitude of the voltage command, and
In the comparison of the power command of each power storage means, when it is determined that the moving power is larger than each power command corresponding to each power storage means,
A control method for a power converter, wherein both the power supply series operation state and the power supply single operation state are selected, and the power storage means having a lower voltage is selected in the power supply single operation state .
請求項1〜5のいずれか1項に記載の電力変換装置の制御方法において、前記運転状態の選択、及び蓄電手段の選択は、
前記モータ運転状態判断結果が負トルクであり、
前記電圧状態の比較結果は、前記電圧指令の振幅の2倍の方が、各蓄電手段電圧の差よりも大きく、且つ、
前記各蓄電手段の電力指令の比較において、前記各蓄電手段に対応する各電力指令の方がともに、前記移動電力よりも大きいと判断した場合に、
前記電源直列運転状態と電源単独運転状態の双方を選択し、且つ、電源単独運転状態において、電圧の低い方の蓄電手段を選択することを特徴とする電力変換装置の制御方法。
In the control method of the power converter device according to any one of claims 1 to 5, the selection of the operation state and the selection of the power storage means include
The motor operating state determination result is negative torque,
The comparison result of the voltage state shows that the twice of the amplitude of the voltage command is larger than the difference between the respective storage means voltages, and
In the comparison of the power command of each power storage means, when it is determined that each power command corresponding to each power storage means is greater than the moving power,
A control method for a power converter, wherein both the power supply series operation state and the power supply single operation state are selected, and the power storage means having a lower voltage is selected in the power supply single operation state .
請求項1〜5のいずれか1項に記載の電力変換装置の制御方法において、前記運転状態の選択、及び蓄電手段の選択は、
前記モータ運転状態判断結果が負トルクであり、
前記電圧状態の比較結果は、前記電圧指令の振幅の2倍の方が、各蓄電手段電圧の差よりも大きく、且つ、
前記各蓄電手段の電力指令の比較において、前記各蓄電手段に対応する各電力指令と、前記移動電力とがほぼ同一であると判断した場合に、
前記電源単独運転状態を選択し、且つ、該電源単独運転状態において、電圧の高い方の蓄電手段と電圧の低い方の蓄電手段の双方を選択することを特徴とする電力変換装置の制御方法。
In the control method of the power converter device according to any one of claims 1 to 5, the selection of the operation state and the selection of the power storage means include
The motor operating state determination result is negative torque,
The comparison result of the voltage state shows that the twice of the amplitude of the voltage command is larger than the difference between the respective storage means voltages, and
In the comparison of the power command of each power storage means, when it is determined that each power command corresponding to each power storage means and the moving power are substantially the same,
A control method for a power converter, wherein the power supply single operation state is selected, and both the higher voltage storage means and the lower voltage storage means are selected in the power supply single operation state .
請求項1〜5のいずれか1項に記載の電力変換装置の制御方法において、前記運転状態の選択、及び蓄電手段の選択は、
前記モータ運転状態判断結果が負トルクであり、
前記電圧状態の比較結果は、前記電圧指令の振幅の2倍の方が、各蓄電手段電圧の差よりも大きく、且つ、
前記各蓄電手段の電力指令の比較において、前記移動電力の方が前記各蓄電手段に対応する各電力指令よりも大きいと判断した場合に、
前記電源単独運転状態を選択し、且つ、該電源単独運転状態において、電圧の高い方の蓄電手段、及び電圧の低い方の蓄電手段の双方を選択することを特徴とする電力変換装置の制御方法。
In the control method of the power converter device according to any one of claims 1 to 5, the selection of the operation state and the selection of the power storage means include
The motor operating state determination result is negative torque,
The comparison result of the voltage state shows that the twice of the amplitude of the voltage command is larger than the difference between the respective storage means voltages, and
In the comparison of the power command of each power storage means, when it is determined that the moving power is larger than each power command corresponding to each power storage means,
A method for controlling a power conversion apparatus, wherein the power supply single operation state is selected, and in the power supply single operation state, both the higher voltage storage means and the lower voltage storage means are selected. .
請求項1〜5のいずれか1項に記載の電力変換装置の制御方法において、前記最終運転割合を生成する処理は、
前記選択運転状態と、前記選択蓄電手段の決定信号と、前記各蓄電手段の電圧と、前記電圧指令の振幅と、に基づいて、前記電源直列運転状態の最大運転割合を生成し、
前記電力指令と、前記モータ電力と、前記各蓄電手段の電圧と、前記選択運転状態と、前記選択蓄電手段の決定信号、及び、前記モータ運転状態判断結果に基づき、前記電源直列運転状態の必要運転割合指令を生成し、
更に、前記最大運転割合と、前記必要運転割合指令とを比較して、運転割合比較結果を取得し、
前記運転割合比較結果と、前記各蓄電手段の電圧と、前記モータ電力と、前記電力指令に基づいて、最終運転割合を生成することを特徴とする電力変換装置の制御方法。
In the control method for the power converter according to any one of claims 1 to 5, the process of generating the final operation ratio is:
Based on the selected operation state, the determination signal of the selected power storage unit, the voltage of each power storage unit, and the amplitude of the voltage command, the maximum operation ratio of the power supply series operation state is generated,
