JP5514487B2 - Water-dispersed sol of high refractive index metal oxide fine particles, preparation method thereof, and organic solvent-dispersed sol of the metal oxide fine particles - Google Patents

Water-dispersed sol of high refractive index metal oxide fine particles, preparation method thereof, and organic solvent-dispersed sol of the metal oxide fine particles Download PDF

Info

Publication number
JP5514487B2
JP5514487B2 JP2009187055A JP2009187055A JP5514487B2 JP 5514487 B2 JP5514487 B2 JP 5514487B2 JP 2009187055 A JP2009187055 A JP 2009187055A JP 2009187055 A JP2009187055 A JP 2009187055A JP 5514487 B2 JP5514487 B2 JP 5514487B2
Authority
JP
Japan
Prior art keywords
fine particles
titanium
particles
water
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009187055A
Other languages
Japanese (ja)
Other versions
JP2010168266A (en
Inventor
庸一 石原
俊晴 平井
通郎 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2009187055A priority Critical patent/JP5514487B2/en
Publication of JP2010168266A publication Critical patent/JP2010168266A/en
Application granted granted Critical
Publication of JP5514487B2 publication Critical patent/JP5514487B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Description

本発明は、高屈折率の金属酸化物微粒子、さらに詳しくはルチル型の結晶構造を有するチタン系微粒子をシリカ系酸化物またはシリカ系複合酸化物で被覆してなる高屈折率の金属酸化物微粒子を含む水分散ゾルおよび該金属酸化物微粒子を含む有機溶媒分散ゾルに関するものである。
The present invention relates to a metal oxide fine particle having a high refractive index, more specifically, a metal oxide fine particle having a high refractive index obtained by coating a titanium-based fine particle having a rutile crystal structure with a silica-based oxide or a silica-based composite oxide. And an organic solvent dispersion sol containing the metal oxide fine particles.

近年、眼鏡レンズなどの光学基材の材料としては、無機ガラス基材に代わってプラスチック基材が使用されることが多くなっている。これは、プラスチック基材が軽量性、耐衝撃性、加工性、染色性などの面で優れた特性を備えているためである。しかし、該プラスチック基材は、無機ガラス基材に較べて傷つきやすいという欠点を有している。   In recent years, as a material for optical base materials such as eyeglass lenses, plastic base materials are increasingly used in place of inorganic glass base materials. This is because the plastic substrate has excellent characteristics in terms of lightness, impact resistance, processability, dyeability, and the like. However, the plastic substrate has a drawback that it is easily damaged compared to an inorganic glass substrate.

そこで、この欠点を回避するため、プラスチック基材を用いた光学レンズの表面には、通常、シリコーン系の硬化性塗膜、すなわちハードコート層膜が設けられている。さらに、比較的高い屈折率を有するプラスチック基材を光学レンズの材料として使用した場合には、該プラスチック基材とハードコート層膜との間に起こる光の干渉(干渉縞として現れる)を避けるため、前記ハードコート層膜に金属酸化物微粒子を含ませて、その屈折率を前記プラスチック基材の屈折率に合わせるような処置が施されている。   Therefore, in order to avoid this drawback, a silicone-based curable coating film, that is, a hard coat layer film is usually provided on the surface of an optical lens using a plastic substrate. Furthermore, when a plastic substrate having a relatively high refractive index is used as the material of the optical lens, in order to avoid interference of light (appearing as interference fringes) occurring between the plastic substrate and the hard coat layer film. The hard coat layer film is treated with a metal oxide fine particle so that its refractive index matches that of the plastic substrate.

このような特性を備えたシリコーン系硬化性塗膜、例えばハードコート層膜をプラスチック基材上に形成するための塗布液については、様々な開発が行われ、数多くの出願がなされている。
また、眼鏡レンズなどの光学基材(プラスチックレンズ基材など)を製造する際には、無色透明で屈折率が高く、しかも耐擦傷性、耐摩耗性、耐衝撃性、耐候性、耐光性、耐汗性、耐熱水性、密着性、染色性などの性状に優れた硬化性塗膜を形成するための塗布液やその原料組成物としての金属酸化微粒子を含む水分散ゾルや有機溶媒ゾルが求められており、これについても、現在に至るまで数多くの出願がなされている。
Various developments have been made and many applications have been made for coating solutions for forming a silicone-based curable coating film having such characteristics, for example, a hard coat layer film on a plastic substrate.
Also, when manufacturing optical base materials such as eyeglass lenses (plastic lens base materials, etc.), it is colorless and transparent and has a high refractive index, and also has scratch resistance, abrasion resistance, impact resistance, weather resistance, light resistance, There is a need for water-dispersed sols and organic solvent sols containing fine metal oxide particles as coating solutions and raw material compositions for forming curable coatings with excellent properties such as sweat resistance, hot water resistance, adhesion, and dyeability. Many applications have been filed for this as well.

例えば、特許文献1には、シリカ、酸化鉄、酸化チタン、酸化セリウム、酸化ジルコニウム、酸化アンチモン、酸化亜鉛または酸化スズの少なくともいずれかを含む金属酸化物微粒子もしくはそれらの混合物またはそれらの複合酸化物からなる金属酸化物微粒子と有機ケイ素化合物とを含有する高屈折率コーティング組成物が開示されている。しかしながら、これらの金属酸化物微粒子を含む塗布液を用いて形成された硬化性塗膜は、比較的高い屈折率を有するものの、耐候性に優れているとは云えなかった。   For example, Patent Document 1 discloses metal oxide fine particles containing at least one of silica, iron oxide, titanium oxide, cerium oxide, zirconium oxide, antimony oxide, zinc oxide and tin oxide, a mixture thereof, or a composite oxide thereof. A high refractive index coating composition containing metal oxide fine particles and an organosilicon compound is disclosed. However, although a curable coating film formed using a coating solution containing these metal oxide fine particles has a relatively high refractive index, it cannot be said that it has excellent weather resistance.

その背景としては、眼鏡レンズなどの光学基材においては、軽量化を求めてプラスチックレンズなどの厚さが薄くなり、これに伴って塗膜の高屈折率化が進められたため、高屈折率特性を有するチタン酸化物の含有量を増加させる傾向にあったが、その反面、光触媒活性を有するチタン酸化物によって塗膜の耐候性が損ねられることになった。   As the background, in optical base materials such as eyeglass lenses, the thickness of plastic lenses and so on has been reduced in order to reduce weight, and as a result, the higher refractive index of coating films has been promoted. However, the weather resistance of the coating film was impaired by the titanium oxide having photocatalytic activity.

そこで、本出願人らは、チタン系酸化物を含む核粒子の表面に、ケイ素、ジルコニウムおよび/またはアルミニウムの複合酸化物で被覆してなる微粒子を含む分散ゾル、および該微粒子と有機ケイ素化合物とを含有する塗膜形成用塗布液を開発し、これを出願している。すなわち、チタン系酸化物を含む核粒子を前記複合酸化物で被覆することによって、該核粒子中に含まれるチタン酸化物の光触媒活性を抑えたものである。 Therefore, the present applicants have disclosed a dispersion sol containing fine particles formed by coating the surface of a core particle containing a titanium-based oxide with a composite oxide of silicon, zirconium and / or aluminum, and the fine particles and an organosilicon compound. Has been developed and applied for a coating solution for forming a coating film. That is, the photocatalytic activity of the titanium oxide contained in the core particles is suppressed by coating the core particles containing the titanium-based oxide with the composite oxide.

例えば、特許文献2には、(1)酸化チタン微粒子を核として、その表面を酸化ジルコニウムおよび酸化ケイ素で被覆した微粒子、(2)酸化チタンおよび酸化ジルコニウムの固溶体からなる複合酸化物微粒子を核として、その表面を酸化ケイ素で被覆した微粒子、(3)チタンとケイ素との複合酸化物微粒子を核として、その表面を酸化ケイ素と、酸化ジルコニウムおよび/または酸化アルミニウムで被覆した微粒子、(4)チタン、ケイ素およびジルコニウムの複合酸化物微粒子を核として、その表面を酸化ケイ素、酸化ジルコニウムおよび酸化アルミニウムの少なくとも1種で被覆した微粒子を含む分散ゾル、および該微粒子と有機ケイ素化合物とを含む被膜形成用塗布液が開示されている。すなわち、この特許文献2に係る発明では、アナターゼ型の結晶構造を有するチタン含有核粒子の表面を酸化ケイ素、酸化ジルコニウムおよび酸化アルミニウムから選ばれた少なくとも1種で被覆して得られる、コアシェル構造を有する金属酸化物微粒子が用いられている。 For example, in Patent Document 2, (1) fine particles having titanium oxide fine particles as nuclei and surfaces thereof coated with zirconium oxide and silicon oxide, and (2) complex oxide fine particles made of a solid solution of titanium oxide and zirconium oxide are used as nuclei. Fine particles whose surfaces are coated with silicon oxide, (3) fine particles whose surface is coated with silicon oxide and zirconium oxide and / or aluminum oxide, using fine oxide fine particles of titanium and silicon as a nucleus, and (4) titanium. Dispersion sol containing fine particles of silicon and zirconium composite oxide as a core and coated with at least one of silicon oxide, zirconium oxide and aluminum oxide on the surface, and for forming a film containing the fine particles and an organosilicon compound A coating solution is disclosed. That is, in the invention according to Patent Document 2, a core-shell structure obtained by coating the surface of titanium-containing core particles having an anatase type crystal structure with at least one selected from silicon oxide, zirconium oxide, and aluminum oxide. Metal oxide fine particles are used.

また、特許文献3には、チタンおよびスズの複合固溶体酸化物を核粒子として、その表面をケイ素酸化物とジルコニウムおよび/またはアルミニウムの酸化物との複合酸化物で被覆した複合酸化物微粒子を含む分散ゾル、および該微粒子と有機ケイ素化合物とを含む被膜形成用塗布液が開示されている。すなわち、この特許文献3に係る発明では、ルチル型の結晶構造を有するチタン含有核粒子の表面をケイ素酸化物とジルコニウムおよび/またはアルミニウムの酸化物との複合酸化物で被覆して得られる、コアシェル構造を有する金属酸化物微粒子が用いられている。 Patent Document 3 includes composite oxide fine particles in which a composite solid solution oxide of titanium and tin is used as a core particle and the surface thereof is coated with a composite oxide of silicon oxide and zirconium and / or aluminum oxide. A coating solution for forming a film containing a dispersion sol and the fine particles and an organosilicon compound is disclosed. That is, in the invention according to Patent Document 3, a core-shell obtained by coating the surface of titanium-containing core particles having a rutile crystal structure with a composite oxide of silicon oxide and zirconium and / or aluminum oxide. Metal oxide fine particles having a structure are used.

これらの特許文献2および特許文献3に記載された金属酸化物微粒子を使用すれば、屈折率1.52〜1.67の範囲においては、優れた耐候性を有しているばかりでなく、その他の性状、例えば耐擦傷性、耐摩耗性、耐衝撃性、耐光性、耐汗性、耐熱水性、密着性、透明性、染色性などの性状においても優れた特性を有する硬化性塗膜を得ることができる。
しかし、昨今では、1.70以上、さらに詳しくは1.71〜1.81の屈折率を有する光学基材(プラスチックレンズ基材など)が開発され、これに見合った硬化性塗膜を形成するための塗布液やその原料組成物(すなわち、金属酸化物微粒子を含む分散ゾル)が求められているが、塗膜の屈折率を高めるためには、前記核粒子中に含まれるチタン含有量をさらに増加させるか、あるいは前記被覆層(すなわち、前記チタン含有核粒子表面の被覆層)の厚さをさらに薄くする必要があった。その結果、1.70前後の比較的高い屈折率を有する硬化性塗膜は得られるものの、その耐候性や耐光性は損なわれる傾向にあった。また、それ以上に高い屈折率を有する硬化性塗膜を得ることは難しかった。
If the metal oxide fine particles described in Patent Document 2 and Patent Document 3 are used, in the range of refractive index of 1.52 to 1.67, not only has excellent weather resistance, For example, scratch resistance, abrasion resistance, impact resistance, light resistance, sweat resistance, hot water resistance, adhesion, transparency, dyeability, etc. be able to.
However, in recent years, optical substrates (such as plastic lens substrates) having a refractive index of 1.70 or more, more specifically 1.71 to 1.81, have been developed, and a curable coating film corresponding to this is formed. However, in order to increase the refractive index of the coating film, the content of titanium contained in the core particles is required to increase the refractive index of the coating film. It was necessary to further increase the thickness of the coating layer (that is, the coating layer on the surface of the titanium-containing core particle). As a result, although a curable coating film having a relatively high refractive index of about 1.70 was obtained, its weather resistance and light resistance tended to be impaired. Moreover, it was difficult to obtain a curable coating film having a higher refractive index.

一方、プラスチック基材の表面に前記のハードコート層膜を形成して、さらにその上に反射防止膜を設けた、眼鏡レンズなどの光学レンズは、耐衝撃性に劣るという欠点を有している。
この欠点を解決する手段としては、(1)熱硬化性ウレタン樹脂と酸化チタンを含有するコロイド状金属酸化物微粒子とを含むプライマー層膜を形成する方法(たとえば、特許文献4)や、(2)ポリウレタン樹脂と酸化亜鉛、二酸化ケイ素、酸化アルミニウム、酸化チタン、酸化ジルコニウム、酸化スズ、酸化ベリリウム、酸化アンチモン、酸化タングステン、酸化セリウム等の金属酸化物微粒子とを含むプライマー層膜を形成する方法(たとえば、特許文献5)などが知られている。ここで、前記金属酸化物微粒子は、塗膜の屈折率調整(光の干渉抑制)や塗膜強度を向上させるために添加されているが、上記のハードコート層膜の場合と同様に、光学レンズの高屈折率化に対応させることを目的として該微粒子中のチタン含有量を高めると、塗膜の耐候性や耐光性が悪化するという問題があった。
On the other hand, an optical lens such as a spectacle lens, in which the hard coat layer film is formed on the surface of a plastic substrate and an antireflection film is further formed thereon, has a defect that it is inferior in impact resistance. .
As means for solving this drawback, (1) a method of forming a primer layer film containing a thermosetting urethane resin and colloidal metal oxide fine particles containing titanium oxide (for example, Patent Document 4), (2 ) A method for forming a primer layer film containing polyurethane resin and metal oxide fine particles such as zinc oxide, silicon dioxide, aluminum oxide, titanium oxide, zirconium oxide, tin oxide, beryllium oxide, antimony oxide, tungsten oxide, cerium oxide ( For example, Patent Document 5) is known. Here, the metal oxide fine particles are added to adjust the refractive index of the coating film (inhibition of light interference) and improve the strength of the coating film. When the titanium content in the fine particles is increased in order to cope with the increase in the refractive index of the lens, there is a problem that the weather resistance and light resistance of the coating film deteriorate.

特開平7−325201号公報JP 7-325201 A 特開平8−048940号公報JP-A-8-048940 特開2000−204301号公報JP 2000-204301 A 特開平6−118203号公報JP-A-6-118203 特開平6―337376号公報JP-A-6-337376

本発明者らは、上記のような問題を解決して高い屈折率と耐候性や耐光性を兼ね備えた硬化性塗膜を形成するための塗布液が得られないものかどうかについて鋭意研究を重ねた結果、特別な加工処理を施したルチル型の結晶構造を有するチタン系微粒子の表面にシリカ系酸化物またはシリカ系複合酸化物を被覆してなる金属酸化物微粒子の水分散ゾルや有機溶媒分散ゾルをその調製原料として用いればよいことを見いだし、本発明を完成するに至った。
すなわち、本発明は、ルチル型の結晶構造を有する特定のチタン系微粒子の表面にシリカ系酸化物またはシリカ系複合酸化物を被覆してなる金属酸化物微粒子を含む水分散ゾルおよびその調製方法を提供することを目的としている。さらに、本発明は、前記金属酸化物微粒子を含む有機溶媒分散ゾルを提供することを目的としている。
The inventors of the present invention have made extensive studies on whether or not a coating solution for forming a curable coating film having a high refractive index, weather resistance and light resistance can be obtained by solving the above-mentioned problems. As a result, water-dispersed sol and organic solvent dispersion of metal oxide fine particles formed by coating silica-based oxide or silica-based composite oxide on the surface of titanium-based fine particles with a rutile-type crystal structure that has undergone special processing It has been found that sol may be used as a preparation raw material, and the present invention has been completed.
That is, the present invention relates to an aqueous dispersion sol containing metal oxide fine particles formed by coating silica-based oxides or silica-based composite oxides on the surface of specific titanium-based fine particles having a rutile-type crystal structure, and a method for preparing the same. It is intended to provide. Furthermore, an object of the present invention is to provide an organic solvent-dispersed sol containing the metal oxide fine particles.

本発明に係る高屈折率金属酸化物微粒子の水分散ゾルは、動的光散乱法で測定した平均粒子径が15〜60nmのチタン系微粒子の表面を、少なくともシリカ系酸化物またはシリカ系複合酸化物で被覆してなる高屈折率の金属酸化物微粒子を含む水分散ゾルであって、
(1)前記チタン系微粒子が、ルチル型の結晶構造を有する結晶性微粒子であり、しかも7.5〜14.0nmのX線回折結晶子径と70〜155m2/gの比表面積とを有し、さらにその屈折率が2.2〜2.7の範囲にあり、
(2)前記被覆層が、前記チタン系微粒子の屈折率より0.2以上低い屈折率を有し、しかも該被覆層を設けてなる前記金属酸化物微粒子の屈折率が2.0〜2.5の範囲にあり、さらに
(3)前記水分散ゾルが、1〜30重量%の前記金属酸化物微粒子を含み、しかもその濁度が0.1〜10cm-1の範囲にある
ことを特徴としている。
The water-dispersed sol of high refractive index metal oxide fine particles according to the present invention has at least silica-based oxide or silica-based composite oxidation on the surface of titanium-based fine particles having an average particle diameter of 15 to 60 nm measured by a dynamic light scattering method. An aqueous dispersion sol containing metal oxide fine particles with a high refractive index coated with a material,
(1) The titanium-based fine particles are crystalline fine particles having a rutile-type crystal structure, and have an X-ray diffraction crystallite diameter of 7.5 to 14.0 nm and a specific surface area of 70 to 155 m 2 / g. And the refractive index is in the range of 2.2 to 2.7,
(2) The coating layer has a refractive index lower by 0.2 or more than the refractive index of the titanium-based fine particles, and the refractive index of the metal oxide fine particles provided with the coating layer is 2.0-2. 5 and (3) the water-dispersed sol contains 1 to 30% by weight of the metal oxide fine particles, and the turbidity is in the range of 0.1 to 10 cm −1. Yes.

前記チタン系微粒子が、チタニウムと、スズおよび/またはケイ素とを含む複合酸化物粒子を焼成して粉砕したものであることが好ましい。
また、前記シリカ系酸化物は、二酸化ケイ素であることが好ましい。
さらに、前記シリカ系複合酸化物は、ケイ素と、ジルコニウム、アンチモン、スズおよびアルミニウムから選ばれた少なくとも1種の金属元素とを含むシリカ系複合酸化物であることが好ましい。
また、前記チタン系微粒子は、該微粒子を動的光散乱法で測定したときの粒子径頻度分布において、100nm以上の粒子径を有する比較的粗大なチタン系微粒子の分布頻度が1%以下であることが好ましい。
The titanium-based fine particles are preferably those obtained by firing and pulverizing composite oxide particles containing titanium and tin and / or silicon.
The silica-based oxide is preferably silicon dioxide.
Furthermore, the silica-based composite oxide is preferably a silica-based composite oxide containing silicon and at least one metal element selected from zirconium, antimony, tin, and aluminum.
The titanium-based fine particles have a distribution frequency of relatively coarse titanium-based fine particles having a particle diameter of 100 nm or more in a particle size frequency distribution when the fine particles are measured by a dynamic light scattering method, of 1% or less. It is preferable.

前記チタン系微粒子は、該微粒子のX線回折から求められる、(310)結晶面の面間隔d1が0.1440〜0.1460nmの範囲にあり、また(301)結晶面の面間隔d2が0.1355〜0.1370nmの範囲にあることが好ましい。
また、前記チタン系微粒子は、該微粒子のX線回折から求められる、(310)結晶面のピーク強度P1と(110)結晶面のピーク強度P2との相対ピーク強度比(P1/P2)が9/100〜20/100の範囲にあることが好ましい。
The titanium-based fine particles have a (310) crystal plane spacing d 1 in the range of 0.1440 to 0.1460 nm, as determined from X-ray diffraction of the fine particles, and (301) a crystal plane spacing d 2. Is preferably in the range of 0.1355 to 0.1370 nm.
Further, the titanium-based fine particles, as determined by X-ray diffraction of the fine particles, (310) crystal face of the peak intensity P 1 and (110) relative peak intensity ratio of the peak intensity P 2 of the crystal plane (P 1 / P 2 ) is preferably in the range of 9/100 to 20/100.

前記複合酸化物粒子は、過酸化チタン酸と、スズ酸カリウムおよび/またはケイ素化合物とを含む混合水溶液をオートクレーブに入れて150〜250℃の温度で水熱処理して、チタニウムと、スズおよび/またはケイ素とを含む複合酸化物を生成させ、次いで該複合酸化物を乾燥して粒状にしたものであることが好ましい。
ここで、前記ケイ素化合物は、シリカ微粒子、珪酸およびシリコンアルコキシドから選ばれた少なくとも1種であることが好ましい。
さらに、前記複合酸化物粒子は、前記複合酸化物を含む混合水溶液をスプレードライヤーに供して噴霧乾燥することにより、該複合酸化物の乾燥と粒状化を同時に行ったものであることが好ましい。
The composite oxide particles are prepared by subjecting a mixed aqueous solution containing titanic acid peroxide and potassium stannate and / or silicon compound to an autoclave and hydrothermally treating at a temperature of 150 to 250 ° C. to obtain titanium, tin and / or It is preferable that a composite oxide containing silicon is produced, and then the composite oxide is dried and granulated.
Here, the silicon compound is preferably at least one selected from silica fine particles, silicic acid, and silicon alkoxide.
Furthermore, the composite oxide particles are preferably obtained by simultaneously drying and granulating the composite oxide by subjecting the mixed aqueous solution containing the composite oxide to spray drying using a spray dryer.

前記チタン系微粒子は、前記複合酸化物粒子を酸素含有雰囲気下で300〜800℃の温度にて焼成して、X線回折結晶子径が7.5〜14.0nmの複合酸化物粒子を生成させ、次いで該複合酸化物粒子を粉砕装置に供して粉砕したものであることが好ましい。
また、前記チタン系微粒子は、上記で粉砕された複合酸化物微粒子を純水または超純水に分散させたのち、該水分散液を湿式分級装置に供して、動的光散乱法で測定したときの粒子径が100nm以上の粗大粒子を少なくとも分離・除去したものであることが好ましい。
The titanium-based fine particles are baked at a temperature of 300 to 800 ° C. in an oxygen-containing atmosphere to generate composite oxide particles having an X-ray diffraction crystallite diameter of 7.5 to 14.0 nm. Then, the composite oxide particles are preferably subjected to pulverization using a pulverizer.
The titanium-based fine particles were measured by a dynamic light scattering method after dispersing the finely divided composite oxide fine particles in pure water or ultrapure water and then using the aqueous dispersion in a wet classifier. It is preferable that at least the coarse particles having a particle diameter of 100 nm or more are separated and removed.

前記金属酸化物微粒子は、前記チタン系微粒子を含む水分散液中に、シリコンアルコキシドおよび珪酸から選ばれた少なくとも1種のケイ素化合物を混合し、次いで該ケイ素化合物を加水分解させて前記チタン系微粒子の表面をシリカ系酸化物で被覆したものであることが好ましい。
また、前記金属酸化物微粒子は、前記チタン系微粒子を含む水分散液中に、シリコンアルコキシドおよび珪酸から選ばれた少なくとも1種のケイ素化合物と、過酸化ジルコン酸塩、アンチモン酸塩およびアルミン酸塩から選ばれた少なくとも1種の金属化合物とを混合し、次いで該ケイ素化合物および該金属化合物を加水分解させて前記チタン系微粒子の表面をシリカ系複合酸化物で被覆したものであることが好ましい。
ここで、前記シリコンアルコキシドは、テトラメトキシシランもしくはその縮合物、またはテトラエトキシシランもしくはその縮合物であることが好ましい。
さらに、前記金属酸化物微粒子は、前記チタン系微粒子の重量をCで表し、さらにその被覆層の重量をSで表したとき、その重量比(S/C)が酸化物換算基準で1/100〜50/100の範囲となるように前記チタン系微粒子の表面上に前記シリカ系酸化物または前記シリカ系複合酸化物を被覆したものであることが好ましい。
本発明に係る金属酸化物微粒子の水分散ゾルの調製方法は、
動的光散乱法で測定した平均粒子径が15〜60nmであり、下記要件(i)および(ii)の少なくとも一方を満たす酸化チタン系微粒子の表面を、少なくともシリカ系酸化物で被覆してなる金属酸化物微粒子を含む水分散ゾルの調製方法であって、
(a)過酸化チタン酸と、スズ酸カリウムおよび/またはケイ素化合物とを含む混合水溶液をオートクレーブに入れて150〜250℃の温度で水熱処理して、チタニウムと、スズおよび/またはケイ素とを含む複合酸化物を生成させる工程、
(b)前記工程(a)で生成された複合酸化物を乾燥して粒状にすることにより、チタニウムと、スズおよび/またはケイ素とを含む平均粒子径1〜80μmの複合酸化物粒子を得る工程、
(c’)前記工程(b)で得られた複合酸化物粒子を酸素含有雰囲気下、300〜800℃の温度で焼成して、X線回折結晶子径が7.5〜14.0nmの複合酸化物粒子を生成させる工程、
(d’)前記工程(c’)で生成された複合酸化物粒子を粉砕装置に供して粉砕して、粉砕されたものを純水または超純水に分散させて水分散液を得る工程、
(f)前記工程(d’)で得られた水分散液、または該分散液を湿式分級装置に供して、動的光散乱法で測定したときの粒子径が100nm以上の粗大粒子を少なくとも分離・除去する工程(e)をさらに経て得られた水分散液中に、(i)シリコンアルコキシドおよび珪酸から選ばれた少なくとも1種のケイ素化合物を混合して、該ケイ素化合物を加水分解させることにより前記酸化チタン系微粒子の表面をシリカ系酸化物で被覆した金属酸化物微粒子を含む水分散ゾルを得る工程
を含むことを特徴としている。
要件(i):前記酸化チタン系微粒子のX線回折から求められる、(310)結晶面の面間隔d 1 が0.1440〜0.1460nmの範囲にあり、また(301)結晶面の面間隔d 2 が0.1355〜0.1370nmの範囲にある。
要件(ii):前記酸化チタン系微粒子のX線回折から求められる、(310)結晶面のピーク強度P 1 と(110)結晶面のピーク強度P 2 との相対ピーク強度比(P 1 /P 2 )が9/100〜20/100の範囲にある。
さらに、本発明に係る金属酸化物微粒子の水分散ゾルの調製方法は、
動的光散乱法で測定した平均粒子径が15〜60nmであり、上記要件(i)および(ii)の少なくとも一方を満たす酸化チタン系微粒子の表面を、少なくともシリカ系複合酸化物で被覆してなる金属酸化物微粒子を含む水分散ゾルの調製方法であって、
(a)過酸化チタン酸と、スズ酸カリウムおよび/またはケイ素化合物とを含む混合水溶液をオートクレーブに入れて150〜250℃の温度で水熱処理して、チタニウムと、スズおよび/またはケイ素とを含む複合酸化物を生成させる工程、
(b)前記工程(a)で生成された複合酸化物を乾燥して粒状にすることにより、チタニウムと、スズおよび/またはケイ素とを含む平均粒子径1〜80μmの複合酸化物粒子を得る工程、
(c’)前記工程(b)で得られた複合酸化物粒子を酸素含有雰囲気下、300〜800℃の温度で焼成して、X線回折結晶子径が7.5〜14.0nmの複合酸化物粒子を生成させる工程、
(d’)前記工程(c’)で生成された複合酸化物粒子を粉砕装置に供して粉砕して、粉砕されたものを純水または超純水に分散させて水分散液を得る工程、
(f)前記工程(d’)で得られた水分散液、または該分散液を湿式分級装置に供して、動的光散乱法で測定したときの粒子径が100nm以上の粗大粒子を少なくとも分離・除去する工程(e)をさらに経て得られた水分散液中に、(i)シリコンアルコキシドおよび珪酸から選ばれた少なくとも1種のケイ素化合物と、過酸化ジルコン酸塩、アンチモン酸塩、スズ酸塩およびアルミン酸塩から選ばれた少なくとも1種の金属化合物を混合して、該ケイ素化合物および該金属化合物を加水分解させることにより前記酸化チタン系微粒子の表面をシリカ系複合酸化物で被覆した金属酸化物微粒子を含む水分散ゾルを得る工程
を含むことを特徴とする金属酸化物微粒子の水分散ゾルの調製方法。
The metal oxide fine particles are obtained by mixing at least one silicon compound selected from silicon alkoxide and silicic acid in an aqueous dispersion containing the titanium fine particles, and then hydrolyzing the silicon compound to thereby produce the titanium fine particles. The surface is preferably coated with a silica-based oxide.
In addition, the metal oxide fine particles include at least one silicon compound selected from silicon alkoxide and silicic acid, zirconate peroxide, antimonate and aluminate in an aqueous dispersion containing the titanium-based fine particles. It is preferable that at least one metal compound selected from the above is mixed, the silicon compound and the metal compound are then hydrolyzed, and the surface of the titanium-based fine particles is coated with a silica-based composite oxide.
Here, the silicon alkoxide is preferably tetramethoxysilane or a condensate thereof, or tetraethoxysilane or a condensate thereof.
Further, when the weight of the titanium-based fine particles is represented by C and the weight of the coating layer is represented by S, the weight ratio (S / C) is 1/100 in terms of oxide. It is preferable that the surface of the titanium-based fine particles is coated with the silica-based oxide or the silica-based composite oxide so as to be in a range of ˜50 / 100.
The method for preparing an aqueous dispersion sol of metal oxide fine particles according to the present invention,
The average particle diameter measured by a dynamic light scattering method is 15 to 60 nm, and the surface of titanium oxide fine particles satisfying at least one of the following requirements (i) and (ii) is coated with at least a silica-based oxide. A method for preparing an aqueous dispersion sol containing metal oxide fine particles,
(A) A mixed aqueous solution containing peroxytitanic acid and potassium stannate and / or silicon compound is placed in an autoclave and hydrothermally treated at a temperature of 150 to 250 ° C. to contain titanium and tin and / or silicon. Producing a composite oxide;
(B) A step of obtaining composite oxide particles having an average particle diameter of 1 to 80 μm containing titanium and tin and / or silicon by drying and granulating the composite oxide produced in the step (a). ,
(C ′) The composite oxide particles obtained in the step (b) are baked at a temperature of 300 to 800 ° C. in an oxygen-containing atmosphere, and a composite having an X-ray diffraction crystallite diameter of 7.5 to 14.0 nm. Producing oxide particles;
(D ′) a step of subjecting the composite oxide particles produced in the step (c ′) to a pulverizer and pulverization, and dispersing the pulverized one in pure water or ultrapure water to obtain an aqueous dispersion;
(F) The aqueous dispersion obtained in the step (d ′) or the dispersion is subjected to a wet classifier to separate at least coarse particles having a particle diameter of 100 nm or more as measured by a dynamic light scattering method. -By mixing (i) at least one silicon compound selected from silicon alkoxide and silicic acid into the aqueous dispersion obtained through the step (e) to be further removed, and hydrolyzing the silicon compound A step of obtaining an aqueous dispersion sol containing metal oxide fine particles in which the surface of the titanium oxide fine particles is coated with a silica-based oxide.
It is characterized by including.
Requirement (i): The interplanar spacing d 1 of the (310) crystal plane determined from X-ray diffraction of the titanium oxide-based fine particles is in the range of 0.1440 to 0.1460 nm, and (301) the interplanar spacing of the crystal plane. d 2 is in the range of 0.1355~0.1370nm.
Requirements (ii): wherein as determined by X-ray diffraction of the titanium oxide-based fine particles, (310) crystal face of the peak intensity P 1 and (110) relative peak intensity ratio of the peak intensity P 2 of the crystal plane (P 1 / P 2 ) is in the range of 9/100 to 20/100.
Furthermore, the method for preparing an aqueous dispersion sol of metal oxide fine particles according to the present invention includes:
The average particle diameter measured by the dynamic light scattering method is 15 to 60 nm, and the surface of the titanium oxide fine particles satisfying at least one of the above requirements (i) and (ii) is coated with at least a silica-based composite oxide. A method for preparing an aqueous dispersion sol containing metal oxide fine particles,
(A) A mixed aqueous solution containing peroxytitanic acid and potassium stannate and / or silicon compound is placed in an autoclave and hydrothermally treated at a temperature of 150 to 250 ° C. to contain titanium and tin and / or silicon. Producing a composite oxide;
(B) A step of obtaining composite oxide particles having an average particle diameter of 1 to 80 μm containing titanium and tin and / or silicon by drying and granulating the composite oxide produced in the step (a). ,
(C ′) The composite oxide particles obtained in the step (b) are baked at a temperature of 300 to 800 ° C. in an oxygen-containing atmosphere, and a composite having an X-ray diffraction crystallite diameter of 7.5 to 14.0 nm. Producing oxide particles;
(D ′) a step of subjecting the composite oxide particles produced in the step (c ′) to a pulverizer and pulverization, and dispersing the pulverized one in pure water or ultrapure water to obtain an aqueous dispersion;
(F) The aqueous dispersion obtained in the step (d ′) or the dispersion is subjected to a wet classifier to separate at least coarse particles having a particle diameter of 100 nm or more as measured by a dynamic light scattering method. -In the aqueous dispersion obtained further through the removing step (e), (i) at least one silicon compound selected from silicon alkoxide and silicic acid, zirconate peroxide, antimonate, stannic acid A metal in which at least one metal compound selected from a salt and an aluminate is mixed and the surface of the titanium oxide fine particles is coated with a silica-based composite oxide by hydrolyzing the silicon compound and the metal compound. Process for obtaining water-dispersed sol containing fine oxide particles
A method for preparing an aqueous dispersion sol of metal oxide fine particles, comprising:

本発明に係る高屈折率金属酸化物微粒子の水分散ゾルの調製方法は、
動的光散乱法で測定した平均粒子径が15〜60nmのチタン系微粒子の表面を、少なくともシリカ系酸化物で被覆してなる高屈折率の金属酸化物微粒子を含む水分散ゾルの調製方法であって、
(a)過酸化チタン酸と、スズ酸カリウムおよび/またはケイ素化合物とを含む混合水溶液をオートクレーブに入れて150〜250℃の温度で水熱処理して、チタニウムと、スズおよび/またはケイ素とを含む複合酸化物を生成させる工程、
(b)前記工程(a)で生成された複合酸化物を乾燥して粒状にすることにより、チタニウムと、スズおよび/またはケイ素とを含む平均粒子径1〜80μmの複合酸化物粒子を得る工程、
(c)前記工程(b)で得られた複合酸化物粒子を酸素含有雰囲気下、300〜800℃の温度で焼成して、該複合酸化物粒子の焼成物からなるチタン系粒子を得る工程、
(d)前記工程(c)で得られたチタン系粒子を粉砕して、動的光散乱法で測定したときの平均粒子径が15〜60nmのチタン系微粒子とし、さらに該チタン系微粒子を純水または超純水に分散させてなる水分散ゾルを得る工程、
(e)前記工程(d)で得られた水分散液を必要に応じ湿式分級装置に供して、動的光散乱法で測定したときの粒子径が100nm以上の粗大粒子を少なくとも分離・除去する工程、および
(f)前記工程(d)または前記工程(e)で得られた水分散液中に、(i)シリコンアルコキシドおよび珪酸から選ばれた少なくとも1種のケイ素化合物を混合して、該ケイ素化合物を加水分解させることにより前記チタン系微粒子の表面をシリカ系酸化物で被覆した金属酸化物微粒子を含む水分散ゾルを得る工程
を含むことを特徴としている。
The method for preparing an aqueous dispersion sol of high refractive index metal oxide fine particles according to the present invention,
A method for preparing an aqueous dispersion sol containing high refractive index metal oxide fine particles obtained by coating the surface of titanium fine particles having an average particle diameter of 15 to 60 nm measured by a dynamic light scattering method with at least a silica-based oxide. There,
(A) A mixed aqueous solution containing peroxytitanic acid and potassium stannate and / or silicon compound is placed in an autoclave and hydrothermally treated at a temperature of 150 to 250 ° C. to contain titanium and tin and / or silicon. Producing a composite oxide;
(B) A step of obtaining composite oxide particles having an average particle diameter of 1 to 80 μm containing titanium and tin and / or silicon by drying and granulating the composite oxide produced in the step (a). ,
(C) a step of firing the composite oxide particles obtained in the step (b) at a temperature of 300 to 800 ° C. in an oxygen-containing atmosphere to obtain titanium-based particles composed of a fired product of the composite oxide particles;
(D) The titanium-based particles obtained in the step (c) are pulverized to form titanium-based fine particles having an average particle diameter of 15 to 60 nm as measured by a dynamic light scattering method. Obtaining a water-dispersed sol dispersed in water or ultrapure water;
(E) If necessary, subject the aqueous dispersion obtained in the step (d) to a wet classifier to separate and remove at least coarse particles having a particle diameter of 100 nm or more as measured by a dynamic light scattering method. And (f) mixing (i) at least one silicon compound selected from silicon alkoxide and silicic acid into the aqueous dispersion obtained in step (d) or step (e), It includes a step of obtaining a water-dispersed sol containing metal oxide fine particles in which the surface of the titanium-based fine particles is coated with a silica-based oxide by hydrolyzing a silicon compound.

さらに、本発明に係る高屈折率金属酸化物微粒子の水分散ゾルの調製方法は、
動的光散乱法で測定した平均粒子径が15〜60nmのチタン系微粒子の表面を、少なくともシリカ系複合酸化物で被覆してなる高屈折率の金属酸化物微粒子を含む水分散ゾルの調製方法であって、
(a)過酸化チタン酸と、スズ酸カリウムおよび/またはケイ素化合物とを含む混合水溶液をオートクレーブに入れて150〜250℃の温度で水熱処理して、チタニウムと、スズおよび/またはケイ素とを含む複合酸化物を生成させる工程、
(b)前記工程(a)で生成された複合酸化物を乾燥して粒状にすることにより、チタニウムと、スズおよび/またはケイ素とを含む平均粒子径1〜80μmの複合酸化物粒子を得る工程、
(c)前記工程(b)で得られた複合酸化物粒子を酸素含有雰囲気下、300〜800℃の温度で焼成して、該複合酸化物粒子の焼成物からなるチタン系粒子を得る工程、
(d)前記工程(c)で得られたチタン系粒子を粉砕して、動的光散乱法で測定したときの平均粒子径が15〜60nmのチタン系微粒子とし、さらに該チタン系微粒子を純水または超純水に分散させてなる水分散ゾルを得る工程、
(e)前記工程(d)で得られた水分散液を必要に応じ湿式分級装置に供して、動的光散乱法で測定したときの粒子径が100nm以上の粗大粒子を少なくとも分離・除去する工程、および
(f)前記工程(d)または前記工程(e)で得られた水分散液中に、(i)シリコンアルコキシドおよび珪酸から選ばれた少なくとも1種のケイ素化合物と、過酸化ジルコン酸塩、アンチモン酸塩、スズ酸塩およびアルミン酸塩から選ばれた少なくとも1種の金属化合物を混合して、該ケイ素化合物および該金属化合物を加水分解させることにより前記チタン系微粒子の表面をシリカ系複合酸化物で被覆した金属酸化物微粒子を含む水分散ゾルを得る工程
を含むことを特徴としている。
Furthermore, the method for preparing an aqueous dispersion sol of high refractive index metal oxide fine particles according to the present invention is as follows:
Method for preparing water-dispersed sol containing high refractive index metal oxide fine particles obtained by coating the surface of titanium fine particles having an average particle diameter of 15 to 60 nm measured by dynamic light scattering method with at least silica-based composite oxide Because
(A) A mixed aqueous solution containing peroxytitanic acid and potassium stannate and / or silicon compound is placed in an autoclave and hydrothermally treated at a temperature of 150 to 250 ° C. to contain titanium and tin and / or silicon. Producing a composite oxide;
(B) A step of obtaining composite oxide particles having an average particle diameter of 1 to 80 μm containing titanium and tin and / or silicon by drying and granulating the composite oxide produced in the step (a). ,
(C) a step of firing the composite oxide particles obtained in the step (b) at a temperature of 300 to 800 ° C. in an oxygen-containing atmosphere to obtain titanium-based particles composed of a fired product of the composite oxide particles;
(D) The titanium-based particles obtained in the step (c) are pulverized to form titanium-based fine particles having an average particle diameter of 15 to 60 nm as measured by a dynamic light scattering method. Obtaining a water-dispersed sol dispersed in water or ultrapure water;
(E) If necessary, subject the aqueous dispersion obtained in the step (d) to a wet classifier to separate and remove at least coarse particles having a particle diameter of 100 nm or more as measured by a dynamic light scattering method. And (f) in the aqueous dispersion obtained in the step (d) or the step (e), (i) at least one silicon compound selected from silicon alkoxide and silicic acid, and zirconic peroxide At least one metal compound selected from a salt, antimonate, stannate and aluminate is mixed, and the surface of the titanium-based fine particles is silica-based by hydrolyzing the silicon compound and the metal compound. It includes a step of obtaining an aqueous dispersion sol containing metal oxide fine particles coated with a complex oxide.

上記の水分散ゾルの調製方法において、前記工程(a)で使用されるケイ素化合物は、シリカ微粒子、珪酸およびシリコンアルコキシドから選ばれた少なくとも1種であることが好ましい。
前記工程(a)で得られた混合水溶液のpHは、前記工程(b)に供する前に、3〜10の範囲に調整しておくことが好ましい。
また、前記工程(b)において、前記工程(a)で得られた混合水溶液をスプレードライヤーを用いて噴霧乾燥することにより、該混合水溶液中に含まれる複合酸化物の乾燥と粒状化を同時に行うことが好ましい。
さらに、前記工程(a)および前記工程(f)で使用されるシリコンアルコキシドが、テトラメトキシシランもしくはその縮合物、またはテトラエトキシシランもしくはその縮合物であることが好ましい。
また、前記工程(f)で得られた水分散ゾルに、さらに陰イオン交換樹脂および/または陽イオン交換樹脂を添加して撹拌することにより、該水分散ゾル中に含まれるイオン化物質を除去しておくことが好ましい。
In the method for preparing an aqueous dispersion sol, the silicon compound used in the step (a) is preferably at least one selected from silica fine particles, silicic acid, and silicon alkoxide.
The pH of the mixed aqueous solution obtained in the step (a) is preferably adjusted in the range of 3 to 10 before being used in the step (b).
Further, in the step (b), the mixed aqueous solution obtained in the step (a) is spray-dried using a spray dryer, whereby the composite oxide contained in the mixed aqueous solution is simultaneously dried and granulated. It is preferable.
Furthermore, it is preferable that the silicon alkoxide used in the step (a) and the step (f) is tetramethoxysilane or a condensate thereof, or tetraethoxysilane or a condensate thereof.
Further, by adding an anion exchange resin and / or a cation exchange resin to the water dispersion sol obtained in the step (f) and stirring, the ionized substance contained in the water dispersion sol is removed. It is preferable to keep it.

本発明に係る高屈折率金属酸化物微粒子の有機溶媒分散ゾルは、上記の水分散ゾル中に含まれる高屈折率金属酸化物微粒子を有機溶媒中に分散してなることを特徴としている。
前記有機溶媒は、メタノ-ル、エタノ-ル、ブタノール、プロパノール、イソプロピルアルコ-ル等のアルコール類、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等のエーテル類、メチルエチルケトン、γ−ブチロラクトン等のケトン類から選ばれた有機化合物の少なくとも1種であることが好ましい。
また、前記有機溶媒分散ゾルは、上記の高屈折率金属酸化物微粒子の水分散ゾルを溶媒置換装置に供して、該水分散ゾル中に含まれる水を有機溶媒に置換したものであることが好ましい。
The organic solvent dispersion sol of the high refractive index metal oxide fine particles according to the present invention is characterized in that the high refractive index metal oxide fine particles contained in the aqueous dispersion sol are dispersed in an organic solvent.
Examples of the organic solvent include alcohols such as methanol, ethanol, butanol, propanol, isopropyl alcohol, ethers such as ethylene glycol monomethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, methyl ethyl ketone, γ- It is preferably at least one organic compound selected from ketones such as butyrolactone.
In addition, the organic solvent-dispersed sol is obtained by subjecting the water-dispersed sol of the above-described high refractive index metal oxide fine particles to a solvent replacement device to replace water contained in the water-dispersed sol with an organic solvent. preferable.

本発明に係る分散ゾル中に含まれる高屈折率金属酸化物微粒子は、それ自体が2.0〜2.5と高い屈折率を有しており、さらにその光触媒活性がかなり低いことなどによって、該微粒子を含む塗布液を用いて形成された硬化性塗膜やプラスチック基材などを劣化させる可能性が非常に少ないばかりでなく、該硬化性塗膜に青変(すなわち、ブルーイング)を生じさせる可能性も非常に少ないという利点を有している。これは、この金属酸化物微粒子中に含まれるチタン系微粒子が、特別な物理的性状を備えた結晶性微粒子であることに起因している。すなわち、前記チタン系微粒子は、動的光散乱法で測定される平均粒子径が15〜60nmの範囲にあり、またそれ自体が2.2〜2.7の屈折率を有している。さらに、X線回折法で測定される結晶子径が7.5〜14.0nmの範囲にあるルチル型の結晶構造と、70〜155m2/gの比表面積を有するものである。
さらに詳述すれば、前記チタン系微粒子は、比較的高い温度、すなわち300〜800℃の温度で焼成されているので、その結晶化度(本発明では、X線回折結晶子径で表されている。)が高くなり、結果として該微粒子の屈折率を高めることができる。さらに、この結晶化度が高まるにつれて該微粒子の比表面積が小さくなるため、該微粒子の表面に存在するOH基の量が減少する。これに伴い、これを紫外線に暴露したときにフリーラジカル化されるOH基(たとえば、・OHなど)が少なくなるので、結果として上記の光触媒活性を弱めることができる。
The high refractive index metal oxide fine particles contained in the dispersion sol according to the present invention itself has a high refractive index of 2.0 to 2.5, and further its photocatalytic activity is quite low. Not only has a very low possibility of degrading a curable coating film or a plastic substrate formed using a coating solution containing the fine particles, but also causes blue discoloration (that is, blueing) to the curable coating film. There is an advantage that there is very little possibility of making it. This is because the titanium-based fine particles contained in the metal oxide fine particles are crystalline fine particles having special physical properties. That is, the titanium-based fine particles have an average particle diameter measured by a dynamic light scattering method in the range of 15 to 60 nm, and themselves have a refractive index of 2.2 to 2.7. Furthermore, it has a rutile crystal structure having a crystallite diameter measured by an X-ray diffraction method in the range of 7.5 to 14.0 nm and a specific surface area of 70 to 155 m 2 / g.
More specifically, since the titanium-based fine particles are fired at a relatively high temperature, that is, a temperature of 300 to 800 ° C., the crystallinity (in the present invention, expressed by the X-ray diffraction crystallite diameter). As a result, the refractive index of the fine particles can be increased. Furthermore, since the specific surface area of the fine particles decreases as the crystallinity increases, the amount of OH groups present on the surface of the fine particles decreases. Along with this, OH groups (for example, .OH) that become free radicals when exposed to ultraviolet light are reduced, and as a result, the above-mentioned photocatalytic activity can be weakened.

しかしながら、前記チタン系微粒子は、上記のように焼成して屈折率が高まったものを粉砕しているため、その粒子表面での光反射率が増大することで光散乱が高くなってしまうという欠点があった。そこで、本発明においては、前記微粒子の表面をシリカ系酸化物またはシリカ系複合酸化物で被覆して、これを抑制している。この抑制効果について、本発明では、水分散ゾルの濁度として表されている。すなわち、このようにして得られた、光散乱が殆どない高屈折率金属酸化物微粒子を含む水分散ゾルは、濁りが少なく、ほぼ透明またはそれに近いものである。
さらに、上記の被覆層、すなわちシリカ系酸化物またはシリカ系複合酸化物からなる被覆層が存在すると、前記チタン系微粒子の光触媒活性をさらに抑制する効果を奏することができる。
However, since the titanium-based fine particles are pulverized with the refractive index increased by baking as described above, the light reflection at the particle surface increases, resulting in an increase in light scattering. was there. Therefore, in the present invention, the surface of the fine particles is coated with silica-based oxide or silica-based composite oxide to suppress this. This suppression effect is expressed as turbidity of the water-dispersed sol in the present invention. That is, the water-dispersed sol containing high-refractive-index metal oxide fine particles with almost no light scattering obtained in this way has little turbidity and is almost transparent or close thereto.
Furthermore, when the above-described coating layer, that is, a coating layer made of a silica-based oxide or a silica-based composite oxide is present, an effect of further suppressing the photocatalytic activity of the titanium-based fine particles can be achieved.

このような高屈折率金属酸化物微粒子を含む水分散ゾルまたは有機溶媒分散ゾルを原料組成物として用いた光学基材用塗布液(たとえば、ハードコート層膜形成用塗布液)を使用すれば、昨今のプラスチックレンズ業界などから切望されている、1.70以上、特に1.71〜1.81の高い屈折率を有し、しかも耐候性や耐光性に優れた硬化性塗膜を基材上に容易に形成することができる。さらに具体的に述べれば、前記基材として、たとえ1.71〜1.81の高い屈折率を有するプラスチックレンズ基材を使用しても、該プラスチックレンズ基材と前記塗膜との間に起こる光の干渉(干渉縞として現れる)を容易に抑えることができ、しかも屈折率がこのように高いにもかかわらず、従来の金属酸化物微粒子では得られなかった、耐候性と耐光性に優れた硬化性塗膜を基材上に容易に形成することができる。
また、光散乱率の低い高屈折率金属酸化物微粒子を含む水分散ゾルを原料組成物として使用しているので、ヘーズが0.5%以下の無色透明な硬化性塗膜を基材上に形成することができる。さらに、耐擦傷性、耐摩耗性、耐衝撃性、耐汗性、耐熱水性、密着性、染色性、耐褪色性などの性状に優れた硬化性塗膜を基材上に形成することができる。
よって、本発明に係る前記分散ゾルを用いて調製された光学基材用塗布液は、プラスチックレンズ基材などの光学基材上に、ハードコート層膜やプライマー層膜などの硬化性塗膜を形成する際に好適に使用することができる。
If a coating liquid for optical substrates using a water-dispersed sol or organic solvent-dispersed sol containing such high refractive index metal oxide fine particles as a raw material composition (for example, a coating liquid for forming a hard coat layer film) is used, A curable coating film having a high refractive index of 1.70 or more, particularly 1.71 to 1.81, which is highly desired by the recent plastic lens industry, etc., and excellent in weather resistance and light resistance is provided on the substrate. Can be easily formed. More specifically, even if a plastic lens substrate having a high refractive index of 1.71 to 1.81 is used as the substrate, it occurs between the plastic lens substrate and the coating film. Light interference (appears as interference fringes) can be easily suppressed, and it has excellent weather resistance and light resistance that could not be obtained with conventional metal oxide fine particles, despite its high refractive index. A curable coating film can be easily formed on a substrate.
In addition, since an aqueous dispersion sol containing high refractive index metal oxide fine particles having a low light scattering rate is used as a raw material composition, a colorless and transparent curable coating film having a haze of 0.5% or less is formed on the substrate. Can be formed. Furthermore, it is possible to form a curable coating film excellent in properties such as scratch resistance, abrasion resistance, impact resistance, sweat resistance, hot water resistance, adhesion, dyeability, and fading resistance on a substrate. .
Therefore, the coating liquid for an optical substrate prepared using the dispersion sol according to the present invention has a curable coating film such as a hard coat layer film or a primer layer film on an optical substrate such as a plastic lens substrate. It can be suitably used when forming.

なお、前記光学基材用塗布液を用いて得られる硬化性塗膜は、以下に示すような特性を備えている。
(1)全固形分(前記高屈折率金属酸化物微粒子とバインダー成分として混合される有機ケイ素化合物等との合計量)に対する前記高屈折率金属酸化物微粒子の含有量が35〜60重量%の範囲にある塗料組成物を用いて形成された硬化性塗膜は、1.70以上、さらに詳しくは1.71〜1.81の高い屈折率を有している。よって、1.70以上、特に1.71〜1.81の高い屈折率を有するプラスチックレンズ基材などに適用しても、上記の干渉縞などは見られない。
(2)比較的低い光触媒活性を備えた高屈折率金属酸化物微粒子を含む塗料組成物を使用しているので、前記硬化性塗膜は、耐候性や耐光性において非常に優れた性状を有している。ここで、「耐候性」とは、上記の光触媒活性によって前記塗膜中に含まれる有機系物質やプラスチックレンズ基材などが劣化することに対する耐性を意味し、また「耐光性」とは、上記の光触媒活性によってハードコート層膜などの塗膜が青色に変化すること(いわゆる、ブルーイング)に対する耐性を意味する。しかし、前記の硬化性塗膜においては、上記の劣化やブルーイングなどは殆ど起こらない。
(3)光散乱率が比較的低い高屈折率金属酸化物微粒子を含む塗料組成物を使用しているので、前記硬化性塗膜は、ヘーズが0.5%以下の無色透明なものである。
(4)さらに、前記硬化性塗膜は、耐擦傷性、耐摩耗性、耐衝撃性、耐汗性、染色性、耐熱水性、密着性、耐褪色性などにおいても、優れた性状を有している。
In addition, the curable coating film obtained using the said coating liquid for optical base materials is equipped with the characteristic as shown below.
(1) The content of the high refractive index metal oxide fine particles is 35 to 60% by weight with respect to the total solid content (total amount of the high refractive index metal oxide fine particles and the organosilicon compound mixed as a binder component). The curable coating film formed using the coating composition in the range has a high refractive index of 1.70 or more, more specifically 1.71 to 1.81. Therefore, even when applied to a plastic lens substrate having a high refractive index of 1.70 or more, particularly 1.71 to 1.81, the above interference fringes are not seen.
(2) Since a coating composition containing high refractive index metal oxide fine particles having a relatively low photocatalytic activity is used, the curable coating film has very excellent properties in terms of weather resistance and light resistance. doing. Here, “weather resistance” means resistance to deterioration of organic substances and plastic lens base materials contained in the coating film due to the photocatalytic activity, and “light resistance” It means the resistance to a coating film such as a hard coat layer film turning blue (so-called blueing) due to the photocatalytic activity. However, in the curable coating film, the above deterioration and bluing hardly occur.
(3) Since the coating composition containing high refractive index metal oxide fine particles having a relatively low light scattering rate is used, the curable coating film is colorless and transparent with a haze of 0.5% or less. .
(4) Furthermore, the curable coating film has excellent properties in terms of scratch resistance, abrasion resistance, impact resistance, sweat resistance, dyeability, hot water resistance, adhesion, and fading resistance. ing.

図1は、参考例2で用いられた複合酸化物粒子(チタン系粒子)の焼成粉体をX線回折装置にかけて取得したX線回折チャートを示す。FIG. 1 shows an X-ray diffraction chart obtained by applying the sintered powder of composite oxide particles (titanium-based particles) used in Reference Example 2 to an X-ray diffractometer. 図2は、参考例3で用いられた複合酸化物粒子(チタン系粒子)の焼成粉体をX線回折装置にかけて取得したX線回折チャートを示す。FIG. 2 shows an X-ray diffraction chart obtained by applying the sintered powder of composite oxide particles (titanium-based particles) used in Reference Example 3 to an X-ray diffractometer. 図3は、参考例5で用いられた複合酸化物粒子(チタン系粒子)の焼成粉体をX線回折装置にかけて取得したX線回折チャートを示す。FIG. 3 shows an X-ray diffraction chart obtained by applying the sintered powder of composite oxide particles (titanium-based particles) used in Reference Example 5 to an X-ray diffractometer. 図4は、比較例1で用いられた複合酸化物粒子(チタン系粒子)の乾燥粉体をX線回折装置にかけて取得したX線回折チャートを示す。FIG. 4 shows an X-ray diffraction chart obtained by applying the dry powder of composite oxide particles (titanium particles) used in Comparative Example 1 to an X-ray diffractometer. 図5は、比較例3で用いられた複合酸化物粒子(チタン系粒子)の焼成粉体をX線回折装置にかけて取得したX線回折チャートを示す。FIG. 5 shows an X-ray diffraction chart obtained by applying the sintered powder of composite oxide particles (titanium-based particles) used in Comparative Example 3 to an X-ray diffractometer.

以下、本発明に係る高屈折率金属酸化物微粒子の水分散ゾルおよび該金属酸化物微粒子の有機溶媒分散ゾルについて具体的に説明する。
[高屈折率金属酸化物微粒子の水分散ゾル]
本発明に係る高屈折率金属酸化物微粒子の水分散ゾルは、
動的光散乱法で測定した平均粒子径が15〜60nmのチタン系微粒子の表面を、少なくともシリカ系酸化物またはシリカ系複合酸化物で被覆してなる高屈折率の金属酸化物微粒子を含む水分散ゾルであって、
(1)前記チタン系微粒子が、ルチル型の結晶構造を有する結晶性微粒子であり、しかも7.5〜14.0nmのX線回折結晶子径と70〜155m2/gの比表面積とを有し、さらにその屈折率が2.2〜2.7の範囲にあり、
(2)前記被覆層が、前記チタン系微粒子の屈折率より0.2以上低い屈折率を有し、しかも該被覆層を設けてなる前記金属酸化物微粒子の屈折率が2.0〜2.5の範囲にあり、さらに
(3)前記水分散ゾルが、1〜30重量%の前記金属酸化物微粒子を含み、しかもその濁度が0.1〜10.0cm-1の範囲にあるものである。
Hereinafter, the water-dispersed sol of high refractive index metal oxide fine particles and the organic solvent dispersed sol of the metal oxide fine particles according to the present invention will be specifically described.
[Aqueous dispersion sol of high refractive index metal oxide fine particles]
An aqueous dispersion sol of high refractive index metal oxide fine particles according to the present invention is:
Water containing high refractive index metal oxide fine particles obtained by coating the surface of titanium fine particles having an average particle size of 15 to 60 nm measured by a dynamic light scattering method with at least silica-based oxide or silica-based composite oxide A dispersion sol,
(1) The titanium-based fine particles are crystalline fine particles having a rutile-type crystal structure, and have an X-ray diffraction crystallite diameter of 7.5 to 14.0 nm and a specific surface area of 70 to 155 m 2 / g. And the refractive index is in the range of 2.2 to 2.7,
(2) The coating layer has a refractive index lower by 0.2 or more than the refractive index of the titanium-based fine particles, and the refractive index of the metal oxide fine particles provided with the coating layer is 2.0-2. (3) The water-dispersed sol contains 1 to 30% by weight of the metal oxide fine particles, and the turbidity is in the range of 0.1 to 10.0 cm −1. is there.

本発明において、前記チタン系微粒子は、チタニウムと、スズおよび/またはケイ素とを含む複合酸化物粒子を焼成して粉砕したものであることが好ましい。
ここで、前記複合酸化物粒子は、チタニウムとスズとを含む複合酸化物粒子や、チタニウムと、スズおよびケイ素とを含む複合酸化物粒子などを意味し、これらの化合物の一部を化学式で模式的に示せば、以下の通りである。

| |
−O−Ti−O−Sn−O−
| |

| | |
−O−Ti−O−Sn−O−Si−O−
| | |
In the present invention, the titanium-based fine particles are preferably those obtained by firing and pulverizing composite oxide particles containing titanium and tin and / or silicon.
Here, the composite oxide particles mean composite oxide particles containing titanium and tin, composite oxide particles containing titanium, tin and silicon, and a part of these compounds are schematically represented by chemical formulas. Specifically, it is as follows.

| |
-O-Ti-O-Sn-O-
| |

| | |
-O-Ti-O-Sn-O-Si-O-
| | |

さらに、前記複合酸化物粒子は、特に制限されるものではないが、過酸化チタン酸と、スズ酸カリウムおよび/またはケイ素化合物とを含む混合水溶液をオートクレーブに入れて150〜250℃の温度で水熱処理して、チタニウムと、スズおよび/またはケイ素とを含む複合酸化物を生成させ、次いで該複合酸化物を含む混合水溶液のpHを3〜10に調整したのち、該混合水溶液をスプレードライヤーに供して噴霧乾燥したものであることが好ましい。また、前記ケイ素化合物は、シリカ微粒子、珪酸、およびシリコンアルコキシドから選ばれた少なくとも1種であることが好ましい。
ここで、前記水熱処理を150℃未満の温度で行うと、前記複合酸化物の結晶化が進み難いため、得られる粒子(一次粒子)の結晶化度が低くなり、また250℃を超える温度で行うと、前記複合酸化物の結晶化が過度に進むばかりか、得られる粒子が凝集し易くなるので、好ましくない。
Furthermore, the composite oxide particles are not particularly limited, but a mixed aqueous solution containing titanic acid peroxide and potassium stannate and / or silicon compound is placed in an autoclave and water is added at a temperature of 150 to 250 ° C. Heat treatment is performed to form a composite oxide containing titanium and tin and / or silicon, and then the pH of the mixed aqueous solution containing the composite oxide is adjusted to 3 to 10, and then the mixed aqueous solution is supplied to a spray dryer. It is preferably spray-dried. The silicon compound is preferably at least one selected from silica fine particles, silicic acid, and silicon alkoxide.
Here, when the hydrothermal treatment is performed at a temperature of less than 150 ° C., the crystallization of the composite oxide is difficult to proceed, so that the degree of crystallinity of the obtained particles (primary particles) becomes low and the temperature exceeds 250 ° C. This is not preferable because crystallization of the composite oxide proceeds excessively and the resulting particles easily aggregate.

さらに、前記混合水溶液のpHが3未満であると、設備腐食の懸念が高まるばかりか、前記混合水溶液の保存安定性が低下し易くなり、また該pHが10を超えると、乾燥時に粒子間に働く毛管張力などが増大して硬い乾燥粉体(すなわち、後段の粉砕工程で粉砕し難い乾燥粉体。)を形成し易くなるので、好ましくない。しかし、得られる混合水溶液のpHが3〜10の範囲にある場合には、このpHを調整することは必ずしも必要でない。
また、前記複合酸化物は、その水熱処理段階で既にルチル型の結晶構造を有していることが好ましい。
なお、前記の複合酸化物粒子は、スプレードライヤーを用いずに、前記混合水溶液を一般的な熱風乾燥装置に供して該混合水溶液中に含まれる複合酸化物の乾燥体(通常は塊状の固形物として得られる。)を得た後、これを粉砕装置に供して適度に粉砕することによって調製することもできる。しかし、その操作が煩雑であるばかりでなく、粒子径の揃った複合酸化物粒子を効率よく得ることが難しい。よって、この複合酸化物粒子の調製は、前記混合水溶液をスプレードライヤーを用いて噴霧乾燥することにより、該混合水溶液中に含まれる複合酸化物の乾燥と粒状化を同時に行うことが好ましい。さらに、フリーズドライ設備などを用いて、前記複合酸化物粒子を凍結乾燥させることもできる、
Furthermore, when the pH of the mixed aqueous solution is less than 3, not only the concern about equipment corrosion increases, but also the storage stability of the mixed aqueous solution tends to decrease. The working capillary tension is increased and it becomes easy to form a hard dry powder (that is, a dry powder that is difficult to be pulverized in the subsequent pulverization step), which is not preferable. However, when the pH of the resulting mixed aqueous solution is in the range of 3 to 10, it is not always necessary to adjust this pH.
The composite oxide preferably already has a rutile crystal structure at the hydrothermal treatment stage.
The composite oxide particles are prepared by using the mixed aqueous solution in a general hot air drying apparatus without using a spray dryer, and a dried product of the composite oxide contained in the mixed aqueous solution (usually a solid solid substance). Can be prepared by subjecting it to a pulverizer and appropriately pulverizing it. However, not only is the operation complicated, but it is difficult to efficiently obtain composite oxide particles having a uniform particle diameter. Therefore, it is preferable to prepare the composite oxide particles by simultaneously drying and granulating the composite oxide contained in the mixed aqueous solution by spray-drying the mixed aqueous solution using a spray dryer. Furthermore, the composite oxide particles can be freeze-dried using freeze-dry equipment or the like.

次に、前記複合酸化物粒子を酸素含有雰囲気下で300〜800℃の温度にて焼成して、X線回折結晶子径が7.5〜14.0nm、好ましくは8.0〜12.0nmの複合酸化物粒子を生成させることが好ましい。これにより、該複合酸化物粒子の結晶化度が高まるため、以下に示すような高い屈折率と低い光触媒活性を備え、しかもルチル型の結晶構造からなるチタン系粒子(二次粒子)が得られる。
ここで、前記焼成温度が300℃未満であると、粒子内での結晶化が進み難いため、所望のX線回折結晶子径を有する粒子を得ることが難しくなるばかりでなく、その比表面積が比較的大きいため、水などへの分散性が悪くなり、また該温度が800℃を超えると、粒子同士の焼結(特に、一次粒子同士の焼結)が急激に進み、結果として粒子表面における比表面積が著しく低減することになるので、好ましくない。さらに、前記X線回折結晶子径が7.5nm未満であると、粒子の結晶化度が低くなるため、所望の屈折率が得られなくなり、また該X線回折結晶子径が14.0nmを超えると、粒子の屈折率が高くなり過ぎて粒子表面での光散乱が増加することになるので、好ましくない。
Next, the composite oxide particles are fired at a temperature of 300 to 800 ° C. in an oxygen-containing atmosphere, and the X-ray diffraction crystallite diameter is 7.5 to 14.0 nm, preferably 8.0 to 12.0 nm. It is preferable to produce the composite oxide particles. Thereby, since the crystallinity of the composite oxide particles is increased, titanium-based particles (secondary particles) having a high refractive index and a low photocatalytic activity as shown below and having a rutile crystal structure can be obtained. .
Here, when the firing temperature is less than 300 ° C., crystallization within the particles is difficult to proceed, so that it is difficult not only to obtain particles having a desired X-ray diffraction crystallite diameter, but also the specific surface area is Since it is relatively large, dispersibility in water and the like deteriorates, and when the temperature exceeds 800 ° C., sintering of particles (especially, sintering of primary particles) proceeds rapidly, and as a result, on the particle surface. Since the specific surface area is significantly reduced, it is not preferable. Further, when the X-ray diffraction crystallite diameter is less than 7.5 nm, the crystallinity of the particles is lowered, so that a desired refractive index cannot be obtained, and the X-ray diffraction crystallite diameter is 14.0 nm. Exceeding this is not preferable because the refractive index of the particles becomes too high and light scattering on the particle surface increases.

次いで、前記チタン系粒子は、ゾル化できる程度に小さな粒子径を有する微粒子とする必要があるため、サンドミルなどの粉砕装置に供して水酸化カリウムなどの無機分散剤および/またはカルボン酸化合物などの有機分散剤の存在下で粉砕することが好ましい。これにより、、動的光散乱法で測定したときの平均粒子径が15〜60nmのチタン系微粒子(すなわち、結晶性のチタン系微粒子)が得られる。
ここで、前記平均粒子径が15nm未満であると、ゾル中に含まれる固形分(すなわち、チタン系微粒子)の濃度を高めたときに、ゾルの粘度が上昇し易くなるので、好ましくない。また、該平均粒子径が60nmを超えると、粒子表面での光散乱が増加し、結果として該微粒子を用いて得られる金属酸化物微粒子を含む水分散ゾルの濁度が高まってしまうことがあり、引いてはこれを用いて得られる硬化性塗膜のヘーズが高まってしまうことがあるので、好ましくない。
現在のところ、上記のような性状を有するチタン系微粒子は市場から入手することができないが、将来において第三者から入手可能となった場合には、これを使用することもできる。すなわち、本発明においては、将来、第三者から提供または市販される可能性のある前記チタン系微粒子を使用することも権利範囲に含むものである。
Next, since the titanium-based particles need to be fine particles having a particle size that is small enough to be solated, the titanium-based particles are subjected to a pulverizing apparatus such as a sand mill, and so on. It is preferable to grind in the presence of an organic dispersant. Thereby, titanium-based fine particles (that is, crystalline titanium-based fine particles) having an average particle diameter of 15 to 60 nm when measured by a dynamic light scattering method are obtained.
Here, if the average particle diameter is less than 15 nm, the viscosity of the sol tends to increase when the concentration of the solid content (ie, titanium-based fine particles) contained in the sol is increased, which is not preferable. Further, when the average particle diameter exceeds 60 nm, light scattering on the particle surface increases, and as a result, the turbidity of the water-dispersed sol containing metal oxide fine particles obtained by using the fine particles may increase. If pulled, the haze of the curable coating film obtained by using this may increase, which is not preferable.
At present, titanium-based fine particles having the above properties cannot be obtained from the market, but they can be used when they become available from a third party in the future. That is, in the present invention, it is also within the scope of the right to use the titanium-based fine particles that may be provided or marketed by a third party in the future.

前記チタン系微粒子は、このように粉砕または粉砕・解膠して製造されたものであるので、その粒子群の中に比較的粒子径の大きな粗大粒子を含むことがある。
そこで、本発明においては、上記で粉砕されたチタン系微粒子(すなわち、複合酸化物微粒子)を純水または超純水に分散させたのち、該水分散液を湿式分級装置に供して、動的光散乱法で測定したときの粒子径が100nm以上の粗大粒子を少なくとも分離・除去しておくことが望ましい。
すなわち、前記チタン系微粒子は、該微粒子を動的光散乱法で測定したときの粒子径頻度分布において、100nm以上の粒子径を有する比較的粗大なチタン系微粒子の分布頻度が1%以下、好ましくは0.2%以下であることが好ましい。
ここで、前記粗大粒子の分布頻度が1%を超えると、このような粗大粒子を含むチタン系微粒子から得られる金属酸化物微粒子を含む水分散ゾルは10cm-1を超えた濁度になってしまうことがあり、引いては該水分散ゾルを用いて調製された塗膜形成用塗布液から得られる塗膜の透明性が低下してしまうことがあるので、好ましくない。
これにより、動的光散乱法で測定したときの平均粒子径が15〜60nm、好ましくは15〜45nmのチタン系微粒子(すなわち、結晶性のチタン系微粒子)が得られる。
しかしながら、上記のスプレードライヤーに供して噴霧乾燥した複合酸化物粒子は、粒子径の小さな一次粒子が集った塊からなる球状粒子であるので、これを焼成しても、サンドミルなどの粉砕装置に供すると、平均粒子径が15〜60nmのチタン系微粒子を容易に得ることができる。また、この粒子は比較的粉砕し易いため、動的光散乱法で測定したときの粒子径が100nm以上の粗大粒子が生成される確率が少なくなるので、前記複合酸化物粒子としてはスプレードライヤーで噴霧乾燥したものを使用することが好ましい。
Since the titanium-based fine particles are produced by pulverization or pulverization / peptization as described above, coarse particles having a relatively large particle size may be included in the particle group.
Therefore, in the present invention, after the titanium-based fine particles (that is, composite oxide fine particles) pulverized as described above are dispersed in pure water or ultrapure water, the aqueous dispersion is used in a wet classifier to dynamically It is desirable to separate and remove at least coarse particles having a particle diameter of 100 nm or more as measured by a light scattering method.
That is, the titanium-based fine particles have a distribution frequency of relatively coarse titanium-based fine particles having a particle diameter of 100 nm or more in the particle size frequency distribution when the fine particles are measured by a dynamic light scattering method, preferably 1% or less. Is preferably 0.2% or less.
Here, when the distribution frequency of the coarse particles exceeds 1%, the water-dispersed sol containing metal oxide fine particles obtained from titanium-based fine particles containing such coarse particles has a turbidity exceeding 10 cm −1. In some cases, the transparency of the coating film obtained from the coating liquid for forming a coating film prepared using the water-dispersed sol may decrease, which is not preferable.
Thereby, titanium-based fine particles (that is, crystalline titanium-based fine particles) having an average particle diameter of 15 to 60 nm, preferably 15 to 45 nm, as measured by a dynamic light scattering method are obtained.
However, since the composite oxide particles spray-dried by using the above-mentioned spray dryer are spherical particles composed of a lump of primary particles having a small particle diameter, even if this is baked, it is applied to a grinding device such as a sand mill. If used, titanium-based fine particles having an average particle diameter of 15 to 60 nm can be easily obtained. In addition, since these particles are relatively easily pulverized, the probability that coarse particles having a particle diameter of 100 nm or more when measured by a dynamic light scattering method are reduced is reduced. It is preferable to use a spray-dried product.

本発明において、前記チタン系微粒子は、ルチル型の結晶構造を有する結晶性微粒子であり、しかも7.5〜14.0nmのX線回折結晶子径と70〜155m2/g、好ましくは90〜130m2/gの比表面積とを有し、さらにその屈折率が2.2〜2.7、好ましくは2.3〜2.6の範囲にあることが望まれる。
ここで、前記比表面積が70m2/g未満であると、一次粒子同士の焼結が進んでいるため粒子径が大きくなって粒子表面での光散乱が増加したり、あるいは後述する粒子表面への被覆が困難になったりすることがあり、また該比表面積が155m2/gを超えると、粒子表面に存在するOH基の量が多くなって上記の光触媒活性を強める結果となるので、好ましくない。さらに、前記屈折率が2.2未満であると、該微粒子をシリカ系酸化物またはシリカ系複合酸化物で被覆することによって屈折率が低下するため、後述する金属酸化物微粒子において所望の屈折率が得られなくなり、また該屈折率が2.7を超えると、粒子表面での光散乱が増加するので、好ましくない。なお、前記X線回折結晶子径に関しては、上記の通りである。
In the present invention, the titanium-based fine particles are crystalline fine particles having a rutile-type crystal structure, and an X-ray diffraction crystallite diameter of 7.5 to 14.0 nm and 70 to 155 m 2 / g, preferably 90 to The specific surface area is 130 m 2 / g, and the refractive index is desired to be in the range of 2.2 to 2.7, preferably 2.3 to 2.6.
Here, when the specific surface area is less than 70 m 2 / g, sintering of primary particles progresses, so that the particle size increases and light scattering on the particle surface increases, or the particle surface described later. It may be difficult to coat, and if the specific surface area exceeds 155 m 2 / g, the amount of OH groups present on the surface of the particles increases, resulting in the enhancement of the photocatalytic activity. Absent. Further, when the refractive index is less than 2.2, the refractive index is decreased by coating the fine particles with silica-based oxide or silica-based composite oxide. When the refractive index exceeds 2.7, light scattering on the particle surface increases, which is not preferable. The X-ray diffraction crystallite diameter is as described above.

また、前記チタン系微粒子は、該微粒子のX線回折から求められる、(310)結晶面の面間隔d1が0.1440〜0.1460nm、好ましくは0.1445〜0.1455nmの範囲にあり、また(301)結晶面の面間隔d2が0.1355〜0.1370nm、好ましくは0.1356〜0.1368nmの範囲にあることが好ましい。
ここで、前記(310)結晶面の面間隔d1が0.1440nm未満であると、上記の光触媒活性が強まる傾向にあり、また該結晶面の面間隔d1が0.1460nmを超えると、同様に上記の光触媒活性が強まる傾向にあるので、好ましくない。このような現象を起こすメカニズムの詳細は現時点で明らかでないが、前者の場合は、光触媒反応の抑制に関与していると考えられる(310)結晶面の面間隔が狭まることで、電子および正孔(ホール)の粒子表面への拡散が促進され易くなるためと考えられ、また後者の場合は、逆に光触媒反応の抑制に関与していると考えられる(310)結晶面の面間隔が広がることで、(310)結晶面の密度が低下し易くなるためと考えられる。さらに、前記(301)結晶面の面間隔d2が0.1355nm未満であると、上記の光触媒活性が強まる傾向にあり、また該結晶面の面間隔d2が0.1370nmを超えると、同様に上記の光触媒活性が強まる傾向にあるので、好ましくない。このような現象を起こすメカニズムの詳細は現時点で明らかでないが、前記の(310)結晶面と同様に、光触媒反応の抑制に関与していると考えられる(301)結晶面の面間隔が狭まることで、電子および正孔(ホール)の粒子表面への拡散が促進され易くなるためと考えられ、また後者の場合は、逆に光触媒反応の抑制に関与していると考えられる(301)結晶面の面間隔が広がることで、(301)結晶面の密度が低下し易くなるためと考えられる。
Further, the titanium-based fine particles have a (310) crystal plane spacing d 1 determined from X-ray diffraction of the fine particles in the range of 0.1440 to 0.1460 nm, preferably 0.1445 to 0.1455 nm. The (301) crystal plane spacing d 2 is preferably in the range of 0.1355 to 0.1370 nm, preferably 0.1356 to 0.1368 nm.
Here, when the interplanar spacing d 1 of the (310) crystal plane is less than 0.1440 nm, the photocatalytic activity tends to increase, and when the interplanar spacing d 1 of the crystal plane exceeds 0.1460 nm, Similarly, the above-mentioned photocatalytic activity tends to increase, which is not preferable. The details of the mechanism causing such a phenomenon are not clear at the present time, but in the former case, it is considered that it is involved in the suppression of the photocatalytic reaction (310). It is considered that diffusion of (holes) to the particle surface is facilitated, and in the latter case, conversely, it is considered that it is involved in suppression of the photocatalytic reaction. Therefore, it is considered that the density of the (310) crystal plane is likely to decrease. Further, when the interplanar spacing d 2 of the (301) crystal plane is less than 0.1355 nm, the photocatalytic activity tends to increase, and when the interplanar spacing d 2 of the crystal plane exceeds 0.1370 nm, the same In addition, the above-described photocatalytic activity tends to increase, which is not preferable. The details of the mechanism causing such a phenomenon are not clear at this time, but, like the (310) crystal plane, it is considered that it is involved in the suppression of the photocatalytic reaction (301) The crystal plane spacing is narrowed. Therefore, it is considered that diffusion of electrons and holes to the particle surface is facilitated, and in the latter case, it is considered to be involved in the suppression of the photocatalytic reaction (301) crystal plane. This is considered to be because the (301) crystal plane density tends to decrease due to the widening of the plane spacing.

さらに、前記チタン系微粒子は、該微粒子のX線回折から求められる、(310)結晶面のピーク強度P1と(110)結晶面のピーク強度P2との相対ピーク強度比(P1/P2)が9/100〜20/100、好ましくは12/100〜14/100の範囲にあることが好ましい。
ここで、前記相対ピーク強度比(P1/P2)が9/100未満であると、上記の光触媒活性が強まる傾向があり、また該相対ピーク強度比が20/100を超えると、同様に上記の光触媒活性が強まる傾向にあるので、好ましくない。このような現象を起こすメカニズムの詳細は現時点で明らかでないが、前者の場合は、光触媒反応の促進に関与していると考えられる(110)結晶面が光触媒反応の抑制に関与していると考えられる(310)結晶面に較べて相対的に多くなっているためと考えられる。また後者の場合は、光触媒反応の促進に関与していると考えられる(110)結晶面が光触媒反応の抑制に関与していると考えられる(310)結晶面に較べて相対的に少なくなっているため、本来ならば前記の光触媒活性は抑制されるはずであるが、これとは逆に光触媒活性は強まる傾向にある。その理由は未だ明らかではないが、光触媒活性の活性点となるOH基(フリーラジカル化された・OHなどを含む)が、反応活性の高くなるキンク(Kink)あるいはコーナー(Corner)と呼ばれる表面位置に比較的多く存在していることなどが考えられる。
Furthermore, the titanium-based fine particles, as determined by X-ray diffraction of the fine particles, (310) crystal face of the peak intensity P 1 and (110) relative peak intensity ratio of the peak intensity P 2 of the crystal plane (P 1 / P 2 ) is in the range of 9/100 to 20/100, preferably 12/100 to 14/100.
Here, when the relative peak intensity ratio (P 1 / P 2 ) is less than 9/100, the above-mentioned photocatalytic activity tends to increase, and when the relative peak intensity ratio exceeds 20/100, similarly This is not preferable because the photocatalytic activity tends to increase. The details of the mechanism causing such a phenomenon are not clear at present, but in the former case, it is considered that the (110) crystal plane is involved in the suppression of the photocatalytic reaction. This is probably because it is relatively larger than the (310) crystal plane. In the latter case, the (110) crystal plane considered to be involved in the promotion of the photocatalytic reaction is relatively less than the (310) crystal face considered to be involved in the suppression of the photocatalytic reaction. Therefore, the above-described photocatalytic activity should be suppressed, but the photocatalytic activity tends to increase on the contrary. The reason is not yet clear, but the surface position called kinks (Kink) or corners where OH groups (including free radicals such as OH) that become active sites for photocatalytic activity increase in reaction activity. It can be considered that there are relatively many.

本発明において、前記チタン系微粒子を被覆するために使用されるシリカ系酸化物は、化学式SiO2で表される二酸化ケイ素を含むものであり、実質的に二酸化ケイ素からなるものであることが好ましい。さらに、同様にして使用されるシリカ系複合酸化物は、ケイ素と、ジルコニウム、アンチモン、スズおよびアルミニウムから選ばれた少なくとも1種の金属元素を含む化合物であり、これらの化合物の一部を化学式で模式的に示せば、以下の通りである。

| |
−O−Si−O−Zr−O−
| |


−O−Si−O−Al−O−
| |

| |
−O−Si−O−Sb−O−
| |

| |
−O−Si−O−Sn−O−
| |

| | |
−O−Si−O−Sb−O−Zr−O−
| | |
In the present invention, silica-based oxide used for coating the titanium-based fine particles are those comprising silicon dioxide represented by the chemical formula SiO 2, it is preferably substantially made of silicon dioxide . Further, the silica-based composite oxide used in the same manner is a compound containing silicon and at least one metal element selected from zirconium, antimony, tin and aluminum, and a part of these compounds is represented by the chemical formula. If it shows typically, it will be as follows.

| |
-O-Si-O-Zr-O-
| |


-O-Si-O-Al-O-
| |

| |
-O-Si-O-Sb-O-
| |

| |
-O-Si-O-Sn-O-
| |

| | |
-O-Si-O-Sb-O-Zr-O-
| | |

上記のようなシリカ系酸化物またはシリカ系複合酸化物を前記チタン系微粒子の表面に被覆することによって、本発明で使用される前記金属酸化物微粒子が得られる。
前記金属酸化物微粒子は、特に制限されるものではないが、前記チタン系微粒子を含む水分散液中に、シリコンアルコキシドおよび珪酸から選ばれた少なくとも1種のケイ素化合物を混合し、次いで前記ケイ素化合物を加水分解させて前記チタン系微粒子の表面をシリカ系酸化物で被覆したものであることが好ましい。
また、前記金属酸化物微粒子は、特に制限されるものではないが、前記チタン系微粒子を含む水分散液中に、シリコンアルコキシドおよび珪酸から選ばれた少なくとも1種のケイ素化合物と、過酸化ジルコン酸塩、アンチモン酸塩およびアルミン酸塩から選ばれた少なくとも1種の金属化合物とを混合し、次いで前記ケイ素化合物および前記金属化合物を加水分解させて前記チタン系微粒子の表面をシリカ系複合酸化物で被覆したものであることが好ましい。
なお、前記シリコンアルコキシドは、テトラメトキシシランもしくはその縮合物、またはテトラエトキシシランもしくはその縮合物であることが好ましく、前記テトラメトキシシランの縮合物としては、一般式Sinn-1(OCH32n+2で表されるメチルシリケート51TMなどが挙げられ、また前記テトラエトキシシランの縮合物としては、一般式Sinn-1(OC252n+2で表されるエチルシリケート40TMやエチルシリケート45TMなどが挙げられる。
The metal oxide fine particles used in the present invention can be obtained by coating the surface of the titanium fine particles with the silica-based oxide or the silica-based composite oxide as described above.
The metal oxide fine particles are not particularly limited, but at least one silicon compound selected from silicon alkoxide and silicic acid is mixed in an aqueous dispersion containing the titanium-based fine particles, and then the silicon compound The surface of the titanium-based fine particles is preferably coated with a silica-based oxide.
Further, the metal oxide fine particles are not particularly limited, but in an aqueous dispersion containing the titanium fine particles, at least one silicon compound selected from silicon alkoxide and silicic acid, and zirconate peroxide. At least one metal compound selected from a salt, an antimonate and an aluminate is mixed, and then the silicon compound and the metal compound are hydrolyzed so that the surface of the titanium-based fine particles is made of a silica-based composite oxide. It is preferable that it is coated.
The silicon alkoxide is preferably tetramethoxysilane or a condensate thereof, or tetraethoxysilane or a condensate thereof. As the condensate of tetramethoxysilane, the general formula Si n O n-1 (OCH 3 ) Methyl silicate 51 TM represented by 2n + 2 and the like, and the condensate of tetraethoxysilane includes ethyl represented by the general formula Si n O n-1 (OC 2 H 5 ) 2n + 2 Examples thereof include silicate 40 and ethyl silicate 45 .

前記金属酸化物微粒子は、前記チタン系微粒子の重量をCで表し、さらにその被覆層の重量をSで表したとき、その重量比(S/C)が酸化物換算基準で1/100〜50/100の範囲となるように前記チタン系微粒子の表面上に前記シリカ系酸化物または前記シリカ系複合酸化物を被覆したものであることが好ましい。
ここで、前記重量比が酸化物換算基準で1/100未満であると、上記の光触媒活性を十分に抑制することができないことがあり、また該重量比が酸化物換算基準で50/100を超えると、前記被覆層が厚くなって所望の屈折率が得られないことがあるので、好ましくない。
In the metal oxide fine particles, when the weight of the titanium-based fine particles is represented by C and the weight of the coating layer is represented by S, the weight ratio (S / C) is 1/100 to 50 in terms of oxide. It is preferable that the surface of the titanium-based fine particles is coated with the silica-based oxide or the silica-based composite oxide so as to be in the range of / 100.
Here, if the weight ratio is less than 1/100 on an oxide conversion basis, the photocatalytic activity may not be sufficiently suppressed, and the weight ratio is 50/100 on an oxide conversion basis. On the other hand, the coating layer becomes thick and a desired refractive index may not be obtained.

前記金属酸化物微粒子の被覆層は、前記チタン系微粒子の屈折率より0.2以上低い屈折率、好ましくは0.5以上低い屈折率を有していることが望まれる。
ここで、前記被覆層の屈折率が前記チタン系微粒子の屈折率より0.2以上低くないと、粒子表面での光散乱を十分に抑制できなくなることがあるので、好ましくない。
また、このような被覆層を設けてなる前記金属酸化物微粒子の屈折率は、2.0〜2.5、好ましくは2.1〜2.4の範囲にあることが望まれる。
ここで、前記金属酸化物微粒子の屈折率が2.0未満であると、該微粒子を含む水分散ゾルを用いて調製された塗膜形成用塗布液から得られる塗膜の屈折率を1.70以上にすることが難しくなり、また該屈折率が2.5を超えると、該微粒子を含む水分散ゾルを用いて調製された塗膜形成用塗布液から得られる塗膜に十分な硬度(すなわち、適切なハードコート特性)を与えるために必要な量を加えると塗膜の屈折率が逆に高くなり過ぎて干渉縞が発生し易くなるので、好ましくない。
The coating layer of the metal oxide fine particles is desired to have a refractive index that is 0.2 or more lower than the refractive index of the titanium-based fine particles, preferably 0.5 or more lower.
Here, if the refractive index of the coating layer is not lower than the refractive index of the titanium-based fine particles by 0.2 or more, light scattering on the particle surface may not be sufficiently suppressed, which is not preferable.
Further, the refractive index of the metal oxide fine particles provided with such a coating layer is desired to be in the range of 2.0 to 2.5, preferably 2.1 to 2.4.
Here, when the refractive index of the metal oxide fine particles is less than 2.0, the refractive index of the coating film obtained from the coating liquid for forming a coating film prepared using an aqueous dispersion sol containing the fine particles is 1. When the refractive index exceeds 2.5, it becomes difficult to make it 70 or more. When the refractive index exceeds 2.5, the coating film obtained from the coating liquid for forming a coating film prepared using an aqueous dispersion sol containing fine particles has a sufficient hardness ( That is, if an amount necessary for providing an appropriate hard coat property) is added, the refractive index of the coating film becomes excessively high and interference fringes are easily generated, which is not preferable.

また、前記金属酸化物微粒子を含む水分散ゾルは、該金属酸化物微粒子を1〜30重量%、好ましくは5〜20重量%含み、しかもその濁度が0.1〜10.0cm-1、好ましくは0.2〜8.0cm-1範囲にあることが望まれる。
ここで、前記金属酸化物微粒子の含有量が1重量%未満であると、表面処理剤との反応性が悪くなるばかりでなく、溶媒置換に使用する溶媒使用量が多くなって、経済的でなくなり、また該含有量が30重量%を超えると、粘度上昇などが起こって水分散ゾルの安定性が悪くなるので、好ましくない。さらに、前記水分散ゾルの濁度が0.1cm-1未満のものを得ることは難しく、また該濁度が10.0cm-1を超えると、該水分散ゾルを用いて調製された塗膜形成用塗布液から得られる塗膜の透明性が著しく低下してしまうことがあるので、好ましくない。
The water-dispersed sol containing the metal oxide fine particles contains 1 to 30% by weight, preferably 5 to 20% by weight of the metal oxide fine particles, and has a turbidity of 0.1 to 10.0 cm −1 . Preferably, it is desired to be in the range of 0.2 to 8.0 cm −1 .
Here, when the content of the metal oxide fine particles is less than 1% by weight, not only the reactivity with the surface treatment agent is deteriorated, but also the amount of solvent used for solvent substitution is increased, which is economical. If the content exceeds 30% by weight, viscosity increases and the stability of the water-dispersed sol deteriorates, which is not preferable. Furthermore, it is difficult to obtain a turbidity of the water-dispersed sol of less than 0.1 cm −1 , and when the turbidity exceeds 10.0 cm −1 , a coating film prepared using the water-dispersed sol Since the transparency of the coating film obtained from the coating solution for forming may be significantly lowered, it is not preferable.

[高屈折率金属酸化物微粒子の有機溶媒分散ゾル]
本発明に係る高屈折率金属酸化物微粒子の有機溶媒分散ゾルは、上記の水分散ゾル中に含まれる高屈折率の金属酸化物微粒子を有機溶媒中に分散させてなるものである。
本発明において、前記金属酸化物微粒子の含有量は、使用される有機溶媒の種類やその使用用途によっても異なるが、たとえば光学基材用途に使用する場合には、前記有機溶媒分散ゾルの全量に対して10〜40重量%、好ましくは20〜30重量%の範囲にあることが好ましい。
ここで、前記金属酸化物微粒子の含有量が10重量%未満であると、これを原料とした光学基材用塗布液などの固形分含有量が低下するため、塗膜の膜厚が薄くなって膜硬度を低下させてしまうことがあるので、好ましくない。また、前記含有量が40重量%を超えると、有機溶媒分散ゾルの安定性が悪くなるので、好ましくない。
[Organic solvent dispersion sol of high refractive index metal oxide fine particles]
The organic solvent dispersion sol of the high refractive index metal oxide fine particles according to the present invention is obtained by dispersing the high refractive index metal oxide fine particles contained in the water dispersion sol in an organic solvent.
In the present invention, the content of the metal oxide fine particles varies depending on the type of organic solvent used and its use, but for example, when used for an optical substrate, the total amount of the organic solvent-dispersed sol is used. It is preferable to be in the range of 10 to 40% by weight, preferably 20 to 30% by weight.
Here, if the content of the metal oxide fine particles is less than 10% by weight, the solid content of the coating liquid for optical substrates and the like using this as a raw material decreases, so the film thickness of the coating film becomes thin. Therefore, the film hardness may be lowered, which is not preferable. On the other hand, when the content exceeds 40% by weight, the stability of the organic solvent-dispersed sol is deteriorated, which is not preferable.

前記有機溶媒としては、その使用用途によっても異なるが、メタノル、エタノル、ブタノール、プロパノール、イソプロピルアルコル等のアルコール類や、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等のエーテル類、メチルエチルケトン、γ−ブチロラクトン等のケトン類などの有機化合物から選択して使用することが好ましい。この中でも、光学基材用途に使用する場合は、メタノール等のアルコール類やプロピレングリコールモノメチルエーテル等のエーテル類から選ばれた有機化合物の少なくとも1種を使用することが好ましい。その理由は、塗布膜の乾燥速度が比較的速く、成膜し易いためである。
また、本発明に係る前記有機溶媒分散ゾルは、上記の高屈折率金属酸化物微粒子の水分散ゾルを溶媒置換装置に供して、該水分散ゾル中に含まれる水を有機溶媒に置換したものであることが好ましい。
As the organic solvent varies depending its intended use, methanol, ethanol, butanol, propanol, or ethylene glycol monomethyl ether and isopropyl alcohol, propylene glycol monomethyl ether, propylene glycol monoethyl It is preferable to use it selected from organic compounds such as ethers such as ether and ketones such as methyl ethyl ketone and γ-butyrolactone. Among these, when used for optical substrate applications, it is preferable to use at least one organic compound selected from alcohols such as methanol and ethers such as propylene glycol monomethyl ether. The reason is that the drying speed of the coating film is relatively fast and it is easy to form a film.
The organic solvent-dispersed sol according to the present invention is obtained by subjecting the water-dispersed sol of the above-described high refractive index metal oxide fine particles to a solvent substitution device and substituting water contained in the water-dispersed sol with an organic solvent. It is preferable that

[調製方法]
本発明に係る高屈折率金属酸化物微粒子の水分散ゾルおよび有機溶媒分散ゾルの調製方法を述べれば、以下の通りである。ただし、ここで述べる調製方法はその一態様を示すものであるので、本発明に係る水分散ゾルおよび有機溶媒分散ゾルは、これらの調製方法から得られたものに限定されない。なお、本発明で使用される純水とはイオン交換水をいい、また超純水とは純水中に含まれる不純物をさらに取り除いたもので、不純物の含有量が0.01μg/L以下のものいう。
[Preparation method]
The preparation method of the high-refractive-index metal oxide fine particle water-dispersed sol and organic solvent-dispersed sol according to the present invention is as follows. However, since the preparation method described here shows one embodiment, the water-dispersed sol and the organic solvent-dispersed sol according to the present invention are not limited to those obtained from these preparation methods. The pure water used in the present invention refers to ion-exchanged water, and ultrapure water is obtained by further removing impurities contained in pure water, and the content of impurities is 0.01 μg / L or less. I mean.

(1)水分散ゾルの調製方法
調製方法−1
本発明に係る第一の水分散ゾルの調製方法(以下、「調製方法−1」という。)は、
動的光散乱法で測定した平均粒子径が15〜60nmのチタン系微粒子の表面を、少なくともシリカ系酸化物で被覆してなる高屈折率の金属酸化物微粒子を含む水分散ゾルの調製方法であって、
(a)過酸化チタン酸と、スズ酸カリウムおよび/またはケイ素化合物とを含む混合水溶液をオートクレーブに入れて150〜250℃の温度で水熱処理して、チタニウムと、スズおよび/またはケイ素とを含む複合酸化物を生成させる工程、
(b)前記工程(a)で生成された複合酸化物を乾燥して粒状にすることにより、チタニウムと、スズおよび/またはケイ素とを含む平均粒子径1〜80μmの複合酸化物粒子を得る工程、
(c)前記工程(b)で得られた複合酸化物粒子を酸素含有雰囲気下、300〜800℃の温度で焼成して、該複合酸化物粒子の焼成物からなるチタン系粒子を得る工程、
(d)前記工程(c)で得られたチタン系粒子を粉砕して、動的光散乱法で測定したときの平均粒子径が15〜60nmのチタン系微粒子とし、さらに該チタン系微粒子を純水または超純水に分散させてなる水分散ゾルを得る工程、
(e)前記工程(d)で得られた水分散液を必要に応じ湿式分級装置に供して、動的光散乱法で測定したときの粒子径が100nm以上の粗大粒子を少なくとも分離・除去する工程、および
(f)前記工程(d)または前記工程(e)で得られた水分散液中に、(i)シリコンアルコキシドおよび珪酸から選ばれた少なくとも1種のケイ素化合物を混合して、該ケイ素化合物を加水分解させることにより前記チタン系微粒子の表面をシリカ系酸化物で被覆した金属酸化物微粒子を含む水分散ゾルを得る工程
を含むものである。
次に、これらの各工程についてさらに具体的に説明すれば、以下の通りである。
(1) Preparation method of water-dispersed sol
Preparation method-1
The first water-dispersed sol preparation method (hereinafter referred to as “preparation method-1”) according to the present invention is as follows.
A method for preparing an aqueous dispersion sol containing high refractive index metal oxide fine particles obtained by coating the surface of titanium fine particles having an average particle diameter of 15 to 60 nm measured by a dynamic light scattering method with at least a silica-based oxide. There,
(A) A mixed aqueous solution containing peroxytitanic acid and potassium stannate and / or silicon compound is placed in an autoclave and hydrothermally treated at a temperature of 150 to 250 ° C. to contain titanium and tin and / or silicon. Producing a composite oxide;
(B) A step of obtaining composite oxide particles having an average particle diameter of 1 to 80 μm containing titanium and tin and / or silicon by drying and granulating the composite oxide produced in the step (a). ,
(C) a step of firing the composite oxide particles obtained in the step (b) at a temperature of 300 to 800 ° C. in an oxygen-containing atmosphere to obtain titanium-based particles composed of a fired product of the composite oxide particles;
(D) The titanium-based particles obtained in the step (c) are pulverized to form titanium-based fine particles having an average particle diameter of 15 to 60 nm as measured by a dynamic light scattering method. Obtaining a water-dispersed sol dispersed in water or ultrapure water;
(E) If necessary, subject the aqueous dispersion obtained in the step (d) to a wet classifier to separate and remove at least coarse particles having a particle diameter of 100 nm or more as measured by a dynamic light scattering method. And (f) mixing at least one silicon compound selected from (i) silicon alkoxide and silicic acid into the aqueous dispersion obtained in the step (d) or the step (e), The method includes a step of obtaining an aqueous dispersion sol containing metal oxide fine particles obtained by hydrolyzing a silicon compound and coating the surface of the titanium fine particles with a silica-based oxide.
Next, these steps will be described in more detail as follows.

工程(a)
四塩化チタンをTiO2換算基準で約7〜8重量%含む四塩化チタン水溶液と、アンモニア(NH3)を約10〜20重量%含むアンモニア水とを混合して、pH約9〜10の白色スラリー液を得る。次いで、このスラリーを濾過したのち、純水で洗浄して、固形分含有量が約8〜14重量%の含水チタン酸ケーキを得る。
次に、このケーキに、過酸化水素(H22)を約30〜40重量%含む過酸化水素水と純水とを加えたのち、約70〜90℃の温度で約0.5〜5時間、撹拌下で加熱して、過酸化チタン酸をTiO2換算基準で約1〜3重量%含む過酸化チタン酸水溶液を得る。この過酸化チタン酸水溶液は、透明な黄褐色でpHは約7.5〜8.5である。
ただし、本発明においては、これ以外の方法で調製された過酸化チタン酸を使用してもよい。
Step (a)
A white solution having a pH of about 9 to 10 is prepared by mixing an aqueous solution of titanium tetrachloride containing about 7 to 8% by weight of titanium tetrachloride on a TiO 2 basis and an aqueous ammonia containing about 10 to 20% by weight of ammonia (NH 3 ). A slurry liquid is obtained. The slurry is then filtered and washed with pure water to obtain a hydrous titanate cake having a solid content of about 8 to 14% by weight.
Next, after adding hydrogen peroxide water containing about 30 to 40% by weight of hydrogen peroxide (H 2 O 2 ) and pure water to this cake, the temperature is about 70 to 90 ° C. The mixture is heated for 5 hours with stirring to obtain an aqueous solution of titanic acid peroxide containing about 1 to 3% by weight of titanic acid peroxide on a TiO 2 basis. This aqueous solution of titanic acid peroxide is transparent yellowish brown and has a pH of about 7.5 to 8.5.
However, in the present invention, peroxytitanic acid prepared by other methods may be used.

次いで、前記過酸化チタン酸水溶液に陽イオン交換樹脂を混合して、これに、スズ酸カリウムをSnO2換算基準で約0.5〜2重量%含むスズ酸カリウム水溶液を撹拌下で徐々に添加する。
次に、カリウムイオンなどを取り込んだ陽イオン交換樹脂を分離したのち、平均粒子径が約4〜12nmのシリカ微粒子を含む、酸化ケイ素(SiO2)を約10〜20重量%含むシリカゾルと純水とを混合して、オートクレーブ中で150〜250℃、好ましくは160〜200℃の温度で約15〜20時間、好ましくは16〜19時間、水熱処理する。この場合、前記のシリカゾルに代えて、珪酸やテトラメトキシシラン、テトラエトキシシランもしくはこれらの縮合物からなるシリコンアルコキシドなどを用いることができる。ただし、チタニウムとスズとからなる複合酸化物粒子を調製する場合には、これらのシリカ源を混合する必要はない。
Next, a cation exchange resin is mixed with the aqueous solution of titanic acid titanate, and an aqueous potassium stannate solution containing about 0.5 to 2% by weight of potassium stannate in terms of SnO 2 is gradually added thereto with stirring. To do.
Next, after separating the cation exchange resin incorporating potassium ions and the like, silica sol containing about 10 to 20% by weight of silicon oxide (SiO 2 ) containing silica fine particles having an average particle diameter of about 4 to 12 nm and pure water. And hydrothermally treated in an autoclave at a temperature of 150 to 250 ° C., preferably 160 to 200 ° C. for about 15 to 20 hours, preferably 16 to 19 hours. In this case, silicon alkoxide made of silicic acid, tetramethoxysilane, tetraethoxysilane, or a condensate thereof can be used instead of the silica sol. However, when preparing composite oxide particles composed of titanium and tin, it is not necessary to mix these silica sources.

ここで、前記水熱処理温度が150℃未満であると、先にも述べたように、チタニウムとスズおよび/またはケイ素とを含む複合酸化物の結晶化が進み難いため、得られる粒子(一次粒子)の結晶化度が低くなり、また該水熱処理温度が250℃を超えると、前記複合酸化物の結晶化が過度に進むばかりか、得られる粒子が凝集し易くなるので、上記の範囲から適宜選択した温度で水熱処理することが好ましい。さらに、前記水熱処理時間が15時間未満であると、結晶化していない複合酸化物や結晶化が進んでいない複合酸化物微粒子が残存することがあり、また該水熱処理時間が20時間を超えると、生成した結晶性の複合酸化物微粒子が凝集し易くなるので、好ましくない。 Here, when the hydrothermal treatment temperature is less than 150 ° C., as described above, crystallization of a composite oxide containing titanium and tin and / or silicon is difficult to proceed. When the hydrothermal treatment temperature exceeds 250 ° C., the crystallization of the composite oxide proceeds excessively, and the resulting particles tend to aggregate. Hydrothermal treatment is preferably performed at a selected temperature. Furthermore, if the hydrothermal treatment time is less than 15 hours, composite oxide fine particles that are not crystallized or composite oxide fine particles that are not crystallized may remain, and if the hydrothermal treatment time exceeds 20 hours, This is not preferable because the generated crystalline composite oxide fine particles tend to aggregate.