Based on the power command, the motor power, the voltage of each power storage unit, the selected operation state, the determination signal of the selected power storage unit, and the motor operation state determination result, the necessity for the power supply series operation state is required. Generate an operation ratio command,
Furthermore, the maximum operation ratio and the required operation ratio command are compared to obtain an operation ratio comparison result,
A control method for a power converter , wherein a final operation ratio is generated based on the operation ratio comparison result, the voltage of each power storage unit, the motor power, and the power command .
請求項1〜5のいずれか1項に記載の電力変換装置の制御方法において、前記最終運転割合を生成する処理は、
前記選択運転状態と、前記選択蓄電手段の決定信号と、前記各蓄電手段の電圧と、前記電圧指令の振幅と、に基づいて、前記電源直列運転状態の最大運転割合を生成し、
前記最大運転割合と、前記モータ電力と、前記各蓄電手段の電圧と、前記選択蓄電手段の決定信号と、前記モータ運転状態判断結果と、に基づいて、前記電源直列運転状態での一方の蓄電手段の最大充電電力を生成し、
前記モータ運転状態判断結果を用いて、前記電力指令と前記最大充電電力の大きさを比較して、充電電力指令比較結果を取得し、
前記充電電力指令比較結果、前記選択蓄電手段の決定信号、前記電力指令、前記モータ電力、前記各蓄電手段の電圧、前記モータ運転状態判断結果に基づいて、最終運転割合指令を生成することを特徴とする電力変換装置の制御方法。
In the control method for the power converter according to any one of claims 1 to 5, the process of generating the final operation ratio is:
Based on the selected operation state, the determination signal of the selected power storage unit, the voltage of each power storage unit, and the amplitude of the voltage command, the maximum operation ratio of the power supply series operation state is generated,
One power storage in the power supply series operation state based on the maximum operation ratio, the motor power, the voltage of each power storage unit, the determination signal of the selected power storage unit, and the motor operation state determination result Generate the maximum charging power of the means,
Using the motor operating state determination result, compare the power command and the magnitude of the maximum charging power, to obtain a charging power command comparison result,
A final operation ratio command is generated based on the charging power command comparison result, the determination signal of the selected power storage unit, the power command, the motor power, the voltage of each power storage unit, and the motor operation state determination result. A method for controlling the power conversion device.
請求項1〜5のいずれか1項に記載の電力変換装置の制御方法において、前記最終運転割合を生成する処理は、
前記選択運転状態と、前記選択蓄電手段の決定信号と、前記各蓄電手段の電圧と、前記電圧指令の振幅と、に基づいて、前記電源直列運転状態の最大運転割合を生成し、
前記最大運転割合と、前記モータ電力と、前記各蓄電手段の電圧と、前記選択蓄電手段の決定信号と、前記モータ運転状態判断結果と、に基づいて、前記電源直列運転状態での一方の蓄電手段の最大放電電力を生成し、
前記モータ運転状態判断結果を用いて、前記電力指令と前記最大放電電力の大きさを比較して、放電電力指令比較結果を取得し、
前記放電電力指令比較結果、前記選択蓄電手段の決定信号、前記電力指令、前記モータ電力、前記各蓄電手段の電圧、前記モータ運転状態判断結果に基づいて、最終運転割合指令を生成することを特徴とする電力変換装置の制御方法。
In the control method for the power converter according to any one of claims 1 to 5, the process of generating the final operation ratio is:
Based on the selected operation state, the determination signal of the selected power storage unit, the voltage of each power storage unit, and the amplitude of the voltage command, the maximum operation ratio of the power supply series operation state is generated,
One power storage in the power supply series operation state based on the maximum operation ratio, the motor power, the voltage of each power storage unit, the determination signal of the selected power storage unit, and the motor operation state determination result Producing the maximum discharge power of the means,
Using the motor operation state determination result, compare the power command and the magnitude of the maximum discharge power, to obtain a discharge power command comparison result,
A final operation ratio command is generated based on the discharge power command comparison result, the determination signal of the selected power storage unit, the power command, the motor power, the voltage of each power storage unit, and the motor operation state determination result. A method for controlling the power conversion device.
請求項1〜5のいずれか1項に記載の電力変換装置の制御方法において、
前記制御周期は、前記最終運転割合、及びモータの駆動電圧を、PWM出力する搬送波周期により決定することを特徴とする電力変換装置の制御方法。
In the control method of the power converter device of any one of Claims 1-5 ,
The control period is determined by a carrier wave period of PWM output for the final operation ratio and the motor drive voltage .
JP2009019730A 2009-01-30 2009-01-30 Power converter control method Active JP5515305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009019730A JP5515305B2 (en) 2009-01-30 2009-01-30 Power converter control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009019730A JP5515305B2 (en) 2009-01-30 2009-01-30 Power converter control method