これにより、ルチル型の結晶構造を有する、チタニウムと、スズおよびケイ素とを含む複合酸化物を含有する混合水溶液が得られる。ただし、前記のシリカ源を混合しなかった場合には、チタニウムとスズとを含む複合酸化物を含有する混合水溶液が得られるが、以下、これについての記載は省略する。
次に、得られた混合水溶液を室温まで冷却したのち、限外濾過膜装置に供して濃縮し、固形分濃度が約2〜15重量%の混合水溶液を得る。次いで、必要に応じて該混合水溶液のpHを3〜10、好ましくは4〜8に調整する。このpH調整は、前記混合水溶液がpH10以上のアルカリ性を呈している場合は、該混合水溶液中に陽イオン交換樹脂を添加して該混合水溶液中に含まれるカリウムイオンなどを取り除くことによって行うことができる。一方、前記混合水溶液が3未満のpHとなることは殆どないが、そのような場合は、水酸化カリウムなどを添加して行うことができる。
As a result, a mixed aqueous solution containing a composite oxide containing titanium, tin, and silicon having a rutile-type crystal structure is obtained. However, when the silica source is not mixed, a mixed aqueous solution containing a composite oxide containing titanium and tin is obtained, but description thereof will be omitted below.
Next, after cooling the obtained mixed aqueous solution to room temperature, it is subjected to an ultrafiltration membrane device and concentrated to obtain a mixed aqueous solution having a solid content concentration of about 2 to 15% by weight. Next, the pH of the mixed aqueous solution is adjusted to 3 to 10, preferably 4 to 8, as necessary. This pH adjustment can be performed by adding a cation exchange resin to the mixed aqueous solution and removing potassium ions and the like contained in the mixed aqueous solution when the mixed aqueous solution exhibits an alkalinity of pH 10 or higher. it can. On the other hand, the mixed aqueous solution hardly has a pH of less than 3, but in such a case, it can be carried out by adding potassium hydroxide or the like.

ここで、前記pHが3未満であると、先にも述べたように、設備腐食の懸念が高まるばかりか、前記混合水溶液の保存安定性が低下し易くなり、また該pHが10を超えると、乾燥時に粒子間に働く毛管張力などが増大して硬い乾燥粉体(すなわち、後段の粉砕工程で粉砕し難い乾燥粉体。)を形成し易くなるので、上記のpH範囲に適宜調整することが好ましい。
次いで、pH調整に用いられた前記陽イオン交換樹脂などを分離して、固形分濃度が約2〜15量%の混合水溶液を得る。しかし、前記混合水溶液のpHが3〜10の範囲にある場合には、上記のpH調整を行う必要がないので、該陽イオン交換樹脂などの分離・除去も不要となる。
Here, when the pH is less than 3, as described above, not only the concern about equipment corrosion increases, but also the storage stability of the mixed aqueous solution tends to decrease, and when the pH exceeds 10. Since the capillary tension acting between the particles during drying is increased and it becomes easy to form a hard dry powder (that is, a dry powder that is difficult to be pulverized in the subsequent pulverization step), the pH range is adjusted appropriately. Is preferred.
Then separated and the cation exchange resin used for the pH adjustment, the solid content concentration to obtain a mixed aqueous solution of about 2-15 by weight%. However, when the pH of the mixed aqueous solution is in the range of 3 to 10, it is not necessary to perform the above pH adjustment, so that separation / removal of the cation exchange resin or the like is not required.

工程(b)
次に、前記混合水溶液中に含まれる複合酸化物を乾燥して粒子化する。この場合、前記混合水溶液を一般的な熱風乾燥装置に供して該混合水溶液中に含まれる複合酸化物を乾燥させて得られる乾燥体(通常は塊状の固形物として得られる。)とした後、これを粉砕装置に供して適度に粉砕することによって調製することもできるが、その操作が煩雑であるので、スプレードライヤーを用いて前記混合水溶液を噴霧乾燥することが好ましい。なお、このスプレードライヤーを使用すれば、前記固形分の乾燥と粒状化を同時に行うことができる。
前記スプレードライヤーとしては、従来公知のもの(ディスク回転式やノズル式等のスプレードライヤー)を使用することができる。また、この噴霧乾燥は、従来公知の方法を用いて、必要に応じて濃縮された前記水分散液を熱風気流中に噴霧することによって行われる。
Step (b)
Next, the composite oxide contained in the mixed aqueous solution is dried to form particles. In this case, after the mixed aqueous solution is subjected to a general hot air drying apparatus to dry the composite oxide contained in the mixed aqueous solution, it is obtained as a dried body (usually obtained as a massive solid). Although it can be prepared by subjecting it to a pulverizer and appropriately pulverizing it, the operation is complicated. Therefore, it is preferable to spray-dry the mixed aqueous solution using a spray dryer. In addition, if this spray dryer is used, the said solid content can be dried and granulated simultaneously.
As the spray dryer, a conventionally known one (disk spray type or nozzle type spray dryer) can be used. Moreover, this spray drying is performed by spraying the aqueous dispersion concentrated as necessary into a hot air stream using a conventionally known method.

この際、前記熱風の温度は、入口温度が150〜200℃、好ましくは170〜180℃の範囲にあることが望ましく、出口温度が40〜60℃の範囲にあることが好ましい。ここで、前記入口温度が150℃未満であると、前記固形分の乾燥が不充分となり、また200℃を超えると、経済的でなくなる。また、前記出口温度が40℃未満であると、粉体の乾燥度合いが悪くて装置内に付着するので、好ましくない。
これにより、乾燥された平均粒子径が1〜80μm、好ましくは2〜60μmの複合酸化物粒子が得られる。
先にも述べたように、前記の乾燥操作を一般的な熱風乾燥装置を用いて行うこともできるが、これから得られる乾燥体は塊状の固形物となるため、これを粉砕装置に供して粉砕しても粒子径が揃った粒子を効率よく得ることは容易でない。
At this time, the temperature of the hot air is desirably such that the inlet temperature is in the range of 150 to 200 ° C, preferably 170 to 180 ° C, and the outlet temperature is in the range of 40 to 60 ° C. Here, if the inlet temperature is less than 150 ° C., the solid content is insufficiently dried, and if it exceeds 200 ° C., it is not economical. Further, if the outlet temperature is less than 40 ° C., the degree of drying of the powder is poor and adheres to the inside of the apparatus, which is not preferable.
As a result, dried composite oxide particles having an average particle diameter of 1 to 80 μm, preferably 2 to 60 μm are obtained.
As described above, the drying operation can be performed using a general hot-air drying apparatus. However, since the dried body obtained from the drying becomes a lump-like solid, it is pulverized by using a pulverizing apparatus. Even so, it is not easy to efficiently obtain particles having a uniform particle diameter.

工程(c)
次に、噴霧乾燥された前記複合酸化物粒子は、焼成装置に供して、空気などの酸素含有雰囲気下で300〜800℃、好ましくは400〜700℃の温度にて30〜240分間、好ましくは60〜180分間かけて焼成する。
ここで、前記焼成温度が300℃未満であると、先にも述べたように、粒子内での結晶化が進み難いため、所望のX線回折結晶子径を有する粒子を得ることが難しくなり、また該温度が800℃を超えると、粒子同士の焼結(特に、一次粒子同士の焼結)が急激に進み、結果として粒子表面における比表面積が著しく低下することになるので、上記の範囲から適宜選択した温度で焼成することが好ましい。さらに、前記焼成時間が30分間未満であると、前記複合酸化物粒子の全体が十分に焼成されないことがあり、また該焼成時間が240分間を超えると、経済的でなくなるので、好ましくない。
Step (c)
Next, the spray-dried composite oxide particles are subjected to a calcining apparatus, and the temperature is 300 to 800 ° C., preferably 400 to 700 ° C. in an oxygen-containing atmosphere such as air, preferably 30 to 240 minutes, preferably Bake for 60-180 minutes.
Here, when the firing temperature is less than 300 ° C., as described above, since crystallization within the particles is difficult to proceed, it becomes difficult to obtain particles having a desired X-ray diffraction crystallite diameter. In addition, when the temperature exceeds 800 ° C., the sintering of the particles (especially, the sintering of the primary particles) proceeds rapidly, and as a result, the specific surface area on the particle surface is significantly reduced. It is preferable to fire at a temperature appropriately selected from the above. Furthermore, if the firing time is less than 30 minutes, the entire composite oxide particle may not be fired sufficiently, and if the firing time exceeds 240 minutes, it is not preferable because it is not economical.

これにより、7.5〜14.0nm、好ましくは8.0〜12.0nmのX線回折結晶子径を有する複合酸化物粒子、すなわち結晶化度が比較的高いチタン系粒子が得られる。さらに詳述すれば、前記の焼成操作を行うと、前記複合酸化物粒子の結晶化度が高まるため、前記のX線回折結晶子径を有し、しかもルチル型の結晶構造からなる結晶性チタン系粒子を得ることができる。さらに、このチタン系粒子は、それ自身が高い屈折率と低い光触媒活性を有している。
ここで、前記X線回折結晶子径が7.5nm未満のものが得られる場合には、前記の焼成温度を高める必要があり、また該結晶子径が14.0nmを超えるものが得られる場合には、前記焼成温度を低める必要がある。
Thereby, composite oxide particles having an X-ray diffraction crystallite diameter of 7.5 to 14.0 nm, preferably 8.0 to 12.0 nm, that is, titanium-based particles having a relatively high degree of crystallinity are obtained. More specifically, since the degree of crystallization of the composite oxide particles increases when the firing operation is performed, crystalline titanium having the X-ray diffraction crystallite diameter and having a rutile crystal structure. System particles can be obtained. Further, the titanium-based particles themselves have a high refractive index and a low photocatalytic activity.
Here, when the X-ray diffraction crystallite diameter of less than 7.5 nm is obtained, it is necessary to increase the firing temperature, and the crystallite diameter exceeds 14.0 nm. Therefore, it is necessary to lower the firing temperature.

工程(d)
次いで、焼成された前記チタン系粒子は、平均粒子径が1〜80μmの比較的大きな粒子径からなる粒子であるため、これを粉砕装置に供して、ゾル化できる程度の小さな粒子径を有する微粒子に粉砕する。
この粉砕装置としては、従来公知の粉砕装置、たとえばサンドミル、ロールミル、ビーズミル、超音波分散機、アルティマイザー、ナノマイザー(登録商標または商標)などを用いることができる。前記粉砕装置の操作条件は、使用する粉砕装置や前記チタン系微粒子の性状などによっても異なるが、たとえばサンドミル(関西ペイント(株)製卓上サンドミル)を用いて行う場合には、セラミック製ディスクローターなどを備えた装置内に、粒子径0.1〜0.2mmの球状石英ビーズと前記チタン系粒子を懸濁させた水溶液(固形分濃度5〜40重量%)を入れて、一般的な条件下(たとえば、ローター回転速度600〜2000rpm、処理時間1〜10時間など)で粉砕処理を行うことが好ましい。
Step (d)
Next, the calcined titanium-based particles are particles having a relatively large particle size with an average particle size of 1 to 80 μm. Therefore, the particles are subjected to a pulverizer and have a particle size that is small enough to make a sol. Grind into.
As this pulverizer, a conventionally known pulverizer such as a sand mill, a roll mill, a bead mill, an ultrasonic disperser, an optimizer, a nanomizer (registered trademark or trademark), and the like can be used. The operating conditions of the pulverizer vary depending on the pulverizer to be used and the properties of the titanium-based fine particles. For example, when using a sand mill (a tabletop sand mill manufactured by Kansai Paint Co., Ltd.), a ceramic disk rotor, etc. in an apparatus fitted, putting an aqueous solution suspended spherical silica beads of particle size 0.1~0.2mm the titanium-containing particles (solid content concentration of 5 to 40 wt%), general conditions It is preferable to perform the pulverization process under a lower position (for example, a rotor rotational speed of 600 to 2000 rpm, a processing time of 1 to 10 hours, etc.).

これにより、動的光散乱法で測定したときの平均粒子径が15〜60nmのチタン系微粒子(すなわち、結晶性のチタン系微粒子)が得られる。
ここで、前記平均粒子径が15nm未満であると、先にも述べたように、該チタン系微粒子を水溶液(水分散ゾル)中に高濃度で分散させたとき、ゾルの粘度が著しく上昇する傾向があり、また該平均粒子径が60nmを超えると、粒子表面での光散乱が増加し、結果として該微粒子を用いて得られる金属酸化物微粒子を含む水分散ゾルの濁度が高まってしまうことがあるので、上記の範囲となるように適宜調整することが好ましい。
Thereby, titanium-based fine particles (that is, crystalline titanium-based fine particles) having an average particle diameter of 15 to 60 nm as measured by a dynamic light scattering method are obtained.
Here, when the average particle diameter is less than 15 nm, as described above, when the titanium-based fine particles are dispersed at a high concentration in an aqueous solution (water-dispersed sol), the viscosity of the sol is remarkably increased. If the average particle diameter exceeds 60 nm, light scattering on the particle surface increases, and as a result, the turbidity of the water-dispersed sol containing metal oxide fine particles obtained using the fine particles increases. Therefore, it is preferable to adjust appropriately so as to be within the above range.

さらに、このようにして得られる前記チタン系微粒子は、ルチル型の結晶構造を有する結晶性微粒子であり、しかも7.5〜14.0nm、好ましくは8.0〜12.0nmのX線回折結晶子径と70〜155m2/g、好ましくは90〜130m2/gの比表面積とを有し、さらにその屈折率が2.2〜2.7、好ましくは2.3〜2.6の範囲にあるものである。
ここで、前記比表面積が70m2/g未満のものが得られる場合には、前記の焼成温度を低める必要があり、また前記比表面積が155m2/gを超えるものが得られる場合には、前記の焼成温度を高める必要がある。さらに、前記屈折率が2.2未満のものが得られる場合には、前記の焼成温度を高める必要があり、また前記屈折率が2.7を超えるものが得られる場合には、前記の焼成温度を低める必要がある。なお、前記X線回折結晶子径に関しては、上記のとおりである。
Further, the titanium-based fine particles thus obtained are crystalline fine particles having a rutile-type crystal structure, and are 7.5 to 14.0 nm, preferably 8.0 to 12.0 nm. It has a child diameter and a specific surface area of 70 to 155 m 2 / g, preferably 90 to 130 m 2 / g, and its refractive index is in the range of 2.2 to 2.7, preferably 2.3 to 2.6. It is what.
Here, when the specific surface area is less than 70 m 2 / g, it is necessary to lower the firing temperature, and when the specific surface area exceeds 155 m 2 / g, It is necessary to increase the firing temperature. Furthermore, when the refractive index is less than 2.2, it is necessary to increase the firing temperature. When the refractive index is greater than 2.7, the firing is performed. The temperature needs to be lowered. The X-ray diffraction crystallite diameter is as described above.

工程(e)
しかし、前記チタン系微粒子は、このように粉砕または粉砕・解膠して製造されたものであるので、その粒子群の中に比較的粒子径の大きな粗大粒子を含むことがある。そこで、このような粗大粒子を含む場合は、前記チタン系微粒子を純水または超純水に分散させたのち、該水分散液を湿式分級装置に供して、動的光散乱法で測定したときの粒子径が100nm以上の粗大粒子を少なくとも分離・除去する必要がある。ただし、このような粗大粒子が含まれない場合は、必ずしもこの操作を行う必要はない。
この湿式分級装置としては、従来公知の遠心分離機、液体サイクロン、水簸(自然沈降装置)などを用いることができる。
Step (e)
However, since the titanium-based fine particles are produced by pulverization, pulverization, and peptization in this way, coarse particles having a relatively large particle diameter may be included in the particle group. Therefore, when such coarse particles are included, when the titanium-based fine particles are dispersed in pure water or ultrapure water, the aqueous dispersion is subjected to a wet classifier and measured by a dynamic light scattering method. It is necessary to separate and remove at least coarse particles having a particle diameter of 100 nm or more. However, this operation is not necessarily performed when such coarse particles are not included.
As this wet classifier, a conventionally known centrifuge, hydrocyclone, chickenpox (natural sedimentation device), or the like can be used.

前記粗大粒子の分離・除去は、得られたチタン系微粒子を動的光散乱法で測定したときの粒子径頻度分布において、100nm以上の粒子径を有する粗大粒子の分布頻度が1%以下、好ましくは0.2%以下となるように行うことが好ましい。
ここで、前記粗大粒子の分布頻度が1%を超えると、先にも述べたように、このような粗大粒子を含むチタン系微粒子から得られる金属酸化物微粒子を含む水分散ゾルは10cm-1を超えた濁度になってしまうことがあり、引いては該水分散ゾルを用いて調製された塗膜形成用塗布液から得られる塗膜の透明性が低下してしまうことがあるので、このような粗大粒子はできるだけ分離・除去しておくことが望ましい。
これにより、動的光散乱法で測定したときの平均粒子径が15〜60nm、好ましくは15〜45nmのチタン系微粒子(すなわち、結晶性のチタン系微粒子)が得られる。
なお、粉砕された前記チタン系微粒子を純水または超純水に分散させてなる前記水分散液には、カリウムイオンなどが少なからず含まれているので、これらを前記湿式分級装置に供する前に、陽イオン交換樹脂を用いて除去しておくことが望ましい。
For the separation and removal of the coarse particles, the distribution frequency of coarse particles having a particle diameter of 100 nm or more is preferably 1% or less in the particle diameter frequency distribution when the obtained titanium-based fine particles are measured by a dynamic light scattering method. Is preferably 0.2% or less.
Here, when the distribution frequency of the coarse particles exceeds 1%, as described above, the water-dispersed sol containing metal oxide fine particles obtained from titanium-based fine particles containing such coarse particles is 10 cm −1. The transparency of the coating film obtained from the coating liquid for forming a coating film prepared by using the water-dispersed sol may be reduced. It is desirable to separate and remove such coarse particles as much as possible.
Thereby, titanium-based fine particles (that is, crystalline titanium-based fine particles) having an average particle diameter of 15 to 60 nm, preferably 15 to 45 nm, as measured by a dynamic light scattering method are obtained.
In addition, since the aqueous dispersion obtained by dispersing the pulverized titanium-based fine particles in pure water or ultrapure water contains not a few potassium ions and the like, before supplying them to the wet classifier, It is desirable to remove it using a cation exchange resin.

工程(f)
次に、前記粗大粒子を分離・除去した分散液、すなわち動的光散乱法で測定したときの平均粒子径が15〜60nmのチタン系微粒子を含む水分散ゾルに、該チタン系微粒子の表面をシリカ系酸化物で被覆するための原料化合物を添加する。
すなわち、前記チタン系微粒子の表面をシリカ系酸化物で被覆する場合には、前記水分散ゾルに、シリコンアルコキシドおよび珪酸から選ばれた少なくとも1種のケイ素化合物を添加する。次いで、該ケイ素化合物を加水分解させると、前記チタン系微粒子の表面が二酸化ケイ素などのシリカ系酸化物で被覆される。
ここで、前記シリコンアルコキシドは、上記の通り、テトラメトキシシランもしくはその縮合物、またはテトラエトキシシランもしくはその縮合物であることが好ましい。
Step (f)
Next, the surface of the titanium-based fine particles is applied to a dispersion obtained by separating and removing the coarse particles, that is, an aqueous dispersion sol containing titanium-based fine particles having an average particle diameter of 15 to 60 nm as measured by a dynamic light scattering method. A raw material compound for coating with a silica-based oxide is added.
That is, when the surface of the titanium-based fine particles is coated with a silica-based oxide, at least one silicon compound selected from silicon alkoxide and silicic acid is added to the water-dispersed sol. Next, when the silicon compound is hydrolyzed, the surface of the titanium-based fine particles is coated with a silica-based oxide such as silicon dioxide.
Here, as described above, the silicon alkoxide is preferably tetramethoxysilane or a condensate thereof, or tetraethoxysilane or a condensate thereof.

これにより、前記チタン系微粒子の表面がシリカ系酸化物で被覆された金属酸化物微粒子が得られる。
前記金属酸化物微粒子は、前記チタン系微粒子の重量をCで表し、さらにその被覆層の重量をSで表したとき、その重量比(S/C)が酸化物換算基準で1/100〜50/100、好ましくはで5/100〜30/100の範囲となるように前記チタン系微粒子の表面上に前記シリカ系酸化物を被覆することが好ましい。
ここで、前記重量比が酸化物換算基準で1/100未満であると、先にも述べたように、上記の光触媒活性を十分に抑制することができないことがあり、また該重量比が酸化物換算基準で50/100を超えると、前記被覆層が厚くなって所望の屈折率が得られないことがあるので、好ましくない。
Thereby, the metal oxide fine particle by which the surface of the said titanium type fine particle was coat | covered with the silica type oxide is obtained.
In the metal oxide fine particles, when the weight of the titanium-based fine particles is represented by C and the weight of the coating layer is represented by S, the weight ratio (S / C) is 1/100 to 50 in terms of oxide. It is preferable to coat the silica-based oxide on the surface of the titanium-based fine particles so as to be in the range of / 100, preferably 5/100 to 30/100.
Here, if the weight ratio is less than 1/100 in terms of oxide, as described above, the photocatalytic activity may not be sufficiently suppressed, and the weight ratio may be oxidized. When it exceeds 50/100 on the basis of physical conversion, the coating layer becomes thick and a desired refractive index may not be obtained, which is not preferable.

なお、前記の被覆量は、前記水分散ゾルに添加される原料化合物の量に依存するので、該原料化合物の添加量を適宜、選択して行うことが好ましい。
また、このようにして形成される被覆層は、前記チタン系微粒子の屈折率より0.2以上低い屈折率を有していることが望まれるが、二酸化ケイ素などのシリカ系酸化物の屈折率は1.45前後にあるので、この条件を簡単に満足させることができる。
このように、前記チタン系微粒子の表面に、前記シリカ系酸化物を被覆することにより、粒子表面での光散乱を大きく抑えることができる。これにより、以下に述べる水分散ゾルの濁度を低く抑えることができる。
In addition, since the coating amount depends on the amount of the raw material compound added to the water-dispersed sol, the amount of the raw material compound is preferably selected appropriately.
In addition, the coating layer formed in this manner is desired to have a refractive index lower by 0.2 or more than the refractive index of the titanium-based fine particles, but the refractive index of a silica-based oxide such as silicon dioxide. Is around 1.45, so this condition can be easily satisfied.
Thus, by coating the surface of the titanium-based fine particles with the silica-based oxide, light scattering on the particle surface can be greatly suppressed. Thereby, the turbidity of the water-dispersed sol described below can be kept low.

また、このようにして得られる金属酸化物微粒子の屈折率は、前記被覆層の厚さが5nm以下、さらに述べれば0.1〜3nm程度と極めて薄いもの(ただし、詳細な値は測定不能である。)であるため、前記チタン系微粒子の屈折率とほぼ近いものとなっている。すなわち、その屈折率は、2.0〜2.5、好ましくは2.1〜2.4と比較的高いものである。
ここで、前記金属酸化物微粒子の屈折率が2.0未満のものが得られる場合には、所望する高い屈折率の塗膜(たとえば、光学基材用塗膜)を形成することが難しくなるため、前記被覆層の厚さをより薄くする必要がある。また、前記金属酸化物微粒子の屈折率が2.5を超えるものが得られる場合には、粒子表面での光散乱を抑えることが難しくなることがあるため、前記被覆層の厚さをより厚くする必要がある。
Further, the refractive index of the metal oxide fine particles obtained in this way is such that the thickness of the coating layer is 5 nm or less, more specifically about 0.1 to 3 nm (however, detailed values cannot be measured). Therefore, the refractive index of the titanium-based fine particles is almost the same. That is, the refractive index is relatively high, 2.0 to 2.5, preferably 2.1 to 2.4.
Here, when the metal oxide fine particles having a refractive index of less than 2.0 are obtained, it is difficult to form a desired high refractive index coating film (for example, a coating film for an optical substrate). Therefore, it is necessary to make the thickness of the coating layer thinner. In addition, when the metal oxide fine particles having a refractive index of more than 2.5 can be obtained, it may be difficult to suppress light scattering on the particle surface. There is a need to.

このようにして得られる水分散ゾル中には、上記の調製過程で添加または副生されたイオン化物質、たとえばカリウムイオン、ナトリウムイオン、アンモニウムイオン、スズイオン、チタニウムイオンなどの陽イオン物質や塩化物イオン、硫酸イオン、硝酸イオン、珪酸イオン、スズ酸イオン、チタン酸イオンなどの陰イオン物質が含まれる。そこで、前記水分散ゾル中に、必要に応じて陰イオン交換樹脂や陽イオン交換樹脂を添加して適当時間、撹拌することにより、前記イオン化物質をできるだけ取り除いておくことが望ましい。なお、前記イオン化物質を予め除去する目安は、前記水分散ゾルの使用用途によっても異なるが、該水分散ゾル中に含まれる前記イオン化物質の総イオン濃度が0.1mol/L以下となるまで行うことが好ましい。ここで、前記総イオン濃度が0.1mol/Lを超えると、有機溶媒に分散させた場合に凝集しやすくなるので、好ましくない。   In the water-dispersed sol thus obtained, ionized substances added or by-produced in the above preparation process, for example, cationic substances such as potassium ions, sodium ions, ammonium ions, tin ions, titanium ions, and chloride ions , Sulfate ions, nitrate ions, silicate ions, stannate ions, titanate ions and the like. Therefore, it is desirable to remove as much of the ionized substance as possible by adding an anion exchange resin or a cation exchange resin to the water-dispersed sol as necessary and stirring for an appropriate time. In addition, although the standard which removes the said ionization substance beforehand changes with use applications of the said water dispersion sol, it is performed until the total ion concentration of the said ionization substance contained in this water dispersion sol becomes 0.1 mol / L or less. It is preferable. Here, it is not preferable that the total ion concentration exceeds 0.1 mol / L, because aggregation tends to occur when dispersed in an organic solvent.

調製方法−2
本発明に係る第二の水分散ゾルの調製方法(以下、「調製方法−2」という。)は、
動的光散乱法で測定した平均粒子径が15〜60nmのチタン系微粒子の表面を、少なくともシリカ系複合酸化物で被覆してなる高屈折率の金属酸化物微粒子を含む水分散ゾルの調製方法であって、
(a)過酸化チタン酸と、スズ酸カリウムおよび/またはケイ素化合物とを含む混合水溶液をオートクレーブに入れて150〜250℃の温度で水熱処理して、チタニウムと、スズおよび/またはケイ素とを含む複合酸化物を生成させる工程、
(b)前記工程(a)で生成された複合酸化物を乾燥して粒状にすることにより、チタニウムと、スズおよび/またはケイ素とを含む平均粒子径1〜80μmの複合酸化物粒子を得る工程、
(c)前記工程(b)で得られた複合酸化物粒子を酸素含有雰囲気下、300〜800℃の温度で焼成して、該複合酸化物粒子の焼成物からなるチタン系粒子を得る工程、
(d)前記工程(c)で得られたチタン系粒子を粉砕して、動的光散乱法で測定したときの平均粒子径が15〜60nmのチタン系微粒子とし、さらに該チタン系微粒子を純水または超純水に分散させてなる水分散ゾルを得る工程、
(e)前記工程(d)で得られた水分散液を必要に応じ湿式分級装置に供して、動的光散乱法で測定したときの粒子径が100nm以上の粗大粒子を少なくとも分離・除去する工程、および
(f)前記工程(d)または前記工程(e)で得られた水分散液中に、(i)シリコンアルコキシドおよび珪酸から選ばれた少なくとも1種のケイ素化合物と、過酸化ジルコン酸塩、アンチモン酸塩、スズ酸塩およびアルミン酸塩から選ばれた少なくとも1種の金属化合物を混合して、該ケイ素化合物および該金属化合物を加水分解させることにより前記チタン系微粒子の表面をシリカ系複合酸化物で被覆した金属酸化物微粒子を含む水分散ゾルを得る工程
を含むものである。
すなわち、この調製方法−2と上記の調製方法−1で異なるところは、前記工程(f)の操作条件のみである。よって、ここでは、前記工程(f)についてのみ説明を加える。
Preparation method-2
The method for preparing the second water-dispersed sol according to the present invention (hereinafter referred to as “Preparation Method-2”) is as follows.
Method for preparing water-dispersed sol containing high refractive index metal oxide fine particles obtained by coating the surface of titanium fine particles having an average particle diameter of 15 to 60 nm measured by dynamic light scattering method with at least silica-based composite oxide Because
(A) A mixed aqueous solution containing peroxytitanic acid and potassium stannate and / or silicon compound is placed in an autoclave and hydrothermally treated at a temperature of 150 to 250 ° C. to contain titanium and tin and / or silicon. Producing a composite oxide;
(B) A step of obtaining composite oxide particles having an average particle diameter of 1 to 80 μm containing titanium and tin and / or silicon by drying and granulating the composite oxide produced in the step (a). ,
(C) a step of firing the composite oxide particles obtained in the step (b) at a temperature of 300 to 800 ° C. in an oxygen-containing atmosphere to obtain titanium-based particles composed of a fired product of the composite oxide particles;
(D) The titanium-based particles obtained in the step (c) are pulverized to form titanium-based fine particles having an average particle diameter of 15 to 60 nm as measured by a dynamic light scattering method. Obtaining a water-dispersed sol dispersed in water or ultrapure water;
(E) If necessary, subject the aqueous dispersion obtained in the step (d) to a wet classifier to separate and remove at least coarse particles having a particle diameter of 100 nm or more as measured by a dynamic light scattering method. And (f) in the aqueous dispersion obtained in the step (d) or the step (e), (i) at least one silicon compound selected from silicon alkoxide and silicic acid, and zirconic peroxide At least one metal compound selected from a salt, antimonate, stannate and aluminate is mixed, and the surface of the titanium-based fine particles is silica-based by hydrolyzing the silicon compound and the metal compound. The method includes a step of obtaining an aqueous dispersion sol containing metal oxide fine particles coated with a composite oxide.
That is, the difference between this preparation method-2 and the above preparation method-1 is only the operating conditions of the step (f). Therefore, only the step (f) will be described here.

工程(a)〜(e)
上記の調製方法−1に記載の通りである。
工程(f)
前記工程(e)において粗大粒子を分離・除去した分散液、すなわち動的光散乱法で測定したときの平均粒子径が15〜60nmのチタン系微粒子を含む水分散ゾルに、該チタン系微粒子の表面をシリカ系複合酸化物で被覆するための原料化合物を添加する。
すなわち、前記チタン系微粒子の表面をシリカ系複合酸化物で被覆する場合には、前記水分散ゾルに、シリコンアルコキシドおよび珪酸から選ばれた少なくとも1種のケイ素化合物と、過酸化ジルコン酸塩、アンチモン酸塩、スズ酸塩およびアルミン酸塩から選ばれた少なくとも1種の金属化合物を添加する。次いで、該ケイ素化合物および該金属化合物を加水分解させると、前記チタン系微粒子の表面が、ケイ素と、ジルコニウム、アンチモン、スズおよびアルミニウムから選ばれた少なくとも1種の金属元素とを含むシリカ系複合酸化物で被覆される。
ここで、前記シリコンアルコキシドは、上記の通り、テトラメトキシシランもしくはその縮合物、またはテトラエトキシシランもしくはその縮合物であることが好ましい。
Steps (a) to (e)
As described in Preparation Method-1.
Step (f)
The dispersion liquid obtained by separating and removing coarse particles in the step (e), that is, an aqueous dispersion sol containing titanium fine particles having an average particle diameter of 15 to 60 nm when measured by a dynamic light scattering method is used. A raw material compound for coating the surface with a silica-based composite oxide is added.
That is, when the surface of the titanium-based fine particles is coated with a silica-based composite oxide, the water-dispersed sol is mixed with at least one silicon compound selected from silicon alkoxide and silicic acid, zirconate peroxide, antimony At least one metal compound selected from acid salts, stannates and aluminates is added. Next, when the silicon compound and the metal compound are hydrolyzed, the surface of the titanium-based fine particles contains silica and at least one metal element selected from zirconium, antimony, tin and aluminum. Covered with objects.
Here, as described above, the silicon alkoxide is preferably tetramethoxysilane or a condensate thereof, or tetraethoxysilane or a condensate thereof.

これにより、前記チタン系微粒子の表面がシリカ系複合酸化物で被覆された金属酸化物微粒子が得られる。
前記金属酸化物微粒子は、前記チタン系微粒子の重量をCで表し、さらにその被覆層の重量をSで表したとき、その重量比(S/C)が酸化物換算基準で1/100〜50/100、好ましくはで5/100〜30/100の範囲となるように前記チタン系微粒子の表面上に前記シリカ系複合酸化物を被覆することが好ましい。
ここで、前記重量比が酸化物換算基準で1/100未満であると、先にも述べたように、上記の光触媒活性を十分に抑制することができないことがあり、また該重量比が酸化物換算基準で50/100を超えると、前記被覆層が厚くなって所望の屈折率が得られないことがあるので、好ましくない。
Thereby, the metal oxide fine particle by which the surface of the said titanium type fine particle was coat | covered with the silica type complex oxide is obtained.
In the metal oxide fine particles, when the weight of the titanium-based fine particles is represented by C and the weight of the coating layer is represented by S, the weight ratio (S / C) is 1/100 to 50 in terms of oxide. It is preferable to coat the silica-based composite oxide on the surface of the titanium-based fine particles so as to be in the range of / 100, preferably 5/100 to 30/100.
Here, if the weight ratio is less than 1/100 in terms of oxide, as described above, the photocatalytic activity may not be sufficiently suppressed, and the weight ratio may be oxidized. When it exceeds 50/100 on the basis of physical conversion, the coating layer becomes thick and a desired refractive index may not be obtained, which is not preferable.

なお、前記の被覆量は、前記水分散ゾルに添加される原料化合物の量に依存するので、該原料化合物の添加量を適宜、選択して行うことが好ましい。
すなわち、ケイ素と、ジルコニウム、アンチモン、スズおよび/またはアルミニウムの金属元素を含むシリカ系複合酸化物の屈折率は、これらの金属元素の含有量に依存するので、添加原料としての金属化合物、たとえば過酸化ジルコン酸塩、アンチモン酸塩、スズ酸塩、アルミン酸塩などの量を調整して添加することが望ましい。しかし、前記チタン系微粒子の屈折率が2.2〜2.7と高いので、これより0.2以上低い屈折率を有する被覆層を形成することは極めて容易である。
このように、前記チタン系微粒子の表面に前記シリカ系複合酸化物を被覆することにより、粒子表面での光散乱を大きく抑えることができる。これにより、以下に述べる水分散ゾルの濁度を低く抑えることができる。
In addition, since the coating amount depends on the amount of the raw material compound added to the water-dispersed sol, the amount of the raw material compound is preferably selected appropriately.
That is, the refractive index of the silica-based composite oxide containing silicon and zirconium, antimony, tin and / or aluminum metal elements depends on the content of these metal elements. It is desirable to adjust and add the amount of zirconate oxide, antimonate, stannate, aluminate and the like. However, since the refractive index of the titanium-based fine particles is as high as 2.2 to 2.7, it is very easy to form a coating layer having a refractive index lower by 0.2 or more.
Thus, by coating the surface of the titanium-based fine particles with the silica-based composite oxide, light scattering on the particle surface can be greatly suppressed. Thereby, the turbidity of the water-dispersed sol described below can be kept low.

また、このようにして得られる金属酸化物微粒子の屈折率は、前記被覆層の厚さが5nm以下、さらに述べれば0.1〜3nm程度と極めて薄いもの(ただし、詳細な値は測定不能である。)であるため、前記チタン系微粒子の屈折率とほぼ近いものとなっている。すなわち、その屈折率は、2.0〜2.5、好ましくは2.1〜2.4と比較的高いものである。
ここで、前記金属酸化物微粒子の屈折率が2.0未満のものが得られる場合には、調製方法−1の場合と同様に、所望する高い屈折率の塗膜(たとえば、光学基材用塗膜)を形成することが難しくなるため、前記被覆層の厚さをより薄くする必要がある。また、前記金属酸化物微粒子の屈折率が2.5を超えるものが得られる場合には、粒子表面での光散乱を抑えることが難しくなることがあるため、前記被覆層の厚さをより厚くする必要がある。
このようにして得られる水分散ゾル中にも上記の調製過程で添加または副生されたイオン化物質、たとえばカリウムイオン、ナトリウムイオン、アンモニウムイオン、スズイオン、チタニウムイオンなどの陽イオン物質や塩化物イオン、硫酸イオン、硝酸イオン、珪酸イオン、スズ酸イオン、チタン酸イオンなどの陰イオン物質が含まれる。そこで、調製方法−1の場合と同様に、前記イオン化物質を予め取り除いておくことが望ましい。
Further, the refractive index of the metal oxide fine particles obtained in this way is such that the thickness of the coating layer is 5 nm or less, more specifically about 0.1 to 3 nm (however, detailed values cannot be measured). Therefore, the refractive index of the titanium-based fine particles is almost the same. That is, the refractive index is relatively high, 2.0 to 2.5, preferably 2.1 to 2.4.
Here, when a metal oxide fine particle having a refractive index of less than 2.0 is obtained, the coating film having a desired high refractive index (for example, for an optical substrate), as in Preparation Method-1. Therefore, it is necessary to make the coating layer thinner. In addition, when the metal oxide fine particles having a refractive index of more than 2.5 can be obtained, it may be difficult to suppress light scattering on the particle surface. There is a need to.
Ionized substances added or by-produced in the above-described preparation process in the aqueous dispersion sol thus obtained, for example, cationic substances such as potassium ions, sodium ions, ammonium ions, tin ions, titanium ions, chloride ions, Anionic substances such as sulfate ion, nitrate ion, silicate ion, stannate ion and titanate ion are included. Therefore, it is desirable to remove the ionized substance in advance as in Preparation Method-1.

上記の調製方法−1および調製方法−2で得られる金属酸化物微粒子を含む水分散ゾルは、該金属酸化物微粒子を1〜30重量%、好ましくは5〜20重量%含み、さらにその濁度が0.1〜10.0cm-1、好ましくは0.2〜8.0cm-1の範囲にあるものである。
ここで、該金属酸化物微粒子の含有量は、粉砕されたチタン系微粒子を純水または超純水に分散させる時の添加量によってほぼ決まるが、該含有量が30重量%を超えると、粘度上昇などが起こって水分散ゾルの安定性が悪くなるので、上記の範囲に適宜調整することが好ましい。
一方、前記水分散ゾルの濁度は、前記金属酸化物微粒子の光散乱率とその含有量によってほぼ決まるが、該濁度が0.1cm-1未満のものを得ることは難しく、また該濁度が10.0cm-1を超えると、該水分散ゾルを用いて調製された塗膜形成用塗布液から得られる塗膜の透明性が著しく低下してしまうことがあるので、好ましくない。
The water-dispersed sol containing the metal oxide fine particles obtained by the above preparation method-1 and preparation method-2 contains 1-30 wt%, preferably 5-20 wt% of the metal oxide fine particles, and further its turbidity. Is in the range of 0.1 to 10.0 cm −1 , preferably 0.2 to 8.0 cm −1 .
Here, the content of the metal oxide fine particles is almost determined by the amount added when the pulverized titanium-based fine particles are dispersed in pure water or ultrapure water. When the content exceeds 30% by weight, Since the rise of the water dispersion sol deteriorates due to an increase or the like, it is preferable to adjust appropriately within the above range.
On the other hand, the turbidity of the water-dispersed sol is almost determined by the light scattering rate and the content of the metal oxide fine particles, but it is difficult to obtain a turbidity of less than 0.1 cm −1 , and the turbidity When the degree exceeds 10.0 cm −1 , the transparency of the coating film obtained from the coating liquid for forming a coating film prepared using the water-dispersed sol may be remarkably lowered, which is not preferable.

このように、水分散ゾルの濁度が10.0cm-1を超える場合には、前記金属酸化物微粒子の表面での光散乱率を抑えるため、その被覆層の厚さを少し厚くしてやる必要がある。また、該金属酸化物微粒子の平均粒子径を小さくすることによってもこの問題を解決できることがあるので、場合によっては、前記チタン系粒子を粉砕して得られるチタン系微粒子の平均粒子径を小さくしたり、あるいはその後の湿式分級段階で前記チタン系微粒子中に含まれる粗大粒子を極力、除去しておくことが望ましい。
このようにして、本発明に係る高屈折率金属酸化物微粒子の水分散ゾルが得られる。
Thus, when the turbidity of the water-dispersed sol exceeds 10.0 cm −1 , it is necessary to slightly increase the thickness of the coating layer in order to suppress the light scattering rate on the surface of the metal oxide fine particles. is there. In addition, since this problem can sometimes be solved by reducing the average particle size of the metal oxide fine particles, in some cases, the average particle size of the titanium-based fine particles obtained by pulverizing the titanium-based particles is reduced. Alternatively, it is desirable to remove as much as possible coarse particles contained in the titanium-based fine particles in the subsequent wet classification step.
In this way, a water-dispersed sol of high refractive index metal oxide fine particles according to the present invention is obtained.

(2)有機溶媒分散ゾルの調製方法
金属酸化物微粒子の表面処理
上記で得られた高屈折率金属酸化物微粒子の水分散ゾルを溶媒置換装置に供して、該水分散ゾル中に含まれる水を有機溶媒に置換することによって、高屈折率金属酸化物微粒子の有機溶媒分散ゾルを調製する。
しかし、前記水分散ゾル中に含まれる高屈折率金属酸化物微粒子は、親水性の微粒子であるため、これを予め疎水性の微粒子にしておくことが望ましい。そのためには、表面処理剤を用いて該微粒子の表面を従来公知の方法で処理しておくことが好ましい。
前記表面処理剤としては、特に制限されるものではないが、有機ケイ素化合物やアミン系化合物などがある。
ここで、前記有機ケイ素化合物としては、加水分解性基を有する従来公知のシランカップリング剤を用いることができ、その種類は、用途や溶媒の種類などに応じて適宜選定される。これらのシランカップリング剤は、1種類だけでなく2種類以上を使用してもよい。さらに、前記有機ケイ素化合物の具体例を挙げれば、以下の(a)〜(d)に示すとおりである。
(2) Preparation method of organic solvent dispersion sol
Surface treatment of metal oxide fine particles The water-dispersed sol of the high refractive index metal oxide fine particles obtained above is subjected to a solvent displacement device to replace the water contained in the water-dispersed sol with an organic solvent. Thus, an organic solvent-dispersed sol of high refractive index metal oxide fine particles is prepared.
However, since the high-refractive-index metal oxide fine particles contained in the water-dispersed sol are hydrophilic fine particles, it is desirable to make them into hydrophobic fine particles in advance. For this purpose, it is preferable to treat the surface of the fine particles by a conventionally known method using a surface treating agent.
The surface treatment agent is not particularly limited, and examples thereof include an organosilicon compound and an amine compound.
Here, as the organosilicon compound, a conventionally known silane coupling agent having a hydrolyzable group can be used, and the type thereof is appropriately selected according to the use, the type of solvent, and the like. These silane coupling agents may be used alone or in combination of two or more. Furthermore, specific examples of the organosilicon compound are as shown in the following (a) to (d).

(a)一般式R3SiXで表される単官能性シラン
(式中、Rは、アルキル基、フェニル基、ビニル基、メタクリロキシ基、メルカプト基、アミノ基またはエポキシ基を有する有機基を表し、Xは、アルコキシ基、クロロ基等の加水分解性基を表す。)
その代表例としては、トリメチルエトキシシラン、ジメチルフェニルエトキシシラン、ジメチルビニルエトキシシラン等が挙げられる。
(b)一般式R2SiX2で表される二官能性シラン
(式中、RおよびXは上記の通りである。)
その代表例としては、ジメチルジエトキシシラン、ジフェニルジエトキシシラン等が挙げられる。
(A) a monofunctional silane represented by the general formula R 3 SiX (wherein R represents an organic group having an alkyl group, a phenyl group, a vinyl group, a methacryloxy group, a mercapto group, an amino group or an epoxy group; X represents a hydrolyzable group such as an alkoxy group or a chloro group.)
Typical examples include trimethylethoxysilane, dimethylphenylethoxysilane, dimethylvinylethoxysilane, and the like.
(B) Bifunctional silane represented by the general formula R 2 SiX 2 (wherein R and X are as described above).
Representative examples include dimethyldiethoxysilane, diphenyldiethoxysilane, and the like.

(c)一般式RSiX3で表される三官能性シラン
(式中、RおよびXは上記の通りである。)
その代表例としては、メチルトリエトキシシラン、フェニルトリエトキシシラン等が挙げられる。
(d)一般式SiX4で表される四官能性シラン
(式中、Xは上記の通りである。)
その代表例としては、テトラメトキシシラン、テトラエトキシシラン等のテトラアルコキシシランなどが挙げられる。
(C) Trifunctional silane represented by the general formula RSiX 3 (wherein R and X are as described above).
Typical examples include methyltriethoxysilane and phenyltriethoxysilane.
(D) Tetrafunctional silane represented by the general formula SiX 4 (wherein X is as described above).
Typical examples include tetraalkoxysilanes such as tetramethoxysilane and tetraethoxysilane.

また、前記アミン系化合物としては、アンモニア;エチルアミン、トリエチルアミン、イソプロピルアミン、n−プロピルアミン等のアルキルアミン、ベンジルアミン等のアラルキルアミン、ピペリジン等の脂環式アミン、モノエタノールアミン、トリエタノールアミン等のアルカノールアミン、テトラメチルアンモニウム塩、テトラメチルアンモニウムハイドロオキサイド等の第4級アンモニウム塩または第4級アンモニウムハイドロオキサイドなどが挙げられる。 Examples of the amine compound include ammonia; alkylamines such as ethylamine, triethylamine, isopropylamine and n-propylamine; aralkylamines such as benzylamine; alicyclic amines such as piperidine; monoethanolamine; And quaternary ammonium salts such as alkanolamine, tetramethylammonium salt, and tetramethylammonium hydroxide.

前記高屈折率金属酸化物微粒子の表面処理は、特に制限されるものではないが、たとえば表面処理剤として前記有機ケイ素化合物を用いる場合には、メタノールなどの有機溶媒に溶解した有機ケイ素化合物またはその部分加水分解物を前記水分散ゾル中に添加したのち、約40〜60℃の温度に加熱して約1〜20時間、撹拌して、前記有機ケイ素化合物またはその部分加水分解物を加水分解させることによって行うことができる。
なお、この表面処理の操作が終了した段階では、前記有機ケイ素化合物の有する加水分解性基のすべてが、前記高屈折率金属酸化物微粒子の被覆層の表面に存在するOH基と反応した状態となっていることが好ましいが、その一部が未反応のまま残存した状態であってもよい。
The surface treatment of the high refractive index metal oxide fine particles is not particularly limited. For example, when the organosilicon compound is used as a surface treatment agent, the organosilicon compound dissolved in an organic solvent such as methanol or the like After the partial hydrolyzate is added to the water-dispersed sol, it is heated to a temperature of about 40 to 60 ° C. and stirred for about 1 to 20 hours to hydrolyze the organosilicon compound or the partial hydrolyzate thereof. Can be done.
In the stage where the surface treatment operation is completed, all of the hydrolyzable groups of the organosilicon compound have reacted with OH groups present on the surface of the coating layer of the high refractive index metal oxide fine particles. However, it may be in a state in which a part thereof remains unreacted.

水分散ゾルの溶媒置換
上記で表面処理された高屈折率金属酸化物微粒子を含む水分散ゾルを溶媒置換装置に供して、該水分散ゾル中に含まれる水を有機溶媒に置換する。
この溶媒置換装置としては、従来公知の溶媒置換装置、たとえば限外濾過装置やロータリーエバポレーターなどを用いることができる。前記溶媒置換装置の操作条件は、使用する溶媒置換装置や前記有機溶媒の種類などによっても異なるが、たとえば限外濾過装置(旭化成(株)製SIP−1013)を用いて行う場合には、限界濾過膜を備えた該装置内に、前記水分散ゾル(固形分濃度1〜30重量%)と該ゾル中に含まれる水と置換すべき有機溶媒(たとえば、メタノール)を送入し、一般的な条件下(たとえば、ポンプ吐出圧10〜20MPa、溶媒置換後の水分含有量0.1〜5重量%など)で溶媒置換することが好ましい。
この場合、前記水分散ゾル中に含まれる高屈折率金属酸化物微粒子の濃度が、所望する有機溶媒分散ゾルの固形分濃度より遙かに低い場合には、該水分散ゾルを限外濾過装置などを用いて濃縮して、該水分散ゾルの固形分濃度を高めておいてから、前記の溶媒置換工程に供することが好ましい。
Solvent replacement of water-dispersed sol The water-dispersed sol containing the high-refractive-index metal oxide fine particles that have been surface-treated as described above is subjected to a solvent replacement device, and water contained in the water-dispersed sol is replaced with an organic solvent.
As this solvent replacement device, a conventionally known solvent replacement device such as an ultrafiltration device or a rotary evaporator can be used. The operating conditions of the solvent displacement device vary depending on the solvent displacement device used, the type of the organic solvent, and the like. For example, when using an ultrafiltration device (SIP-1013 manufactured by Asahi Kasei Co., Ltd.) The water-dispersed sol (solid content concentration: 1 to 30% by weight) and an organic solvent (for example, methanol) to be replaced with water contained in the sol are fed into the apparatus equipped with a filtration membrane, It is preferable to perform solvent replacement under such conditions (for example, pump discharge pressure of 10 to 20 MPa, water content after solvent replacement of 0.1 to 5% by weight, etc.).
In this case, when the concentration of the high refractive index metal oxide fine particles contained in the water-dispersed sol is much lower than the desired solid content concentration of the organic solvent-dispersed sol, the water-dispersed sol is subjected to ultrafiltration. It is preferable to use the above-described solvent replacement step after increasing the solid content concentration of the water-dispersed sol by concentrating using a solvent.

前記有機溶媒としては、先にも述べたように、メタノル、エタノル、ブタノール、プロパノール、イソプロピルアルコル等のアルコール類、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等のエーテル類、メチルエチルケトン、γ−ブチロラクトン等のケトン類から選ばれた有機化合物などが挙げられる。この中でも、前記有機溶媒分散ゾルを光学基材用塗布液の調製に使用する場合は、メタノール等のアルコール類やプロピレングリコールモノメチルエーテル等のエーテル類から選ばれた有機化合物の少なくとも1種を使用することが好ましい。その理由は、塗布膜の乾燥速度が比較的速く、成膜し易いためである。 The organic solvent, as described above, methanol, ethanol, butanol, propanol, alcohols such as isopropyl alcohol, ethylene glycol monomethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether And organic compounds selected from ketones such as ethers such as methyl ethyl ketone and γ-butyrolactone. Among these, when the organic solvent-dispersed sol is used for preparing a coating solution for an optical substrate, at least one organic compound selected from alcohols such as methanol and ethers such as propylene glycol monomethyl ether is used. It is preferable. The reason is that the drying speed of the coating film is relatively fast and it is easy to form a film.

有機溶媒分散ゾルの調整
このようにして得られる有機溶媒分散ゾルの固形分濃度、すなわち前記高屈折率金属酸化物微粒子の含有量は、該有機溶媒分散ゾルの使用用途や前記有機溶媒の種類などによっても異なるが、たとえば光学基材用途に使用する場合には、該分散ゾルの全量に対して10〜40重量%、好ましくは20〜30重量%の範囲となるように調整することが好ましい。
ここで、前記金属酸化物微粒子の含有量が10重量%未満であると、これを原料とした光学基材用塗布液などの固形分含有量が少ないため所定の膜厚と膜硬度を有する塗膜を経済的に形成することが難しくなり、また前記含有量が40重量%を超えると、有機溶媒分散ゾルの安定性が悪くなるので、好ましくない。
このようにして、本発明に係る高屈折率金属酸化物微粒子の有機溶媒分散ゾルが得られる。
Preparation of organic solvent dispersion sol The solid content concentration of the organic solvent dispersion sol thus obtained, that is, the content of the high refractive index metal oxide fine particles, the usage of the organic solvent dispersion sol, the type of the organic solvent, etc. Depending on the total amount of the dispersion sol, for example, when used for an optical substrate, it is preferably adjusted to be in the range of 10 to 40% by weight, preferably 20 to 30% by weight.
Here, if the content of the metal oxide fine particles is less than 10% by weight, the coating content having a predetermined film thickness and film hardness is low because the solid content is small, such as a coating solution for an optical base material using this as a raw material. It is difficult to economically form a film, and when the content exceeds 40% by weight, the stability of the organic solvent-dispersed sol is deteriorated, which is not preferable.
Thus, the organic solvent dispersion sol of the high refractive index metal oxide fine particles according to the present invention is obtained.

次に、本発明に係る高屈折率金属酸化物微粒子の有機溶媒分散ゾルを用いて調製される光学基材用塗布液および該塗布液を塗布して得られる光学基材用塗膜について説明すれば、以下の通りである。ただし、本発明に係る高屈折率金属酸化物微粒子の分散ゾル、すなわち水分散ゾルおよび有機分散ゾルは、その他の用途にも使用することができるので、本発明の分散ゾルはこれらの用途に限定されるものではない。   Next, an optical substrate coating solution prepared using the organic solvent-dispersed sol of high refractive index metal oxide fine particles according to the present invention and an optical substrate coating film obtained by applying the coating solution will be described. Is as follows. However, since the dispersion sol of the high refractive index metal oxide fine particles according to the present invention, that is, the water dispersion sol and the organic dispersion sol can be used for other applications, the dispersion sol of the present invention is limited to these applications. Is not to be done.

[光学基材用塗布液]
光学基材用塗布液A
光学基材用塗布液の代表的なものとしては、ハードコート層膜形成用塗布液(以下、「光学基材用塗布液A」という)がある。
この光学基材用塗布液Aは、一般的に金属酸化物微粒子を含む有機溶媒分散ゾルと、バインダー成分としての有機ケイ素化合物(すなわち、ビヒクル成分)とを混合して調製されるが、本発明に係る前記有機溶媒分散ゾルと前記有機ケイ素化合物とを混合した組成物の代表例を示せば、以下の通りである。
[Coating liquid for optical substrate]
Coating liquid A for optical substrates
As a typical example of the coating liquid for an optical substrate, there is a coating liquid for forming a hard coat layer film (hereinafter referred to as “optical substrate coating liquid A”).
The coating liquid A for optical substrates is generally prepared by mixing an organic solvent dispersion sol containing metal oxide fine particles and an organosilicon compound (that is, a vehicle component) as a binder component. A representative example of a composition obtained by mixing the organic solvent-dispersed sol and the organosilicon compound is as follows.

すなわち、前記有機溶媒分散ゾルを用いて調製される光学基材用塗布液Aは、
(1)動的光散乱法で測定した平均粒子径が15〜60nmのチタン系微粒子の表面を、少なくともシリカ系酸化物またはシリカ系複合酸化物で被覆した金属酸化物微粒子であって、(a)該チタン系微粒子が、ルチル型の結晶構造を有する結晶性微粒子であり、しかも7.5〜14.0nmのX線回折結晶子径と70〜155m2/gの比表面積とを有し、さらに屈折率が2.2〜2.7の範囲にあり、また(b)その被覆層が、前記チタン系微粒子の屈折率より0.2以上低い屈折率を有し、しかも該被覆層を設けてなる前記金属酸化物微粒子の屈折率が2.0〜2.5の範囲にある高屈折率金属酸化物微粒子、および
(2)下記一般式(I)で表される有機ケイ素化合物および/またはその加水分解物
を含むものである。
1 a2 bSi(OR34-(a+b) (I)
(式中、R1は炭素数1〜6のアルキル基、ビニル基を含有する炭素数8以下の有機基、エポキシ基を含有する炭素数8以下の有機基、メタクリロキシ基を含有する炭素数8以下の有機基、メルカプト基を含有する炭素数1〜5の有機基またはアミノ基を含有する炭素数1〜5の有機基であり、R2は炭素数1〜3のアルキル基、アルキレン基、シクロアルキル基もしくはハロゲン化アルキル基またはアリル基であり、R3は炭素数1〜3のアルキル基、アルキレン基またはシクロアルキル基である。また、aは0または1の整数、bは0、1または2の整数である。)
That is, the coating liquid A for an optical substrate prepared using the organic solvent-dispersed sol is
(1) Metal oxide fine particles obtained by coating the surface of titanium fine particles having an average particle diameter of 15 to 60 nm measured by a dynamic light scattering method with at least a silica-based oxide or a silica-based composite oxide, ) The titanium-based fine particles are crystalline fine particles having a rutile-type crystal structure, and have an X-ray diffraction crystallite diameter of 7.5 to 14.0 nm and a specific surface area of 70 to 155 m 2 / g, Further, the refractive index is in the range of 2.2 to 2.7, and (b) the coating layer has a refractive index lower by 0.2 or more than the refractive index of the titanium-based fine particles, and the coating layer is provided. High refractive index metal oxide fine particles having a refractive index in the range of 2.0 to 2.5, and (2) an organosilicon compound represented by the following general formula (I) and / or The hydrolyzate is included.
R 1 a R 2 b Si (OR 3 ) 4- (a + b) (I)
(In the formula, R 1 is an alkyl group having 1 to 6 carbon atoms, an organic group having 8 or less carbon atoms containing a vinyl group, an organic group having 8 or less carbon atoms containing an epoxy group, and 8 carbon atoms containing a methacryloxy group. The following organic group, an organic group having 1 to 5 carbon atoms containing a mercapto group or an organic group having 1 to 5 carbon atoms containing an amino group, R 2 is an alkyl group having 1 to 3 carbon atoms, an alkylene group, A cycloalkyl group, a halogenated alkyl group or an allyl group, R 3 is an alkyl group having 1 to 3 carbon atoms, an alkylene group or a cycloalkyl group, a is an integer of 0 or 1, b is 0, 1 Or an integer of 2.)

前記一般式(I)で表される有機ケイ素化合物としては、アルコキシシラン化合物がその代表例として挙げられ、具体的には、テトラエトキシシラン、メチルトリメトキシシラン、ビニルトリメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、トリメチルクロロシラン、α−グルシドキシメチルトリメトキシシラン、α−グリシドキシエチルトリメトキシシラン、β−グリシドキシエチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、β−(3,4−エポキシシクロヘキシル)−エチルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)−エチルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−β(アミノエチル)−γ−アミノプロピルメチルジメトキキシラン、N−β(アミノエチル)−γ−アミノプロピルメチルジエトキキシランなどがある。これらの中でも、テトラエトキシシラン、メチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、β−(3,4−エポキシシクロヘキシル)−エチルトリメトキシシランなどを使用することが好ましい。また、これらの有機ケイ素化合物(2)は、1種類だけでなく2種類以上を使用してもよい。   As the organosilicon compound represented by the general formula (I), an alkoxysilane compound is exemplified as a typical example, and specific examples thereof include tetraethoxysilane, methyltrimethoxysilane, vinyltrimethoxysilane, and γ-methacryloxy. Propyltrimethoxysilane, trimethylchlorosilane, α-glycidoxymethyltrimethoxysilane, α-glycidoxyethyltrimethoxysilane, β-glycidoxyethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ- Glycidoxypropyltriethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, β- (3,4-epoxycyclohexyl) -ethyltrimethoxysilane, β- (3 4-epoxycyclohexyl) Ethyltriethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-β (aminoethyl) -γ-aminopropylmethyldimethoxysilane, N-β (aminoethyl) -γ-aminopropyl Examples include methyldietoxylan. Among these, tetraethoxysilane, methyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, β- (3,4-epoxycyclohexyl) -ethyltrimethoxysilane, etc. Is preferably used. Moreover, these organosilicon compounds (2) may use not only one type but also two or more types.

また、前記光学基材用塗布液Aを調製する際に、前記有機ケイ素化合物は、無溶媒下またはアルコール等の極性有機溶媒中で、酸および水の存在下で部分加水分解または加水分解した後に、前記有機溶媒分散ゾルと混合することが好ましい。ただし、前記有機ケイ素化合物は、前記有機溶媒分散ゾルと混合した後に、部分加水分解または加水分解してもよい。   In preparing the coating liquid A for an optical substrate, the organosilicon compound is partially hydrolyzed or hydrolyzed in the absence of a solvent or in a polar organic solvent such as alcohol in the presence of an acid and water. It is preferable to mix with the organic solvent dispersion sol. However, the organosilicon compound may be partially hydrolyzed or hydrolyzed after mixing with the organic solvent-dispersed sol.

前記光学基材用塗布液Aは、ハードコート層膜の染色性や、プラスチックレンズ基材等への密着性を向上させ、更にはクラックの発生を防止するために、上記の成分に加えて、未架橋エポキシ化合物を含有していてもよい。
この未架橋エポキシ化合物としては、たとえば1,6−ヘキサンジオールジグリシジルエーテル、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、グリセロールジグリシジルエーテル、グリセロールトリグリシジルエーテル等が挙げられる。これらの中でも1,6−ヘキサンジオールジグリシジルエーテル、グリセロールジグリシジルエーテル、グリセロールトリグリシジルエーテルなどを使用することが好ましい。また、これらの未架橋エポキシ化合物は、1種類だけでなく2種類以上を使用してもよい。
さらに、前記光学基材用塗布液Aは、上記以外の成分、たとえば界面活性剤、レベリング剤または紫外線吸収剤、さらには特許文献2、特許文献3、特開平11−310755号公報、国際公開公報WO2007/046357などの従来公知の文献に記載されている有機化合物や無機化合物などを含んでいてもよい。
In order to improve the dyeability of the hard coat layer film, the adhesion to the plastic lens substrate, etc., and to prevent the occurrence of cracks, the coating liquid A for the optical substrate, in addition to the above components, An uncrosslinked epoxy compound may be contained.
Examples of the uncrosslinked epoxy compound include 1,6-hexanediol diglycidyl ether, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, glycerol diglycidyl ether, glycerol triglycidyl ether, and the like. Among these, it is preferable to use 1,6-hexanediol diglycidyl ether, glycerol diglycidyl ether, glycerol triglycidyl ether, or the like. These uncrosslinked epoxy compounds may be used not only in one kind but also in two kinds or more.
Furthermore, the coating liquid A for the optical substrate is composed of components other than those described above, such as surfactants, leveling agents or ultraviolet absorbers, and further, Patent Document 2, Patent Document 3, JP-A-11-310755, and International Publication An organic compound or an inorganic compound described in a conventionally known document such as WO2007 / 046357 may be included.

光学基材用塗布液B
さらに、光学基材用塗布液の代表的なものとしては、プライマー層膜形成用塗布液(以下、「光学基材用塗布液B」という)がある。
この光学基材用塗布液Bは、一般的に金属酸化物微粒子を含む有機溶媒分散ゾルと、バインダー成分としての熱硬化性樹脂または熱可塑性樹脂(すなわち、樹脂成分)とを混合して調製されるが、本発明に係る前記有機溶媒分散ゾルと前記樹脂成分とを混合した組成物の代表例を示せば、以下の通りである。
Coating liquid B for optical substrates
Furthermore, as a typical example of the coating liquid for an optical substrate, there is a primer layer film forming coating liquid (hereinafter referred to as “optical substrate coating liquid B”).
This coating liquid B for optical substrates is generally prepared by mixing an organic solvent-dispersed sol containing metal oxide fine particles and a thermosetting resin or thermoplastic resin (that is, a resin component) as a binder component. However, a representative example of a composition obtained by mixing the organic solvent-dispersed sol and the resin component according to the present invention is as follows.

すなわち、前記有機溶媒分散ゾルを用いて調製される光学基材用塗布液Bは、
(1)動的光散乱法で測定した平均粒子径が15〜60nmのチタン系微粒子の表面を、少なくともシリカ系酸化物またはシリカ系複合酸化物で被覆した金属酸化物微粒子であって、(a)該チタン系微粒子が、ルチル型の結晶構造を有する結晶性微粒子であり、しかも7.5〜14.0nmのX線回折結晶子径と70〜155m2/gの比表面積とを有し、さらに屈折率が2.2〜2.7の範囲にあり、また(b)その被覆層が、前記チタン系微粒子の屈折率より0.2以上低い屈折率を有し、しかも該被覆層を設けてなる前記金属酸化物微粒子の屈折率が2.0〜2.5の範囲にある高屈折率金属酸化物微粒子、および
(2)熱硬化性樹脂または熱可塑性樹脂
を含むものである。
That is, the coating liquid B for an optical substrate prepared using the organic solvent-dispersed sol is
(1) Metal oxide fine particles obtained by coating the surface of titanium fine particles having an average particle diameter of 15 to 60 nm measured by a dynamic light scattering method with at least a silica-based oxide or a silica-based composite oxide, ) The titanium-based fine particles are crystalline fine particles having a rutile-type crystal structure, and have an X-ray diffraction crystallite diameter of 7.5 to 14.0 nm and a specific surface area of 70 to 155 m 2 / g, Further, the refractive index is in the range of 2.2 to 2.7, and (b) the coating layer has a refractive index lower by 0.2 or more than the refractive index of the titanium-based fine particles, and the coating layer is provided And a high refractive index metal oxide fine particle having a refractive index in the range of 2.0 to 2.5, and (2) a thermosetting resin or a thermoplastic resin.

前記熱硬化性樹脂としては、たとえばウレタン系樹脂、エポキシ系樹脂およびメラミン系樹脂などが挙げられる。これらの中でも、ウレタン系樹脂やエポキシ系樹脂などを使用するこが好ましい。
さらに具体的に述べれば、前記ウレタン系樹脂としては、たとえばヘキサメチレンジイソシアネート等のブロック型ポリイシシアネートとポリエステルポリオール、ポリエーテルポリオール等の活性水素含有化合物との反応物などが挙げられ、また前記エポキシ樹脂としては、たとえばポリアルキレンエーテル変性エポキシ樹脂や分子鎖に柔軟性骨格(ソフトセグメント)を導入したエポキシ基含有化合物などがある。さらに、前記メラミン系樹脂としては、たとえばエーテル化メチロールメラミンとポリエステルポリオール、ポリエーテルポリオールとの硬化物などがある。これらの中でも、ブロック型イシシアネートとポリオールとの硬化物であるウレタン系樹脂を使用することが好ましい。また、これらの熱硬化性樹脂は、1種類だけでなく2種類以上を使用してもよい。
Examples of the thermosetting resin include urethane resins, epoxy resins, and melamine resins. Among these, it is preferable to use a urethane resin, an epoxy resin, or the like.
More specifically, examples of the urethane resin include a reaction product of a block-type polyisocyanate such as hexamethylene diisocyanate and an active hydrogen-containing compound such as polyester polyol and polyether polyol, and the epoxy resin. Examples of the resin include a polyalkylene ether-modified epoxy resin and an epoxy group-containing compound in which a flexible skeleton (soft segment) is introduced into a molecular chain. Further, examples of the melamine-based resin include a cured product of etherified methylol melamine, a polyester polyol, and a polyether polyol. Among these, it is preferable to use a urethane-based resin that is a cured product of a block type isocyanate and a polyol. Further, these thermosetting resins may be used not only in one type but also in two or more types.

また、前記熱可塑性樹脂としては、たとえばアクリル系樹脂、ウレタン系樹脂およびエステル系樹脂などが挙げられる。これらの中でも、ウレタン系樹脂やエステル系樹脂などを使用するこが好ましい。
さらに具体的に述べれば、前記アクリル系樹脂としては、たとえば(メタ)アクリル酸アルキスエステルモノマーから得られる水系エマルジョンや前記モノマーとスチレン、アクリロニトリル等とを共重合させたポリマーエマルジョンなどがあり、また前記ウレタン系樹脂としては、ポリエステルポリオール、ポリエーテルポリオール、ポリカーボネートポリオールなどのポリオール化合物とポリイシシアネートとを反応させてなる水系エマルジョンなどがあり、さらに前記エステル系樹脂としては、たとえばハードセグメントにポリエステル、ソフトセグメントにポリエーテルまたはポリエステルを用いたマルチブロック共重合体の水分散型エラストマーなどがある。これらの中でも、ポリエステルポリオールまたはポリエーテルポリオールとポリイシシアネートから得られる水分散型ウレタン系樹脂を使用することが好ましい。また、これらの熱可塑性樹脂は、1種類だけでなく2種類以上を使用してもよい。
さらに、前記光学基材用塗布液Bは、上記以外の成分、たとえば中和剤、界面活性剤または紫外線吸収剤、さらには国際公開公報WO2007/026529などの従来公知の文献に記載されている有機化合物や無機化合物などを含んでいてもよい。
Examples of the thermoplastic resin include acrylic resins, urethane resins, and ester resins. Among these, it is preferable to use urethane resin, ester resin, or the like.
More specifically, examples of the acrylic resin include an aqueous emulsion obtained from a (meth) acrylic acid alkester monomer, a polymer emulsion obtained by copolymerizing the monomer with styrene, acrylonitrile, and the like. Examples of the urethane resin include an aqueous emulsion obtained by reacting a polyol compound such as polyester polyol, polyether polyol, and polycarbonate polyol with a polyisocyanate. Further, as the ester resin, for example, polyester in a hard segment, There are water-dispersed elastomers of multiblock copolymers using polyether or polyester for the soft segment. Among these, it is preferable to use a water-dispersed urethane resin obtained from polyester polyol or polyether polyol and polyisocyanate. Moreover, these thermoplastic resins may use not only one type but also two or more types.
Further, the coating liquid B for optical substrate is composed of components other than those described above, for example, neutralizers, surfactants or ultraviolet absorbers, and organic materials described in conventionally known documents such as International Publication WO2007 / 026529. A compound, an inorganic compound, etc. may be included.

[光学基材用塗膜]
前記光学基材用塗布液を塗布するための光学基材としては、各種のプラスチック基材があり、これを光学レンズとして使用する場合には、ポリスチレン樹脂、アリル樹脂(特に、芳香族系アリル樹脂)、ポリカーボネート樹脂、ポリチオウレタン樹脂、ポリチオエポキシ樹脂などで構成されたプラスチックレンズ基材がある。また、光学レンズ以外に用いられるプラスチック基材としては、PMMA樹脂、ABS樹脂、エポキシ樹脂、ポリサルフォン樹脂などで構成されたプラスチック基材がある。
また、昨今では、1.7以上、さらに詳しくは1.71〜1.81の比較的高い屈折率を有する光学基材(プラスチックレンズ基材など)が開発され、現在、一部市販または試験供給されている。前記光学基材用塗布液は、これらの高屈折光学基材にも特に問題なく適用することができるので、これらの光学基材から適宜選択して使用することができる。
しかし、前記光学基材用塗布液中に含まれる高屈折率金属酸化物微粒子の濃度を低くすれば、1.50〜1.70、さらに詳しくは1.52〜1.67の比較的低い屈折率を有する光学基材にも容易に適用することができる。
[Coating film for optical substrate]
As an optical base material for applying the coating liquid for the optical base material, there are various plastic base materials. When this is used as an optical lens, polystyrene resin, allyl resin (especially aromatic allyl resin). ), A plastic lens substrate made of polycarbonate resin, polythiourethane resin, polythioepoxy resin, or the like. Moreover, as a plastic base material used other than an optical lens, there is a plastic base material made of PMMA resin, ABS resin, epoxy resin, polysulfone resin, or the like.
In recent years, optical base materials (plastic lens base materials, etc.) having a relatively high refractive index of 1.7 or more, more specifically 1.71-1.81, have been developed. Has been. Since the coating liquid for optical substrates can be applied to these high refractive optical substrates without any particular problem, it can be used by appropriately selecting from these optical substrates.
However, if the concentration of the high refractive index metal oxide fine particles contained in the coating liquid for an optical substrate is lowered, a relatively low refraction of 1.50 to 1.70, more specifically 1.52 to 1.67. It can be easily applied to an optical substrate having a ratio.

前記光学基材用塗布液B、すなわちプライマー層膜形成用塗布液は、従来公知の方法で前記光学基材上に直接、塗布される。一方、前記光学基材用塗布液A、すなわちハードコート層膜形成用塗布液は、従来公知の方法で前記光学基材上に直接、塗布されるか、あるいは前記光学基材用塗布液Bを塗布して形成された塗膜(プライマー層膜)上に塗布される。
このようにして、光学基材上に形成された塗膜は、従来公知の方法で硬化させることにより、所望の光学基材用塗膜、すなわちハードコート層膜やプライマー層膜になる。
これにより、昨今のプラスチックレンズ業界などから切望されている、1.70以上、特に1.71〜1.81の高い屈折率を有し、しかも耐候性や耐光性に優れた光学基材用塗膜(たとえば、ハードコート層膜)が得られる。また、この塗膜は、ヘーズが0.5%以下と低く、しかも無色透明なものとして得られる。さらに、光学基材用塗膜に求められる耐擦傷性、耐摩耗性、耐衝撃性、耐汗性、耐熱水性、密着性、染色性、耐褪色性などにおいても、優れた特性を有している。
The optical substrate coating solution B, that is, the primer layer film forming coating solution, is directly applied onto the optical substrate by a conventionally known method. On the other hand, the coating liquid A for the optical substrate, that is, the coating liquid for forming the hard coat layer film, is applied directly on the optical substrate by a conventionally known method, or the coating liquid B for the optical substrate is applied. It is applied on the coating film (primer layer film) formed by coating.
Thus, the coating film formed on the optical substrate becomes a desired coating film for an optical substrate, that is, a hard coat layer film or a primer layer film by curing by a conventionally known method.
As a result, the coating material for optical base materials having a high refractive index of 1.70 or more, particularly 1.71 to 1.81, which is highly desired by the recent plastic lens industry and the like, and excellent in weather resistance and light resistance. A film (for example, a hard coat layer film) is obtained. Further, this coating film is obtained as a colorless and transparent material having a haze as low as 0.5% or less. In addition, it has excellent characteristics in scratch resistance, abrasion resistance, impact resistance, sweat resistance, hot water resistance, adhesion, dyeability, and fading resistance required for coating films for optical substrates. Yes.

[測定方法]
次に、本発明の実施例その他で使用された測定方法および評価試験法を具体的に述べれば、以下の通りである。
(1)粒子の平均粒子径A(平均粒子径が30μm以上のもの)
比較的大きい粒子径を有する噴霧乾燥品(粒子径が5μm以上のもの)からなる複合酸化物粒子(チタン系粒子)1.0gを、Micromesh Sieve(20、30、45、60、75、90、105、150μm)が備わった篩分粒度分布測定装置(セイシン企業製RPS−85EX)にかけて平均粒子径を測定する。
因みに、この測定方法は、20〜150μmの粒子径をもつ粒子群の平均粒子径を測定するのに適している。
[Measuring method]
Next, the measurement methods and evaluation test methods used in the examples and others of the present invention will be specifically described as follows.
(1) Average particle diameter A of particles (with average particle diameter of 30 μm or more)
1.0 g of composite oxide particles (titanium-based particles) composed of a spray-dried product having a relatively large particle size (having a particle size of 5 μm or more) were added to Micromesh Sieve (20, 30, 45, 60, 75, 90, 105, 150 μm), and an average particle size is measured using a sieving particle size distribution measuring device (RPS-85EX manufactured by Seishin Enterprise).
Incidentally, this measuring method is suitable for measuring the average particle diameter of a particle group having a particle diameter of 20 to 150 μm.

(2)粒子の平均粒子径B(平均粒子径が0.2〜30μmのもの)
比較的小さい粒子径を有する噴霧乾燥品(粒子径が0.2〜5μmのもの)からなる複合酸化物粒子(チタン系粒子)を40重量%のグリセリン含有水溶液に分散させたスラリー液(固形分濃度1.0重量%)を調製し、これに超音波発生装置(iuchi社製、US−2型)を用いて5分間、超音波を照射して前記複合酸化物粒子をよく分散させる。次いで、この分散液をガラスセル(長さ10mm、幅10mm、高さ45cmのサイズ)に入れて、遠心沈降式粒度分布測定装置(堀場製作所製CAPA−700)を用いて300〜10,000rpmの回転速度で2分〜2時間かけて平均粒子径を測定する。因みに、この測定方法は、0.2〜30μmの粒子径をもつ粒子群の平均粒子径を測定するのに適している。
(2) Average particle diameter B of particles (with an average particle diameter of 0.2 to 30 μm)
A slurry liquid (solid content) in which composite oxide particles (titanium-based particles) composed of spray-dried products having a relatively small particle diameter (with a particle diameter of 0.2 to 5 μm) are dispersed in an aqueous solution containing 40% by weight of glycerin. A concentration of 1.0% by weight) is prepared, and the composite oxide particles are well dispersed by irradiating with ultrasonic waves for 5 minutes using an ultrasonic generator (manufactured by Iuchi, US-2 type). Next, this dispersion is put into a glass cell (length 10 mm, width 10 mm, height 45 cm), and 300 to 10,000 rpm using a centrifugal sedimentation type particle size distribution analyzer (CAPA-700 manufactured by Horiba Seisakusho). The average particle diameter is measured over 2 minutes to 2 hours at the rotation speed. Incidentally, this measuring method is suitable for measuring the average particle diameter of a particle group having a particle diameter of 0.2 to 30 μm.

(3)粒子の平均粒子径C(平均粒子径が200nm以下のもの)
ナノサイズの粒子径を有するチタン系微粒子または金属酸化物微粒子の水分散ゾル(固形分含有量20重量%)0.15gに純水19.85gを混合して調製した固形分含有量0.15%の試料を、長さ1cm、幅1cm、高さ5cmの石英セルに入れて、動的光散乱法による超微粒子粒度分析装置(大塚電子(株)製、型式ELS−Z2)を用いて、粒子群の粒子径分布を測定する。なお、本発明でいう平均粒子径は、この測定結果をキュムラント解析して算出された値を示す。ただし、前記超微粒子粒度分析装置を用いた動的光散乱法で測定された前記微粒子の粒子径分布より得られる粒子の平均粒子径は、透過型電子顕微鏡で撮った前記微粒子のTEM写真より得られる粒子の平均粒子径の約3倍の値を示すことが分かった。よって、本発明で規定される前記微粒子の平均粒子径は、他の測定方法より得られる平均粒子径とは異なるものである。因みに、この測定方法は、3〜1000nmの粒子径をもつ粒子群の平均粒子径を測定するのに適している。
(3) Average particle diameter C of particles (with an average particle diameter of 200 nm or less)
A solid content of 0.15 prepared by mixing 19.85 g of pure water with 0.15 g of an aqueous dispersion sol (solid content of 20% by weight) of titanium-based fine particles or metal oxide fine particles having a nano-sized particle diameter. % Sample is placed in a quartz cell having a length of 1 cm, a width of 1 cm, and a height of 5 cm, and an ultrafine particle size analyzer (model ELS-Z2 manufactured by Otsuka Electronics Co., Ltd.) using a dynamic light scattering method is used. The particle size distribution of the particle group is measured. In addition, the average particle diameter as used in the field of this invention shows the value computed by cumulant analysis of this measurement result. However, the average particle size of the particles obtained from the particle size distribution of the fine particles measured by the dynamic light scattering method using the ultrafine particle size analyzer is obtained from a TEM photograph of the fine particles taken with a transmission electron microscope. It was found that the average particle diameter of the obtained particles is about 3 times as large. Therefore, the average particle size of the fine particles defined in the present invention is different from the average particle size obtained by other measurement methods. Incidentally, this measuring method is suitable for measuring the average particle diameter of a particle group having a particle diameter of 3 to 1000 nm.

(4)粒子の粒子径分布頻度
前記(3)で使用した動的光散乱法による粒子径分布測定から得られる散乱強度の頻度分布より求める。なお、本発明でいう100nm以上の粒子径を有する粒子の分布頻度は、94.9nm以下の粒子径を有する粒子群の分布頻度(%)の合計値を100から差し引いた値を示す。
(4) Particle size distribution frequency of particles: Obtained from the frequency distribution of the scattering intensity obtained from the particle size distribution measurement by the dynamic light scattering method used in (3) above. The distribution frequency of particles having a particle diameter of 100 nm or more referred to in the present invention is a value obtained by subtracting from 100 the total value of the distribution frequency (%) of particle groups having a particle diameter of 94.9 nm or less.

(5)粒子の比表面積
複合酸化物粒子(チタン系粒子)またはチタン系微粒子の乾燥粉体を磁性ルツボ(B−2型)に約30ml採取し、300℃の温度で2時間乾燥後、デシケータに入れて室温まで冷却する。次に、サンプルを1g取り、全自動表面積測定装置(湯浅アイオニクス社製、マルチソーブ12型)を用いて、比表面積(m2/g)をBET法にて測定する。なお、本発明でいう比表面積は、この測定結果から算出された値を示す。
(5) Specific surface area of particles About 30 ml of dry powder of composite oxide particles (titanium-based particles) or titanium-based fine particles are collected in a magnetic crucible (type B-2), dried at a temperature of 300 ° C. for 2 hours, and then desiccator. Cool to room temperature. Next, 1 g of a sample is taken, and the specific surface area (m 2 / g) is measured by the BET method using a fully automatic surface area measuring device (manufactured by Yuasa Ionics Co., Ltd., Multisorb 12 type). In addition, the specific surface area as used in the field of this invention shows the value calculated from this measurement result.

(6)粒子の結晶形態
複合酸化物粒子(チタン系粒子)またはチタン系微粒子の水分散ゾルを磁性ルツボ(B−2型)に約30ml採取し、110℃12時間乾燥後、デシケータに入れて室温まで冷却する。次に、乳鉢にて15分粉砕後、X線回折装置(理学電気(株)製、RINT1400)を用いて結晶形態を測定する。なお、本発明でいう結晶形態は、この測定結果から判定された形態(たとえば、ルチル型など)を示す。
(6) Crystal form composite oxide particles (titanium particles) or water-dispersed sol of titanium particles is collected in a magnetic crucible (type B-2), dried at 110 ° C. for 12 hours, and placed in a desiccator. Cool to room temperature. Next, after pulverizing for 15 minutes in a mortar, the crystal form is measured using an X-ray diffractometer (RINT1400, manufactured by Rigaku Corporation). In addition, the crystal | crystallization form said by this invention shows the form (for example, rutile type etc.) determined from this measurement result.

(7)粒子のX線回折結晶子径
前記(6)で使用したX線回折装置を用いて、焼成した複合酸化物粒子(チタン系粒子)またはチタン系微粒子の結晶構造を測定した結果より求める。なお、本発明でいうX線回折結晶子径(D)は、以下のシェラー(Scheller)の式を用いて算出された値を示す。
D=λ/βcosθ
(ここで、λはX線波長、βは半価幅、θは反射角を意味する。なお、本測定で使用されるX線(CuKα線)の波長λは、0.154056nmである。また、反射角θは測定されたルチル結晶面(110)の2θを用いて算出した。)
(7) X-ray diffraction crystallite diameter of particles Using the X-ray diffractometer used in (6) above, the crystal structure of the fired composite oxide particles (titanium particles) or titanium particles is determined. . In addition, the X-ray diffraction crystallite diameter (D) as used in the field of this invention shows the value computed using the following Scheller formulas.
D = λ / βcos θ
(Where λ is the X-ray wavelength, β is the half-width, and θ is the reflection angle. The wavelength λ of the X-ray (CuK α- ray) used in this measurement is 0.154056 nm. Also, the reflection angle θ was calculated using 2θ of the measured rutile crystal plane (110).)

(8)X線回折による結晶面間隔
前記(6)で使用したX線回折装置を用いて、焼成した複合酸化物粒子(チタン系粒子)またはチタン系微粒子の結晶構造を測定した結果より求める。なお、本発明でいう結晶面間隔(d)は、(310)および(301)の結晶面を測定し、以下のブラグ(Brrag)の式を用いて算出された値を示す。
d=λ/2sinθ
(ここで、λはX線波長、θは反射角を意味する。なお、本測定で使用されるX線(CuKα線)の波長λは、0.154056nmである。)
(8) Crystalline spacing by X-ray diffraction Using the X-ray diffractometer used in (6) above, it is determined from the result of measuring the crystal structure of the fired composite oxide particles (titanium-based particles) or titanium-based fine particles. The crystal plane spacing (d) in the present invention is a value calculated by measuring the crystal planes (310) and (301) and using the following Bragg equation.
d = λ / 2 sin θ
(Here, λ means the X-ray wavelength, and θ means the reflection angle. Note that the wavelength λ of the X-ray (CuK α- ray) used in this measurement is 0.154056 nm.)

(9)X線回折による相対ピーク強度
前記(6)で使用したX線回折装置を用いて、焼成した複合酸化物粒子(チタン系粒子)またはチタン系微粒子を測定した結果より求める。なお、本発明でいう相対ピーク強度比とは、ルチル型結晶の最強干渉線を表す(110)結晶面のピーク強度P2と(310)結晶面のピーク強度P1とを測定し、前者のピーク強度P2を100とした場合の相対強度比(P1/P2)を示す。
(9) Relative peak intensity by X-ray diffraction Obtained from the result of measuring calcined composite oxide particles (titanium-based particles) or titanium-based fine particles using the X-ray diffractometer used in (6) above. Note that the relative peak intensity ratio in the present invention, represents the strongest interference line of the rutile-type crystal (110) peak intensity P 2 and (310) crystal plane was measured and the peak intensity P 1 of the crystal plane, the former The relative intensity ratio (P 1 / P 2 ) when the peak intensity P 2 is 100 is shown.

(10)水分散ゾルの濁度
分光光度計(日本電子(株)製V−550)を用いて、金属酸化物微粒子を含む水分散ゾルの波長500nmにおける吸光度(log(Io/I))を測定した結果より求める。この場合、対照液には水を使用する。なお、本発明でいう濁度(τ)は、以下に示すランベルト(Lambert)法則の式を用いて算出された値を示す。
τ(cm-1)=(1/W)×ln(I0/I)
=(1/W)×2.303×log(Io/I)
(ここで、Wはセルの幅(cm)、Ioは入射光の強さ(%)、Iは透過光の強さ(%)を意味する。)
(10) Absorbance (log (I o / I)) of water-dispersed sol containing metal oxide fine particles at a wavelength of 500 nm using a turbidity spectrophotometer (JEOL Ltd. V-550) Is obtained from the measurement result. In this case, water is used as the control solution. The turbidity (τ) referred to in the present invention is a value calculated using the Lambert law formula shown below.
τ (cm −1 ) = (1 / W) × ln (I 0 / I)
= (1 / W) x 2.303 x log ( Io / I)
(W is the cell width (cm), I o is the intensity (%) of incident light, and I is the intensity (%) of transmitted light.)

(11)粒子中に含まれる金属酸化物の含有量
金属酸化物微粒子を含む水分散ゾル(試料)をジルコニアボールに採取し、乾燥、焼成した後、Na22とNaOHを加えて溶融する。さらに、H2SO4とHClで溶解し、純水で希釈した後、ICP装置(島津製作所(株)製、ICPS−8100)を用いて、チタニウム、スズ、アルミニウム、アンチモンおよび/またはシリカの含有量を酸化物換算基準(すなわち、TiO2、SnO2、Al23、Sb25および/またはSiO2)で測定する。
次いで、前記試料を白金皿に採取し、HFとH2SO4を加えて加熱し、HClで溶解する。さらに、これを純水で希釈した後、ICP装置((株)島津製作所製、ICPS−8100)を用いてジルコニウムの含有量を酸化物換算基準(ZrO2)で測定する。
次に、前記試料を白金皿に採取し、HFとH2SO4を加えて加熱し、HClで溶解する。さらに、これを純水で希釈した後、原子吸光装置((株)日立製作所製、Z−5300)を用いてカリウムの含有量を酸化物換算基準(K2O)で測定する。
なお、本発明でいう各金属酸化物の含有量は、これらの測定結果から算出された値を示す。
(11) Content of metal oxide contained in particles After collecting water-dispersed sol (sample) containing metal oxide fine particles in zirconia balls, drying and firing, Na 2 O 2 and NaOH are added and melted. . Further, after being dissolved in H 2 SO 4 and HCl and diluted with pure water, using an ICP apparatus (ICPS-8100, manufactured by Shimadzu Corporation), titanium, tin, aluminum, antimony and / or silica are contained. The amount is measured on an oxide equivalent basis (ie TiO 2 , SnO 2 , Al 2 O 3 , Sb 2 O 5 and / or SiO 2 ).
Next, the sample is collected in a platinum dish, HF and H 2 SO 4 are added, heated, and dissolved with HCl. Furthermore, after diluting this with pure water, the content of zirconium is measured by an oxide conversion standard (ZrO 2 ) using an ICP device (manufactured by Shimadzu Corporation, ICPS-8100).
Then, the sample was taken in a platinum dish and heated by adding HF and H 2 SO 4, dissolved in HCl. Furthermore, after diluting this with pure water, the content of potassium is measured by an oxide conversion standard (K 2 O) using an atomic absorption device (manufactured by Hitachi, Ltd., Z-5300).
In addition, content of each metal oxide as used in the field of this invention shows the value calculated from these measurement results.

(12)粒子の屈折率A(塗膜屈折率からの算定法)
γ―グリシドキシプロピルトリメトキシシラン(東レ・ダウコーニング(株)製Z−6040、SiO2換算で49.2重量%)14.1gと99.9重量%のメチルアルコールを含むメタノール(林純薬(株)製)7.1gとを混合し、これに0.01Nの塩酸水溶液3.6gを攪拌しながら滴下して得られたシラン化合物の加水分解物を含む混合液に、前記チタン系微粒子を含む水分散ゾル(固形分濃度2.0重量%)38.6g、さらにトリス(2.4-ペンタンジオナト)アルミニウムIII(東京化成工業(株)製)0.3gおよびレベリング剤として10重量%のシリコーン系界面活性剤(東レ・ダウコーニング(株)製、L−7006)を含むメタノール溶液0.07gを加えて室温で一昼夜攪拌して塗料組成物A(粒子の重量分率:10重量%)を調製する。なお、ここでいう「粒子の重量分率」とは、該塗料組成物中に含まれる全固形分に対する前記チタン系微粒子または金属酸化物微粒子の重量分率を意味し、以下も同じとする。
さらに、前記水分散ゾルの混合量を77.1g、115.6g、154.1g、192.7gおよび212.0gに変化させた以外は前記と同様な方法で、塗料組成物B(粒子の重量分率:20重量%)、塗料組成物C(粒子の重量分率:30重量%)、塗料組成物D(粒子の重量分率:40重量%)、塗料組成物E(粒子の重量分率:50重量%)および塗料組成物F(粒子の重量分率:55重量%)をそれぞれ調製する。
また、前記金属酸化物微粒子を含む水分散ゾル(固形分濃度20.0重量%)についても、該水分散ゾルの混合量を3.9g、7.7g、11.6g、15.4g、19.2gおよび21.2gに変化させた以外は上記と同様な方法で、塗料組成物A(粒子の重量分率:10重量%)、塗料組成物B(粒子の重量分率:20重量%)、塗料組成物C(粒子の重量分率:30重量%)、塗料組成物D(粒子の重量分率:40重量%)、塗料組成物E(粒子の重量分率:50重量%)および塗料組成物F(粒子の重量分率:55重量%)をそれぞれ調製する。
(12) Refractive index A of particle (calculation method from coating film refractive index)
γ-Glycidoxypropyltrimethoxysilane (Z-6040 manufactured by Toray Dow Corning Co., Ltd., 49.2 wt% in terms of SiO 2 ) and methanol containing 99.9 wt% methyl alcohol (Jun Hayashi 7.1 g of Yakuhin Co., Ltd.) was mixed, and 3.6 g of 0.01N hydrochloric acid aqueous solution was added dropwise with stirring to the mixture containing the hydrolyzate of the silane compound. 38.6 g of an aqueous dispersion sol containing fine particles (solid concentration 2.0% by weight), 0.3 g of Tris (2.4-pentanedionato) aluminum III (manufactured by Tokyo Chemical Industry Co., Ltd.) and 10 as a leveling agent 0.07 g of a methanol solution containing a weight percent silicone-based surfactant (manufactured by Toray Dow Corning Co., Ltd., L-7006) was added, and the mixture was stirred overnight at room temperature, followed by coating composition A (weight fraction of particles) 10 wt%) is prepared. Here, the “particle weight fraction” means the weight fraction of the titanium-based fine particles or metal oxide fine particles with respect to the total solid content contained in the coating composition, and the same shall apply hereinafter.
Furthermore, the coating composition B (weight of particles) was prepared in the same manner as described above except that the amount of the water-dispersed sol was changed to 77.1 g, 115.6 g, 154.1 g, 192.7 g, and 212.0 g. Fraction: 20% by weight), coating composition C (weight fraction of particles: 30% by weight), coating composition D (weight fraction of particles: 40% by weight), coating composition E (weight fraction of particles) : 50 wt%) and coating composition F (particle weight fraction: 55 wt%).
In addition, for the water dispersion sol containing the metal oxide fine particles (solid content concentration 20.0% by weight), the amount of the water dispersion sol mixed is 3.9 g, 7.7 g, 11.6 g, 15.4 g, 19 Coating composition A (particle weight fraction: 10% by weight), coating composition B (particle weight fraction: 20% by weight) in the same manner as above except that the amount was changed to 2g and 21.2g. , Coating composition C (particle weight fraction: 30 wt%), coating composition D (particle weight fraction: 40 wt%), coating composition E (particle weight fraction: 50 wt%) and coating Compositions F (particle weight fraction: 55% by weight) are respectively prepared.

次いで、前記塗料組成物A〜Fをスピンコーター(ミカサ(株)製、MS−A200)を用いて40℃の温度に保たれたシリコンウエハー基材上に300rpmの回転速度でそれぞれ塗布したのち、120℃の温度で2時間乾燥させて塗膜を形成する。次に、各シリコンウエハー基材上に形成された塗膜について、分光エリプソメーター(ソプラ社製、SOPRA ESVG)を用いて塗膜屈折率Nav’(実測値)を測定する。
次に、以下に示す体積分率・重量分率の変換式(数1を参照のこと)とマクスウェル−ガーネット(Maxwell-Garnett)の式(数2を参照のこと)を用いて、上記の粒子重量分率に対して理論上の塗膜屈折率Nav (計算値)を算出する。
次いで、これらの式に基づき算出した塗膜屈折率Navと、上記で測定した塗膜屈折率Nav’との偏差を求め、これより偏差平方を算出し、算出された偏差平方の和から偏差平方和を求める。この偏差平方和を、想定される粒子屈折率Np(たとえば、1.70〜2.70の範囲から少なくとも0.01刻みで想定された複数の想定粒子屈折率)ごとに求め、その最小値を示す屈折率を前記粒子の屈折率Np’とする。すなわち、これは最小二乗法による粒子屈折率の測定方法である。(この場合、前記想定粒子屈折率を横軸とし、さらに前記偏差平方和を縦軸としたグラフに前記の値をプロットすることが好ましい。)
Next, the coating compositions A to F were respectively applied at a rotational speed of 300 rpm onto a silicon wafer substrate maintained at a temperature of 40 ° C. using a spin coater (manufactured by Mikasa Co., Ltd., MS-A200). A coating film is formed by drying at a temperature of 120 ° C. for 2 hours. Next, about the coating film formed on each silicon wafer base material, coating-film refractive index Nav '(actual value) is measured using a spectroscopic ellipsometer (the Sopra company make, SOPRA ESVG).
Next, using the following volume fraction / weight fraction conversion formula (see formula 1) and Maxwell-Garnett formula (see formula 2), the above particles are used. The theoretical coating film refractive index Nav (calculated value) is calculated with respect to the weight fraction.
Next, the deviation between the coating film refractive index Nav calculated based on these equations and the coating film refractive index Nav ′ measured above was obtained, and the deviation square was calculated from this, and the deviation square was calculated from the sum of the calculated deviation squares. Find the sum. The deviation sum of squares is obtained for each assumed particle refractive index Np (for example, a plurality of assumed particle refractive indices assumed in at least 0.01 increments from the range of 1.70 to 2.70), and the minimum value is obtained. The refractive index shown is the refractive index Np ′ of the particles. That is, this is a method for measuring particle refractive index by the least square method. (In this case, it is preferable to plot the value on a graph with the assumed particle refractive index as the horizontal axis and the deviation sum of squares as the vertical axis.)

Figure 0005514487
Figure 0005514487

上記の数1において、f(m)は全固形分に対する粒子の体積分率、mは全固形分に対する粒子の重量分率、dmはマトリックス成分の比重(ここでは、γ−グリシドキシプロピルトリメトキシシランの比重である1.07とする。)、dpはチタン系微粒子または金属酸化物微粒子の比重を意味する。ここで、前記dpはチタン系微粒子または金属酸化物微粒子の金属成分の含有量から計算して求めた比重であり、これらの粒子中に含まれるTiO2、SiO2、SnO2、Al23の比重をそれぞれ4.26、2.20、7.00、3.97とする。 In the above equation 1, f (m) is the volume fraction of particles relative to the total solid content, m is the weight fraction of particles relative to the total solid content, dm is the specific gravity of the matrix component (here, γ-glycidoxypropyl trimethyl). The specific gravity of methoxysilane is 1.07.), Dp means the specific gravity of titanium-based fine particles or metal oxide fine particles. Here, the above-mentioned dp is a specific gravity calculated from the content of the metal component of the titanium-based fine particles or metal oxide fine particles, and TiO 2 , SiO 2 , SnO 2 , Al 2 O 3 contained in these particles. Specific gravity of 4.26, 2.20, 7.00, and 3.97, respectively.

Figure 0005514487
Figure 0005514487

上記の数2において、Navは塗膜の屈折率、Nmはマトリックス成分の屈折率(ここでは、γ−グリシドキシプロピルトリメトキシシランの加水分解物の屈折率である1.499とする。)で、Npはチタン系微粒子または金属酸化物微粒子の屈折率を意味する。
なお、この測定方法においては、1.70〜2.70の屈折率をもつ粒子群の屈折率を測定することができ、特に、以下に示す標準液法では測定できない2.31を超える屈折率をもつ粒子群の屈折率を測定するのに適している。なお、この測定方法で求めた粒子の屈折率は、標準液法で測定した粒子の屈折率(ただし、1.70〜2.31の範囲)とほぼ一致した結果が得られている。
In the above formula 2, Nav is the refractive index of the coating film, and Nm is the refractive index of the matrix component (here, 1.499 which is the refractive index of the hydrolyzate of γ-glycidoxypropyltrimethoxysilane). Np means the refractive index of titanium-based fine particles or metal oxide fine particles.
In this measurement method, the refractive index of a particle group having a refractive index of 1.70 to 2.70 can be measured. In particular, a refractive index exceeding 2.31, which cannot be measured by the standard liquid method shown below. It is suitable for measuring the refractive index of a particle group having. In addition, the refractive index of the particle | grains calculated | required with this measuring method has substantially the same result as the refractive index (however, the range of 1.70-2.31) of the particle | grains measured by the standard liquid method.

(13)粒子の屈折率B(標準液法)
チタン系微粒子または金属酸化物微粒子を含む水分散ゾルまたは有機溶媒分散ゾルをエバポレーターに供して分散媒を蒸発させたのち、120℃の温度で乾燥させて乾燥粉末とする。次いで、屈折率が既知の標準液試薬を2〜3滴、ガラス基板上に滴下し、これに前記チタン系微粒子または前記金属酸化物微粒子の乾燥粉末を混合して混合液を調製する。この操作を、様々な屈折率を有する標準液試薬(MORITEX社製カーギル標準屈折率液)を用いて行い、前記混合液が透明になったときの標準液試薬の屈折率を前記粒子の屈折率とする。
因みに、この測定方法は、1.70〜2.31の屈折率をもつ粒子群の屈折率を測定することができる。しかし、現在、市販されている標準液試薬は屈折率が2.31以下の粒子にしか適用できないため、屈折率が2.31を超える粒子の屈折率をこの方法で測定することができない。そこで、本願発明においては、上記の測定方法Aを採用したが、参考までに前記測定方法Bを用いて粒子の屈折率(ただし、屈折率が1.70〜2.31の範囲)を測定した。
(13) Refractive index B of particles (standard solution method)
An aqueous dispersion sol or organic solvent dispersion sol containing titanium-based fine particles or metal oxide fine particles is applied to an evaporator to evaporate the dispersion medium, and then dried at a temperature of 120 ° C. to obtain a dry powder. Next, 2 to 3 drops of a standard solution reagent having a known refractive index is dropped on a glass substrate, and a dry powder of the titanium-based fine particles or the metal oxide fine particles is mixed therewith to prepare a mixed solution. This operation is performed using standard liquid reagents having various refractive indexes (Cargill standard refractive index liquid manufactured by MORITEX), and the refractive index of the standard liquid reagent when the mixed solution becomes transparent is the refractive index of the particles. And
Incidentally, this measuring method can measure the refractive index of a particle group having a refractive index of 1.70 to 2.31. However, currently available standard solution reagents can be applied only to particles having a refractive index of 2.31 or less, and thus the refractive index of particles having a refractive index exceeding 2.31 cannot be measured by this method. Therefore, in the present invention, the above measurement method A was adopted, but the refractive index of the particles (however, the refractive index is in the range of 1.70 to 2.31) was measured using the measurement method B for reference. .