Publications (2)

Publication Number Publication Date
JP2010178534A JP2010178534A (en) 2010-08-12
JP5515305B2 true JP5515305B2 (en) 2014-06-11

Family

ID=42708925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009019730A Active JP5515305B2 (en) 2009-01-30 2009-01-30 Power converter control method

Country Status (1)

Country Link
JP (1) JP5515305B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4687146B2 (en) * 2005-03-03 2011-05-25 日産自動車株式会社 Power converter
JP5157356B2 (en) * 2006-11-17 2013-03-06 日産自動車株式会社 Power converter and control method thereof

Also Published As

Publication number Publication date
JP2010178534A (en) 2010-08-12

Similar Documents

Publication Publication Date Title
US8269439B2 (en) Drive controller and drive control method for electric motor
EP2343800B1 (en) Control device and control method for ac motor
JP4760465B2 (en) Power converter
US7183728B2 (en) Motor drive system and process
US10250171B2 (en) Electric motor control apparatus and electric motor control method
US20160190971A1 (en) Motor controller
EP3038252B1 (en) Electric motor control device
CN110311616B (en) Dual inverter driving apparatus for synchronous motor
JP2007014185A (en) Electrical power converter
JP2019134654A (en) SR motor control system
JP4992253B2 (en) Power converter
CN116896258A (en) Power conversion system
JP2007282405A (en) Power conversion unit
JP5515305B2 (en) Power converter control method
JP4844051B2 (en) Power converter
JP5320850B2 (en) Power conversion device and automobile system
JP6880866B2 (en) Inverter control device and inverter control method
JP2021114866A (en) Drive control system for vehicle
JP5402093B2 (en) Power converter
JP2009038891A (en) Power conversion apparatus and its control method
JP4725709B2 (en) Control device for motor drive system
JP5338853B2 (en) Power converter
JP4899536B2 (en) Power converter
JP4691974B2 (en) Power converter control method
JP2007020250A (en) Power converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140317

R151 Written notification of patent or utility model registration

Ref document number: 5515305

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151