(14)粒子の光触媒活性試験
金属酸化物微粒子を含む水分散ゾル(固形分含有量20重量%)0.66gに純水9.34gを混合して調製した、固形分含有量6.6重量%の試料0.33gに、固形分含有量0.02重量%のサンセットイエロー染料のグリセリン溶液9.70gを混合する。次いで、これを長さ1mm、幅1cm、高さ5cmの石英セルに入れて密閉する。次に、I線(波長365nm)の波長域が選択された紫外線ランプ(AS ONE製SLUV−6)を用いて、前記石英セルに照射距離5.5cmから照射強度0.4mW/cm2(波長365nm換算)で180分、紫外線を照射する。
一方、紫外線照射前後において、前記試料の波長490nmにおけるそれぞれの吸光度(A0とA180)を測定して、以下の式から染料の退色変化率を算出する。さらに、以下の基準に基づき粒子の光触媒活性を評価する。
退色変化率(%)=(1−A180/A0)x100
評価基準
○:退色変化率が20%未満
△:退色変化率が20%以上〜50%未満
×:退色変化率が50%以上
(14) Photocatalytic activity test of particles A solid content of 6.6 wt% prepared by mixing 9.34 g of pure water with 0.66 g of an aqueous dispersion sol (solid content of 20 wt%) containing metal oxide fine particles. 9.70 g of a yellow glycerol solution of sunset yellow dye having a solid content of 0.02% by weight is mixed with 0.33 g of a% sample. This is then sealed in a quartz cell having a length of 1 mm, a width of 1 cm and a height of 5 cm. Next, using an ultraviolet lamp (SLUV-6 manufactured by AS ONE) in which the wavelength range of I-line (wavelength 365 nm) is selected, the quartz cell is irradiated with an irradiation distance of 5.5 m to an irradiation intensity of 0.4 mW / cm 2 (wavelength). Irradiation with ultraviolet rays is performed for 180 minutes at a conversion of 365 nm.
On the other hand, before and after UV irradiation, the absorbance (A 0 and A 180 ) of the sample at a wavelength of 490 nm is measured, and the dye fading change rate is calculated from the following equation. Furthermore, the photocatalytic activity of the particles is evaluated based on the following criteria.
Fading change rate (%) = (1−A 180 / A 0 ) × 100
Evaluation criteria ○: Fading change rate is less than 20% Δ: Fading change rate is 20% to less than 50% ×: Fading change rate is 50% or more

(15)粒子の耐光性試験
金属酸化物微粒子を含む水分散ゾル(固形分含有量20重量%)0.90gに、純水4.50gおよびメタノール12.6gを混合して調製した、固形分含有量1.0重量%の試料18.00gを長さ1mm、幅1cm、高さ5cmの石英セルに入れて密封する。次いで、I線(波長365nm)の波長域が選択された紫外線ランプ(AS ONE製SLUV−6)を用いて、前記石英セルに照射距離5.5cmから照射強度0.4mW/cm2(波長365nm換算)で60分、紫外線を照射する。この紫外線に暴露された前記混合液の色の変化について目視による観測を行い、以下の基準で評価する。
評価基準
○:1時間以上で青変色が始まる
△:0.5時間以上〜1時間未満で青変色が始まる
×:0.5時間未満で青変色が始まる
(15) Light resistance test of particles A solid content prepared by mixing 4.50 g of pure water and 12.6 g of methanol with 0.90 g of an aqueous dispersion sol (solid content 20% by weight) containing metal oxide fine particles. 18.00 g of a sample having a content of 1.0% by weight is sealed in a quartz cell having a length of 1 mm, a width of 1 cm, and a height of 5 cm. Next, using an ultraviolet lamp (SLUV-6 manufactured by AS ONE) in which the wavelength region of I-line (wavelength 365 nm) is selected, the quartz cell is irradiated with an irradiation intensity of 0.4 mW / cm 2 (wavelength 365 nm) from an irradiation distance of 5.5 cm. Irradiation with ultraviolet rays is performed for 60 minutes. The color change of the liquid mixture exposed to the ultraviolet rays is visually observed and evaluated according to the following criteria.
Evaluation criteria ○: Blue discoloration starts in 1 hour or more Δ: Blue discoloration starts in 0.5 hours to less than 1 hour ×: Blue discoloration starts in less than 0.5 hours

(16)塗膜の外観(干渉縞)
内壁が黒色である箱の中に蛍光灯「商品名:メロウ5N」(東芝ライテック(株)製、三波長型昼白色蛍光灯)を取り付け、蛍光灯の光を試料基板のハードコート層膜(前記金属酸化物微粒子を含む)上に形成された反射防止膜表面で反射させ、光の干渉による虹模様(干渉縞)の発生を目視にて確認し、以下の基準で評価する。
S:干渉縞が殆ど無い
A:干渉縞が目立たない
B:干渉縞が認められるが、許容範囲にある
C:干渉縞が目立つ
D:ぎらつきのある干渉縞がある。
(16) Appearance of coating film (interference fringes)
A fluorescent lamp “trade name: Mellow 5N” (manufactured by Toshiba Lighting & Technology Co., Ltd., three-wavelength daylight white fluorescent lamp) is mounted in a box whose inner wall is black, and the hard coat layer film ( Reflection is performed on the surface of the antireflection film formed on the metal oxide fine particles (including the metal oxide fine particles), and the occurrence of rainbow patterns (interference fringes) due to light interference is visually confirmed, and evaluated according to the following criteria.
S: There is almost no interference fringe. A: The interference fringe is not conspicuous. B: Although the interference fringe is recognized, it is within an allowable range. C: The interference fringe is conspicuous. D: There is an interference fringe with glare.

(17)塗膜の外観(曇り)
内壁が黒色である箱の中に蛍光灯「商品名:メロウ5N」(東芝ライテック(株)製、三波長型昼白色蛍光灯)を取り付け、前記金属酸化物微粒子を含むハードコート層膜を有する試料基板を蛍光灯の直下に垂直に置き、これらの透明度(曇りの程度)を目視にて確認し、以下の基準で評価する。
A:曇りが無い
B:僅かに曇りがある
C:明らかな曇りがある
D:著しい曇りがある。
(17) Appearance of the coating film (cloudy)
A fluorescent lamp “trade name: Mellow 5N” (manufactured by Toshiba Lighting & Technology Co., Ltd., three-wavelength daylight white fluorescent lamp) is mounted in a box whose inner wall is black and has a hard coat layer film containing the metal oxide fine particles. The sample substrate is placed vertically directly under the fluorescent lamp, and the transparency (degree of cloudiness) is visually confirmed and evaluated according to the following criteria.
A: No haze B: Slight haze C: Clear haze D: Significant haze

(18)塗膜の耐擦傷性試験
ハードコート層膜を形成した試料基板の表面をボンスタースチールウール♯0000(日本スチールウール(株)製)で手擦りし、傷の入り具合を目視にて判定し、以下の基準で評価する。
A:殆ど傷が入らない
B:若干の傷が入る
C:かなりの傷が入る
D:擦った面積のほぼ全面に傷が入る。
(18) Scratch resistance test of coating film The surface of the sample substrate on which the hard coat layer film is formed is manually rubbed with Bonstar Steel Wool # 0000 (manufactured by Nippon Steel Wool Co., Ltd.), and the degree of damage is visually determined. The evaluation is based on the following criteria.
A: Almost no flaws B: Some flaws enter C: Some flaws enter

(19)塗膜の密着性試験
ハードコート層膜を形成した試料基板のレンズ表面に、ナイフにより1mm間隔で切れ目を入れ、1平方mmのマス目を100個形成し、セロハン製粘着テープを強く押し付けた後、プラスチックレンズ基板の面内方向に対して90度方向へ急激に引っ張り、この操作を合計5回行い、剥離しないマス目の数を数え、以下の基準で評価する。
良好:剥離していないマス目の数が95個以上
不良:剥離していないマス目の数が95個未満。
(19) Adhesion test of coating film On the lens surface of the sample substrate on which the hard coat layer film is formed, cuts are made at intervals of 1 mm with a knife to form 100 squares of 1 mm square, and the cellophane adhesive tape is strongly After pressing, the plastic lens substrate is rapidly pulled in the direction of 90 degrees with respect to the in-plane direction of the plastic lens substrate, this operation is performed a total of five times, the number of squares that do not peel off is counted, and the following criteria are evaluated.
Good: The number of cells not peeled is 95 or more. Bad: The number of cells not peeled is less than 95.

(20)塗膜の耐候性試験
ハードコート層膜を形成した試料基板をキセノンウエザーメーター(スガ試験機(株)製X−75型)で曝露試験をした後、外観の確認および前記の密着性試験と同様の試験を行い、以下の基準で評価する。なお、曝露時間は、反射防止膜を有している基板は200時間、反射防止膜を有していない基板は50時間とする。
良好:剥離していないマス目の数が95個以上
不良:剥離していないマス目の数が95個未満。
(20) Weather resistance test of coating film After subjecting the sample substrate on which the hard coat layer film was formed to an exposure test using a xenon weather meter (X-75 type, manufactured by Suga Test Instruments Co., Ltd.), the appearance was confirmed and the adhesion was Perform the same test as the test and evaluate according to the following criteria. The exposure time is 200 hours for a substrate having an antireflection film and 50 hours for a substrate not having an antireflection film.
Good: The number of cells not peeled is 95 or more. Bad: The number of cells not peeled is less than 95.

(21)塗膜の耐光性試験
退色試験用水銀ランプ(東芝(株)製H400−E)により紫外線を50時間照射し、試験前後のレンズ色の目視確認を行い、以下の基準で評価する。なお、ランプと試験片との照射距離は、70mmとし、ランプの出力は、試験片の表面温度が45±5℃となるように調整する。また、この試験は、反射防止膜をハードコート層の表面に施したプラスチックレンズを対象として行ったものである。
○:あまり変色が認められない
△:若干の変色が認められる
×:明らかな変色が認められる。
(21) Light resistance test of coating film Irradiation with ultraviolet rays is performed for 50 hours by a mercury lamp for fading test (H400-E manufactured by Toshiba Corporation), and the lens color before and after the test is visually confirmed, and evaluated according to the following criteria. The irradiation distance between the lamp and the test piece is 70 mm, and the output of the lamp is adjusted so that the surface temperature of the test piece is 45 ± 5 ° C. This test was conducted on a plastic lens having an antireflection film applied to the surface of the hard coat layer.
○: Not much discoloration is observed Δ: Some discoloration is observed ×: Clear discoloration is recognized

[実施例]
以下、本発明を実施例に基づき具体的に説明する。しかし、本発明は、これらの実施例に記載された範囲に限定されるものではない。
[Example]
Hereinafter, the present invention will be specifically described based on examples. However, the present invention is not limited to the scope described in these examples.

[参考例1]
チタン系微粒子を含む水分散ゾルの調製
四塩化チタン(大阪チタニウムテクノロジ-ズ(株)製)をTiO2換算基準で7.75重量%含む四塩化チタン水溶液11.37kgと、アンモニアを15重量%含むアンモニア水(宇部興産(株)製)4.41kgとを混合し、pH9.5の白色スラリー液を調製した。次いで、このスラリーを濾過した後、純水で洗浄して、固形分含有量が10重量%の含水チタン酸ケーキ9.27kgを得た。
次に、このケーキに、過酸化水素を35重量%含む過酸化水素水(三菱瓦斯化学(株)製)10.60kgと純水20.00kgとを加えた後、80℃の温度で1時間、撹拌下で加熱し、さらに純水52.87kgを加えて、過酸化チタン酸をTiO2換算基準で1重量%含む過酸化チタン酸水溶液を92.75kg得た。この過酸化チタン酸水溶液は、透明な黄褐色でpHは8.5であった。
[ Reference Example 1]
Preparation of water-dispersed sol containing titanium-based fine particles 11.37 kg of titanium tetrachloride aqueous solution containing 7.75 wt% of titanium tetrachloride (manufactured by Osaka Titanium Technologies Co., Ltd.) in terms of TiO 2 , and 15 wt% of ammonia Ammonia water containing (manufactured by Ube Industries) 4.41 kg was mixed to prepare a white slurry liquid having a pH of 9.5. The slurry was then filtered and washed with pure water to obtain 9.27 kg of a hydrous titanate cake having a solid content of 10% by weight.
Next, 10.60 kg of hydrogen peroxide containing 35% by weight of hydrogen peroxide (manufactured by Mitsubishi Gas Chemical Co., Ltd.) and 20.00 kg of pure water are added to the cake, and then at a temperature of 80 ° C. for 1 hour. The mixture was heated under stirring, and 52.87 kg of pure water was further added to obtain 92.75 kg of an aqueous solution of titanic acid peroxide containing 1 wt% of titanic acid peroxide on a TiO 2 basis. This aqueous solution of titanic acid peroxide was transparent yellowish brown and had a pH of 8.5.

次いで、前記過酸化チタン酸水溶液92.75kgに陽イオン交換樹脂(三菱化学(株)製)4.4kgを混合して、これに、スズ酸カリウム(昭和化工(株)製)をSnO2換算基準で1重量%含むスズ酸カリウム水溶液11.59kgを撹拌下で徐々に添加した。
次に、カリウムイオンなどを取り込んだ陽イオン交換樹脂を分離した後、平均粒子径が7nmのシリカ微粒子を15重量%含むシリカゾル(日揮触媒化成(株)製)0.44kgと純水6.22kgとを混合して、オートクレーブ(耐圧硝子工業(株)製、120L)中で165℃の温度で18時間、加熱した。
Next, 4.4 kg of a cation exchange resin (manufactured by Mitsubishi Chemical Corporation) was mixed with 92.75 kg of the aqueous solution of titanic acid titanate, and potassium stannate (manufactured by Showa Kako Co., Ltd.) was converted into SnO 2. 11.59 kg of an aqueous potassium stannate solution containing 1% by weight on a standard basis was gradually added with stirring.
Next, after separating the cation exchange resin incorporating potassium ions and the like, 0.44 kg of silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd.) containing 15% by weight of silica fine particles having an average particle diameter of 7 nm and 6.22 kg of pure water. Were mixed and heated in an autoclave (pressure-resistant glass industry, 120 L) at a temperature of 165 ° C. for 18 hours.

次に、得られた混合水溶液を室温まで冷却した後、限外濾過膜装置(旭化成(株)製、ACV−3010)で濃縮して、固形分含有量が10重量%の混合水溶液9.90kgを得た。
このようにして得られた混合水溶液中に含まれる固形物を上記の方法で測定したところ、ルチル型の結晶構造を有する、チタン、スズおよびケイ素を含む複合酸化物微粒子(一次粒子)であった。さらに、この複合酸化物微粒子中に含まれる金属成分の含有量を測定したところ、各金属成分の酸化物換算基準で、TiO282.8重量%、SnO210.1重量%、SiO25.4重量%およびK2O1.7重量%であった。また、該混合水溶液のpHは9.2であった。
次いで、前記複合酸化物微粒子を含む混合水溶液9.00kgをスプレードライヤー(NIRO社製NIRO ATOMIZER)に供して噴霧乾燥(入口温度:260℃、出口温度:55℃)した。これにより、平均粒子径が約2μmの複合酸化物粒子からなる乾燥粉体0.63kgを得た。
Next, after cooling the obtained mixed aqueous solution to room temperature, it was concentrated with an ultrafiltration membrane device (ACV-3010, manufactured by Asahi Kasei Co., Ltd.), and 9.90 kg of the mixed aqueous solution having a solid content of 10% by weight. Got.
The solid contained in the mixed aqueous solution thus obtained was measured by the above method, and as a result, it was a composite oxide fine particle (primary particle) containing titanium, tin and silicon having a rutile crystal structure. . Furthermore, when the content of the metal component contained in the composite oxide fine particles was measured, 82.8% by weight of TiO 2 , 10.1% by weight of SnO 2 , SiO 2 5 based on the oxide conversion standard of each metal component. And 4% by weight and 1.7% by weight of K 2 O. The pH of the mixed aqueous solution was 9.2.
Next, 9.00 kg of the mixed aqueous solution containing the composite oxide fine particles was spray-dried (inlet temperature: 260 ° C., outlet temperature: 55 ° C.) using a spray dryer (NIRO ATOMIZER manufactured by NIRO). As a result, 0.63 kg of a dry powder composed of composite oxide particles having an average particle diameter of about 2 μm was obtained.

次に、上記で得られた複合酸化物粒子の乾燥粉体0.63kgを、空気雰囲気下、600℃の温度にて1時間焼成して、複合酸化物粒子の焼成粉体0.59kgを得た。
このように焼成して得られた複合酸化物粒子(チタン系粒子)は、ルチル型の結晶構造を有しており、比表面積が138m2/gであり、X線回折結晶子径が8.9nmであった。また、X線回折から求められる、(310)結晶面の面間隔が0.1452nmであり、(301)結晶面の面間隔が0.1357nmであった。 さらに、X線回折から求められる、(310)結晶面のピーク強度P1と(110)結晶面のピーク強度P2との相対ピーク強度比(P1/P2)は13/100であった。
Next, 0.63 kg of the dry powder of the composite oxide particles obtained above was fired for 1 hour at a temperature of 600 ° C. in an air atmosphere to obtain 0.59 kg of a fired powder of the composite oxide particles. It was.
The composite oxide particles (titanium-based particles) obtained by firing in this way have a rutile crystal structure, a specific surface area of 138 m 2 / g, and an X-ray diffraction crystallite diameter of 8. It was 9 nm. Further, the interplanar spacing of (310) crystal planes determined from X-ray diffraction was 0.1452 nm, and the interplanar spacing of (301) crystal planes was 0.1357 nm. Furthermore, as determined by X-ray diffraction, (310) crystal face of the peak intensity P 1 and (110) relative peak intensity ratio of the peak intensity P 2 of the crystal plane (P 1 / P 2) was 13/100 .

次に、得られた複合酸化物粒子(チタン系粒子)の焼成粉体0.17kgを純水250.4gに分散させ、これに10重量%濃度の水酸化カリウム水溶液24.8gを添加してpH11.0に調整した。次いで、この混合水溶液に粒子径0.1〜0.2mmの石英ビーズ(MRCユニテック(株)製高純度シリカビーズ015)1.27kgを加えて、これを湿式粉砕機(カンペ(株)製バッチ式卓上サンドミル)に供して180分間、前記複合酸化物粒子の粉砕処理を行った。その後、石英ビーズを目開き44μmのステンレス製フィルターを用いて分離・除去したのち、さらに純水840.0gを添加して撹拌し、固形分含有量が11重量%の水分散ゾル1.19kgを得た。
このように粉砕して得られた複合酸化物微粒子を含む水分散ゾルは乳白色であった。また、この水分散ゾル中に含まれる前記複合酸化物微粒子の平均粒子径は104nmであり、さらに100nm以上の粒子径を有する粗大粒子の分布頻度は58.6%であった。
Next, 0.17 kg of the calcined powder of the obtained composite oxide particles (titanium particles) was dispersed in 250.4 g of pure water, and 24.8 g of 10 wt% potassium hydroxide aqueous solution was added thereto. The pH was adjusted to 11.0. Next, 1.27 kg of quartz beads having a particle size of 0.1 to 0.2 mm (high-purity silica beads 015 manufactured by MRC Unitech Co., Ltd.) was added to this mixed aqueous solution, The composite oxide particles were pulverized for 180 minutes. Then, after separating and removing the quartz beads using a stainless steel filter having an opening of 44 μm, 840.0 g of pure water was further added and stirred, and 1.19 kg of an aqueous dispersion sol having a solid content of 11 wt% was added. Obtained.
The aqueous dispersion sol containing composite oxide fine particles obtained by pulverization in this way was milky white. The average particle size of the composite oxide fine particles contained in the water-dispersed sol was 104 nm, and the distribution frequency of coarse particles having a particle size of 100 nm or more was 58.6%.

次いで、前記水分散ゾル1.19kgに純水0.12kgを添加して、固形分濃度が10重量%の水分散ゾルとし、さらに陰イオン交換樹脂(三菱化学(株)製)0.29kgを混合して15分間攪拌した。次に、前記陰イオン交換樹脂を目開き44μmのステンレス製フィルターを用いて分離・除去したのち、陽イオン交換樹脂(三菱化学(株)製)40.1gを混合して15分間攪拌した。次いで、前記陽イオン交換樹脂を目開き44μmのステンレス製フィルターを用いて分離・除去したのち、この水分散ゾルを遠心分離機(日立工機(株)製CR−21G)に供して12,000rpmの速度で1時間処理して、100nm以上の粒子径を有する粗大粒子を分級して取り除いた。これにより、固形分含有量が6.6重量%の水分散ゾル1.12kgを得た。 Next, 0.12 kg of pure water was added to 1.19 kg of the water-dispersed sol to obtain a water-dispersed sol having a solid concentration of 10% by weight, and 0.29 kg of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation). Mix and stir for 15 minutes. Next, after separating and removing the anion exchange resin using a stainless steel filter having an opening of 44 μm, 40.1 g of a cation exchange resin (manufactured by Mitsubishi Chemical Corporation) was mixed and stirred for 15 minutes. Next, the cation exchange resin was separated and removed using a stainless steel filter having an opening of 44 μm, and this water-dispersed sol was subjected to a centrifuge (CR-21G manufactured by Hitachi Koki Co., Ltd.) to 12,000 rpm. Then, the coarse particles having a particle diameter of 100 nm or more were classified and removed. As a result, 1.12 kg of an aqueous dispersion sol having a solid content of 6.6% by weight was obtained.

次いで、前記水分散ゾル(固形分含有量が6.6重量%)1.12kgに、純水2.58kgを混合して、固形分含有量が2.0重量%の水分散ゾル3.70kgを得た。次に、この水分散ゾルをオートクレーブ(耐圧硝子工業(株)製、5L)に入れて、165℃の温度で18時間、加熱処理した。
次に、オートクレーブから取り出して室温まで冷却された水分散ゾルに、陰イオン交換樹脂(三菱化学(株)製)0.15kgを混合して15分間攪拌した。次いで、前記陰イオン交換樹脂を目開き44μmのステンレス製フィルターを用いて分離・除去したのち、陽イオン交換樹脂(三菱化学(株)製)9.8gを混合して15分間攪拌した。さらに、前記陽イオン交換樹脂を目開き44μmのステンレス製フィルターを用いて分離・除去して、脱イオンされた固形分含有量が2.0重量%の水分散ゾルを得た。これにより、前記複合酸化物粒子を焼成して粉砕し、さらに粗大粒子を分級・除去したチタン系微粒子(以下、「CP−1」という。)を含む水分散ゾル3.62kgを得た。
Next, 1.82 kg of the above water-dispersed sol (solid content 6.6% by weight) is mixed with 2.58 kg of pure water, and 3.70 kg of water-dispersed sol having a solid content of 2.0% by weight. Got. Next, this water-dispersed sol was put in an autoclave (manufactured by Pressure Glass Industrial Co., Ltd., 5 L) and heat-treated at a temperature of 165 ° C. for 18 hours.
Next, 0.15 kg of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation) was mixed with the water dispersion sol taken out from the autoclave and cooled to room temperature, and stirred for 15 minutes. Next, the anion exchange resin was separated and removed using a stainless steel filter having an opening of 44 μm, and then 9.8 g of a cation exchange resin (manufactured by Mitsubishi Chemical Corporation) was mixed and stirred for 15 minutes. Further, the cation exchange resin was separated and removed using a stainless steel filter having an opening of 44 μm to obtain a water-dispersed sol having a deionized solid content of 2.0% by weight. Thus, 3.62 kg of an aqueous dispersion sol containing titanium-based fine particles (hereinafter referred to as “CP-1”) obtained by firing and pulverizing the composite oxide particles and further classifying and removing coarse particles was obtained.

このようにして得られたチタン系微粒子を含む水分散ゾルは透明な乳白色であり、その濁度は0.42cm-1であった。また、この水分散ゾル中に含まれる前記チタン系微粒子の平均粒子径は31nmであり、さらに100nm以上の粒子径を有する粗大粒子の分布頻度は0%であった。
また、前記チタン系微粒子は、ルチル型の結晶構造を有しており、比表面積やX線回折結晶子径、さらにはX線回折から求められる結晶面間隔や相対ピーク強度比は、前記複合酸化物粒子(粉砕前のチタン系粒子)と同じ値を示した。
さらに、このチタン系微粒子中に含まれる金属成分の含有量を測定したところ、各金属成分の酸化物換算基準で、TiO284.4重量%、SnO29.9重量%、SiO25.3重量%およびK2O0.4重量%であった。なお、この金属含有量より求められる前記チタン系微粒子の比重は4.20であった。
また、上記の「粒子の屈折率測定法A」に記載の方法に基づき、分光エリプソメーターを用いて測定された塗膜屈折率Nav’は、前記塗料組成物中に含まれる粒子の重量分率mが10重量%、20重量%、30重量%、40重量%、50重量%、55重量%であるとき、それぞれ1.544、1.584、1.630、1.682、1.743、1.775であった。さらに、前記塗膜屈折率Nav’と前記体積分率・重量分率の変換式およびマクスウェル−ガーネットの式から算出される塗膜屈折率Navとから求められる偏差平方和の最小値は0.000167であり、その最小値を示す粒子の屈折率は2.35であった。これにより、前記チタン系微粒子の屈折率は2.35であるとみなすことができた。
上記の測定結果のうち、本発明に関係する主要データを表1に示す。
The water-dispersed sol containing titanium-based fine particles thus obtained was transparent milky white and had a turbidity of 0.42 cm −1 . The average particle size of the titanium-based fine particles contained in the water-dispersed sol was 31 nm, and the distribution frequency of coarse particles having a particle size of 100 nm or more was 0%.
The titanium-based fine particles have a rutile-type crystal structure, and the specific surface area, X-ray diffraction crystallite diameter, crystal plane spacing and relative peak intensity ratio obtained from X-ray diffraction are determined by the composite oxidation. It showed the same value as the product particles (titanium-based particles before pulverization).
Furthermore, when the content of the metal component contained in the titanium-based fine particles was measured, TiO 2 84.4 wt%, SnO 2 9.9 wt%, SiO 2 5. 3 wt% and K 2 O 0.4 wt%. The specific gravity of the titanium-based fine particles obtained from this metal content was 4.20.
The coating film refractive index Nav ′ measured using a spectroscopic ellipsometer based on the method described in the above “Particle Refractive Index Measurement Method A” is a weight fraction of particles contained in the coating composition. When m is 10%, 20%, 30%, 40%, 50%, 55% by weight, 1.544, 1.584, 1.630, 1.682, 1.743, 1.775. Further, the minimum value of the deviation sum of squares obtained from the coating film refractive index Nav ′, the volume fraction / weight fraction conversion formula and the coating refractive index Nav calculated from the Maxwell-Garnet formula is 0.000167. The refractive index of the particles showing the minimum value was 2.35. Thereby, it could be considered that the refractive index of the titanium-based fine particles was 2.35.
Among the above measurement results, main data related to the present invention are shown in Table 1.

[参考例2]
チタン系微粒子を含む水分散ゾルの調製
四塩化チタン(大阪チタニウムテクノロジ-ズ(株)製)をTiO2換算基準で7.75重量%含む四塩化チタン水溶液12.09kgと、アンモニアを15重量%含むアンモニア水(宇部興産(株)製)4.69kgとを混合し、pH9.5の白色スラリー液を調製した。次いで、このスラリーを濾過した後、純水で洗浄して、固形分含有量が10重量%の含水チタン酸ケーキ9.87kgを得た。
次に、このケーキに、過酸化水素を35重量%含む過酸化水素水(三菱瓦斯化学(株)製)11.28kgと純水20.00kgとを加えた後、80℃の温度で1時間、撹拌下で加熱し、さらに純水57.52kgを加えて、過酸化チタン酸をTiO2換算基準で1重量%含む過酸化チタン酸水溶液を98.67kg得た。この過酸化チタン酸水溶液は、透明な黄褐色でpHは8.5であった。
[ Reference Example 2]
Preparation of water-dispersed sol containing titanium-based fine particles 12.09 kg of titanium tetrachloride aqueous solution containing 7.75% by weight of titanium tetrachloride (manufactured by Osaka Titanium Technologies Co., Ltd.) in terms of TiO 2 , and 15% by weight of ammonia 4.69 kg of ammonia water (manufactured by Ube Industries) was mixed to prepare a white slurry liquid having a pH of 9.5. The slurry was then filtered and washed with pure water to obtain 9.87 kg of a hydrous titanate cake having a solid content of 10% by weight.
Next, 11.28 kg of hydrogen peroxide containing 35% by weight of hydrogen peroxide (Mitsubishi Gas Chemical Co., Ltd.) and 20.00 kg of pure water were added to this cake, and then at a temperature of 80 ° C. for 1 hour. The mixture was heated under stirring, and 57.52 kg of pure water was further added to obtain 98.67 kg of an aqueous solution of titanic acid peroxide containing 1 wt% of titanic acid peroxide on a TiO 2 basis. This aqueous solution of titanic acid peroxide was transparent yellowish brown and had a pH of 8.5.

次いで、前記過酸化チタン酸水溶液98.67kgに陽イオン交換樹脂(三菱化学(株)製)4.7kgを混合して、これに、スズ酸カリウム(昭和化工(株)製)をSnO2換算基準で1重量%含むスズ酸カリウム水溶液12.33kgを撹拌下で徐々に添加した。
次に、カリウムイオンなどを取り込んだ陽イオン交換樹脂を分離した後、オートクレーブ(耐圧硝子工業(株)製、120L)に入れて、165℃の温度で18時間、加熱した。
Next, 4.7 kg of a cation exchange resin (manufactured by Mitsubishi Chemical Corporation) was mixed with 98.67 kg of the above-mentioned aqueous solution of titanic acid titanate, and potassium stannate (manufactured by Showa Kako Co., Ltd.) was converted into SnO 2. 12.33 kg of an aqueous potassium stannate solution containing 1% by weight on a standard basis was gradually added with stirring.
Next, after separating the cation exchange resin which took in potassium ion etc., it put into the autoclave (The pressure | voltage resistant glass industry Co., Ltd. product, 120L), and heated at the temperature of 165 degreeC for 18 hours.

次に、得られた混合水溶液を室温まで冷却した後、限外濾過膜装置(旭化成(株)製、ACV−3010)で濃縮して、固形分含有量が10重量%の混合水溶液9.90kgを得た。
このようにして得られた混合水溶液中に含まれる固形物を上記の方法で測定したところ、ルチル型の結晶構造を有する、チタンおよびスズを含む複合酸化物微粒子(一次粒子)であった。さらに、この複合酸化物微粒子中に含まれる金属成分の含有量を測定したところ、各金属成分の酸化物換算基準で、TiO287.2重量%、SnO211.0重量%、およびK2O1.8重量%であった。また、該混合水溶液のpHは10.0であった。
次いで、前記複合酸化物微粒子を含む混合水溶液9.00kgをスプレードライヤー(NIRO社製NIRO ATOMIZER)に供して噴霧乾燥(入口温度:260℃、出口温度:55℃)した。これにより、平均粒子径が約2μmの複合酸化物粒子からなる乾燥粉体0.63kgを得た。
Next, after cooling the obtained mixed aqueous solution to room temperature, it was concentrated with an ultrafiltration membrane device (ACV-3010, manufactured by Asahi Kasei Co., Ltd.), and 9.90 kg of the mixed aqueous solution having a solid content of 10% by weight. Got.
The solids contained in the mixed aqueous solution thus obtained were measured by the above method. As a result, they were complex oxide fine particles (primary particles) containing titanium and tin having a rutile crystal structure. Furthermore, when the content of the metal component contained in the composite oxide fine particles was measured, 87.2% by weight of TiO 2 , 11.0% by weight of SnO 2 , and K 2 on the oxide conversion standard of each metal component. It was 1.8% by weight of O. The pH of the mixed aqueous solution was 10.0.
Next, 9.00 kg of the mixed aqueous solution containing the composite oxide fine particles was spray-dried (inlet temperature: 260 ° C., outlet temperature: 55 ° C.) using a spray dryer (NIRO ATOMIZER manufactured by NIRO). As a result, 0.63 kg of a dry powder composed of composite oxide particles having an average particle diameter of about 2 μm was obtained.

次に、上記で得られた複合酸化物粒子の乾燥粉体0.63kgを、空気雰囲気下、500℃の温度にて1時間焼成して、複合酸化物粒子の焼成粉体0.59kgを得た。
このように焼成して得られた複合酸化物粒子(チタン系粒子)は、ルチル型の結晶構造を有しており、比表面積が124m2/gであり、X線回折結晶子径が9.6nmであった。また、X線回折から求められる、(310)結晶面の面間隔が0.1447nmであり、(301)結晶面の面間隔が0.1366nmであった。 さらに、X線回折から求められる、(310)結晶面のピーク強度P1と(110)結晶面のピーク強度P2との相対ピーク強度比(P1/P2)は14/100であった。なお、この時得られたX線回折チャート(XRDチャート)を示せば、図1の通りである。
Next, 0.63 kg of the dried powder of composite oxide particles obtained above was calcined at 500 ° C. for 1 hour in an air atmosphere to obtain 0.59 kg of calcined powder of composite oxide particles. It was.
The composite oxide particles (titanium-based particles) obtained by firing in this way have a rutile crystal structure, a specific surface area of 124 m 2 / g, and an X-ray diffraction crystallite diameter of 9. It was 6 nm. Further, the interplanar spacing of (310) crystal planes determined from X-ray diffraction was 0.1447 nm, and the interplanar spacing of (301) crystal planes was 0.1366 nm. Furthermore, as determined by X-ray diffraction, (310) crystal face of the peak intensity P 1 and (110) relative peak intensity ratio of the peak intensity P 2 of the crystal plane (P 1 / P 2) was 14/100 . An X-ray diffraction chart (XRD chart) obtained at this time is as shown in FIG.

次に、得られた複合酸化物粒子(チタン系粒子)の焼成粉体0.17kgを純水250.4gに分散させ、これに10重量%濃度の水酸化カリウム水溶液24.8gを添加してpH11.0に調整した。次いで、この混合水溶液に粒子径0.1〜0.2mmの石英ビーズ(MRCユニテック(株)製高純度シリカビーズ015)1.27kgを加えて、これを湿式粉砕機(カンペ(株)製バッチ式卓上サンドミル)に供して180分間、前記複合酸化物粒子の粉砕処理を行った。その後、石英ビーズを目開き44μmのステンレス製フィルターを用いて分離・除去したのち、さらに純水840.0gを添加して撹拌し、固形分含有量が11重量%の水分散ゾル1.17kgを得た。
このように粉砕して得られた複合酸化物微粒子を含む水分散ゾルは乳白色であった。また、この水分散ゾル中に含まれる前記複合酸化物微粒子の平均粒子径は106nmであり、さらに100nm以上の粒子径を有する粗大粒子の分布頻度は59.1%であった。
Next, 0.17 kg of the calcined powder of the obtained composite oxide particles (titanium particles) was dispersed in 250.4 g of pure water, and 24.8 g of 10 wt% potassium hydroxide aqueous solution was added thereto. The pH was adjusted to 11.0. Next, 1.27 kg of quartz beads having a particle size of 0.1 to 0.2 mm (high-purity silica beads 015 manufactured by MRC Unitech Co., Ltd.) was added to this mixed aqueous solution, The composite oxide particles were pulverized for 180 minutes. Then, after separating and removing the quartz beads using a stainless steel filter having an opening of 44 μm, 840.0 g of pure water was further added and stirred, and 1.17 kg of an aqueous dispersion sol having a solid content of 11 wt% was added. Obtained.
The aqueous dispersion sol containing composite oxide fine particles obtained by pulverization in this way was milky white. The average particle size of the composite oxide fine particles contained in the water-dispersed sol was 106 nm, and the distribution frequency of coarse particles having a particle size of 100 nm or more was 59.1%.

次いで、前記水分散ゾル1.17kgに純水0.12kgを添加して、固形分濃度が10重量%の水分散ゾルとし、さらに陰イオン交換樹脂(三菱化学(株)製)0.29kgを混合して15分間攪拌した。次に、前記陰イオン交換樹脂を目開き44μmのステンレス製フィルターを用いて分離・除去したのち、陽イオン交換樹脂(三菱化学(株)製)39.4gを混合して15分間攪拌した。次いで、前記陽イオン交換樹脂を目開き44μmのステンレス製フィルターを用いて分離・除去したのち、この水分散ゾルを遠心分離機(日立工機(株)製CR−21G)に供して12,000rpmの速度で1時間処理して、100nm以上の粒子径を有する粗大粒子を分級して取り除いた。これにより、固形分含有量が6.4重量%の水分散ゾル1.13kgを得た。 Next, 0.12 kg of pure water was added to 1.17 kg of the water dispersion sol to obtain a water dispersion sol having a solid content concentration of 10% by weight, and 0.29 kg of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation). Mix and stir for 15 minutes. Next, after separating and removing the anion exchange resin using a stainless steel filter having an opening of 44 μm, 39.4 g of a cation exchange resin (Mitsubishi Chemical Corporation) was mixed and stirred for 15 minutes. Next, the cation exchange resin was separated and removed using a stainless steel filter having an opening of 44 μm, and this water-dispersed sol was subjected to a centrifuge (CR-21G manufactured by Hitachi Koki Co., Ltd.) to 12,000 rpm. Then, the coarse particles having a particle diameter of 100 nm or more were classified and removed. As a result, 1.13 kg of an aqueous dispersion sol having a solid content of 6.4% by weight was obtained.

次いで、前記水分散ゾル(固形分含有量が6.4重量%)1.13kgに、純水2.49kgを混合して、固形分含有量が2.0重量%の水分散ゾル3.62kgを得た。次に、この水分散ゾルをオートクレーブ(耐圧硝子工業(株)製、5L)に入れて、165℃の温度で18時間、加熱処理した。
次に、オートクレーブから取り出して室温まで冷却された水分散ゾルに、陰イオン交換樹脂(三菱化学(株)製)0.14kgを混合して15分間攪拌した。次いで、前記陰イオン交換樹脂を目開き44μmのステンレス製フィルターを用いて分離・除去したのち、陽イオン交換樹脂(三菱化学(株)製)9.5gを混合して15分間攪拌した。さらに、前記陽イオン交換樹脂を目開き44μmのステンレス製フィルターを用いて分離・除去して、脱イオンされた固形分含有量が2.0重量%の水分散ゾルを得た。これにより、前記複合酸化物粒子を焼成して粉砕し、さらに粗大粒子を分級・除去したチタン系微粒子(以下、「CP−2」という。)を含む水分散ゾル3.52kgを得た。
Subsequently, 1.49 kg of the water-dispersed sol (solid content is 6.4% by weight) is mixed with 2.49 kg of pure water to obtain 3.62 kg of water-dispersed sol having a solid content of 2.0% by weight. Got. Next, this water-dispersed sol was put in an autoclave (manufactured by Pressure Glass Industrial Co., Ltd., 5 L) and heat-treated at a temperature of 165 ° C. for 18 hours.
Next, 0.14 kg of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation) was mixed with the water dispersion sol taken out from the autoclave and cooled to room temperature, and stirred for 15 minutes. Next, the anion exchange resin was separated and removed using a stainless steel filter having an opening of 44 μm, and then 9.5 g of a cation exchange resin (Mitsubishi Chemical Corporation) was mixed and stirred for 15 minutes. Further, the cation exchange resin was separated and removed using a stainless steel filter having an opening of 44 μm to obtain a water-dispersed sol having a deionized solid content of 2.0% by weight. As a result, 3.52 kg of an aqueous dispersion sol containing titanium-based fine particles (hereinafter referred to as “CP-2”) obtained by firing and pulverizing the composite oxide particles and further classifying and removing coarse particles was obtained.

このようにして得られたチタン系微粒子を含む水分散ゾルは透明な乳白色であり、その濁度は0.51cm-1であった。また、この水分散ゾル中に含まれる前記チタン系微粒子の平均粒子径は35nmであり、さらに100nm以上の粒子径を有する粗大粒子の分布頻度は0%であった。
また、前記チタン系微粒子は、ルチル型の結晶構造を有しており、比表面積やX線回折結晶子径、さらにはX線回折から求められる結晶面間隔や相対ピーク強度比は、前記複合酸化物粒子(粉砕前のチタン系粒子)と同じ値を示した。
さらに、このチタン系微粒子中に含まれる金属成分の含有量を測定したところ、各金属成分の酸化物換算基準で、TiO288.5重量%、SnO211.1重量%およびK2O0.4重量%であった。なお、この金属含有量より求められる前記チタン系微粒子の比重は4.44であった。
また、上記の「粒子の屈折率測定法A」に記載の方法に基づき、分光エリプソメーターを用いて測定された塗膜屈折率Nav’は、前記塗料組成物中に含まれる粒子の重量分率mが10重量%、20重量%、30重量%、40重量%、50重量%、55重量%であるとき、それぞれ1.532、1.598、1.622、1.681、1.746、1.783であった。さらに、前記塗膜屈折率Nav’と前記体積分率・重量分率の変換式およびマクスウェル−ガーネットの式から算出される塗膜屈折率Navとから求められる偏差平方和の最小値は0.000421であり、その最小値を示す粒子の屈折率は2.38であった。これにより、前記チタン系微粒子の屈折率は2.38であるとみなすことができた。
上記の測定結果のうち、本発明に関係する主要データを表1に示す。
The water-dispersed sol containing titanium-based fine particles thus obtained was transparent milky white and had a turbidity of 0.51 cm −1 . The average particle diameter of the titanium-based fine particles contained in the water-dispersed sol was 35 nm, and the distribution frequency of coarse particles having a particle diameter of 100 nm or more was 0%.
The titanium-based fine particles have a rutile-type crystal structure, and the specific surface area, X-ray diffraction crystallite diameter, crystal plane spacing and relative peak intensity ratio obtained from X-ray diffraction are determined by the composite oxidation. It showed the same value as the product particles (titanium-based particles before pulverization).
Furthermore, when the content of the metal component contained in the titanium-based fine particles was measured, TiO 2 88.5 wt%, SnO 2 11.1 wt% and K 2 O 0. It was 4% by weight. The specific gravity of the titanium-based fine particles determined from the metal content was 4.44.
The coating film refractive index Nav ′ measured using a spectroscopic ellipsometer based on the method described in the above “Particle Refractive Index Measurement Method A” is a weight fraction of particles contained in the coating composition. When m is 10%, 20%, 30%, 40%, 50%, 55% by weight, 1.532, 1.598, 1.622, 1.681, 1.746, 1.783. Further, the minimum value of the deviation sum of squares obtained from the coating film refractive index Nav ′, the volume fraction / weight fraction conversion formula and the coating refractive index Nav calculated from the Maxwell-Garnet formula is 0.000421. The refractive index of the particles showing the minimum value was 2.38. Thereby, it could be considered that the refractive index of the titanium-based fine particles was 2.38.
Among the above measurement results, main data related to the present invention are shown in Table 1.

[参考例3]
チタン系微粒子を含む水分散ゾルの調製
参考例1の場合と同様な方法で、平均粒子径が約2μmの複合酸化物粒子からなる乾燥粉体0.63kgを得た。
次いで、この複合酸化物粒子の乾燥粉体0.63kgを、空気雰囲気下、500℃の温度にて1時間焼成して、複合酸化物粒子の焼成粉体0.59kgを得た。
このように焼成して得られた複合酸化物粒子(チタン系粒子)は、ルチル型の結晶構造を有しており、比表面積が150m2/gであり、X線回折結晶子径が8.2nmであった。また、X線回折から求められる、(310)結晶面の面間隔が0.1448nmであり、(301)結晶面の面間隔が0.1357nmであった。 さらに、X線回折から求められる、(310)結晶面のピーク強度P1と(110)結晶面のピーク強度P2との相対ピーク強度比(P1/P2)は14/100であった。なお、この時得られたX線回折チャート(XRDチャート)を示せば、図2の通りである。
[ Reference Example 3]
Preparation of water-dispersed sol containing titanium-based fine particles
In the same manner as in Reference Example 1, 0.63 kg of dry powder composed of composite oxide particles having an average particle diameter of about 2 μm was obtained.
Next, 0.63 kg of the dry powder of the composite oxide particles was fired in an air atmosphere at a temperature of 500 ° C. for 1 hour to obtain 0.59 kg of a fired powder of the composite oxide particles.
The composite oxide particles (titanium particles) obtained by firing in this way have a rutile-type crystal structure, a specific surface area of 150 m 2 / g, and an X-ray diffraction crystallite diameter of 8. It was 2 nm. Further, the interplanar spacing of (310) crystal planes determined from X-ray diffraction was 0.1448 nm, and the interplanar spacing of (301) crystal planes was 0.1357 nm. Furthermore, as determined by X-ray diffraction, (310) crystal face of the peak intensity P 1 and (110) relative peak intensity ratio of the peak intensity P 2 of the crystal plane (P 1 / P 2) was 14/100 . An X-ray diffraction chart (XRD chart) obtained at this time is as shown in FIG.

次に、得られた複合酸化物粒子(チタン系粒子)の焼成粉体0.17kgを純水250.4gに分散させ、これに10重量%濃度の水酸化カリウム水溶液24.8gを添加してpH11.0に調整した。次いで、この混合水溶液に粒子径0.1〜0.2mmの石英ビーズ(MRCユニテック(株)製高純度シリカビーズ015)1.27kgを加えて、これを湿式粉砕機(カンペ(株)製バッチ式卓上サンドミル)に供して180分間、前記複合酸化物粒子の粉砕処理を行った。その後、石英ビーズを目開き44μmのステンレス製フィルターを用いて分離・除去したのち、さらに純水840.0gを添加して撹拌し、固形分含有量が11重量%の水分散ゾル1.35kgを得た。
このように粉砕して得られた複合酸化物微粒子を含む水分散ゾルは乳白色であった。また、この水分散ゾル中に含まれる前記複合酸化物微粒子の平均粒子径は98nmであり、さらに100nm以上の粒子径を有する粗大粒子の分布頻度は53.4%であった。
Next, 0.17 kg of the calcined powder of the obtained composite oxide particles (titanium particles) was dispersed in 250.4 g of pure water, and 24.8 g of 10 wt% potassium hydroxide aqueous solution was added thereto. The pH was adjusted to 11.0. Next, 1.27 kg of quartz beads having a particle size of 0.1 to 0.2 mm (high-purity silica beads 015 manufactured by MRC Unitech Co., Ltd.) was added to this mixed aqueous solution, The composite oxide particles were pulverized for 180 minutes. Then, after separating and removing the quartz beads using a stainless steel filter having an opening of 44 μm, 840.0 g of pure water was further added and stirred, and 1.35 kg of an aqueous dispersion sol having a solid content of 11 wt% was added. Obtained.
The aqueous dispersion sol containing composite oxide fine particles obtained by pulverization in this way was milky white. The average particle size of the composite oxide fine particles contained in the water-dispersed sol was 98 nm, and the distribution frequency of coarse particles having a particle size of 100 nm or more was 53.4%.

次いで、前記水分散ゾル1.35kgに純水0.14kgを添加して、固形分濃度が10重量%の水分散ゾルとし、さらに陰イオン交換樹脂(三菱化学(株)製)0.33kgを混合して15分間攪拌した。次に、前記陰イオン交換樹脂を目開き44μmのステンレス製フィルターを用いて分離・除去したのち、陽イオン交換樹脂(三菱化学(株)製)45.4gを混合して15分間攪拌した。次いで、前記陽イオン交換樹脂を目開き44μmのステンレス製フィルターを用いて分離・除去したのち、この水分散ゾルを遠心分離機(日立工機(株)製CR−21G)に供して12,000rpmの速度で1時間処理して、100nm以上の粒子径を有する粗大粒子を分級して取り除いた。これにより、固形分含有量が6.6重量%の水分散ゾル1.30kgを得た。 Next, 0.14 kg of pure water was added to 1.35 kg of the water-dispersed sol to obtain a water-dispersed sol having a solid concentration of 10% by weight, and 0.33 kg of an anion exchange resin (Mitsubishi Chemical Corporation) was added. Mix and stir for 15 minutes. Next, the anion exchange resin was separated and removed using a stainless steel filter having an opening of 44 μm, and then 45.4 g of a cation exchange resin (manufactured by Mitsubishi Chemical Corporation) was mixed and stirred for 15 minutes. Next, the cation exchange resin was separated and removed using a stainless steel filter having an opening of 44 μm, and this water-dispersed sol was subjected to a centrifuge (CR-21G manufactured by Hitachi Koki Co., Ltd.) to 12,000 rpm. Then, the coarse particles having a particle diameter of 100 nm or more were classified and removed. As a result, 1.30 kg of an aqueous dispersion sol having a solid content of 6.6% by weight was obtained.

次いで、前記水分散ゾル(固形分含有量が6.6重量%)1.30kgに、純水3.51kgを混合して、固形分含有量が2.0重量%の水分散ゾル4.81kgを得た。次に、この水分散ゾルをオートクレーブ(耐圧硝子工業(株)製、5L)に入れて、165℃の温度で18時間、加熱処理した。
次に、オートクレーブから取り出して室温まで冷却された水分散ゾルに、陰イオン交換樹脂(三菱化学(株)製)0.19kgを混合して15分間攪拌した。次いで、前記陰イオン交換樹脂を目開き44μmのステンレス製フィルターを用いて分離・除去したのち、陽イオン交換樹脂(三菱化学(株)製)12.7gを混合して15分間攪拌した。さらに、前記陽イオン交換樹脂を目開き44μmのステンレス製フィルターを用いて分離・除去して、脱イオンされた固形分含有量が2.0重量%の水分散ゾルを得た。これにより、前記複合酸化物粒子を焼成して粉砕し、さらに粗大粒子を分級・除去したチタン系微粒子(以下、「CP−3」という。)を含む水分散ゾル4.76kgを得た。
Next, 1.30 kg of the water-dispersed sol (solid content 6.6% by weight) is mixed with 3.51 kg of pure water, and 4.81 kg of water-dispersed sol having a solid content of 2.0% by weight. Got. Next, this water-dispersed sol was put in an autoclave (manufactured by Pressure Glass Industrial Co., Ltd., 5 L) and heat-treated at a temperature of 165 ° C. for 18 hours.
Next, 0.19 kg of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation) was mixed with the water dispersion sol taken out from the autoclave and cooled to room temperature, and stirred for 15 minutes. Next, the anion exchange resin was separated and removed using a stainless steel filter having an opening of 44 μm, and then 12.7 g of a cation exchange resin (manufactured by Mitsubishi Chemical Corporation) was mixed and stirred for 15 minutes. Further, the cation exchange resin was separated and removed using a stainless steel filter having an opening of 44 μm to obtain a water-dispersed sol having a deionized solid content of 2.0% by weight. As a result, 4.76 kg of an aqueous dispersion sol containing titanium-based fine particles (hereinafter referred to as “CP-3”) obtained by firing and pulverizing the composite oxide particles and further classifying and removing coarse particles was obtained.

このようにして得られたチタン系微粒子を含む水分散ゾルは透明な乳白色であり、その濁度は0.28cm-1であった。また、この水分散ゾル中に含まれる前記チタン系微粒子の平均粒子径は29nmであり、さらに100nm以上の粒子径を有する粗大粒子の分布頻度は0%であった。
また、前記チタン系微粒子は、ルチル型の結晶構造を有しており、比表面積やX線回折結晶子径、さらにはX線回折から求められる結晶面間隔や相対ピーク強度比は、前記複合酸化物粒子(粉砕前のチタン系粒子)と同じ値を示した。
さらに、このチタン系微粒子中に含まれる金属成分の含有量を測定したところ、各金属成分の酸化物換算基準で、TiO283.8重量%、SnO210.5重量%、SiO25.4重量%およびK2O0.3重量%であった。なお、この金属含有量より求められる前記チタン系微粒子の比重は4.21であった。
また、上記の「粒子の屈折率測定法A」に記載の方法に基づき、分光エリプソメーターを用いて測定された塗膜屈折率Nav’は、前記塗料組成物中に含まれる粒子の重量分率mが10重量%、20重量%、30重量%、40重量%、50重量%、55重量%であるとき、それぞれ1.534、1.573、1.619、1.671、1.731、1.764であった。さらに、前記塗膜屈折率Nav’と前記体積分率・重量分率の変換式およびマクスウェル−ガーネットの式から算出される塗膜屈折率Navとから求められる偏差平方和の最小値は0.000005であり、その最小値を示す粒子の屈折率は2.29であった。これにより、前記チタン系微粒子の屈折率は2.29であるとみなすことができた。因みに、上記の屈折率測定法B(標準液法)で測定された前記チタン系微粒子の屈折率は2.29であった。
上記の測定結果のうち、本発明に関係する主要データを表1に示す。
The water-dispersed sol containing titanium-based fine particles thus obtained was transparent milky white, and its turbidity was 0.28 cm −1 . The average particle diameter of the titanium-based fine particles contained in the water-dispersed sol was 29 nm, and the distribution frequency of coarse particles having a particle diameter of 100 nm or more was 0%.
The titanium-based fine particles have a rutile-type crystal structure, and the specific surface area, X-ray diffraction crystallite diameter, crystal plane spacing and relative peak intensity ratio obtained from X-ray diffraction are determined by the composite oxidation. It showed the same value as the product particles (titanium-based particles before pulverization).
Furthermore, measurement of the content of the metal component contained in the titanium-based fine particles, in terms of oxide based on the respective metal components, TiO 2 83.8 wt%, SnO 2 10.5 wt%, SiO 2 5. 4 was wt% and K 2 O0.3% by weight. The specific gravity of the titanium-based fine particles determined from the metal content was 4.21.
The coating film refractive index Nav ′ measured using a spectroscopic ellipsometer based on the method described in the above “Particle Refractive Index Measurement Method A” is a weight fraction of particles contained in the coating composition. When m is 10%, 20%, 30%, 40%, 50%, 55% by weight, 1.534, 1.573, 1.619, 1.671, 1.731, 1.764. Furthermore, the minimum value of the sum of square deviations obtained from the coating film refractive index Nav ′ and the coating volume refractive index Nav calculated from the volume fraction / weight fraction conversion formula and the Maxwell-Garnet formula is 0.000005. The refractive index of the particles showing the minimum value was 2.29. Thereby, it could be considered that the refractive index of the titanium-based fine particles was 2.29. Incidentally, the refractive index of the titanium-based fine particles measured by the refractive index measurement method B (standard solution method) was 2.29.
Among the above measurement results, main data related to the present invention are shown in Table 1.

[参考例4]
チタン系微粒子を含む水分散ゾルの調製
参考例1の場合と同様な方法で、平均粒子径が約2μmの複合酸化物粒子からなる乾燥粉体0.63kgを得た。
次いで、この複合酸化物粒子の乾燥粉体0.63kgを、空気雰囲気下、700℃の温度にて1時間焼成して、複合酸化物粒子の焼成粉体0.59kgを得た。
このように焼成して得られた複合酸化物粒子(チタン系粒子)は、ルチル型の結晶構造を有しており、比表面積が113m2/gであり、X線回折結晶子径が10.0nmであった。また、X線回折から求められる、(310)結晶面の面間隔が0.1453nmであり、(301)結晶面の面間隔が0.1363nmであった。 さらに、X線回折から求められる、(310)結晶面のピーク強度P1と(110)結晶面のピーク強度P2との相対ピーク強度比(P1/P2)は12/100であった。
[ Reference Example 4]
Preparation of water-dispersed sol containing titanium-based fine particles
In the same manner as in Reference Example 1, 0.63 kg of dry powder composed of composite oxide particles having an average particle diameter of about 2 μm was obtained.
Next, 0.63 kg of the dry powder of the composite oxide particles was fired for 1 hour at a temperature of 700 ° C. in an air atmosphere to obtain 0.59 kg of a fired powder of the composite oxide particles.
The composite oxide particles (titanium particles) obtained by firing in this way have a rutile crystal structure, a specific surface area of 113 m 2 / g, and an X-ray diffraction crystallite diameter of 10. It was 0 nm. Further, the interplanar spacing of (310) crystal planes determined from X-ray diffraction was 0.1453 nm, and the interplanar spacing of (301) crystal planes was 0.1363 nm. Furthermore, as determined by X-ray diffraction, (310) crystal face of the peak intensity P 1 and (110) relative peak intensity ratio of the peak intensity P 2 of the crystal plane (P1 / P 2) was 12/100.

次に、得られた複合酸化物粒子(チタン系粒子)の焼成粉体0.17kgを純水250.4gに分散させ、これに10重量%濃度の水酸化カリウム水溶液24.8gを添加してpH11.0に調整した。次いで、この混合水溶液に粒子径0.1〜0.2mmの石英ビーズ(MRCユニテック(株)製高純度シリカビーズ015)1.27kgを加えて、これを湿式粉砕機(カンペ(株)製バッチ式卓上サンドミル)に供して180分間、前記複合酸化物粒子の粉砕処理を行った。その後、石英ビーズを目開き44μmのステンレス製フィルターを用いて分離・除去したのち、さらに純水840.0gを添加して撹拌し、固形分含有量が11重量%の水分散ゾル1.18kgを得た。
このように粉砕して得られた複合酸化物微粒子を含む水分散ゾルは乳白色であった。また、この水分散ゾル中に含まれる前記複合酸化物微粒子の平均粒子径は109nmであり、さらに100nm以上の粒子径を有する粗大粒子の分布頻度は59.6%であった。
Next, 0.17 kg of the calcined powder of the obtained composite oxide particles (titanium particles) was dispersed in 250.4 g of pure water, and 24.8 g of 10 wt% potassium hydroxide aqueous solution was added thereto. The pH was adjusted to 11.0. Next, 1.27 kg of quartz beads having a particle size of 0.1 to 0.2 mm (high-purity silica beads 015 manufactured by MRC Unitech Co., Ltd.) was added to this mixed aqueous solution, The composite oxide particles were pulverized for 180 minutes. Then, after separating and removing the quartz beads using a stainless steel filter having an opening of 44 μm, 840.0 g of pure water was further added and stirred, and 1.18 kg of an aqueous dispersion sol having a solid content of 11 wt% was added. Obtained.
The aqueous dispersion sol containing composite oxide fine particles obtained by pulverization in this way was milky white. The average particle size of the composite oxide fine particles contained in the water-dispersed sol was 109 nm, and the distribution frequency of coarse particles having a particle size of 100 nm or more was 59.6%.

次いで、前記水分散ゾル1.18kgに純水0.12kgを添加して、固形分濃度が10重量%の水分散ゾルとし、さらに陰イオン交換樹脂(三菱化学(株)製)0.29kgを混合して15分間攪拌した。次に、前記陰イオン交換樹脂を目開き44μmのステンレス製フィルターを用いて分離・除去したのち、陽イオン交換樹脂(三菱化学(株)製)39.7gを混合して15分間攪拌した。次いで、前記陽イオン交換樹脂を目開き44μmのステンレス製フィルターを用いて分離・除去したのち、この水分散ゾルを遠心分離機(日立工機(株)製CR−21G)に供して12,000rpmの速度で1時間処理して、100nm以上の粒子径を有する粗大粒子を分級して取り除いた。これにより、固形分含有量が6.6重量%の水分散ゾル1.12kgを得た。 Next, 0.12 kg of pure water was added to 1.18 kg of the water-dispersed sol to obtain a water-dispersed sol having a solid concentration of 10% by weight, and 0.29 kg of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation). Mix and stir for 15 minutes. Next, after separating and removing the anion exchange resin using a stainless steel filter having an opening of 44 μm, 39.7 g of a cation exchange resin (manufactured by Mitsubishi Chemical Corporation) was mixed and stirred for 15 minutes. Next, the cation exchange resin was separated and removed using a stainless steel filter having an opening of 44 μm, and this water-dispersed sol was subjected to a centrifuge (CR-21G manufactured by Hitachi Koki Co., Ltd.) to 12,000 rpm. Then, the coarse particles having a particle diameter of 100 nm or more were classified and removed. As a result, 1.12 kg of an aqueous dispersion sol having a solid content of 6.6% by weight was obtained.

次いで、前記水分散ゾル(固形分含有量が6.6重量%)1.12kgに、純水2.52kgを混合して、固形分含有量が2.0重量%の水分散ゾル3.64kgを得た。次に、この水分散ゾルをオートクレーブ(耐圧硝子工業(株)製、5L)に入れて、165℃の温度で18時間、加熱処理した。
次に、オートクレーブから取り出して室温まで冷却された水分散ゾルに、陰イオン交換樹脂(三菱化学(株)製)0.14kgを混合して15分間攪拌した。次いで、前記陰イオン交換樹脂を目開き44μmのステンレス製フィルターを用いて分離・除去したのち、陽イオン交換樹脂(三菱化学(株)製)9.6gを混合して15分間攪拌した。さらに、目開き44μmのステンレス製フィルターを用いて分離・除去して、脱イオンされた固形分含有量が2.0重量%の水分散ゾルを得た。これにより、前記複合酸化物粒子を焼成して粉砕し、さらに粗大粒子を分級・除去したチタン系微粒子(以下、「CP−4」という。)を含む水分散ゾル3.54kgを得た。
Subsequently, 2.52 kg of pure water was mixed with 1.12 kg of the water-dispersed sol (solid content: 6.6 wt%) to obtain 3.64 kg of water-dispersed sol having a solid content of 2.0 wt%. Got. Next, this water-dispersed sol was put in an autoclave (manufactured by Pressure Glass Industrial Co., Ltd., 5 L) and heat-treated at a temperature of 165 ° C. for 18 hours.
Next, 0.14 kg of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation) was mixed with the water dispersion sol taken out from the autoclave and cooled to room temperature, and stirred for 15 minutes. Next, the anion exchange resin was separated and removed using a stainless steel filter having an opening of 44 μm, and then 9.6 g of a cation exchange resin (manufactured by Mitsubishi Chemical Corporation) was mixed and stirred for 15 minutes. Further, separation and removal were performed using a stainless steel filter having an opening of 44 μm to obtain a water-dispersed sol having a deionized solid content of 2.0% by weight. Thus, 3.54 kg of an aqueous dispersion sol containing titanium-based fine particles (hereinafter referred to as “CP-4”) obtained by firing and pulverizing the composite oxide particles and further classifying and removing coarse particles was obtained.

このようにして得られたチタン系微粒子を含む水分散ゾルは透明な乳白色であり、その濁度は0.48cm-1であった。また、この水分散ゾル中に含まれる前記チタン系微粒子の平均粒子径は38nmであり、さらに100nm以上の粒子径を有する粗大粒子の分布頻度は0%であった。
また、前記チタン系微粒子は、ルチル型の結晶構造を有しており、比表面積やX線回折結晶子径、さらにはX線回折から求められる結晶面間隔や相対ピーク強度比は、前記複合酸化物粒子(粉砕前のチタン系粒子)と同じ値を示した。
さらに、このチタン系微粒子中に含まれる金属成分の含有量を測定したところ、各金属成分の酸化物換算基準で、TiO286.9重量%、SnO210.9重量%、SiO21.8重量%およびK2O0.4重量%であった。なお、この金属含有量より求められる前記チタン系微粒子の比重は4.36であった。
また、上記の「粒子の屈折率測定法A」に記載の方法に基づき、分光エリプソメーターを用いて測定された塗膜屈折率Nav’は、前記塗料組成物中に含まれる粒子の重量分率mが10重量%、20重量%、30重量%、40重量%、50重量%、55重量%であるとき、それぞれ1.536、1.581、1.631、1.689、1.755、1.802であった。さらに、前記塗膜屈折率Nav’と前記体積分率・重量分率の変換式およびマクスウェル−ガーネットの式から算出される塗膜屈折率Navとから求められる偏差平方和の最小値は0.000674であり、その最小値を示す粒子の屈折率は2.43であった。これにより、前記チタン系微粒子の屈折率は2.43であるとみなすことができた。
上記の測定結果のうち、本発明に関係する主要データを表1に示す。
The water-dispersed sol containing titanium-based fine particles thus obtained was transparent milky white and had a turbidity of 0.48 cm −1 . The average particle size of the titanium-based fine particles contained in the water-dispersed sol was 38 nm, and the distribution frequency of coarse particles having a particle size of 100 nm or more was 0%.
The titanium-based fine particles have a rutile-type crystal structure, and the specific surface area, X-ray diffraction crystallite diameter, crystal plane spacing and relative peak intensity ratio obtained from X-ray diffraction are determined by the composite oxidation. It showed the same value as the product particles (titanium-based particles before pulverization).
Furthermore, when the content of the metal component contained in the titanium-based fine particles was measured, TiO 2 86.9% by weight, SnO 2 10.9% by weight, SiO 2 1. 8 was wt% and K 2 O0.4% by weight. The specific gravity of the titanium-based fine particles determined from the metal content was 4.36.
The coating film refractive index Nav ′ measured using a spectroscopic ellipsometer based on the method described in the above “Particle Refractive Index Measurement Method A” is a weight fraction of particles contained in the coating composition. When m is 10%, 20%, 30%, 40%, 50%, 55% by weight, 1.536, 1.581, 1.631, 1.589, 1.755, It was 1.802. Further, the minimum value of the deviation sum of squares obtained from the coating film refractive index Nav ′, the volume fraction / weight fraction conversion formula, and the coating film refractive index Nav calculated from the Maxwell-Garnet formula is 0.000674. The refractive index of the particles showing the minimum value was 2.43. Thereby, it could be considered that the refractive index of the titanium-based fine particles was 2.43.
Among the above measurement results, main data related to the present invention are shown in Table 1.

[参考例5]
チタン系微粒子を含む水分散ゾルの調製
参考例2の場合と同様な方法で、平均粒子径が約2μmの複合酸化物粒子からなる乾燥粉体0.63kgを得た。
次いで、この複合酸化物粒子の乾燥粉体0.63kgを、空気雰囲気下、700℃の温度にて1時間焼成して、複合酸化物粒子の焼成粉体0.59kgを得た。
このように焼成して得られた複合酸化物粒子(チタン系粒子)は、ルチル型の結晶構造を有しており、比表面積が82m2/gであり、X線回折結晶子径が13.4nmであった。また、X線回折から求められる、(310)結晶面の面間隔が0.1453nmであり、(301)結晶面の面間隔が0.1370nmであった。 さらに、X線回折から求められる、(310)結晶面のピーク強度P1と(110)結晶面のピーク強度P2との相対ピーク強度比(P1/P2)は11/100であった。なお、この時得られたX線回折チャート(XRDチャート)を示せば、図3の通りである。
[ Reference Example 5]
Preparation of water-dispersed sol containing titanium-based fine particles
In the same manner as in Reference Example 2, 0.63 kg of dry powder composed of composite oxide particles having an average particle size of about 2 μm was obtained.
Next, 0.63 kg of the dry powder of the composite oxide particles was fired for 1 hour at a temperature of 700 ° C. in an air atmosphere to obtain 0.59 kg of a fired powder of the composite oxide particles.
The composite oxide particles (titanium-based particles) obtained by firing in this way have a rutile crystal structure, a specific surface area of 82 m 2 / g, and an X-ray diffraction crystallite diameter of 13. It was 4 nm. Further, the interplanar spacing of (310) crystal planes determined from X-ray diffraction was 0.1453 nm, and the interplanar spacing of (301) crystal planes was 0.1370 nm. Furthermore, as determined by X-ray diffraction, (310) crystal face of the peak intensity P 1 and (110) relative peak intensity ratio of the peak intensity P 2 of the crystal plane (P 1 / P 2) was 11/100 . An X-ray diffraction chart (XRD chart) obtained at this time is as shown in FIG.

次に、得られた複合酸化物粒子(チタン系粒子)の焼成粉体0.17kgを純水250.4gに分散させ、これに10重量%濃度の水酸化カリウム水溶液24.8gを添加してpH11.0に調整した。次いで、この混合水溶液に粒子径0.1〜0.2mmの石英ビーズ(MRCユニテック(株)製高純度シリカビーズ015)1.27kgを加えて、これを湿式粉砕機(カンペ(株)製バッチ式卓上サンドミル)に供して180分間、前記複合酸化物粒子の粉砕処理を行った。その後、石英ビーズを目開き44μmのステンレス製フィルターを用いて分離・除去したのち、さらに純水840.0gを添加して撹拌し、固形分含有量が11重量%の水分散ゾル1.18kgを得た。
このように粉砕して得られた複合酸化物微粒子を含む水分散ゾルは乳白色であった。また、この水分散ゾル中に含まれる前記複合酸化物微粒子の平均粒子径は115nmであり、さらに100nm以上の粒子径を有する粗大粒子の分布頻度は62.0%であった。
Next, 0.17 kg of the calcined powder of the obtained composite oxide particles (titanium particles) was dispersed in 250.4 g of pure water, and 24.8 g of 10 wt% potassium hydroxide aqueous solution was added thereto. The pH was adjusted to 11.0. Next, 1.27 kg of quartz beads having a particle size of 0.1 to 0.2 mm (high-purity silica beads 015 manufactured by MRC Unitech Co., Ltd.) was added to this mixed aqueous solution, The composite oxide particles were pulverized for 180 minutes. Then, after separating and removing the quartz beads using a stainless steel filter having an opening of 44 μm, 840.0 g of pure water was further added and stirred, and 1.18 kg of an aqueous dispersion sol having a solid content of 11 wt% was added. Obtained.
The aqueous dispersion sol containing composite oxide fine particles obtained by pulverization in this way was milky white. The average particle size of the composite oxide fine particles contained in the water-dispersed sol was 115 nm, and the distribution frequency of coarse particles having a particle size of 100 nm or more was 62.0%.

次いで、前記水分散ゾル1.18kgに純水0.12kgを添加して、固形分濃度が10重量%の水分散ゾルとし、さらに陰イオン交換樹脂(三菱化学(株)製)0.29kgを混合して15分間攪拌した。次に、前記陰イオン交換樹脂を目開き44μmのステンレス製フィルターを用いて分離・除去したのち、陽イオン交換樹脂(三菱化学(株)製)39.7gを混合して15分間攪拌した。次いで、前記陽イオン交換樹脂を目開き44μmのステンレス製フィルターを用いて分離・除去したのち、この水分散ゾルを遠心分離機(日立工機(株)製CR−21G)に供して12,000rpmの速度で1時間処理して、100nm以上の粒子径を有する粗大粒子を分級して取り除いた。これにより、固形分含有量が5.9重量%の水分散ゾル1.13kgを得た。 Next, 0.12 kg of pure water was added to 1.18 kg of the water-dispersed sol to obtain a water-dispersed sol having a solid concentration of 10% by weight, and 0.29 kg of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation). Mix and stir for 15 minutes. Next, after separating and removing the anion exchange resin using a stainless steel filter having an opening of 44 μm, 39.7 g of a cation exchange resin (manufactured by Mitsubishi Chemical Corporation) was mixed and stirred for 15 minutes. Next, the cation exchange resin was separated and removed using a stainless steel filter having an opening of 44 μm, and this water-dispersed sol was subjected to a centrifuge (CR-21G manufactured by Hitachi Koki Co., Ltd.) to 12,000 rpm. Then, the coarse particles having a particle diameter of 100 nm or more were classified and removed. As a result, 1.13 kg of an aqueous dispersion sol having a solid content of 5.9% by weight was obtained.

次いで、前記水分散ゾル(固形分含有量が5.9重量%)1.13kgに、純水2.20kgを混合して、固形分含有量が2.0重量%の水分散ゾル3.33kgを得た。次に、この水分散ゾルをオートクレーブ(耐圧硝子工業(株)製、5L)に入れて、165℃の温度で18時間、加熱処理した。
次に、オートクレーブから取り出して室温まで冷却された水分散ゾルに、陰イオン交換樹脂(三菱化学(株)製)0.13kgを混合して15分間攪拌した。次いで、前記陰イオン交換樹脂を目開き44μmのステンレス製フィルターを用いて分離・除去したのち、陽イオン交換樹脂(三菱化学(株)製)8.8gを混合して15分間攪拌した。さらに、前記陽イオン交換樹脂を目開き44μmのステンレス製フィルターを用いて分離・除去して、脱イオンされた固形分含有量が2.0重量%の水分散ゾルを得た。これにより、前記複合酸化物粒子を焼成して粉砕し、さらに粗大粒子を分級・除去したチタン系微粒子(以下、「CP−5」という。)を含む水分散ゾル3.28kgを得た。
Next, 2.13 kg of pure water was mixed with 1.13 kg of the water dispersion sol (solid content 5.9 wt%) to obtain 3.33 kg of water dispersion sol having a solid content of 2.0 wt%. Got. Next, this water-dispersed sol was put in an autoclave (manufactured by Pressure Glass Industrial Co., Ltd., 5 L) and heat-treated at a temperature of 165 ° C. for 18 hours.
Next, 0.13 kg of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation) was mixed with the water-dispersed sol taken out from the autoclave and cooled to room temperature, and stirred for 15 minutes. Next, the anion exchange resin was separated and removed using a stainless steel filter having an opening of 44 μm, and then 8.8 g of a cation exchange resin (manufactured by Mitsubishi Chemical Corporation) was mixed and stirred for 15 minutes. Further, the cation exchange resin was separated and removed using a stainless steel filter having an opening of 44 μm to obtain a water-dispersed sol having a deionized solid content of 2.0% by weight. As a result, 3.28 kg of an aqueous dispersion sol containing titanium-based fine particles (hereinafter referred to as “CP-5”) obtained by firing and pulverizing the composite oxide particles and further classifying and removing coarse particles was obtained.

このようにして得られたチタン系微粒子を含む水分散ゾルは透明な乳白色であり、その濁度は0.64cm-1であった。また、この水分散ゾル中に含まれる前記チタン系微粒子の平均粒子径は41nmであり、さらに100nm以上の粒子径を有する粗大粒子の分布頻度は0%であった。
また、前記チタン系微粒子は、ルチル型の結晶構造を有しており、比表面積やX線回折結晶子径、さらにはX線回折から求められる結晶面間隔や相対ピーク強度比は、前記複合酸化物粒子(粉砕前のチタン系粒子)と同じ値を示した。
さらに、このチタン系微粒子中に含まれる金属成分の含有量を測定したところ、各金属成分の酸化物換算基準で、TiO288.5重量%、SnO211.1重量%およびK2O0.4重量%であった。なお、この金属含有量より求められる前記チタン系微粒子の比重は4.44であった。
また、上記の「粒子の屈折率測定法A」に記載の方法に基づき、分光エリプソメーターを用いて測定された塗膜屈折率Nav’は、前記塗料組成物中に含まれる粒子の重量分率mが10重量%、20重量%、30重量%、40重量%、50重量%、55重量%であるとき、それぞれ1.542、1.592、1.644、1.716、1.793、1.839であった。さらに、前記塗膜屈折率Nav’と前記体積分率・重量分率の変換式およびマクスウェル−ガーネットの式から算出される塗膜屈折率Navとから求められる偏差平方和の最小値は0.000358であり、その最小値を示す粒子の屈折率は2.62であった。これにより、前記チタン系微粒子の屈折率は2.62であるとみなすことができた。
上記の測定結果のうち、本発明に関係する主要データを表1に示す。
The water-dispersed sol containing titanium-based fine particles thus obtained was transparent milky white, and its turbidity was 0.64 cm −1 . The average particle size of the titanium-based fine particles contained in the water-dispersed sol was 41 nm, and the distribution frequency of coarse particles having a particle size of 100 nm or more was 0%.
The titanium-based fine particles have a rutile-type crystal structure, and the specific surface area, X-ray diffraction crystallite diameter, crystal plane spacing and relative peak intensity ratio obtained from X-ray diffraction are determined by the composite oxidation. It showed the same value as the product particles (titanium-based particles before pulverization).
Furthermore, when the content of the metal component contained in the titanium-based fine particles was measured, TiO 2 88.5 wt%, SnO 2 11.1 wt% and K 2 O 0. It was 4% by weight. The specific gravity of the titanium-based fine particles determined from the metal content was 4.44.
The coating film refractive index Nav ′ measured using a spectroscopic ellipsometer based on the method described in the above “Particle Refractive Index Measurement Method A” is a weight fraction of particles contained in the coating composition. When m is 10%, 20%, 30%, 40%, 50%, 55% by weight, 1.542, 1.592, 1.644, 1.716, 1.793, It was 1.839. Further, the minimum value of the deviation sum of squares obtained from the coating film refractive index Nav ′, the volume fraction / weight fraction conversion formula and the coating refractive index Nav calculated from the Maxwell-Garnet formula is 0.000358. The refractive index of the particles showing the minimum value was 2.62. Thereby, it could be considered that the refractive index of the titanium-based fine particles was 2.62.
Among the above measurement results, main data related to the present invention are shown in Table 1.

[比較例1]
チタン系微粒子を含む水分散ゾルの調製
参考例1の場合と同様な方法で、平均粒子径が約2μmの複合酸化物粒子からなる乾燥粉体0.63kgを得た。
この複合酸化物粒子の乾燥粉体は、焼成しないで、そのまま使用した。
なお、前記複合酸化物粒子(チタン系粒子)は、ルチル型の結晶構造を有しており、比表面積が215m2/gであり、X線回折結晶子径が7.1nmであった。また、X線回折から求められる、(310)結晶面の面間隔が0.1365nmであり、(301)結晶面の面間隔が0.1354nmであった。さらに、X線回折から求められる、(310)結晶面のピーク強度P1と(110)結晶面のピーク強度P2との相対ピーク強度比(P1/P2)は24/100であった。なお、この時得られたX線回折チャート(XRDチャート)を示せば、図4の通りである。
[Comparative Example 1]
Preparation of water-dispersed sol containing titanium-based fine particles
In the same manner as in Reference Example 1, 0.63 kg of dry powder composed of composite oxide particles having an average particle diameter of about 2 μm was obtained.
The dried powder of the composite oxide particles was used as it was without firing.
The composite oxide particles (titanium particles) had a rutile crystal structure, a specific surface area of 215 m 2 / g, and an X-ray diffraction crystallite diameter of 7.1 nm. Further, the interplanar spacing of (310) crystal planes determined from X-ray diffraction was 0.1365 nm, and the interplanar spacing of (301) crystal planes was 0.1354 nm. Furthermore, as determined by X-ray diffraction, (310) crystal face of the peak intensity P 1 and (110) relative peak intensity ratio of the peak intensity P 2 of the crystal plane (P 1 / P 2) was 24/100 . An X-ray diffraction chart (XRD chart) obtained at this time is as shown in FIG.

次に、得られた複合酸化物粒子(チタン系粒子)の乾燥粉体0.17kgを純水250.4gに分散させ、これに10重量%濃度の水酸化カリウム水溶液24.8gを添加してpH11.0に調整した。次いで、この混合水溶液に粒子径0.1〜0.2mmの石英ビーズ(MRCユニテック(株)製高純度シリカビーズ015)1.27kgを加えて、これを湿式粉砕機(カンペ(株)製バッチ式卓上サンドミル)に供して180分間、前記複合酸化物粒子の粉砕処理を行った。その後、石英ビーズを目開き44μmのステンレス製フィルターを用いて分離・除去したのち、さらに純水840.0gを添加して撹拌し、固形分含有量が11重量%の水分散ゾル1.45kgを得た。
このように粉砕して得られた複合酸化物微粒子を含む水分散ゾルは乳白色であった。また、この水分散ゾル中に含まれる前記複合酸化物微粒子の平均粒子径は136nmであり、さらに100nm以上の粒子径を有する粗大粒子の分布頻度は70.4%であった。
Next, 0.17 kg of the obtained dry powder of composite oxide particles (titanium-based particles) was dispersed in 250.4 g of pure water, and 24.8 g of 10 wt% aqueous potassium hydroxide solution was added thereto. The pH was adjusted to 11.0. Next, 1.27 kg of quartz beads having a particle size of 0.1 to 0.2 mm (high-purity silica beads 015 manufactured by MRC Unitech Co., Ltd.) was added to this mixed aqueous solution, The composite oxide particles were pulverized for 180 minutes. Then, after separating and removing the quartz beads using a stainless steel filter having an opening of 44 μm, 840.0 g of pure water was further added and stirred to obtain 1.45 kg of an aqueous dispersion sol having a solid content of 11% by weight. Obtained.
The aqueous dispersion sol containing composite oxide fine particles obtained by pulverization in this way was milky white. The average particle size of the composite oxide fine particles contained in the water-dispersed sol was 136 nm, and the distribution frequency of coarse particles having a particle size of 100 nm or more was 70.4%.

次いで、前記水分散ゾル1.45kgに純水0.205kgを添加して、固形分濃度が10重量%の水分散ゾルとし、さらに陰イオン交換樹脂(三菱化学(株)製)0.36kgを混合して15分間攪拌した。次に、前記陰イオン交換樹脂を目開き44μmのステンレス製フィルターを用いて分離・除去したのち、陽イオン交換樹脂(三菱化学(株)製)48.8gを混合して15分間攪拌した。次いで、前記陽イオン交換樹脂を目開き44μmのステンレス製フィルターを用いて分離・除去したのち、この水分散ゾルを遠心分離機(日立工機(株)製CR−21G)に供して12,000rpmの速度で1時間処理して、100nm以上の粒子径を有する粗大粒子を分級して取り除いた。これにより、固形分含有量が3.5重量%の水分散ゾル1.43kgを得た。 Next, 0.205 kg of pure water was added to 1.45 kg of the water dispersion sol to obtain a water dispersion sol having a solid concentration of 10% by weight, and 0.36 kg of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation) was further added. Mix and stir for 15 minutes. Next, after separating and removing the anion exchange resin using a stainless steel filter having an opening of 44 μm, 48.8 g of a cation exchange resin (manufactured by Mitsubishi Chemical Corporation) was mixed and stirred for 15 minutes. Next, the cation exchange resin was separated and removed using a stainless steel filter having an opening of 44 μm, and this water-dispersed sol was subjected to a centrifuge (CR-21G manufactured by Hitachi Koki Co., Ltd.) to 12,000 rpm. Then, the coarse particles having a particle diameter of 100 nm or more were classified and removed. As a result, 1.43 kg of an aqueous dispersion sol having a solid content of 3.5% by weight was obtained.

次いで、前記水分散ゾル(固形分含有量が3.5重量%)1.43kgに、純水1.07kgを混合して、固形分含有量が2.0重量%の水分散ゾル2.50kgを得た。次に、この水分散ゾルをオートクレーブ(耐圧硝子工業(株)製、10L)に入れて、165℃の温度で18時間、加熱処理した。
次に、オートクレーブから取り出して室温まで冷却された水分散ゾルに、陰イオン交換樹脂(三菱化学(株)製)0.10kgを混合して15分間攪拌した。次いで、前記陰イオン交換樹脂を目開き44μmのステンレス製フィルターを用いて分離・除去したのち、陽イオン交換樹脂(三菱化学(株)製)6.6gを混合して15分間攪拌した。さらに、前記陽イオン交換樹脂を目開き44μmのステンレス製フィルターを用いて分離・除去して、脱イオンされた固形分含有量が2.0重量%の水分散ゾルを得た。これにより、前記複合酸化物粒子を焼成して粉砕し、さらに粗大粒子を分級・除去したチタン系微粒子(以下、「RCP−1」という。)を含む水分散ゾル2.00kgを得た。
Next, 1.03 kg of pure water was mixed with 1.43 kg of the water-dispersed sol (solid content: 3.5 wt%) to obtain 2.50 kg of water-dispersed sol with a solid content of 2.0 wt%. Got. Next, the water dispersion zone Le autoclave (Taiatsu Co., 10L) placed in, 18 hours at a temperature of 165 ° C., and heat treatment.
Next, 0.10 kg of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation) was mixed with the water dispersion sol taken out from the autoclave and cooled to room temperature, and stirred for 15 minutes. Next, the anion exchange resin was separated and removed using a stainless steel filter having an opening of 44 μm, and then 6.6 g of a cation exchange resin (manufactured by Mitsubishi Chemical Corporation) was mixed and stirred for 15 minutes. Further, the cation exchange resin was separated and removed using a stainless steel filter having an opening of 44 μm to obtain a water-dispersed sol having a deionized solid content of 2.0% by weight. Thereby, 2.00 kg of an aqueous dispersion sol containing titanium-based fine particles (hereinafter referred to as “RCP-1”) obtained by firing and pulverizing the composite oxide particles and further classifying and removing coarse particles was obtained.

このようにして得られたチタン系微粒子を含む水分散ゾルは乳白色であり、その濁度は3.98cm-1であった。また、この水分散ゾル中に含まれる前記チタン系微粒子の平均粒子径は98nmであり、さらに100nm以上の粒子径を有する粗大粒子の分布頻度は64.3%であった。
また、前記チタン系微粒子は、ルチル型の結晶構造を有しており、比表面積やX線回折結晶子径、さらにはX線回折から求められる結晶面間隔や相対ピーク強度比は、前記複合酸化物粒子(粉砕前のチタン系粒子)と同じ値を示した。
さらに、このチタン系微粒子中に含まれる金属成分の含有量を測定したところ、各金属成分の酸化物換算基準で、TiO283.9重量%、SnO210.4重量%、SiO25.3重量%およびK2O0.4重量%であった。なお、この金属含有量より求められる前記チタン系微粒子の比重は4.21であった。
また、上記の「粒子の屈折率測定法A」に記載の方法に基づき、分光エリプソメーターを用いて測定された塗膜屈折率Nav’は、前記塗料組成物中に含まれる粒子の重量分率mが10重量%、20重量%、30重量%、40重量%、50重量%、55重量%であるとき、それぞれ1.529、1.564、1.604、1.649、1.701、1.730であった。さらに、前記塗膜屈折率Nav’と前記体積分率・重量分率の変換式およびマクスウェル−ガーネットの式から算出される塗膜屈折率Navとから求められる偏差平方和の最小値は0.000002であり、その最小値を示す粒子の屈折率は2.16であった。これにより、前記チタン系微粒子の屈折率は2.16であるとみなすことができた。因みに、上記の屈折率測定法B(標準液法)で測定された前記チタン系微粒子の屈折率は2.16であった。
上記の測定結果のうち、本発明に関係する主要データを表1に示す。
The water-dispersed sol containing titanium-based fine particles thus obtained was milky white and had a turbidity of 3.98 cm −1 . The average particle size of the titanium-based fine particles contained in the water-dispersed sol was 98 nm, and the distribution frequency of coarse particles having a particle size of 100 nm or more was 64.3%.
The titanium-based fine particles have a rutile-type crystal structure, and the specific surface area, X-ray diffraction crystallite diameter, crystal plane spacing and relative peak intensity ratio obtained from X-ray diffraction are determined by the composite oxidation. It showed the same value as the product particles (titanium-based particles before pulverization).
Furthermore, measurement of the content of the metal component contained in the titanium-based fine particles, in terms of oxide based on the respective metal components, TiO 2 83.9 wt%, SnO 2 10.4 wt%, SiO 2 5. 3 wt% and K 2 O 0.4 wt%. The specific gravity of the titanium-based fine particles determined from the metal content was 4.21.
The coating film refractive index Nav ′ measured using a spectroscopic ellipsometer based on the method described in the above “Particle Refractive Index Measurement Method A” is a weight fraction of particles contained in the coating composition. When m is 10%, 20%, 30%, 40%, 50%, 55% by weight, 1.529, 1.564, 1.604, 1.649, 1.701, 1.730. Further, the minimum value of the sum of squares of deviation obtained from the coating film refractive index Nav ′ and the coating volume refractive index Nav calculated from the volume fraction / weight fraction conversion formula and the Maxwell-Garnet formula is 0.000002. The refractive index of the particles showing the minimum value was 2.16. Thereby, it could be considered that the refractive index of the titanium-based fine particles was 2.16. Incidentally, the refractive index of the titanium-based fine particles measured by the refractive index measurement method B (standard solution method) was 2.16.
Among the above measurement results, main data related to the present invention are shown in Table 1.

[比較例2]
チタン系微粒子を含む水分散ゾルの調製
参考例1の場合と同様な方法で、平均粒子径が約2μmの複合酸化物粒子からなる乾燥粉体0.63kgを得た。
この複合酸化物粒子の乾燥粉体0.63kgを、空気雰囲気下、180℃の温度にて1時間焼成して、複合酸化物粒子の焼成粉体0.59kgを得た。
このように焼成して得られた複合酸化物粒子(チタン系粒子)は、ルチル型の結晶構造を有しており、比表面積が212m2/gであり、X線回折結晶子径が7.1nmであった。また、X線回折から求められる、(310)結晶面の面間隔が0.1365nmであり、(301)結晶面の面間隔が0.1354nmであった。さらに、X線回折から求められる、(310)結晶面のピーク強度P1と(110)結晶面のピーク強度P2との相対ピーク強度比(P1/P2)は24/100であった。
[Comparative Example 2]
Preparation of water-dispersed sol containing titanium-based fine particles
In the same manner as in Reference Example 1, 0.63 kg of dry powder composed of composite oxide particles having an average particle diameter of about 2 μm was obtained.
0.63 kg of the dry powder of the composite oxide particles was fired for 1 hour at a temperature of 180 ° C. in an air atmosphere to obtain 0.59 kg of a fired powder of the composite oxide particles.
The composite oxide particles (titanium-based particles) obtained by firing in this way have a rutile crystal structure, a specific surface area of 212 m 2 / g, and an X-ray diffraction crystallite diameter of 7. 1 nm. Further, the interplanar spacing of (310) crystal planes determined from X-ray diffraction was 0.1365 nm, and the interplanar spacing of (301) crystal planes was 0.1354 nm. Furthermore, as determined by X-ray diffraction, (310) crystal face of the peak intensity P 1 and (110) relative peak intensity ratio of the peak intensity P 2 of the crystal plane (P 1 / P 2) was 24/100 .

次に、得られた複合酸化物粒子(チタン系粒子)の焼成粉体0.17kgを純水250.4gに分散させ、これに10重量%濃度の水酸化カリウム水溶液24.8gを添加してpH11.0に調整した。次いで、この混合水溶液に粒子径0.1〜0.2mmの石英ビーズ(MRCユニテック(株)製高純度シリカビーズ015)1.27kgを加えて、これを湿式粉砕機(カンペ製バッチ式卓上サンドミル)に供して180分間、前記複合酸化物粒子の粉砕処理を行った。その後、石英ビーズを目開き44μmのステンレス製フィルターを用いて分離・除去したのち、さらに純水840.0gを添加して撹拌し、固形分含有量が11重量%の水分散ゾル1.43kgを得た。
このように粉砕して得られた複合酸化物微粒子を含む水分散ゾルは乳白色であった。また、この水分散ゾル中に含まれる前記複合酸化物微粒子の平均粒子径は130nmであり、さらに100nm以上の粒子径を有する粗大粒子の分布頻度は68.2%であった。
Next, 0.17 kg of the calcined powder of the obtained composite oxide particles (titanium particles) was dispersed in 250.4 g of pure water, and 24.8 g of 10 wt% potassium hydroxide aqueous solution was added thereto. The pH was adjusted to 11.0. Next, 1.27 kg of quartz beads having a particle diameter of 0.1 to 0.2 mm (high-purity silica beads 015 manufactured by MRC Unitech Co., Ltd.) was added to this mixed aqueous solution, and this was mixed with a wet pulverizer (Kampe batch type tabletop sand mill). The composite oxide particles were pulverized for 180 minutes. Then, after separating and removing the quartz beads using a stainless steel filter having an opening of 44 μm, 840.0 g of pure water was further added and stirred, and 1.43 kg of an aqueous dispersion sol having a solid content of 11 wt% was added. Obtained.
The aqueous dispersion sol containing composite oxide fine particles obtained by pulverization in this way was milky white. The average particle size of the composite oxide fine particles contained in the water-dispersed sol was 130 nm, and the distribution frequency of coarse particles having a particle size of 100 nm or more was 68.2%.

次いで、前記水分散ゾル1.43kgに純水0.14kgを添加して、固形分濃度が10重量%の水分散ゾルとし、さらに陰イオン交換樹脂(三菱化学(株)製)0.35kgを混合して15分間攪拌した。次に、前記陰イオン交換樹脂を目開き44μmのステンレス製フィルターを用いて分離・除去したのち、陽イオン交換樹脂(三菱化学(株)製)48.1gを混合して15分間攪拌した。次いで、前記陽イオン交換樹脂を目開き44μmステンレス製フィルターを用いて分離・除去したのち、この水分散ゾルを遠心分離機(日立工機(株)製CR−21G)に供して12,000rpmの速度で1時間処理して、100nm以上の粒子径を有する粗大粒子を分級して取り除いた。これにより、固形分含有量が5.2重量%の水分散ゾル1.39kgを得た。 Next, 0.14 kg of pure water was added to 1.43 kg of the water dispersion sol to obtain a water dispersion sol having a solid content concentration of 10 wt%, and 0.35 kg of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation). Mix and stir for 15 minutes. Next, after separating and removing the anion exchange resin using a stainless steel filter having an opening of 44 μm, 48.1 g of a cation exchange resin (manufactured by Mitsubishi Chemical Corporation) was mixed and stirred for 15 minutes. Next, after the cation exchange resin was separated and removed using a 44 μm stainless steel filter, this water-dispersed sol was subjected to a centrifuge (CR-21G manufactured by Hitachi Koki Co., Ltd.) at 12,000 rpm. The treatment was carried out at a speed for 1 hour to classify and remove coarse particles having a particle diameter of 100 nm or more. As a result, 1.39 kg of an aqueous dispersion sol having a solid content of 5.2% by weight was obtained.

次いで、前記水分散ゾル(固形分含有量が5.2重量%)1.39kgに、純水2.22kgを混合して、固形分含有量が2.0重量%の水分散ゾル3.61kgを得た。次に、この水分散ゾルをオートクレーブ(耐圧硝子工業(株)製、10L)に入れて、165℃の温度で18時間、加熱処理した。
次に、オートクレーブから取り出して室温まで冷却された水分散ゾルに、陰イオン交換樹脂(三菱化学(株)製)0.14kgを混合して15分間攪拌した。次いで、前記陰イオン交換樹脂を目開き44μmのステンレス製フィルターを用いて分離・除去したのち、陽イオン交換樹脂(三菱化学(株)製)9.5gを混合して15分間攪拌した。さらに、前記陽イオン交換樹脂を目開き44μmのステンレス製フィルターを用いて分離・除去して、脱イオンされた固形分含有量が2.0重量%の水分散ゾルを得た。これにより、前記複合酸化物粒子を焼成して粉砕し、さらに粗大粒子を分級・除去したチタン系微粒子(以下、「RCP−2」という。)を含む水分散ゾル3.21kgを得た。
Next, 1.39 kg of the water-dispersed sol (solid content is 5.2% by weight) is mixed with 2.22 kg of pure water to obtain 3.61 kg of water-dispersed sol having a solid content of 2.0% by weight. Got. Next, this water-dispersed sol was put in an autoclave (manufactured by Pressure Glass Industrial Co., Ltd., 10 L), and heat-treated at a temperature of 165 ° C. for 18 hours.
Next, 0.14 kg of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation) was mixed with the water dispersion sol taken out from the autoclave and cooled to room temperature, and stirred for 15 minutes. Next, the anion exchange resin was separated and removed using a stainless steel filter having an opening of 44 μm, and then 9.5 g of a cation exchange resin (Mitsubishi Chemical Corporation) was mixed and stirred for 15 minutes. Further, the cation exchange resin was separated and removed using a stainless steel filter having an opening of 44 μm to obtain a water-dispersed sol having a deionized solid content of 2.0% by weight. Thus, 3.21 kg of an aqueous dispersion sol containing titanium-based fine particles (hereinafter referred to as “RCP-2”) obtained by firing and pulverizing the composite oxide particles and further classifying and removing coarse particles was obtained.

このようにして得られたチタン系微粒子を含む水分散ゾルは乳白色であり、その濁度は1.03cm-1であった。また、この水分散ゾル中に含まれる前記チタン系微粒子の平均粒子径は72nmであり、さらに100nm以上の粒子径を有する粗大粒子の分布頻度は56.1%であった。
また、前記チタン系微粒子は、ルチル型の結晶構造を有しており、比表面積やX線回折結晶子径、さらにはX線回折から求められる結晶面間隔や相対ピーク強度比は、前記複合酸化物粒子(粉砕前のチタン系粒子)と同じ値を示した。
さらに、このチタン系微粒子中に含まれる金属成分の含有量を測定したところ、各金属成分の酸化物換算基準で、TiO284.4重量%、SnO29.9重量%、SiO25.3重量%およびK2O0.4重量%であった。なお、この金属含有量より求められる前記チタン系微粒子の比重は4.20であった。
また、上記の「粒子の屈折率測定法A」に記載の方法に基づき、分光エリプソメーターを用いて測定された塗膜屈折率Nav’は、前記塗料組成物中に含まれる粒子の重量分率mが10重量%、20重量%、30重量%、40重量%、50重量%、55重量%であるとき、それぞれ1.529、1.564、1.604、1.649、1.701、1.730であった。さらに、前記塗膜屈折率Nav’と前記体積分率・重量分率の変換式およびマクスウェル−ガーネットの式から算出される塗膜屈折率Navとから求められる偏差平方和の最小値は0.000002であり、その最小値を示す粒子の屈折率は2.17であった。これにより、前記チタン系微粒子の屈折率は2.17であるとみなすことができた。因みに、上記の屈折率測定法B(標準液法)で測定された前記チタン系微粒子の屈折率は2.17であった。
上記の測定結果のうち、本発明に関係する主要データを表1に示す。
The aqueous dispersion sol containing titanium-based fine particles thus obtained was milky white and had a turbidity of 1.03 cm −1 . The average particle diameter of the titanium-based fine particles contained in the water-dispersed sol was 72 nm, and the distribution frequency of coarse particles having a particle diameter of 100 nm or more was 56.1%.
The titanium-based fine particles have a rutile-type crystal structure, and the specific surface area, X-ray diffraction crystallite diameter, crystal plane spacing and relative peak intensity ratio obtained from X-ray diffraction are determined by the composite oxidation. It showed the same value as the product particles (titanium-based particles before pulverization).
Furthermore, when the content of the metal component contained in the titanium-based fine particles was measured, TiO 2 84.4 wt%, SnO 2 9.9 wt%, SiO 2 5. 3 wt% and K 2 O 0.4 wt%. The specific gravity of the titanium-based fine particles obtained from this metal content was 4.20.
The coating film refractive index Nav ′ measured using a spectroscopic ellipsometer based on the method described in the above “Particle Refractive Index Measurement Method A” is a weight fraction of particles contained in the coating composition. When m is 10%, 20%, 30%, 40%, 50%, 55% by weight, 1.529, 1.564, 1.604, 1.649, 1.701, 1.730. Further, the minimum value of the deviation sum of squares obtained from the coating film refractive index Nav ′ and the coating volume refractive index Nav calculated from the volume fraction / weight fraction conversion formula and the Maxwell-Garnet formula is 0.000002. The refractive index of the particles showing the minimum value was 2.17. Thereby, it could be considered that the refractive index of the titanium-based fine particles was 2.17. Incidentally, the refractive index of the titanium-based fine particles measured by the refractive index measurement method B (standard solution method) was 2.17.
Among the above measurement results, main data related to the present invention are shown in Table 1.

[比較例3]
チタン系微粒子を含む水分散ゾルの調製
参考例1の場合と同様な方法で、平均粒子径が約2μmの複合酸化物粒子からなる乾燥粉体0.63kgを得た。
この複合酸化物粒子の乾燥粉体0.63kgを、空気雰囲気下、850℃の温度にて1時間焼成して、複合酸化物粒子の焼成粉体0.59kgを得た。
このように焼成して得られた複合酸化物粒子(チタン系粒子)は、ルチル型の結晶構造を有しており、比表面積が51m2/gであり、X線回折結晶子径が28.0nmであった。また、X線回折から求められる、(310)結晶面の面間隔が0.1456nmであり、(301)結晶面の面間隔が0.1361nmであった。 さらに、X線回折から求められる、(310)結晶面のピーク強度P1と(110)結晶面のピーク強度P2との相対ピーク強度比(P1/P2)は12/100であった。なお、この時得られたX線回折チャート(XRDチャート)を示せば、図5の通りである。
[Comparative Example 3]
Preparation of water-dispersed sol containing titanium-based fine particles
In the same manner as in Reference Example 1, 0.63 kg of dry powder composed of composite oxide particles having an average particle diameter of about 2 μm was obtained.
0.63 kg of the dry powder of the composite oxide particles was fired for 1 hour at a temperature of 850 ° C. in an air atmosphere to obtain 0.59 kg of a fired powder of the composite oxide particles.
The composite oxide particles (titanium-based particles) obtained by firing in this way have a rutile crystal structure, a specific surface area of 51 m 2 / g, and an X-ray diffraction crystallite diameter of 28. It was 0 nm. Further, the interplanar spacing of (310) crystal planes determined from X-ray diffraction was 0.1456 nm, and the interplanar spacing of (301) crystal planes was 0.1361 nm. Furthermore, as determined by X-ray diffraction, (310) crystal face of the peak intensity P 1 and (110) relative peak intensity ratio of the peak intensity P 2 of the crystal plane (P 1 / P 2) was 12/100 . An X-ray diffraction chart (XRD chart) obtained at this time is as shown in FIG.

次に、得られた複合酸化物粒子(チタン系粒子)の焼成粉体0.17kgを純水250.4gに分散させ、これに10重量%濃度の水酸化カリウム水溶液24.8gを添加してpH11.0に調整した。次いで、この混合水溶液に粒子径0.1〜0.2mmの石英ビーズ(MRCユニテック(株)製高純度シリカビーズ015)1.27kgを加えて、これを湿式粉砕機(カンペ製バッチ式卓上サンドミル)に供して180分間、前記複合酸化物粒子の粉砕処理を行った。その後、石英ビーズを目開き44μmのステンレス製フィルターを用いて分離・除去したのち、さらに純水840.0gを添加して撹拌し、固形分含有量が11重量%の水分散ゾル1.12kgを得た。
このように粉砕して得られた複合酸化物微粒子を含む水分散ゾルは乳白色であった。また、この水分散ゾル中に含まれる前記複合酸化物微粒子の平均粒子径は150nmであり、さらに100nm以上の粒子径を有する粗大粒子の分布頻度は82.6%であった。
Next, 0.17 kg of the calcined powder of the obtained composite oxide particles (titanium particles) was dispersed in 250.4 g of pure water, and 24.8 g of 10 wt% potassium hydroxide aqueous solution was added thereto. The pH was adjusted to 11.0. Next, 1.27 kg of quartz beads having a particle diameter of 0.1 to 0.2 mm (high-purity silica beads 015 manufactured by MRC Unitech Co., Ltd.) was added to this mixed aqueous solution, and this was mixed with a wet pulverizer (Kampe batch type tabletop sand mill). The composite oxide particles were pulverized for 180 minutes. Then, after separating and removing the quartz beads using a stainless steel filter having an opening of 44 μm, 840.0 g of pure water was further added and stirred, and 1.12 kg of an aqueous dispersion sol having a solid content of 11 wt% was added. Obtained.
The aqueous dispersion sol containing composite oxide fine particles obtained by pulverization in this way was milky white. The average particle size of the composite oxide fine particles contained in the water-dispersed sol was 150 nm, and the distribution frequency of coarse particles having a particle size of 100 nm or more was 82.6%.

次いで、前記水分散ゾル1.12kgに純水0.11kgを添加して、固形分濃度が10重量%の水分散ゾルとし、さらに陰イオン交換樹脂(三菱化学(株)製)0.28kgを混合して15分間攪拌した。次に、前記陰イオン交換樹脂を目開き44μmのステンレス製フィルターを用いて分離・除去したのち、陽イオン交換樹脂(三菱化学(株)製)37.7gを混合して15分間攪拌した。次いで、前記陽イオン交換樹脂を目開き44μmのステンレス製フィルターを用いて分離・除去したのち、この水分散ゾルを遠心分離機(日立工機(株)製CR−21G)に供して12,000rpmの速度で1時間処理して、100nm以上の粒子径を有する粗大粒子を分級して取り除いた。これにより、固形分含有量が2.0重量%の水分散ゾル1.12kgを得た。 Next, 0.11 kg of pure water was added to 1.12 kg of the water-dispersed sol to obtain a water-dispersed sol having a solid concentration of 10% by weight, and 0.28 kg of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation). Mix and stir for 15 minutes. Next, after separating and removing the anion exchange resin using a stainless steel filter having an opening of 44 μm, 37.7 g of a cation exchange resin (manufactured by Mitsubishi Chemical Corporation) was mixed and stirred for 15 minutes. Next, the cation exchange resin was separated and removed using a stainless steel filter having an opening of 44 μm, and this water-dispersed sol was subjected to a centrifuge (CR-21G manufactured by Hitachi Koki Co., Ltd.) to 12,000 rpm. Then, the coarse particles having a particle diameter of 100 nm or more were classified and removed. As a result, 1.12 kg of an aqueous dispersion sol having a solid content of 2.0% by weight was obtained.

次いで、この水分散ゾルをオートクレーブ(耐圧硝子工業(株)製、5L)に入れて、165℃の温度で18時間、加熱処理した。
次に、オートクレーブから取り出して室温まで冷却された水分散ゾルに、陰イオン交換樹脂(三菱化学(株)製)44.2gを混合して15分間攪拌した。次いで、前記陰イオン交換樹脂を目開き44μmのステンレス製フィルターを用いて分離・除去したのち、陽イオン交換樹脂(三菱化学(株)製)2.9gを混合して15分間攪拌した。さらに、前記陽イオン交換樹脂を目開き44μmのステンレス製フィルターを用いて分離・除去して、脱イオンされた固形分含有量が2.0重量%の水分散ゾルを得た。これにより、前記複合酸化物粒子を焼成して粉砕し、さらに粗大粒子を分級・除去したチタン系微粒子(以下、「RCP−3」という。)を含む水分散ゾル1.07kgを得た。
Next, this water-dispersed sol was placed in an autoclave (manufactured by Pressure Glass Industrial Co., Ltd., 5 L) and heat-treated at a temperature of 165 ° C. for 18 hours.
Next, 44.2 g of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation) was mixed with the water-dispersed sol taken out from the autoclave and cooled to room temperature, and stirred for 15 minutes. Next, the anion exchange resin was separated and removed using a stainless steel filter having an opening of 44 μm, and then 2.9 g of a cation exchange resin (Mitsubishi Chemical Corporation) was mixed and stirred for 15 minutes. Further, the cation exchange resin was separated and removed using a stainless steel filter having an opening of 44 μm to obtain a water-dispersed sol having a deionized solid content of 2.0% by weight. Thus, 1.07 kg of an aqueous dispersion sol containing titanium-based fine particles (hereinafter referred to as “RCP-3”) obtained by firing and pulverizing the composite oxide particles and further classifying and removing coarse particles was obtained.

このようにして得られたチタン系微粒子を含む水分散ゾルは乳白色であり、その濁度は4.82cm-1であった。また、この水分散ゾル中に含まれる前記チタン系微粒子の平均粒子径は111nmであり、さらに100nm以上の粒子径を有する粗大粒子の分布頻度は76.9%であった。
また、前記チタン系微粒子は、ルチル型の結晶構造を有しており、比表面積やX線回折結晶子径、さらにはX線回折から求められる結晶面間隔や相対ピーク強度比は、前記複合酸化物粒子(粉砕前のチタン系粒子)と同じ値を示した。
さらに、このチタン系微粒子中に含まれる金属成分の含有量を測定したところ、各金属成分の酸化物換算基準で、TiO284.5重量%、SnO29.8重量%、SiO25.3重量%およびK2O0.4重量%であった。なお、この金属含有量より求められる前記チタン系微粒子の比重は4.20であった。
また、上記の「粒子の屈折率測定法A」に記載の方法に基づき、分光エリプソメーターを用いて測定された塗膜屈折率Nav’は、前記塗料組成物中に含まれる粒子の重量分率mが10重量%、20重量%、30重量%、40重量%、50重量%、55重量%であるとき、それぞれ1.542、1.591、1.647、1.719、1.797、1.842であった。さらに、前記塗膜屈折率Nav’と前記体積分率・重量分率の変換式およびマクスウェル−ガーネットの式から算出される塗膜屈折率Navとから求められる偏差平方和の最小値は0.000048であり、その最小値を示す粒子の屈折率は2.58であった。これにより、前記チタン系微粒子の屈折率は2.58であるとみなすことができた。
上記の測定結果のうち、本発明に関係する主要データを表1に示す。
The water-dispersed sol containing titanium-based fine particles thus obtained was milky white and had a turbidity of 4.82 cm −1 . The average particle diameter of the titanium-based fine particles contained in the water-dispersed sol was 111 nm, and the distribution frequency of coarse particles having a particle diameter of 100 nm or more was 76.9%.
The titanium-based fine particles have a rutile-type crystal structure, and the specific surface area, X-ray diffraction crystallite diameter, crystal plane spacing and relative peak intensity ratio obtained from X-ray diffraction are determined by the composite oxidation. It showed the same value as the product particles (titanium-based particles before pulverization).
Furthermore, when the content of the metal component contained in the titanium-based fine particles was measured, TiO 2 84.5% by weight, SnO 2 9.8% by weight, SiO 2 5. 3 wt% and K 2 O 0.4 wt%. The specific gravity of the titanium-based fine particles obtained from this metal content was 4.20.
The coating film refractive index Nav ′ measured using a spectroscopic ellipsometer based on the method described in the above “Particle Refractive Index Measurement Method A” is a weight fraction of particles contained in the coating composition. When m is 10 wt%, 20 wt%, 30 wt%, 40 wt%, 50 wt%, 55 wt%, 1.542, 1.591, 1.647, 1.719, 1.797, It was 1.842. Further, the minimum value of the sum of squares of deviation obtained from the coating film refractive index Nav ′, the volume fraction / weight fraction conversion formula, and the coating film refractive index Nav calculated from the Maxwell-Garnet formula is 0.000048. The refractive index of the particles showing the minimum value was 2.58. Thereby, it could be considered that the refractive index of the titanium-based fine particles was 2.58.
Among the above measurement results, main data related to the present invention are shown in Table 1.

[比較例4]
チタン系微粒子を含む水分散ゾルの調製
参考例1の場合と同様な方法で、平均粒子径が約2μmの複合酸化物粒子からなる乾燥粉体0.63kgを得た。
この複合酸化物粒子の乾燥粉体0.63kgを、空気雰囲気下、600℃の温度にて1時間焼成して、複合酸化物粒子の焼成粉体0.59kgを得た。
このように焼成して得られた複合酸化物粒子(チタン系粒子)は、ルチル型の結晶構造を有しており、比表面積が138m2/gであり、X線回折結晶子径が8.2nmであった。また、X線回折から求められる、(310)結晶面の面間隔が0.1452nmであり、(301)結晶面の面間隔が0.1357nmであった。さらに、X線回折から求められる、(310)結晶面のピーク強度P1と(110)結晶面のピーク強度P2との相対ピーク強度比(P1/P2)は13/100であった。
[Comparative Example 4]
Preparation of water-dispersed sol containing titanium-based fine particles
In the same manner as in Reference Example 1, 0.63 kg of dry powder composed of composite oxide particles having an average particle diameter of about 2 μm was obtained.
0.63 kg of the dry powder of the composite oxide particles was fired for 1 hour at a temperature of 600 ° C. in an air atmosphere to obtain 0.59 kg of a fired powder of the composite oxide particles.
The composite oxide particles (titanium-based particles) obtained by firing in this way have a rutile crystal structure, a specific surface area of 138 m 2 / g, and an X-ray diffraction crystallite diameter of 8. It was 2 nm. Further, the interplanar spacing of (310) crystal planes determined from X-ray diffraction was 0.1452 nm, and the interplanar spacing of (301) crystal planes was 0.1357 nm. Furthermore, as determined by X-ray diffraction, (310) crystal face of the peak intensity P 1 and (110) relative peak intensity ratio of the peak intensity P 2 of the crystal plane (P 1 / P 2) was 13/100 .

次に、得られた複合酸化物粒子(チタン系粒子)の焼成粉体0.17kgを純水250.4gに分散させ、これに10重量%濃度の水酸化カリウム水溶液24.8gを添加してpH11.0に調整した。次いで、この混合水溶液に粒子径0.1〜0.2mmの石英ビーズ(MRCユニテック(株)製高純度シリカビーズ015)1.27kgを加えて、これを湿式粉砕機(カンペ製バッチ式卓上サンドミル)に供して180分間、前記複合酸化物粒子の粉砕処理を行った。その後、石英ビーズを目開き44μmのステンレス製のフィルターを用いて分離・除去したのち、さらに純水840.0gを添加して撹拌し、固形分含有量が11重量%の水分散ゾル1.19kgを得た。
このように粉砕して得られた複合酸化物微粒子を含む水分散ゾルは乳白色であった。また、この水分散ゾル中に含まれる前記複合酸化物微粒子の平均粒子径は104nmであり、さらに100nm以上の粒子径を有する粗大粒子の分布頻度は58.6%であった。
Next, 0.17 kg of the calcined powder of the obtained composite oxide particles (titanium particles) was dispersed in 250.4 g of pure water, and 24.8 g of 10 wt% potassium hydroxide aqueous solution was added thereto. The pH was adjusted to 11.0. Next, 1.27 kg of quartz beads having a particle diameter of 0.1 to 0.2 mm (high-purity silica beads 015 manufactured by MRC Unitech Co., Ltd.) was added to this mixed aqueous solution, and this was mixed with a wet pulverizer (Kampe batch type tabletop sand mill). The composite oxide particles were pulverized for 180 minutes. Then, after separating and removing the quartz beads using a stainless steel filter having an opening of 44 μm, 840.0 g of pure water was further added and stirred to obtain 1.19 kg of an aqueous dispersion sol having a solid content of 11% by weight. Got.
The aqueous dispersion sol containing composite oxide fine particles obtained by pulverization in this way was milky white. The average particle size of the composite oxide fine particles contained in the water-dispersed sol was 104 nm, and the distribution frequency of coarse particles having a particle size of 100 nm or more was 58.6%.

次いで、前記水分散ゾル1.19kgに純水0.12kgを添加して、固形分濃度が10重量%の水分散ゾルとし、さらに陰イオン交換樹脂(三菱化学(株)製)0.29kgを混合して15分間攪拌した。次に、前記陰イオン交換樹脂を目開き44μmのステンレス製フィルターを用いて分離・除去したのち、陽イオン交換樹脂(三菱化学(株)製)40.1gを混合して15分間攪拌した。次いで、前記陽イオン交換樹脂を目開き44μmステンレス製のフィルターを用いて分離・除去した。しかし、この水分散ゾルについては、遠心分離機を用いて100nm以上の粒子径を有する粗大粒子を分級する操作は行わなかった。これにより、固形分含有量が10.0重量%の水分散ゾル1.12kgを得た。 Next, 0.12 kg of pure water was added to 1.19 kg of the water-dispersed sol to obtain a water-dispersed sol having a solid concentration of 10% by weight, and 0.29 kg of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation). Mix and stir for 15 minutes. Next, after separating and removing the anion exchange resin using a stainless steel filter having an opening of 44 μm, 40.1 g of a cation exchange resin (manufactured by Mitsubishi Chemical Corporation) was mixed and stirred for 15 minutes. Next, the cation exchange resin was separated and removed using a filter made of stainless steel having an aperture of 44 μm. However, this water-dispersed sol was not subjected to an operation for classifying coarse particles having a particle diameter of 100 nm or more using a centrifuge. As a result, 1.12 kg of an aqueous dispersion sol having a solid content of 10.0% by weight was obtained.

次いで、前記水分散ゾル(固形分含有量が10.0重量%)1.12kgに、純水4.48kgを混合して、固形分含有量が2.0重量%の水分散ゾル5.60kgを得た。次に、この水分散ゾルをオートクレーブ(耐圧硝子工業(株)製、10L)に入れて、165℃の温度で18時間、加熱処理した。
次に、オートクレーブから取り出して室温まで冷却された水分散ゾルに、陰イオン交換樹脂(三菱化学(株)製)0.22kgを混合して15分間攪拌した。次いで、前記陰イオン交換樹脂を目開き44μmのステンレス製フィルターを用いて分離・除去したのち、陽イオン交換樹脂(三菱化学(株)製)14.8gを混合して15分間攪拌した。さらに、前記陽イオン交換樹脂を目開き44μmのステンレス製フィルターを用いて分離・除去して、脱イオンされた固形分含有量が2.0重量%の水分散ゾルを得た。これにより、前記複合酸化物粒子を焼成して粉砕し、さらに粗大粒子を分級・除去したチタン系微粒子(以下、「RCP−4」という。)を含む水分散ゾル5.49kgを得た。
Next, 4.48 kg of pure water is mixed with 1.12 kg of the water-dispersed sol (solid content is 10.0% by weight) to obtain 5.60 kg of water-dispersed sol having a solid content of 2.0% by weight. Got. Next, this water-dispersed sol was put in an autoclave (manufactured by Pressure Glass Industrial Co., Ltd., 10 L), and heat-treated at a temperature of 165 ° C. for 18 hours.
Next, 0.22 kg of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation) was mixed with the aqueous dispersion sol taken out from the autoclave and cooled to room temperature, and stirred for 15 minutes. Next, the anion exchange resin was separated and removed using a stainless steel filter having an opening of 44 μm, and then 14.8 g of a cation exchange resin (manufactured by Mitsubishi Chemical Corporation) was mixed and stirred for 15 minutes. Further, the cation exchange resin was separated and removed using a stainless steel filter having an opening of 44 μm to obtain a water-dispersed sol having a deionized solid content of 2.0% by weight. As a result, 5.49 kg of an aqueous dispersion sol containing titanium-based fine particles (hereinafter referred to as “RCP-4”) obtained by firing and pulverizing the composite oxide particles and further classifying and removing coarse particles was obtained.

このようにして得られたチタン系微粒子を含む水分散ゾルは乳白色であり、その濁度は10.25cm-1であった。また、この水分散ゾル中に含まれる前記チタン系微粒子の平均粒子径は104nmであり、さらに100nm以上の粒子径を有する粗大粒子の分布頻度は58.6%であった。
また、前記チタン系微粒子は、ルチル型の結晶構造を有しており、比表面積やX線回折結晶子径、さらにはX線回折から求められる結晶面間隔や相対ピーク強度比は、前記複合酸化物粒子(粉砕前のチタン系粒子)と同じ値を示した。
さらに、このチタン系微粒子中に含まれる金属成分の含有量を測定したところ、各金属成分の酸化物換算基準で、TiO283.7重量%、SnO210.6重量%、SiO25.4重量%およびK2O0.3重量%であった。なお、この金属含有量より求められる前記チタン系微粒子の比重は4.21であった。
また、上記の「粒子の屈折率測定法A」に記載の方法に基づき、分光エリプソメーターを用いて測定された塗膜屈折率Nav’は、前記塗料組成物中に含まれる粒子の重量分率mが10重量%、20重量%、30重量%、40重量%、50重量%、55重量%であるとき、それぞれ1.548、1.594、1.642、1.699、1.743、1.785であった。さらに、前記塗膜屈折率Nav’と前記体積分率・重量分率の変換式およびマクスウェル−ガーネットの式から算出される塗膜屈折率Navとから求められる偏差平方和の最小値は0.000664であり、その最小値を示す粒子の屈折率は2.38であった。これにより、前記チタン系微粒子の屈折率は2.38であるとみなすことができた。
上記の測定結果のうち、本発明に関係する主要データを表1に示す。
The aqueous dispersion sol containing titanium-based fine particles thus obtained was milky white and had a turbidity of 10.25 cm −1 . The average particle diameter of the titanium-based fine particles contained in the water-dispersed sol was 104 nm, and the distribution frequency of coarse particles having a particle diameter of 100 nm or more was 58.6%.
The titanium-based fine particles have a rutile-type crystal structure, and the specific surface area, X-ray diffraction crystallite diameter, crystal plane spacing and relative peak intensity ratio obtained from X-ray diffraction are determined by the composite oxidation. It showed the same value as the product particles (titanium-based particles before pulverization).
Furthermore, measurement of the content of the metal component contained in the titanium-based fine particles, in terms of oxide based on the respective metal components, TiO 2 83.7 wt%, SnO 2 10.6 wt%, SiO 2 5. 4 was wt% and K 2 O0.3% by weight. The specific gravity of the titanium-based fine particles determined from the metal content was 4.21.
The coating film refractive index Nav ′ measured using a spectroscopic ellipsometer based on the method described in the above “Particle Refractive Index Measurement Method A” is a weight fraction of particles contained in the coating composition. When m is 10%, 20%, 30%, 40%, 50%, 55% by weight, 1.548, 1.594, 1.642, 1.699, 1.743, 1.785. Further, the minimum value of the deviation sum of squares obtained from the coating film refractive index Nav ′, the volume fraction / weight fraction conversion formula, and the coating film refractive index Nav calculated from the Maxwell-Garnet formula is 0.000664. The refractive index of the particles showing the minimum value was 2.38. Thereby, it could be considered that the refractive index of the titanium-based fine particles was 2.38.
Among the above measurement results, main data related to the present invention are shown in Table 1.

[比較例5]
チタン系微粒子を含む水分散ゾルの調製
市販の酸化チタンパウダー(テイカ(株)製微粒子酸化チタンMT−150W)を用意した。この酸化チタンパウダーは、ルチル型の結晶構造を有しており、比表面積が88m2/gであり、X線回折結晶子径が16.8nmであった。また、X線回折から求められる、(310)結晶面の面間隔が0.1457nmであり、(301)結晶面の面間隔が0.1363nmであった。 さらに、X線回折から求められる、(310)結晶面のピーク強度P1と(110)結晶面のピーク強度P2との相対ピーク強度比(P1/P2)は9/100であった。
これらの測定結果より判断すると、前記酸化チタンパウダーは、比較的高い温度で焼成された焼成品であると考えられる。
[Comparative Example 5]
Preparation of water-dispersed sol containing titanium-based fine particles Commercially available titanium oxide powder (fine particle titanium oxide MT-150W manufactured by Teika Co., Ltd.) was prepared. This titanium oxide powder had a rutile crystal structure, a specific surface area of 88 m 2 / g, and an X-ray diffraction crystallite diameter of 16.8 nm. Further, the interplanar spacing of (310) crystal planes determined from X-ray diffraction was 0.1457 nm, and the interplanar spacing of (301) crystal planes was 0.1363 nm. Furthermore, as determined by X-ray diffraction, (310) crystal face of the peak intensity P 1 and (110) relative peak intensity ratio of the peak intensity P 2 of the crystal plane (P 1 / P 2) was 9/100 .
Judging from these measurement results, the titanium oxide powder is considered to be a fired product fired at a relatively high temperature.

次に、前記酸化チタンパウダー0.17kgを純水250.4gに分散させ、これに10重量%濃度の水酸化カリウム水溶液24.8gを添加してpH11.0に調整した。次いで、この混合水溶液に粒子径0.1〜0.2mmの石英ビーズ(MRCユニテック(株)製高純度シリカビーズ015)1.27kgを加えて、これを湿式粉砕機(カンペ製バッチ式卓上サンドミル)に供して180分間、前記酸化チタンパウダーの粉砕処理を行った。その後、石英ビーズを目開き44μmのステンレス製フィルターを用いて分離・除去したのち、さらに純水840.0gを添加して撹拌し、固形分含有量が11重量%の水分散ゾル1.01kgを得た。
このように粉砕して得られた前記酸化チタンパウダーの粉砕粒子を含む水分散ゾルは乳白色であった。また、この水分散ゾル中に含まれる前記複合酸化物微粒子の平均粒子径は548nmであり、さらに100nm以上の粒子径を有する粗大粒子の分布頻度は100%であった。
Next, 0.17 kg of the titanium oxide powder was dispersed in 250.4 g of pure water, and 24.8 g of 10 wt% potassium hydroxide aqueous solution was added thereto to adjust the pH to 11.0. Next, 1.27 kg of quartz beads having a particle diameter of 0.1 to 0.2 mm (high-purity silica beads 015 manufactured by MRC Unitech Co., Ltd.) was added to this mixed aqueous solution, and this was mixed with a wet pulverizer (Kampe batch type tabletop sand mill). The titanium oxide powder was pulverized for 180 minutes. Then, after separating and removing the quartz beads using a stainless steel filter having an opening of 44 μm, 840.0 g of pure water was further added and stirred, and 1.01 kg of an aqueous dispersion sol having a solid content of 11 wt% was added. Obtained.
The aqueous dispersion sol containing the pulverized particles of the titanium oxide powder thus obtained by pulverization was milky white. The average particle size of the composite oxide fine particles contained in the water-dispersed sol was 548 nm, and the distribution frequency of coarse particles having a particle size of 100 nm or more was 100%.

次いで、前記水分散ゾル1.01kgに純水0.10kgを添加して、固形分濃度が10重量%の水分散ゾルとし、さらに陰イオン交換樹脂(三菱化学(株)製)0.25kgを混合して15分間攪拌した。次に、前記陰イオン交換樹脂を目開き44μmのステンレス製フィルターを用いて分離・除去したのち、陽イオン交換樹脂(三菱化学(株)製)34.0gを混合して15分間攪拌した。次いで、前記陽イオン交換樹脂を目開き44μmのステンレス製フィルターを用いて分離・除去したのち、この水分散ゾルを遠心分離機(日立工機(株)製CR−21G)に供して3,000rpmの速度で10分間処理して、100nm以上の粒子径を有する粗大粒子を分級して取り除いた。これにより、固形分含有量が2.2重量%の水分散ゾル0.95kgを得た。 Next, 0.10 kg of pure water was added to 1.01 kg of the water dispersion sol to obtain a water dispersion sol having a solid concentration of 10% by weight, and 0.25 kg of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation). Mix and stir for 15 minutes. Next, after separating and removing the anion exchange resin using a stainless steel filter having an opening of 44 μm, 34.0 g of a cation exchange resin (manufactured by Mitsubishi Chemical Corporation) was mixed and stirred for 15 minutes. Next, after separating and removing the cation exchange resin using a stainless steel filter having an opening of 44 μm, this water-dispersed sol is subjected to a centrifuge (CR-21G manufactured by Hitachi Koki Co., Ltd.) and 3,000 rpm. Then, coarse particles having a particle diameter of 100 nm or more were classified and removed. As a result, 0.95 kg of an aqueous dispersion sol having a solid content of 2.2% by weight was obtained.

次いで、前記水分散ゾル(固形分含有量が6.6重量%)0.95kgに、純水0.10kgを混合して、固形分含有量が2.0重量%の水分散ゾル1.05kgを得た。次に、この水分散ゾルをオートクレーブ(耐圧硝子工業(株)製、5L)に入れて、165℃の温度で18時間、加熱処理した。
次に、オートクレーブから取り出して室温まで冷却された水分散ゾルに、陰イオン交換樹脂(三菱化学(株)製)41.6gを混合して15分間攪拌した。次いで、前記陰イオン交換樹脂を目開き44μmのステンレス製フィルターを用いて分離・除去したのち、陽イオン交換樹脂(三菱化学(株)製)2.8gを混合して15分間攪拌した。さらに、前記陽イオン交換樹脂を目開き44μmのステンレス製フィルターを用いて分離・除去して、脱イオンされた固形分含有量が2.0重量%の水分散ゾルを得た。これにより、前記複合酸化物粒子を焼成して粉砕し、さらに粗大粒子を分級・除去したチタン系微粒子(以下、「RCP−5」という。)を含む水分散ゾル0.97kgを得た。
Next, 0.10 kg of pure water was mixed with 0.95 kg of the water-dispersed sol (solid content 6.6% by weight) to obtain 1.05 kg of water-dispersed sol having a solid content of 2.0% by weight. Got. Next, this water-dispersed sol was put in an autoclave (manufactured by Pressure Glass Industrial Co., Ltd., 5 L) and heat-treated at a temperature of 165 ° C. for 18 hours.
Next, 41.6 g of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation) was mixed with the water-dispersed sol taken out from the autoclave and cooled to room temperature, and stirred for 15 minutes. Next, the anion exchange resin was separated and removed using a stainless steel filter having an opening of 44 μm, and then 2.8 g of a cation exchange resin (manufactured by Mitsubishi Chemical Corporation) was mixed and stirred for 15 minutes. Further, the cation exchange resin was separated and removed using a stainless steel filter having an opening of 44 μm to obtain a water-dispersed sol having a deionized solid content of 2.0% by weight. Thus, 0.97 kg of an aqueous dispersion sol containing titanium-based fine particles (hereinafter referred to as “RCP-5”) obtained by firing and pulverizing the composite oxide particles and further classifying and removing coarse particles was obtained.

このようにして得られたチタン系微粒子を含む水分散ゾルは乳白色であり、その濁度は15.31cm-1であった。また、この水分散ゾル中に含まれる前記チタン系微粒子の平均粒子径は384nmであり、さらに100nm以上の粒子径を有する粗大粒子の分布頻度は100%であった。
また、前記チタン系微粒子は、ルチル型の結晶構造を有しており、比表面積やX線回折結晶子径、さらにはX線回折から求められる結晶面間隔や相対ピーク強度比は、前記複合酸化物粒子(粉砕前のチタン系粒子)と同じ値を示した。
さらに、このチタン系微粒子中に含まれる金属成分の含有量を測定したところ、各金属成分の酸化物換算基準で、TiO298.3重量%、Al230.4重量%、Na2O0.5重量%、CaO0.1重量%、SiO20.1重量%およびP250.6重量%であった。なお、この金属含有量より求められる前記チタン系微粒子の比重は4.25であった。
また、上記の「粒子の屈折率測定法A」に記載の方法に基づき、分光エリプソメーターを用いて測定された塗膜屈折率Nav’は、前記塗料組成物中に含まれる粒子の重量分率mが10重量%、20重量%、30重量%、40重量%、50重量%、55重量%であるとき、それぞれ1.548、1.594、1.642、1.699、1.743、1.797であった。さらに、前記塗膜屈折率Nav’と前記体積分率・重量分率の変換式およびマクスウェル−ガーネットの式から算出される塗膜屈折率Navとから求められる偏差平方和の最小値は0.000602であり、その最小値を示す粒子の屈折率は2.39であった。これにより、前記チタン系微粒子の屈折率は2.39であるとみなすことができた。
上記の測定結果のうち、本発明に関係する主要データを表1に示す。
The aqueous dispersion sol containing titanium-based fine particles thus obtained was milky white and had a turbidity of 15.31 cm −1 . The average particle size of the titanium-based fine particles contained in the water-dispersed sol was 384 nm, and the distribution frequency of coarse particles having a particle size of 100 nm or more was 100%.
The titanium-based fine particles have a rutile-type crystal structure, and the specific surface area, X-ray diffraction crystallite diameter, crystal plane spacing and relative peak intensity ratio obtained from X-ray diffraction are determined by the composite oxidation. It showed the same value as the product particles (titanium-based particles before pulverization).
Furthermore, when the content of the metal component contained in the titanium-based fine particles was measured, TiO 2 was 98.3% by weight, Al 2 O 3 was 0.4% by weight, Na 2 based on the oxide conversion standard of each metal component. They were 0.5% by weight of O, 0.1% by weight of CaO, 0.1% by weight of SiO 2 and 0.6% by weight of P 2 O 5 . The specific gravity of the titanium-based fine particles determined from the metal content was 4.25.
The coating film refractive index Nav ′ measured using a spectroscopic ellipsometer based on the method described in the above “Particle Refractive Index Measurement Method A” is a weight fraction of particles contained in the coating composition. When m is 10%, 20%, 30%, 40%, 50%, 55% by weight, 1.548, 1.594, 1.642, 1.699, 1.743, 1.797. Further, the minimum value of the deviation sum of squares obtained from the coating film refractive index Nav ′, the volume fraction / weight fraction conversion formula, and the coating film refractive index Nav calculated from the Maxwell-Garnet formula is 0.000602. The refractive index of the particles showing the minimum value was 2.39. Thereby, it could be considered that the refractive index of the titanium-based fine particles was 2.39.
Among the above measurement results, main data related to the present invention are shown in Table 1.

[比較例6]
チタン系微粒子を含む水分散ゾルの調製
チタニウムの他にアルミニウムを含む市販の酸化チタンパウダー(石原産業(株)製超微粒子酸化チタン、TTO−51(A))を用意した。この酸化チタンパウダーは、ルチル型の結晶構造を有しており、比表面積が98m2/gであり、X線回折結晶子径が14.3nmであった。また、X線回折から求められる、(310)結晶面の面間隔が0.1449nmであり、(301)結晶面の面間隔が0.1357nmであった。 さらに、X線回折から求められる、(310)結晶面のピーク強度P1と(110)結晶面のピーク強度P2との相対ピーク強度比(P1/P2)は11/100であった。
これらの測定結果より判断すると、前記酸化チタンパウダーは、比較的高い温度で焼成された焼成品であると考えられる。
[Comparative Example 6]
Preparation of water-dispersed sol containing titanium-based fine particles Commercially available titanium oxide powder containing aluminum in addition to titanium (Ishihara Sangyo Co., Ltd. ultra-fine titanium oxide, TTO-51 (A)) was prepared. This titanium oxide powder had a rutile crystal structure, a specific surface area of 98 m 2 / g, and an X-ray diffraction crystallite diameter of 14.3 nm. Further, the interplanar spacing of the (310) crystal plane determined by X-ray diffraction was 0.1449 nm, and the interplanar spacing of the (301) crystal plane was 0.1357 nm. Furthermore, as determined by X-ray diffraction, (310) crystal face of the peak intensity P 1 and (110) relative peak intensity ratio of the peak intensity P 2 of the crystal plane (P 1 / P 2) was 11/100 .
Judging from these measurement results, the titanium oxide powder is considered to be a fired product fired at a relatively high temperature.

次に、前記酸化チタンパウダー0.17kgを純水250.4gに分散させ、これに10重量%濃度の水酸化カリウム水溶液24.8gを添加してpH11.0に調整した。次いで、この混合水溶液に粒子径0.1〜0.2mmの石英ビーズ(MRCユニテック(株)製高純度シリカビーズ015)1.27kgを加えて、これを湿式粉砕機(カンペ製バッチ式卓上サンドミル)に供して180分間、前記酸化チタンパウダーの粉砕処理を行った。その後、石英ビーズを目開き44μmのステンレス製フィルターを用いて分離・除去したのち、さらに純水840.0gを添加して撹拌し、固形分含有量が11重量%の水分散ゾル1.09kgを得た。
このように粉砕して得られた前記酸化チタンパウダーの粉砕粒子を含む水分散ゾルは乳白色であった。また、この水分散ゾル中に含まれる前記複合酸化物微粒子の平均粒子径は690nmであり、さらに100nm以上の粒子径を有する粗大粒子の分布頻度は100%であった。
Next, 0.17 kg of the titanium oxide powder was dispersed in 250.4 g of pure water, and 24.8 g of 10 wt% potassium hydroxide aqueous solution was added thereto to adjust the pH to 11.0. Next, 1.27 kg of quartz beads having a particle diameter of 0.1 to 0.2 mm (high-purity silica beads 015 manufactured by MRC Unitech Co., Ltd.) was added to this mixed aqueous solution, and this was mixed with a wet pulverizer (Kampe batch type tabletop sand mill). The titanium oxide powder was pulverized for 180 minutes. Then, after separating and removing the quartz beads using a stainless steel filter having an opening of 44 μm, 840.0 g of pure water was further added and stirred to obtain 1.09 kg of an aqueous dispersion sol having a solid content of 11% by weight. Obtained.
The aqueous dispersion sol containing the pulverized particles of the titanium oxide powder thus obtained by pulverization was milky white. The average particle size of the composite oxide fine particles contained in the water-dispersed sol was 690 nm, and the distribution frequency of coarse particles having a particle size of 100 nm or more was 100%.

次いで、前記水分散ゾル1.09kgに純水0.205kgを添加して、固形分濃度が10重量%の水分散ゾルとし、さらに陰イオン交換樹脂(三菱化学(株)製)0.287kgを混合して15分間攪拌した。次に、前記陰イオン交換樹脂を目開き44μmのステンレス製フィルターを用いて分離・除去したのち、陽イオン交換樹脂(三菱化学(株)製)36.7gを混合して15分間攪拌した。次いで、前記陽イオン交換樹脂を目開き44μmのステンレス製フィルターを用いて分離・除去したのち、この水分散ゾルを遠心分離機(日立工機(株)製CR−21G)に供して3,000rpmの速度で10分間処理して、100nm以上の粒子径を有する粗大粒子を分級して取り除いた。これにより、固形分含有量が2.5重量%の水分散ゾル1.09kgを得た。 Next, 0.205 kg of pure water was added to 1.09 kg of the water dispersion sol to obtain a water dispersion sol having a solid concentration of 10% by weight, and 0.287 kg of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation). Mix and stir for 15 minutes. Next, after separating and removing the anion exchange resin using a stainless steel filter having an opening of 44 μm, 36.7 g of a cation exchange resin (manufactured by Mitsubishi Chemical Corporation) was mixed and stirred for 15 minutes. Next, after separating and removing the cation exchange resin using a stainless steel filter having an opening of 44 μm, this water-dispersed sol is subjected to a centrifuge (CR-21G manufactured by Hitachi Koki Co., Ltd.) and 3,000 rpm. Then, coarse particles having a particle diameter of 100 nm or more were classified and removed. As a result, 1.09 kg of an aqueous dispersion sol having a solid content of 2.5% by weight was obtained.

次いで、前記水分散ゾル(固形分含有量が2.5重量%)1.09kgに、純水0.27kgを混合して、固形分含有量が2.0重量%の水分散ゾル1.36kgを得た。次に、この水分散ゾルをオートクレーブ(耐圧硝子工業(株)製、5L)に入れて、165℃の温度で18時間、加熱処理した。
次に、オートクレーブから取り出して室温まで冷却された水分散ゾルに、陰イオン交換樹脂(三菱化学(株)製)54.2gを混合して15分間攪拌した。次いで、前記陰イオン交換樹脂を目開き44μmのステンレス製フィルターを用いて分離・除去したのち、陽イオン交換樹脂(三菱化学(株)製)3.6gを混合して15分間攪拌した。さらに、前記陽イオン交換樹脂を目開き44μmのステンレス製フィルターを用いて分離・除去して、脱イオンされた固形分含有量が2.0重量%の水分散ゾルを得た。これにより、前記複合酸化物粒子を焼成して粉砕し、さらに粗大粒子を分級・除去したチタン系微粒子(以下、「RCP−6」という。)を含む水分散ゾル1.30kgを得た。
Next, 0.27 kg of pure water was mixed with 1.09 kg of the water-dispersed sol (solid content 2.5% by weight) to obtain 1.36 kg of water-dispersed sol having a solid content of 2.0% by weight. Got. Next, this water-dispersed sol was put in an autoclave (manufactured by Pressure Glass Industrial Co., Ltd., 5 L) and heat-treated at a temperature of 165 ° C. for 18 hours.
Next, 54.2 g of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation) was mixed with the water dispersion sol taken out from the autoclave and cooled to room temperature, and stirred for 15 minutes. Next, the anion exchange resin was separated and removed using a stainless steel filter having an opening of 44 μm, and then 3.6 g of a cation exchange resin (manufactured by Mitsubishi Chemical Corporation) was mixed and stirred for 15 minutes. Further, the cation exchange resin was separated and removed using a stainless steel filter having an opening of 44 μm to obtain a water-dispersed sol having a deionized solid content of 2.0% by weight. Thereby, 1.30 kg of an aqueous dispersion sol containing titanium-based fine particles (hereinafter referred to as “RCP-6”) obtained by firing and pulverizing the composite oxide particles and further classifying and removing coarse particles was obtained.

このようにして得られたチタン系微粒子を含む水分散ゾルは乳白色であり、その濁度は12.22cm-1であった。また、この水分散ゾル中に含まれる前記チタン系微粒子の平均粒子径は298nmであり、さらに100nm以上の粒子径を有する粗大粒子の分布頻度は100%であった。
また、前記チタン系微粒子は、ルチル型の結晶構造を有しており、比表面積やX線回折結晶子径、さらにはX線回折から求められる結晶面間隔や相対ピーク強度比は、前記複合酸化物粒子(粉砕前のチタン系粒子)と同じ値を示した。
さらに、このチタン系微粒子中に含まれる金属成分の含有量を測定したところ、各金属成分の酸化物換算基準で、TiO285.2重量%、Al2313.2重量%、SiO21.4重量%およびP250.2重量%であった。なお、この金属含有量より求められる前記チタン系微粒子の比重は4.18であった。
また、上記の「粒子の屈折率測定法A」に記載の方法に基づき、分光エリプソメーターを用いて測定された塗膜屈折率Nav’は、前記塗料組成物中に含まれる粒子の重量分率mが10重量%、20重量%、30重量%、40重量%、50重量%、55重量%であるとき、それぞれ1.516、1.541、1.564、1.593、1.630、1.648であった。さらに、前記塗膜屈折率Nav’と前記体積分率・重量分率の変換式およびマクスウェル−ガーネットの式から算出される塗膜屈折率Navとから求められる偏差平方和の最小値は0.000031であり、その最小値を示す粒子の屈折率は1.92であった。これにより、前記チタン系微粒子の屈折率は1.92であるとみなすことができた。因みに、上記の屈折率測定法B(標準液法)で測定された前記チタン系微粒子の屈折率は1.92であった。
上記の測定結果のうち、本発明に関係する主要データを表1に示す。
The aqueous dispersion sol containing titanium-based fine particles thus obtained was milky white and had a turbidity of 12.22 cm −1 . The average particle size of the titanium-based fine particles contained in the water-dispersed sol was 298 nm, and the distribution frequency of coarse particles having a particle size of 100 nm or more was 100%.
The titanium-based fine particles have a rutile-type crystal structure, and the specific surface area, X-ray diffraction crystallite diameter, crystal plane spacing and relative peak intensity ratio obtained from X-ray diffraction are determined by the composite oxidation. It showed the same value as the product particles (titanium-based particles before pulverization).
Furthermore, when the content of the metal component contained in the titanium-based fine particles was measured, 85.2% by weight of TiO 2 , 13.2% by weight of Al 2 O 3 , SiO 2 based on the oxide conversion standard of each metal component. was 1.4 wt% and P 2 O 5 0.2 wt%. The specific gravity of the titanium-based fine particles determined from the metal content was 4.18.
The coating film refractive index Nav ′ measured using a spectroscopic ellipsometer based on the method described in the above “Particle Refractive Index Measurement Method A” is a weight fraction of particles contained in the coating composition. When m is 10%, 20%, 30%, 40%, 50%, 55% by weight, 1.516, 1.541, 1.564, 1.593, 1.630, 1.648. Further, the minimum value of the sum of squares of deviation obtained from the coating film refractive index Nav ′, the volume fraction / weight fraction conversion formula, and the coating refractive index Nav calculated from the Maxwell-Garnet formula is 0.000031. The refractive index of the particles showing the minimum value was 1.92. Thereby, it could be considered that the refractive index of the titanium-based fine particles was 1.92. Incidentally, the refractive index of the titanium-based fine particles measured by the refractive index measurement method B (standard solution method) was 1.92.
Among the above measurement results, main data related to the present invention are shown in Table 1.

Figure 0005514487
Figure 0005514487

[実施例6]
金属酸化物微粒子を含む水分散ゾルの調製
参考例1と同様な方法で調製されたチタン系微粒子CP−1の水分散ゾル(固形分含有量が2.0重量%)7.50kgに、5.0重量%濃度のアンモニア水57.0gを混合したのち、前記チタン系微粒子の重量をCで表し、さらにその被覆層の重量をSで表したとき、その重量比(S/C)が酸化物換算基準で20/100となるように、ケイ素成分をSiO2換算基準で28重量%含む正珪酸エチル(多摩化学工業(株)製)144.2gとメタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)7.30kgとを混合した。次いで、この混合溶液を50℃の温度に加熱して18時間、攪拌した。
次に、得られた混合溶液を室温まで冷却してから、限外濾過膜(旭化成(株)製、SIP−1013)を用いてメタノールを除去して分散媒を水に置換した。さらに、濃縮して固形分含有量が20.0重量%の水分散ゾルを調製した。これにより、前記チタン系微粒子の表面を正珪酸エチルの加水分解縮合物、すなわち二酸化ケイ素で被覆してなる金属酸化物微粒子(以下、「CSP−1」という。)を含む水分散ゾル0.88kgを得た。
なお、前記金属酸化物微粒子の被覆層を形成してなる前記二酸化ケイ素の屈折率は、前記チタン系微粒子の屈折率より0.90低い1.45であった。
[Example 6]
Preparation of water-dispersed sol containing metal oxide fine particles
The aqueous dispersion sol of titanium-based fine particles CP-1 prepared in the same manner as in Reference Example 1 (solid content: 2.0 wt%): 7.50 kg, 5.0 wt% ammonia water 57.0 g After mixing, when the weight of the titanium-based fine particles is represented by C and the weight of the coating layer is represented by S, the weight ratio (S / C) is 20/100 on an oxide conversion basis. 144.2 g of normal ethyl silicate (manufactured by Tama Chemical Industry Co., Ltd.) containing 28 wt% of silicon component in terms of SiO 2 and methanol (Mayashi Junyaku Co., Ltd., methyl alcohol concentration: 99.9 wt%) 7 30 kg was mixed. Subsequently, this mixed solution was heated to a temperature of 50 ° C. and stirred for 18 hours.
Next, after cooling the obtained mixed solution to room temperature, methanol was removed using an ultrafiltration membrane (Asahi Kasei Co., Ltd., SIP-1013), and the dispersion medium was replaced with water. Further, it was concentrated to prepare an aqueous dispersion sol having a solid content of 20.0% by weight. As a result, 0.88 kg of an aqueous dispersion sol containing metal oxide fine particles (hereinafter referred to as “CSP-1”) obtained by coating the surface of the titanium-based fine particles with a hydrolyzed condensate of normal ethyl silicate, that is, silicon dioxide. Got.
The refractive index of the silicon dioxide formed by forming the coating layer of the metal oxide fine particles was 1.45, 0.90 lower than the refractive index of the titanium-based fine particles.

このようにして得られた金属酸化物微粒子を含む水分散ゾルは透明な乳白色であり、その濁度は5.36cm-1であった。また、この水分散ゾル中に含まれる前記金属酸化物微粒子の平均粒子径は33nmであり、さらに100nm以上の粒子径を有する粗大粒子の分布頻度は0%であった。
さらに、この金属酸化物微粒子中に含まれる金属成分の含有量を測定したところ、各金属成分の酸化物換算基準で、TiO266.0重量%、SnO28.1重量%、SiO225.7重量%およびK2O0.2重量%であった。なお、この金属含有量より求められる前記金属酸化物微粒子の比重は3.52であった。
また、上記の「粒子の屈折率測定法A」に記載の方法に基づき、分光エリプソメーターを用いて測定された塗膜屈折率Nav’は、前記塗料組成物中に含まれる粒子の重量分率mが10重量%、20重量%、30重量%、40重量%、50重量%、55重量%であるとき、それぞれ1.523、1.551、1.579、1.619、1.661、1.685であった。さらに、前記塗膜屈折率Nav’と前記体積分率・重量分率の変換式およびマクスウェル−ガーネットの式から算出される塗膜屈折率Navとから求められる偏差平方和の最小値は0.000013であり、その最小値を示す粒子の屈折率は2.04であった。これにより、前記金属酸化物微粒子の屈折率は2.04であるとみなすことができた。因みに、上記の屈折率測定法B(標準液法)で測定された前記金属酸化物微粒子の屈折率は2.04であった。
上記の測定結果のうち、本発明に関係する主要データを表2に示す。
The water-dispersed sol containing the metal oxide fine particles thus obtained was transparent milky white, and its turbidity was 5.36 cm −1 . The average particle diameter of the metal oxide fine particles contained in the water-dispersed sol was 33 nm, and the distribution frequency of coarse particles having a particle diameter of 100 nm or more was 0%.
Furthermore, when the content of the metal component contained in the metal oxide fine particles was measured, it was 66.0% by weight of TiO 2 , 8.1% by weight of SnO 2 , SiO 2 25 based on the oxide conversion standard of each metal component. .7 was wt% and K 2 O0.2% by weight. The specific gravity of the metal oxide fine particles determined from the metal content was 3.52.
The coating film refractive index Nav ′ measured using a spectroscopic ellipsometer based on the method described in the above “Particle Refractive Index Measurement Method A” is a weight fraction of particles contained in the coating composition. When m is 10% by weight, 20% by weight, 30% by weight, 40% by weight, 50% by weight, and 55% by weight, 1.523, 1.551, 1.579, 1.619, 1.661, It was 1.685. Further, the minimum value of the sum of squares of deviation obtained from the coating film refractive index Nav ′, the volume fraction / weight fraction conversion formula, and the coating film refractive index Nav calculated from the Maxwell-Garnet formula is 0.000013. The refractive index of the particles showing the minimum value was 2.04. Thereby, the refractive index of the metal oxide fine particles could be regarded as 2.04. Incidentally, the refractive index of the metal oxide fine particles measured by the refractive index measurement method B (standard solution method) was 2.04.
Among the above measurement results, main data related to the present invention are shown in Table 2.

[実施例7]
過酸化ジルコン酸水溶液の調製
オキシ塩化ジルコニウム(太陽鉱工(株)製)をZrO2換算基準で2.0重量%含むオキシ塩化ジルコニウム水溶液15.79kgに、アンモニアを15.0重量%含むアンモニア水を撹拌下で徐々に添加して、ジルコニウムの水和物を含むpH8.5のスラリー液を得た。次いで、このスラリーを濾過した後、純水で洗浄して、ジルコニウム成分をZrO2換算基準で10.0重量%のケーキ3.00kgを得た。
次に、このケーキ150.0gに純水1.35kgを加え、さらに水酸化カリウム(関東化学(株)製)を10.0重量%含む水酸化カリウム水溶液90.0gを加えてアルカリ性にした後、過酸化水素を35.0重量%含む過酸化水素水300.0gを加えて、50℃の温度に加熱してこのケーキを溶解した。さらに純水1.11kgを加えて、過酸化ジルコン酸をZrO2に換算基準で0.5重量%含む過酸化ジルコン酸水溶液3.00kgを得た。なお、この過酸化ジルコン酸水溶液のpHは、12であった。
[Example 7]
Preparation of aqueous zirconate peroxide solution 15.79 kg of zirconium oxychloride aqueous solution containing 2.0 wt% of zirconium oxychloride (manufactured by Taiyo Mining Co., Ltd.) in terms of ZrO 2 , and 15.0 wt. Of ammonia. % Aqueous ammonia was gradually added under stirring to obtain a pH 8.5 slurry containing zirconium hydrate. Next, this slurry was filtered and then washed with pure water to obtain 3.00 kg of a 10.0% by weight cake based on ZrO 2 as a zirconium component.
Next, 1.35 kg of pure water was added to 150.0 g of this cake, and 90.0 g of a potassium hydroxide aqueous solution containing 10.0% by weight of potassium hydroxide (manufactured by Kanto Chemical Co., Ltd.) was added to make it alkaline. Then, 300.0 g of hydrogen peroxide containing 35.0% by weight of hydrogen peroxide was added and heated to a temperature of 50 ° C. to dissolve this cake. Further, 1.11 kg of pure water was added to obtain 3.00 kg of an aqueous zirconate peroxide solution containing 0.5% by weight of zirconate peroxide in terms of ZrO 2 on a conversion basis. The pH of the aqueous zirconate peroxide solution was 12.

珪酸液の調製
一方、市販の水ガラス(AGCエスアイテック(株)製)0.31kgを純水にて希釈したのち、陽イオン交換樹脂(三菱化学(株)製)を用いて脱アルカリして、珪酸をSiO2換算基準で2.0重量%含む珪酸水溶液3.00kgを得た。なお、この珪酸水溶液のpHは、2.3であった。
金属酸化物微粒子を含む水分散ゾルの調製
参考例1と同様な方法で調製されたチタン系微粒子CP−1の水分散ゾル(固形分含有量が2.0重量%)7.50kgに純水13.76kgを加えて撹拌して90℃の温度に加熱したのち、これに前記過酸化ジルコン酸水溶液6.00kgと珪酸水溶液4.50kgを徐々に添加し、さらに添加終了後、90℃の温度に保ちながら攪拌下で1時間熟成した。
次いで、この混合液をオートクレーブ(耐圧硝子工業(株)製、50L)に入れて、165℃の温度で18時間、加熱処理を行った。
Preparation of silicic acid solution On the other hand, after 0.31 kg of commercially available water glass (manufactured by AGC S-Tech Co., Ltd.) was diluted with pure water, a cation exchange resin (manufactured by Mitsubishi Chemical Corporation) was used. The dealkalization was carried out to obtain 3.00 kg of an aqueous silicic acid solution containing 2.0% by weight of silicic acid on a SiO 2 conversion basis. The silicic acid aqueous solution had a pH of 2.3.
Preparation of water-dispersed sol containing metal oxide fine particles
13.76 kg of pure water was added to 7.50 kg of an aqueous dispersion sol (solid content 2.0% by weight) of titanium-based fine particles CP-1 prepared by the same method as in Reference Example 1, and the mixture was stirred at 90 ° C. Then, 6.00 kg of the aqueous zirconate peroxide solution and 4.50 kg of the silicic acid aqueous solution were gradually added thereto, and after completion of the addition, the mixture was aged with stirring for 1 hour while maintaining the temperature at 90 ° C.
Next, this mixed solution was put in an autoclave (manufactured by Pressure Glass Industrial Co., Ltd., 50 L) and subjected to heat treatment at a temperature of 165 ° C. for 18 hours.

次に、得られた混合溶液を室温まで冷却してから、限外濾過膜(旭化成(株)製、SIP−1013)を用いて濃縮して固形分含有量が20.0重量%の水分散ゾルを調製した。
次いで、得られた水分散ゾルに、陰イオン交換樹脂(三菱化学(株)製)0.59kgを混合して15分間攪拌した。次に、前記陰イオン交換樹脂を目開き44μmのステンレス製フィルターを用いて分離・除去したのち、陽イオン交換樹脂(三菱化学(株)製)81.0gを混合して15分間攪拌した。次いで、前記陽イオン交換樹脂を目開き44μmのステンレス製フィルターを用いて分離・除去して、固形分含有量が20.0重量%の水分散ゾル1.32kgを得た。
これにより、前記チタン系微粒子の表面をケイ素とジルコニウムとを含む複合酸化物で被覆してなる金属酸化物微粒子(以下、「CSP−2」という。)を含む水分散ゾル1.32kgを得た。
なお、前記金属酸化物微粒子の被覆層を形成してなる前記複合酸化物の屈折率は、前記チタン系微粒子の屈折率より0.81低い1.54であった。
Next, the obtained mixed solution is cooled to room temperature, and then concentrated using an ultrafiltration membrane (Asahi Kasei Co., Ltd., SIP-1013) to disperse in water with a solid content of 20.0% by weight. A sol was prepared.
Next, 0.59 kg of an anion exchange resin (Mitsubishi Chemical Corporation) was mixed with the obtained water dispersion sol and stirred for 15 minutes. Next, after separating and removing the anion exchange resin using a stainless steel filter having an opening of 44 μm, 81.0 g of a cation exchange resin (manufactured by Mitsubishi Chemical Corporation) was mixed and stirred for 15 minutes. Next, the cation exchange resin was separated and removed using a stainless steel filter having an opening of 44 μm to obtain 1.32 kg of an aqueous dispersion sol having a solid content of 20.0% by weight.
As a result, 1.32 kg of an aqueous dispersion sol containing metal oxide fine particles (hereinafter referred to as “CSP-2”) obtained by coating the surface of the titanium-based fine particles with a composite oxide containing silicon and zirconium. .
The refractive index of the composite oxide formed by forming the coating layer of the metal oxide fine particles was 1.54, which is 0.81 lower than the refractive index of the titanium-based fine particles.

このようにして得られた金属酸化物微粒子を含む水分散ゾルは透明な乳白色であり、その濁度は5.35cm-1であった。また、この水分散ゾル中に含まれる前記金属酸化物微粒子の平均粒子径は37nmであり、さらに100nm以上の粒子径を有する粗大粒子の分布頻度は0%であった。
さらに、この金属酸化物微粒子中に含まれる金属成分の含有量を測定したところ、各金属成分の酸化物換算基準で、TiO267.2重量%、SnO28.6重量%、SiO219.3重量%、ZrO24.6重量%およびK2O0.3重量%であった。なお、この金属含有量より求められる前記金属酸化物微粒子の比重は3.75であった。
また、上記の「粒子の屈折率測定法A」に記載の方法に基づき、分光エリプソメーターを用いて測定された塗膜屈折率Nav’は、前記塗料組成物中に含まれる粒子の重量分率mが10重量%、20重量%、30重量%、40重量%、50重量%、55重量%であるとき、それぞれ1.526、1.560、1.596、1.638、1.684、1.710であった。さらに、前記塗膜屈折率Nav’と前記体積分率・重量分率の変換式およびマクスウェル−ガーネットの式から算出される塗膜屈折率Navとから求められる偏差平方和の最小値は0.000009であり、その最小値を示す粒子の屈折率は2.07であった。これにより、前記金属酸化物微粒子の屈折率は2.07であるとみなすことができた。因みに、上記の屈折率測定法B(標準液法)で測定された前記金属酸化物微粒子の屈折率は2.07であった。
上記の測定結果のうち、本発明に関係する主要データを表2に示す。
The aqueous dispersion sol containing the metal oxide fine particles thus obtained was transparent milky white, and its turbidity was 5.35 cm −1 . The average particle diameter of the metal oxide fine particles contained in the water-dispersed sol was 37 nm, and the distribution frequency of coarse particles having a particle diameter of 100 nm or more was 0%.
Furthermore, when the content of the metal component contained in the metal oxide fine particles was measured, TiO 2 67.2% by weight, SnO 2 8.6% by weight, SiO 2 19 based on the oxide conversion standard of each metal component. .3 wt% and a ZrO 2 4.6 wt% and K 2 O0.3% by weight. The specific gravity of the metal oxide fine particles determined from the metal content was 3.75.
The coating film refractive index Nav ′ measured using a spectroscopic ellipsometer based on the method described in the above “Particle Refractive Index Measurement Method A” is a weight fraction of particles contained in the coating composition. when m is 10%, 20%, 30%, 40%, 50%, 55% by weight, 1.526, 1.560, 1.596, 1.638, 1.684, 1.710. Further, the minimum value of the sum of square deviations obtained from the coating film refractive index Nav ′ and the coating volume refractive index Nav calculated from the volume fraction / weight fraction conversion formula and the Maxwell-Garnet formula is 0.000009. The refractive index of the particles showing the minimum value was 2.07. Thereby, it could be considered that the refractive index of the metal oxide fine particles was 2.07. Incidentally, the refractive index of the metal oxide fine particles measured by the refractive index measurement method B (standard solution method) was 2.07.
Among the above measurement results, main data related to the present invention are shown in Table 2.

[実施例8]
金属酸化物微粒子を含む水分散ゾルの調製
参考例1と同様な方法で調製されたチタン系微粒子CP−1の水分散ゾル(固形分含有量が2.0重量%) 7.50kgに純水1.16kgを加えて撹拌して90℃の温度に加熱したのち、これに実施例7と同様な方法で調製された、過酸化ジルコン酸水溶液16.80kgと珪酸水溶液1.80kgを徐々に添加し、さらに添加終了後、90℃の温度に保ちながら攪拌下で1時間熟成した。
次いで、この混合液をオートクレーブ(耐圧硝子工業(株)製、50L)に入れて、165℃の温度で18時間、加熱処理を行った。
次に、得られた混合溶液を室温まで冷却してから、限外濾過膜(旭化成(株)製、SIP−1013)を用いて濃縮して固形分含有量が20.0重量%の水分散ゾルを調製した。
次いで、得られた水分散ゾルに、陰イオン交換樹脂(三菱化学(株)製)0.59kgを混合して15分間攪拌した。次に、前記陰イオン交換樹脂を目開き44μmのステンレス製フィルターを用いて分離・除去したのち、陽イオン交換樹脂(三菱化学(株)製)81.0gを混合して15分間攪拌した。次いで、前記陽イオン交換樹脂を目開き44μmのステンレス製フィルターを用いて分離・除去して、固形分含有量が20.0重量%の水分散ゾル1.32kgを得た。
これにより、前記チタン系微粒子の表面をケイ素とジルコニウムとを含む複合酸化物で被覆してなる金属酸化物微粒子(以下、「CSP−3」という。)を含む水分散ゾル1.32kgを得た。
なお、前記金属酸化物微粒子の被覆層を形成してなる前記複合酸化物の屈折率は、前記チタン系微粒子の屈折率より0.24低い2.11であった。
[Example 8]
Preparation of water-dispersed sol containing metal oxide fine particles
Water-dispersed sol of titanium-based fine particles CP-1 prepared by the same method as in Reference Example 1 (solid content: 2.0% by weight) 1.16 kg of pure water was added to 7.50 kg and stirred at 90 ° C. Then, 16.80 kg of an aqueous zirconate peroxide solution and 1.80 kg of an aqueous silicic acid solution prepared in the same manner as in Example 7 were gradually added thereto, and after the addition was completed, the temperature was 90 ° C. The mixture was aged for 1 hour with stirring.
Next, this mixed solution was put in an autoclave (manufactured by Pressure Glass Industrial Co., Ltd., 50 L) and subjected to heat treatment at a temperature of 165 ° C. for 18 hours.
Next, the obtained mixed solution is cooled to room temperature, and then concentrated using an ultrafiltration membrane (Asahi Kasei Co., Ltd., SIP-1013) to disperse in water with a solid content of 20.0% by weight. A sol was prepared.
Next, 0.59 kg of an anion exchange resin (Mitsubishi Chemical Corporation) was mixed with the obtained water dispersion sol and stirred for 15 minutes. Next, after separating and removing the anion exchange resin using a stainless steel filter having an opening of 44 μm, 81.0 g of a cation exchange resin (manufactured by Mitsubishi Chemical Corporation) was mixed and stirred for 15 minutes. Next, the cation exchange resin was separated and removed using a stainless steel filter having an opening of 44 μm to obtain 1.32 kg of an aqueous dispersion sol having a solid content of 20.0% by weight.
As a result, 1.32 kg of an aqueous dispersion sol containing metal oxide fine particles (hereinafter referred to as “CSP-3”) formed by coating the surface of the titanium-based fine particles with a composite oxide containing silicon and zirconium. .
The composite oxide formed by forming the metal oxide fine particle coating layer had a refractive index of 2.11 which was 0.24 lower than the refractive index of the titanium-based fine particles.

このようにして得られた金属酸化物微粒子を含む水分散ゾルは透明な乳白色であり、その濁度は5.34cm-1であった。また、この水分散ゾル中に含まれる前記金属酸化物微粒子の平均粒子径は31nmであり、さらに100nm以上の粒子径を有する粗大粒子の分布頻度は0%であった。
さらに、この金属酸化物微粒子中に含まれる金属成分の含有量を測定したところ、各金属成分の酸化物換算基準で、TiO265.9重量%、SnO28.0重量%、SiO212.0重量%、ZrO213.9重量%およびK2O0.2重量%であった。なお、この金属含有量より求められる前記金属酸化物微粒子の比重は4.06であった。
また、上記の「粒子の屈折率測定法A」に記載の方法に基づき、分光エリプソメーターを用いて測定された塗膜屈折率Nav’は、前記塗料組成物中に含まれる粒子の重量分率mが10重量%、20重量%、30重量%、40重量%、50重量%、55重量%であるとき、それぞれ1.529、1.564、1.604、1.649、1.701、1.741であった。さらに、前記塗膜屈折率Nav’と前記体積分率・重量分率の変換式およびマクスウェル−ガーネットの式から算出される塗膜屈折率Navとから求められる偏差平方和の最小値は0.000045であり、その最小値を示す粒子の屈折率は2.17であった。これにより、前記金属酸化物微粒子の屈折率は2.21であるとみなすことができた。因みに、上記の屈折率測定法B(標準液法)で測定された前記金属酸化物微粒子の屈折率は2.17であった。
上記の測定結果のうち、本発明に関係する主要データを表2に示す。
The water-dispersed sol containing the metal oxide fine particles thus obtained was transparent milky white and had a turbidity of 5.34 cm −1 . The average particle diameter of the metal oxide fine particles contained in the water-dispersed sol was 31 nm, and the distribution frequency of coarse particles having a particle diameter of 100 nm or more was 0%.
Furthermore, when the content of the metal component contained in the metal oxide fine particles was measured, TiO 2 65.9% by weight, SnO 2 8.0% by weight, SiO 2 12 based on the oxide conversion standard of each metal component. 0.0% by weight, 13.9% by weight of ZrO 2 and 0.2% by weight of K 2 O. The specific gravity of the metal oxide fine particles determined from the metal content was 4.06.
The coating film refractive index Nav ′ measured using a spectroscopic ellipsometer based on the method described in the above “Particle Refractive Index Measurement Method A” is a weight fraction of particles contained in the coating composition. When m is 10%, 20%, 30%, 40%, 50%, 55% by weight, 1.529, 1.564, 1.604, 1.649, 1.701, 1.741. Further, the minimum value of the sum of square deviations obtained from the coating film refractive index Nav ′, the volume fraction / weight fraction conversion formula, and the coating film refractive index Nav calculated from the Maxwell-Garnet formula is 0.000045. The refractive index of the particles showing the minimum value was 2.17. Thereby, it could be considered that the refractive index of the metal oxide fine particles was 2.21. Incidentally, the refractive index of the metal oxide fine particles measured by the refractive index measurement method B (standard solution method) was 2.17.
Among the above measurement results, main data related to the present invention are shown in Table 2.

[実施例9]
金属酸化物微粒子を含む水分散ゾルの調製
参考例1と同様な方法で調製されたチタン系微粒子CP−1の水分散ゾル(固形分含有量が2.0重量%) 7.50kgに純水18.29kgを加えて撹拌して90℃の温度に加熱したのち、これに実施例7と同様な方法で調製された珪酸水溶液5.98kgと、アルミニウム成分をAl23換算基準で0.67重量%含むアルミン酸ナトリウム(旭化学工業(株)製)60.9gを徐々に添加し、さらに添加終了後、90℃の温度に保ちながら攪拌下で1時間熟成した。
次に、得られた混合溶液を室温まで冷却してから、限外濾過膜(旭化成(株)製、SIP−1013)を用いて濃縮して固形分含有量が20.0重量%の水分散ゾルを調製した。
次いで、得られた水分散ゾルに、陰イオン交換樹脂(三菱化学(株)製)0.59kgを混合して15分間攪拌した。次に、前記陰イオン交換樹脂を目開き44μmのステンレス製フィルターを用いて分離・除去したのち、陽イオン交換樹脂(三菱化学(株)製)81.0gを混合して15分間攪拌した。次いで、前記陽イオン交換樹脂を目開き44μmのステンレス製のフィルターを用いて分離・除去して、固形分含有量が20.0重量%の水分散ゾル1.32kgを得た。
これにより、前記チタン系微粒子の表面をケイ素とアルミニウムとを含む複合酸化物で被覆してなる金属酸化物微粒子(以下、「CSP−4」という。)を含む水分散ゾル1.32kgを得た。
なお、前記金属酸化物微粒子の被覆層を形成してなる前記複合酸化物の屈折率は、前記チタン系微粒子の屈折率より0.90低い1.45であった。
[Example 9]
Preparation of water-dispersed sol containing metal oxide fine particles
A water-dispersed sol of titanium-based fine particles CP-1 prepared by the same method as in Reference Example 1 (solid content: 2.0% by weight) 18.29 kg of pure water was added to 7.50 kg and stirred at 90 ° C. After heating to a temperature of 5%, the aqueous solution of silicic acid 5.98 kg prepared in the same manner as in Example 7 and sodium aluminate containing 0.67% by weight of an aluminum component on an Al 2 O 3 conversion basis (Asahi Chemical Industry Co., Ltd.) 60.9 g (manufactured by Co., Ltd.) was gradually added, and after completion of addition, the mixture was aged with stirring for 1 hour while maintaining the temperature at 90 ° C.
Next, the obtained mixed solution is cooled to room temperature, and then concentrated using an ultrafiltration membrane (Asahi Kasei Co., Ltd., SIP-1013) to disperse in water with a solid content of 20.0% by weight. A sol was prepared.
Next, 0.59 kg of an anion exchange resin (Mitsubishi Chemical Corporation) was mixed with the obtained water dispersion sol and stirred for 15 minutes. Next, after separating and removing the anion exchange resin using a stainless steel filter having an opening of 44 μm, 81.0 g of a cation exchange resin (manufactured by Mitsubishi Chemical Corporation) was mixed and stirred for 15 minutes. Next, the cation exchange resin was separated and removed using a stainless steel filter having an opening of 44 μm to obtain 1.32 kg of an aqueous dispersion sol having a solid content of 20.0% by weight.
As a result, 1.32 kg of an aqueous dispersion sol containing metal oxide fine particles (hereinafter referred to as “CSP-4”) obtained by coating the surface of the titanium-based fine particles with a composite oxide containing silicon and aluminum. .
The composite oxide formed by forming the metal oxide fine particle coating layer had a refractive index of 1.45, 0.90 lower than the refractive index of the titanium-based fine particles.

このようにして得られた金属酸化物微粒子を含む水分散ゾルは透明な乳白色であり、その濁度は5.35cm-1であった。また、この水分散ゾル中に含まれる前記金属酸化物微粒子の平均粒子径は32nmであり、さらに100nm以上の粒子径を有する粗大粒子の分布頻度は0%であった。
さらに、この金属酸化物微粒子中に含まれる金属成分の含有量を測定したところ、各金属成分の酸化物換算基準で、TiO270.9重量%、SnO28.9重量%、SiO219.8重量%、Al230.2重量%およびK2O0.2重量%であった。なお、この金属含有量より求められる前記金属酸化物微粒子の比重は3.70であった。
また、上記の「粒子の屈折率測定法A」に記載の方法に基づき、分光エリプソメーターを用いて測定された塗膜屈折率Nav’は、前記塗料組成物中に含まれる粒子の重量分率mが10重量%、20重量%、30重量%、40重量%、50重量%、55重量%であるとき、それぞれ1.528、1.561、1.598、1.639、1.685、1.712であった。さらに、前記塗膜屈折率Nav’と前記体積分率・重量分率の変換式およびマクスウェル−ガーネットの式から算出される塗膜屈折率Navとから求められる偏差平方和の最小値は0.000047であり、その最小値を示す粒子の屈折率は2.07であった。これにより、前記金属酸化物微粒子の屈折率は2.07であるとみなすことができた。因みに、上記の屈折率測定法B(標準液法)で測定された前記金属酸化物微粒子の屈折率は2.08であった。
上記の測定結果のうち、本発明に関係する主要データを表2に示す。
The aqueous dispersion sol containing the metal oxide fine particles thus obtained was transparent milky white, and its turbidity was 5.35 cm −1 . The average particle diameter of the metal oxide fine particles contained in the water-dispersed sol was 32 nm, and the distribution frequency of coarse particles having a particle diameter of 100 nm or more was 0%.
Furthermore, when the content of the metal component contained in the metal oxide fine particles was measured, TiO 2 was 70.9% by weight, SnO 2 8.9% by weight, SiO 2 19 based on the oxide conversion standard of each metal component. 0.8% by weight, 0.2% by weight of Al 2 O 3 and 0.2% by weight of K 2 O. The specific gravity of the metal oxide fine particles determined from the metal content was 3.70.
The coating film refractive index Nav ′ measured using a spectroscopic ellipsometer based on the method described in the above “Particle Refractive Index Measurement Method A” is a weight fraction of particles contained in the coating composition. When m is 10% by weight, 20% by weight, 30% by weight, 40% by weight, 50% by weight, and 55% by weight, 1.528, 1.561, 1.598, 1.639, 1.485, 1.712. Further, the minimum value of the deviation sum of squares obtained from the coating film refractive index Nav ′, the volume fraction / weight fraction conversion formula, and the coating film refractive index Nav calculated from the Maxwell-Garnet formula is 0.000047. The refractive index of the particles showing the minimum value was 2.07. Thereby, it could be considered that the refractive index of the metal oxide fine particles was 2.07. Incidentally, the refractive index of the metal oxide fine particles measured by the refractive index measurement method B (standard solution method) was 2.08.
Among the above measurement results, main data related to the present invention are shown in Table 2.

[実施例10]
金属酸化物微粒子を含む水分散ゾルの調製
参考例2と同様な方法で調製されたチタン系微粒子CP−1の水分散ゾル(固形分含有量が2.0重量%)7.50kgに、5.0重量%濃度のアンモニア水57.0gを混合したのち、前記チタン系微粒子の重量をCで表し、さらにその被覆層の重量をSで表したとき、その重量比(S/C)が酸化物換算基準で20/100となるように、ケイ素成分をSiO2換算基準で28重量%含む正珪酸エチル(多摩化学工業(株)製)144.2gとメタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)7.30kgとを混合した。次いで、この混合溶液を50℃の温度に加熱して18時間、攪拌した。
次に、得られた混合溶液を室温まで冷却してから、限外濾過膜(旭化成(株)製、SIP−1013)を用いてメタノールを除去して分散媒を水に置換した。さらに、濃縮して固形分含有量が20.0重量%の水分散ゾルを調製した。これにより、前記チタン系微粒子の表面を正珪酸エチルの加水分解縮合物、すなわち二酸化ケイ素で被覆してなる金属酸化物微粒子(以下、「CSP−5」という。)を含む水分散ゾル0.89kgを得た。
なお、前記金属酸化物微粒子の被覆層を形成してなる前記二酸化ケイ素の屈折率は、前記チタン系微粒子の屈折率より0.93低い1.45であった。
[Example 10]
Preparation of water-dispersed sol containing metal oxide fine particles
The aqueous dispersion sol of titanium-based fine particles CP-1 prepared in the same manner as in Reference Example 2 (solid content: 2.0% by weight): 7.50 kg and 57.0 g of 5.0% by weight ammonia water. After mixing, when the weight of the titanium-based fine particles is represented by C and the weight of the coating layer is represented by S, the weight ratio (S / C) is 20/100 on an oxide conversion basis. 144.2 g of normal ethyl silicate (manufactured by Tama Chemical Industry Co., Ltd.) containing 28 wt% of silicon component in terms of SiO 2 and methanol (Mayashi Junyaku Co., Ltd., methyl alcohol concentration: 99.9 wt%) 7 30 kg was mixed. Subsequently, this mixed solution was heated to a temperature of 50 ° C. and stirred for 18 hours.
Next, after cooling the obtained mixed solution to room temperature, methanol was removed using an ultrafiltration membrane (Asahi Kasei Co., Ltd., SIP-1013), and the dispersion medium was replaced with water. Further, it was concentrated to prepare an aqueous dispersion sol having a solid content of 20.0% by weight. As a result, 0.89 kg of an aqueous dispersion sol containing metal oxide fine particles (hereinafter referred to as “CSP-5”) obtained by coating the surface of the titanium-based fine particles with a hydrolyzed condensate of normal ethyl silicate, that is, silicon dioxide. Got.
The refractive index of the silicon dioxide formed by forming the coating layer of the metal oxide fine particles was 1.45, 0.93 lower than the refractive index of the titanium-based fine particles.

このようにして得られた金属酸化物微粒子を含む水分散ゾルは透明な乳白色であり、その濁度は5.47cm-1であった。また、この水分散ゾル中に含まれる前記金属酸化物微粒子の平均粒子径は37nmであり、さらに100nm以上の粒子径を有する粗大粒子の分布頻度は0%であった。
さらに、この金属酸化物微粒子中に含まれる金属成分の含有量を測定したところ、各金属成分の酸化物換算基準で、TiO278.0重量%、SnO28.8重量%、SiO220.2重量%およびK2O0.2重量%であった。なお、この金属含有量より求められる前記金属酸化物微粒子の比重は3.68であった。
また、上記の「粒子の屈折率測定法A」に記載の方法に基づき、分光エリプソメーターを用いて測定された塗膜屈折率Nav’は、前記塗料組成物中に含まれる粒子の重量分率mが10重量%、20重量%、30重量%、40重量%、50重量%、55重量%であるとき、それぞれ1.530、1.566、1.604、1.650、1.702、1.730であった。さらに、前記塗膜屈折率Nav’と前記体積分率・重量分率の変換式およびマクスウェル−ガーネットの式から算出される塗膜屈折率Navとから求められる偏差平方和の最小値は0.000009であり、その最小値を示す粒子の屈折率は2.12であった。これにより、前記金属酸化物微粒子の屈折率は2.12であるとみなすことができた。因みに、上記の屈折率測定法B(標準液法)で測定された前記金属酸化物微粒子の屈折率は2.11であった。
上記の測定結果のうち、本発明に関係する主要データを表2に示す。
The aqueous dispersion sol containing the metal oxide fine particles thus obtained was transparent milky white, and its turbidity was 5.47 cm −1 . The average particle diameter of the metal oxide fine particles contained in the water-dispersed sol was 37 nm, and the distribution frequency of coarse particles having a particle diameter of 100 nm or more was 0%.
Furthermore, when the content of the metal component contained in the metal oxide fine particles was measured, TiO 2 78.0% by weight, SnO 2 8.8% by weight, SiO 2 20 in terms of oxide conversion standards of each metal component. And 2% by weight and 0.2% by weight K 2 O. The specific gravity of the metal oxide fine particles determined from the metal content was 3.68.
The coating film refractive index Nav ′ measured using a spectroscopic ellipsometer based on the method described in the above “Particle Refractive Index Measurement Method A” is a weight fraction of particles contained in the coating composition. When m is 10%, 20%, 30%, 40%, 50%, 55% by weight, 1.530, 1.566, 1.604, 1.650, 1.702, 1.730. Further, the minimum value of the sum of square deviations obtained from the coating film refractive index Nav ′ and the coating volume refractive index Nav calculated from the volume fraction / weight fraction conversion formula and the Maxwell-Garnet formula is 0.000009. The refractive index of the particles showing the minimum value was 2.12. Accordingly, the refractive index of the metal oxide fine particles could be regarded as 2.12. Incidentally, the refractive index of the metal oxide fine particles measured by the refractive index measurement method B (standard solution method) was 2.11.
Among the above measurement results, main data related to the present invention are shown in Table 2.

[実施例11]
金属酸化物微粒子を含む水分散ゾルの調製
参考例3と同様な方法で調製されたチタン系微粒子CP−3の水分散ゾル(固形分含有量が2.0重量%)7.50kgに、5.0重量%濃度のアンモニア水57.0gを混合したのち、前記チタン系微粒子の重量をCで表し、さらにその被覆層の重量をSで表したとき、その重量比(S/C)が酸化物換算基準で20/100となるように、ケイ素成分をSiO2換算基準で28重量%含む正珪酸エチル(多摩化学工業(株)製)144.2gとメタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)7.30kgとを混合した。次いで、この混合溶液を50℃の温度に加熱して18時間、攪拌した。
次に、得られた混合溶液を室温まで冷却してから、限外濾過膜(旭化成(株)製、SIP−1013)を用いてメタノールを除去して分散媒を水に置換した。さらに、濃縮して固形分含有量が20.0重量%の水分散ゾルを調製した。これにより、前記チタン系微粒子の表面を正珪酸エチルの加水分解縮合物、すなわち二酸化ケイ素で被覆してなる金属酸化物微粒子(以下、「CSP−6」という。)を含む水分散ゾル0.89kgを得た。
なお、前記金属酸化物微粒子の被覆層を形成してなる前記二酸化ケイ素の屈折率は、前記チタン系微粒子の屈折率より0.84低い1.45であった。
[Example 11]
Preparation of water-dispersed sol containing metal oxide fine particles
The aqueous dispersion sol of titanium-based fine particles CP-3 prepared in the same manner as in Reference Example 3 (solid content: 2.0% by weight): 7.50 kg, 5.0% by weight of aqueous ammonia 57.0 g After mixing, when the weight of the titanium-based fine particles is represented by C and the weight of the coating layer is represented by S, the weight ratio (S / C) is 20/100 on an oxide conversion basis. 144.2 g of normal ethyl silicate (manufactured by Tama Chemical Industry Co., Ltd.) containing 28 wt% of silicon component in terms of SiO 2 and methanol (Mayashi Junyaku Co., Ltd., methyl alcohol concentration: 99.9 wt%) 7 30 kg was mixed. Subsequently, this mixed solution was heated to a temperature of 50 ° C. and stirred for 18 hours.
Next, after cooling the obtained mixed solution to room temperature, methanol was removed using an ultrafiltration membrane (Asahi Kasei Co., Ltd., SIP-1013), and the dispersion medium was replaced with water. Further, it was concentrated to prepare an aqueous dispersion sol having a solid content of 20.0% by weight. As a result, 0.89 kg of an aqueous dispersion sol containing metal oxide fine particles (hereinafter referred to as “CSP-6”) obtained by coating the surface of the titanium-based fine particles with a hydrolyzed condensate of normal ethyl silicate, that is, silicon dioxide. Got.
The refractive index of the silicon dioxide formed by forming the coating layer of the metal oxide fine particles was 1.45, 0.84 lower than the refractive index of the titanium-based fine particles.

このようにして得られた金属酸化物微粒子を含む水分散ゾルは透明な乳白色であり、その濁度は5.25cm-1であった。また、この水分散ゾル中に含まれる前記金属酸化物微粒子の平均粒子径は31nmであり、さらに100nm以上の粒子径を有する粗大粒子の分布頻度は0%であった。
さらに、この金属酸化物微粒子中に含まれる金属成分の含有量を測定したところ、各金属成分の酸化物換算基準で、TiO266.3重量%、SnO28.1重量%、SiO225.4重量%およびK2O0.2重量%であった。なお、この金属含有量より求められる前記金属酸化物微粒子の比重は3.53であった。
また、上記の「粒子の屈折率測定法A」に記載の方法に基づき、分光エリプソメーターを用いて測定された塗膜屈折率Nav’は、前記塗料組成物中に含まれる粒子の重量分率mが10重量%、20重量%、30重量%、40重量%、50重量%、55重量%であるとき、それぞれ1.528、1.560、1.591、1.631、1.673、1.696であった。さらに、前記塗膜屈折率Nav’と前記体積分率・重量分率の変換式およびマクスウェル−ガーネットの式から算出される塗膜屈折率Navとから求められる偏差平方和の最小値は0.000011であり、その最小値を示す粒子の屈折率は2.01であった。これにより、前記金属酸化物微粒子の屈折率は2.01であるとみなすことができた。因みに、上記の屈折率測定法B(標準液法)で測定された前記金属酸化物微粒子の屈折率は2.01であった。
上記の測定結果のうち、本発明に関係する主要データを表2に示す。
The water-dispersed sol containing the metal oxide fine particles thus obtained was transparent milky white and had a turbidity of 5.25 cm −1 . The average particle diameter of the metal oxide fine particles contained in the water-dispersed sol was 31 nm, and the distribution frequency of coarse particles having a particle diameter of 100 nm or more was 0%.
Furthermore, when the content of the metal component contained in the metal oxide fine particles was measured, it was 66.3% by weight of TiO 2 , 8.1% by weight of SnO 2 , SiO 2 25 based on the oxide conversion standard of each metal component. .4 was wt% and K 2 O0.2% by weight. The specific gravity of the metal oxide fine particles determined from the metal content was 3.53.
The coating film refractive index Nav ′ measured using a spectroscopic ellipsometer based on the method described in the above “Particle Refractive Index Measurement Method A” is a weight fraction of particles contained in the coating composition. When m is 10% by weight, 20% by weight, 30% by weight, 40% by weight, 50% by weight, and 55% by weight, 1.528, 1.560, 1.591, 1.631, 1.673, 1.696. Furthermore, the minimum value of the deviation sum of squares obtained from the coating film refractive index Nav ′, the volume fraction / weight fraction conversion formula, and the coating refractive index Nav calculated from the Maxwell-Garnet formula is 0.000011. The refractive index of the particles showing the minimum value was 2.01. Thereby, the refractive index of the metal oxide fine particles was considered to be 2.01. Incidentally, the refractive index of the metal oxide fine particles measured by the refractive index measurement method B (standard solution method) was 2.01.
Among the above measurement results, main data related to the present invention are shown in Table 2.

[実施例12]
金属酸化物微粒子を含む水分散ゾルの調製
参考例4と同様な方法で調製されたチタン系微粒子CP−4の水分散ゾル(固形分含有量が2.0重量%)7.50kgに、5.0重量%濃度のアンモニア水57.0gを混合したのち、前記チタン系微粒子の重量をCで表し、さらにその被覆層の重量をSで表したとき、その重量比(S/C)が酸化物換算基準で20/100となるように、ケイ素成分をSiO2換算基準で28重量%含む正珪酸エチル(多摩化学工業(株)製)144.2gとメタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)7.30kgとを混合した。次いで、この混合溶液を50℃の温度に加熱して18時間、攪拌した。
次に、得られた混合溶液を室温まで冷却してから、限外濾過膜(旭化成(株)製、SIP−1013)を用いてメタノールを除去して分散媒を水に置換した。さらに、濃縮して固形分含有量が20.0重量%の水分散ゾルを調製した。これにより、前記チタン系微粒子の表面を正珪酸エチルの加水分解縮合物、すなわち二酸化ケイ素で被覆してなる金属酸化物微粒子(以下、「CSP−7」という。)を含む水分散ゾル0.88kgを得た。
なお、前記金属酸化物微粒子の被覆層を形成してなる前記二酸化ケイ素の屈折率は、前記チタン系微粒子の屈折率より0.98低い1.45であった。
[Example 12]
Preparation of water-dispersed sol containing metal oxide fine particles
Aqueous dispersion sol (solid content 2.0% by weight) 7.50 kg of titanium-based fine particles CP-4 prepared by the same method as in Reference Example 4 and 57.0 g of 5.0% by weight ammonia water. After mixing, when the weight of the titanium-based fine particles is represented by C and the weight of the coating layer is represented by S, the weight ratio (S / C) is 20/100 on an oxide conversion basis. 144.2 g of normal ethyl silicate (manufactured by Tama Chemical Industry Co., Ltd.) containing 28 wt% of silicon component in terms of SiO 2 and methanol (Mayashi Junyaku Co., Ltd., methyl alcohol concentration: 99.9 wt%) 7 30 kg was mixed. Subsequently, this mixed solution was heated to a temperature of 50 ° C. and stirred for 18 hours.
Next, after cooling the obtained mixed solution to room temperature, methanol was removed using an ultrafiltration membrane (Asahi Kasei Co., Ltd., SIP-1013), and the dispersion medium was replaced with water. Further, it was concentrated to prepare an aqueous dispersion sol having a solid content of 20.0% by weight. As a result, 0.88 kg of an aqueous dispersion sol containing metal oxide fine particles (hereinafter referred to as “CSP-7”) obtained by coating the surface of the titanium-based fine particles with a hydrolyzed condensate of normal ethyl silicate, that is, silicon dioxide. Got.
The refractive index of the silicon dioxide formed by forming the coating layer of the metal oxide fine particles was 1.45, 0.98 lower than the refractive index of the titanium-based fine particles.

このようにして得られた金属酸化物微粒子を含む水分散ゾルは透明な乳白色であり、その濁度は5.46cm-1であった。また、この水分散ゾル中に含まれる前記金属酸化物微粒子の平均粒子径は41nmであり、さらに100nm以上の粒子径を有する粗大粒子の分布頻度は0%であった。
さらに、この金属酸化物微粒子中に含まれる金属成分の含有量を測定したところ、各金属成分の酸化物換算基準で、TiO266.1重量%、SnO28.1重量%、SiO225.6重量%およびK2O0.2重量%であった。なお、この金属含有量より求められる前記金属酸化物微粒子の比重は3.52であった。
また、上記の「粒子の屈折率測定法A」に記載の方法に基づき、分光エリプソメーターを用いて測定された塗膜屈折率Nav’は、前記塗料組成物中に含まれる粒子の重量分率mが10重量%、20重量%、30重量%、40重量%、50重量%、55重量%であるとき、それぞれ1.530、1.565、1.601、1.649、1.699、1.725であった。さらに、前記塗膜屈折率Nav’と前記体積分率・重量分率の変換式およびマクスウェル−ガーネットの式から算出される塗膜屈折率Navとから求められる偏差平方和の最小値は0.000027であり、その最小値を示す粒子の屈折率は2.09であった。これにより、前記金属酸化物微粒子の屈折率は2.09であるとみなすことができた。因みに、上記の屈折率測定法B(標準液法)で測定された前記金属酸化物微粒子の屈折率は2.09であった。
上記の測定結果のうち、本発明に関係する主要データを表2に示す。
The water-dispersed sol containing the metal oxide fine particles thus obtained was transparent milky white and had a turbidity of 5.46 cm −1 . The average particle diameter of the metal oxide fine particles contained in the water-dispersed sol was 41 nm, and the distribution frequency of coarse particles having a particle diameter of 100 nm or more was 0%.
Furthermore, when the content of the metal component contained in the metal oxide fine particles was measured, it was 66.1% by weight of TiO 2 , 8.1% by weight of SnO 2 , SiO 2 25 based on the oxide conversion standard of each metal component. .6 was wt% and K 2 O0.2% by weight. The specific gravity of the metal oxide fine particles determined from the metal content was 3.52.
The coating film refractive index Nav ′ measured using a spectroscopic ellipsometer based on the method described in the above “Particle Refractive Index Measurement Method A” is a weight fraction of particles contained in the coating composition. When m is 10%, 20%, 30%, 40%, 50%, 55% by weight, 1.530, 1.565, 1.601, 1.649, 1.699, 1.725. Further, the minimum value of the square sum of deviations obtained from the coating film refractive index Nav ′ and the coating volume refractive index Nav calculated from the volume fraction / weight fraction conversion formula and the Maxwell-Garnet formula is 0.000027. The refractive index of the particles showing the minimum value was 2.09. Thereby, it could be considered that the refractive index of the metal oxide fine particles was 2.09. Incidentally, the refractive index of the metal oxide fine particles measured by the refractive index measurement method B (standard solution method) was 2.09.
Among the above measurement results, main data related to the present invention are shown in Table 2.

[実施例13]
金属酸化物微粒子を含む水分散ゾルの調製
参考例5と同様な方法で調製されたチタン系微粒子CP−5の水分散ゾル(固形分含有量が2.0重量%) 7.50kgに純水1.16kgを加えて撹拌して90℃の温度に加熱したのち、これに実施例7と同様な方法で調製された、過酸化ジルコン酸水溶液22.80kgと珪酸水溶液0.30kgを徐々に添加し、さらに添加終了後、90℃の温度に保ちながら攪拌下で1時間熟成した。
次いで、この混合液をオートクレーブ(耐圧硝子工業(株)製、50L)に入れて、165℃の温度で18時間、加熱処理を行った。
次に、得られた混合溶液を室温まで冷却してから、限外濾過膜(旭化成(株)製、SIP−1013)を用いて濃縮して固形分含有量が20.0重量%の水分散ゾルを調製した。
次いで、得られた水分散ゾルに、陰イオン交換樹脂(三菱化学(株)製)0.59kgを混合して15分間攪拌した。次に、前記陰イオン交換樹脂を目開き44μmのステンレス製フィルターを用いて分離・除去したのち、陽イオン交換樹脂(三菱化学(株)製)81.0gを混合して15分間攪拌した。次いで、前記陽イオン交換樹脂を目開き44μmのステンレス製フィルターを用いて分離・除去して、固形分含有量が20.0重量%の水分散ゾル1.32kgを得た。
これにより、前記チタン系微粒子の表面をケイ素とジルコニウムとを含む複合酸化物で被覆してなる金属酸化物微粒子(以下、「CSP−8」という。)を含む水分散ゾル1.32kgを得た。
なお、前記金属酸化物微粒子の被覆層を形成してなる前記複合酸化物の屈折率は、前記チタン系微粒子の屈折率より0.51低い2.11であった。
[Example 13]
Preparation of water-dispersed sol containing metal oxide fine particles
An aqueous dispersion sol of titanium-based fine particles CP-5 prepared in the same manner as in Reference Example 5 (solid content: 2.0% by weight) 1.16 kg of pure water was added to 7.50 kg and stirred at 90 ° C. Then, 22.80 kg of zirconate aqueous solution and 0.30 kg of silicic acid aqueous solution prepared in the same manner as in Example 7 were gradually added thereto, and after addition was completed, the temperature was 90 ° C. The mixture was aged for 1 hour with stirring.
Next, this mixed solution was put in an autoclave (manufactured by Pressure Glass Industrial Co., Ltd., 50 L) and subjected to heat treatment at a temperature of 165 ° C. for 18 hours.
Next, the obtained mixed solution is cooled to room temperature, and then concentrated using an ultrafiltration membrane (Asahi Kasei Co., Ltd., SIP-1013) to disperse in water with a solid content of 20.0% by weight. A sol was prepared.
Next, 0.59 kg of an anion exchange resin (Mitsubishi Chemical Corporation) was mixed with the obtained water dispersion sol and stirred for 15 minutes. Next, after separating and removing the anion exchange resin using a stainless steel filter having an opening of 44 μm, 81.0 g of a cation exchange resin (manufactured by Mitsubishi Chemical Corporation) was mixed and stirred for 15 minutes. Next, the cation exchange resin was separated and removed using a stainless steel filter having an opening of 44 μm to obtain 1.32 kg of an aqueous dispersion sol having a solid content of 20.0% by weight.
As a result, 1.32 kg of an aqueous dispersion sol containing metal oxide fine particles (hereinafter referred to as “CSP-8”) obtained by coating the surface of the titanium-based fine particles with a composite oxide containing silicon and zirconium. .
The composite oxide formed by forming the metal oxide fine particle coating layer had a refractive index of 2.11 which was 0.51 lower than the refractive index of the titanium-based fine particles.

このようにして得られた金属酸化物微粒子を含む水分散ゾルは透明な乳白色であり、その濁度は5.63cm-1であった。また、この水分散ゾル中に含まれる前記金属酸化物微粒子の平均粒子径は41nmであり、さらに100nm以上の粒子径を有する粗大粒子の分布頻度は0%であった。
さらに、この金属酸化物微粒子中に含まれる金属成分の含有量を測定したところ、各金属成分の酸化物換算基準で、TiO266.5重量%、SnO28.3重量%、SiO26.2重量%、ZrO218.8重量%およびK2O0.2重量%であった。なお、この金属含有量より求められる前記金属酸化物微粒子の比重は4.34であった。
また、上記の「粒子の屈折率測定法A」に記載の方法に基づき、分光エリプソメーターを用いて測定された塗膜屈折率Nav’は、前記塗料組成物中に含まれる粒子の重量分率mが10重量%、20重量%、30重量%、40重量%、50重量%、55重量%であるとき、それぞれ1.534、1.573、1.619、1.671、1.731、1.764であった。さらに、前記塗膜屈折率Nav’と前記体積分率・重量分率の変換式およびマクスウェル−ガーネットの式から算出される塗膜屈折率Navとから求められる偏差平方和の最小値は0.000014であり、その最小値を示す粒子の屈折率は2.31であった。これにより、前記金属酸化物微粒子の屈折率は2.31であるとみなすことができた。因みに、上記の屈折率測定法B(標準液法)で測定された前記金属酸化物微粒子の屈折率は2.30であった。
上記の測定結果のうち、本発明に関係する主要データを表2に示す。
The water-dispersed sol containing the metal oxide fine particles thus obtained was transparent milky white and had a turbidity of 5.63 cm −1 . The average particle diameter of the metal oxide fine particles contained in the water-dispersed sol was 41 nm, and the distribution frequency of coarse particles having a particle diameter of 100 nm or more was 0%.
Furthermore, when the content of the metal component contained in the metal oxide fine particles was measured, it was 66.5% by weight of TiO 2 , 8.3% by weight of SnO 2 , SiO 2 6 based on the oxide conversion standard of each metal component. 0.2% by weight, 18.8% by weight of ZrO 2 and 0.2% by weight of K 2 O. The specific gravity of the metal oxide fine particles determined from the metal content was 4.34.
The coating film refractive index Nav ′ measured using a spectroscopic ellipsometer based on the method described in the above “Particle Refractive Index Measurement Method A” is a weight fraction of particles contained in the coating composition. When m is 10%, 20%, 30%, 40%, 50%, 55% by weight, 1.534, 1.573, 1.619, 1.671, 1.731, 1.764. Further, the minimum value of the sum of squared deviations obtained from the coating film refractive index Nav ′ and the coating volume refractive index Nav calculated from the volume fraction / weight fraction conversion formula and the Maxwell-Garnet formula is 0.000014. The refractive index of the particles showing the minimum value was 2.31. Thereby, the refractive index of the metal oxide fine particles could be regarded as 2.31. Incidentally, the refractive index of the metal oxide fine particles measured by the refractive index measurement method B (standard solution method) was 2.30.
Among the above measurement results, main data related to the present invention are shown in Table 2.

[比較例7]
金属酸化物微粒子を含む水分散ゾルの調製
比較例1と同様な方法で調製されたチタン系微粒子RCP−1の水分散ゾル(固形分含有量が2.0重量%)7.50kgに、5.0重量%濃度のアンモニア水57.0gを混合したのち、前記チタン系微粒子の重量をCで表し、さらにその被覆層の重量をSで表したとき、その重量比(S/C)が酸化物換算基準で20/100となるように、ケイ素成分をSiO2換算基準で28重量%含む正珪酸エチル(多摩化学工業(株)製)144.2gとメタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)7.30kgとを混合した。次いで、この混合溶液を50℃の温度に加熱して18時間、攪拌した。
次に、得られた混合溶液を室温まで冷却してから、限外濾過膜(旭化成(株)製、SIP−1013)を用いてメタノールを除去して分散媒を水に置換した。さらに、濃縮して固形分含有量が20.0重量%の水分散ゾルを調製した。これにより、前記チタン系微粒子の表面を正珪酸エチルの加水分解縮合物、すなわち二酸化ケイ素で被覆してなる金属酸化物微粒子(以下、「RCSP−1」という。)を含む水分散ゾル0.90kgを得た。
なお、前記金属酸化物微粒子の被覆層を形成してなる前記二酸化ケイ素の屈折率は、前記チタン系微粒子の屈折率より0.71低い1.45であった。
[Comparative Example 7]
Preparation of water-dispersed sol containing metal oxide fine particles Water-dispersed sol of titanium-based fine particles RCP-1 prepared in the same manner as in Comparative Example 1 (solid content: 2.0 wt%) 7. After mixing 57.0 g of 5.0 wt% ammonia water in 50 kg, the weight of the titanium fine particles is represented by C, and the weight of the coating layer is represented by S, and the weight ratio (S / 144.2 g of normal ethyl silicate (manufactured by Tama Chemical Co., Ltd.) containing 28% by weight of a silicon component on a SiO 2 conversion basis and methanol (Hayashi Junyaku ( Co., Ltd., methyl alcohol concentration: 99.9% by weight) and 7.30 kg. Subsequently, this mixed solution was heated to a temperature of 50 ° C. and stirred for 18 hours.
Next, after cooling the obtained mixed solution to room temperature, methanol was removed using an ultrafiltration membrane (Asahi Kasei Co., Ltd., SIP-1013), and the dispersion medium was replaced with water. Further, it was concentrated to prepare an aqueous dispersion sol having a solid content of 20.0% by weight. Thus, 0.90 kg of an aqueous dispersion sol containing metal oxide fine particles (hereinafter referred to as “RCSP-1”) obtained by coating the surface of the titanium-based fine particles with a hydrolyzed condensate of normal ethyl silicate, that is, silicon dioxide. Got.
The refractive index of the silicon dioxide formed by forming the coating layer of the metal oxide fine particles was 1.45, which is 0.71 lower than the refractive index of the titanium-based fine particles.

このようにして得られた金属酸化物微粒子を含む水分散ゾルは乳白色であり、その濁度は8.93cm-1であった。また、この水分散ゾル中に含まれる前記金属酸化物微粒子の平均粒子径は99nmであり、さらに100nm以上の粒子径を有する粗大粒子の分布頻度は59.4%であった。
さらに、この金属酸化物微粒子中に含まれる金属成分の含有量を測定したところ、各金属成分の酸化物換算基準で、TiO266.2重量%、SnO28.1重量%、SiO225.5重量%およびK2O0.2重量%であった。なお、この金属含有量より求められる前記金属酸化物微粒子の比重は3.52であった。
また、上記の「粒子の屈折率測定法A」に記載の方法に基づき、分光エリプソメーターを用いて測定された塗膜屈折率Nav’は、前記塗料組成物中に含まれる粒子の重量分率mが10重量%、20重量%、30重量%、40重量%、50重量%、55重量%であるとき、それぞれ1.522、1.553、1.587、1.623、1.661、1.685であった。さらに、前記塗膜屈折率Nav’と前記体積分率・重量分率の変換式およびマクスウェル−ガーネットの式から算出される塗膜屈折率Navとから求められる偏差平方和の最小値は0.000024であり、その最小値を示す粒子の屈折率は1.97であった。これにより、前記金属酸化物微粒子の屈折率は1.97であるとみなすことができた。因みに、上記の屈折率測定法B(標準液法)で測定された前記金属酸化物微粒子の屈折率は1.98であった。
上記の測定結果のうち、本発明に関係する主要データを表2に示す。
The water-dispersed sol containing the metal oxide fine particles thus obtained was milky white and had a turbidity of 8.93 cm −1 . The average particle diameter of the metal oxide fine particles contained in the water-dispersed sol was 99 nm, and the distribution frequency of coarse particles having a particle diameter of 100 nm or more was 59.4%.
Furthermore, when the content of the metal component contained in the metal oxide fine particles was measured, it was 66.2% by weight of TiO 2 , 8.1% by weight of SnO 2 , SiO 2 25 based on the oxide conversion standard of each metal component. .5 was wt% and K 2 O0.2% by weight. The specific gravity of the metal oxide fine particles determined from the metal content was 3.52.
The coating film refractive index Nav ′ measured using a spectroscopic ellipsometer based on the method described in the above “Particle Refractive Index Measurement Method A” is a weight fraction of particles contained in the coating composition. When m is 10%, 20%, 30%, 40%, 50%, 55% by weight, 1.522, 1.553, 1.587, 1.623, 1.661, It was 1.685. Further, the minimum value of the sum of square deviations obtained from the coating film refractive index Nav ′, the volume fraction / weight fraction conversion formula, and the coating film refractive index Nav calculated from the Maxwell-Garnet formula is 0.000024. The refractive index of the particles showing the minimum value was 1.97. Thereby, the refractive index of the metal oxide fine particles could be regarded as 1.97. Incidentally, the refractive index of the metal oxide fine particles measured by the refractive index measurement method B (standard solution method) was 1.98.
Among the above measurement results, main data related to the present invention are shown in Table 2.

[比較例8]
金属酸化物微粒子を含む水分散ゾルの調製
比較例2と同様な方法で調製されたチタン系微粒子RCP−2の水分散ゾル(固形分含有量が2.0重量%)7.50kgに、5.0重量%濃度のアンモニア水57.0gを混合したのち、前記チタン系微粒子の重量をCで表し、さらにその被覆層の重量をSで表したとき、その重量比(S/C)が酸化物換算基準で20/100となるように、ケイ素成分をSiO2換算基準で28重量%含む正珪酸エチル(多摩化学工業(株)製)144.2gとメタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)7.30kgとを混合した。次いで、この混合溶液を50℃の温度に加熱して18時間、攪拌した。
次に、得られた混合溶液を室温まで冷却してから、限外濾過膜(旭化成(株)製、SIP−1013)を用いてメタノールを除去して分散媒を水に置換した。さらに、濃縮して固形分含有量が20.0重量%の水分散ゾルを調製した。これにより、前記チタン系微粒子の表面を正珪酸エチルの加水分解縮合物、すなわち二酸化ケイ素で被覆してなる金属酸化物微粒子(以下、「RCSP−2」という。)を含む水分散ゾル0.90kgを得た。
なお、前記金属酸化物微粒子の被覆層を形成してなる前記二酸化ケイ素の屈折率は、前記チタン系微粒子の屈折率より0.72低い1.45であった。
[Comparative Example 8]
Preparation of water-dispersed sol containing metal oxide fine particles Water-dispersed sol of titanium-based fine particles RCP-2 prepared in the same manner as in Comparative Example 2 (solid content: 2.0% by weight) 7. After mixing 57.0 g of 5.0 wt% ammonia water in 50 kg, the weight of the titanium fine particles is represented by C, and the weight of the coating layer is represented by S, and the weight ratio (S / 144.2 g of normal ethyl silicate (manufactured by Tama Chemical Co., Ltd.) containing 28% by weight of a silicon component on a SiO 2 conversion basis and methanol (Hayashi Junyaku ( Co., Ltd., methyl alcohol concentration: 99.9% by weight) and 7.30 kg. Subsequently, this mixed solution was heated to a temperature of 50 ° C. and stirred for 18 hours.
Next, after cooling the obtained mixed solution to room temperature, methanol was removed using an ultrafiltration membrane (Asahi Kasei Co., Ltd., SIP-1013), and the dispersion medium was replaced with water. Further, it was concentrated to prepare an aqueous dispersion sol having a solid content of 20.0% by weight. Thus, 0.90 kg of an aqueous dispersion sol containing metal oxide fine particles (hereinafter referred to as “RCSP-2”) obtained by coating the surface of the titanium-based fine particles with hydrolyzed condensate of normal ethyl silicate, that is, silicon dioxide. Got.
The refractive index of the silicon dioxide formed by forming the coating layer of the metal oxide fine particles was 1.45, which is 0.72 lower than the refractive index of the titanium-based fine particles.

このようにして得られた金属酸化物微粒子を含む水分散ゾルは乳白色であり、その濁度は6.03cm-1であった。また、この水分散ゾル中に含まれる前記金属酸化物微粒子の平均粒子径は73nmであり、さらに100nm以上の粒子径を有する粗大粒子の分布頻度は49.2%であった。
さらに、この金属酸化物微粒子中に含まれる金属成分の含有量を測定したところ、各金属成分の酸化物換算基準で、TiO266.0重量%、SnO28.1重量%、SiO225.7重量%およびK2O0.2重量%であった。なお、この金属含有量より求められる前記金属酸化物微粒子の比重は3.52であった。
また、上記の「粒子の屈折率測定法A」に記載の方法に基づき、分光エリプソメーターを用いて測定された塗膜屈折率Nav’は、前記塗料組成物中に含まれる粒子の重量分率mが10重量%、20重量%、30重量%、40重量%、50重量%、55重量%であるとき、それぞれ1.522、1.553、1.590、1.625、1.670、1.692であった。さらに、前記塗膜屈折率Nav’と前記体積分率・重量分率の変換式およびマクスウェル−ガーネットの式から算出される塗膜屈折率Navとから求められる偏差平方和の最小値は0.000075であり、その最小値を示す粒子の屈折率は1.99であった。これにより、前記金属酸化物微粒子チタン系微粒子の屈折率は1.99であるとみなすことができた。因みに、上記の屈折率測定法B(標準液法)で測定された前記金属酸化物微粒子の屈折率は1.98であった。
上記の測定結果のうち、本発明に関係する主要データを表2に示す。
The aqueous dispersion sol containing the metal oxide fine particles thus obtained was milky white and had a turbidity of 6.03 cm −1 . The average particle diameter of the metal oxide fine particles contained in the water-dispersed sol was 73 nm, and the distribution frequency of coarse particles having a particle diameter of 100 nm or more was 49.2%.
Furthermore, when the content of the metal component contained in the metal oxide fine particles was measured, it was 66.0% by weight of TiO 2 , 8.1% by weight of SnO 2 , SiO 2 25 based on the oxide conversion standard of each metal component. .7 was wt% and K 2 O0.2% by weight. The specific gravity of the metal oxide fine particles determined from the metal content was 3.52.
The coating film refractive index Nav ′ measured using a spectroscopic ellipsometer based on the method described in the above “Particle Refractive Index Measurement Method A” is a weight fraction of particles contained in the coating composition. When m is 10%, 20%, 30%, 40%, 50%, 55% by weight, 1.522, 1.553, 1.590, 1.625, 1.670, It was 1.692. Further, the minimum value of the sum of squares of deviation obtained from the coating film refractive index Nav ′, the volume fraction / weight fraction conversion formula, and the coating film refractive index Nav calculated from the Maxwell-Garnet formula is 0.000075. The refractive index of the particles showing the minimum value was 1.99. Thereby, the refractive index of the metal oxide fine particle titanium-based fine particles could be regarded as 1.99. Incidentally, the refractive index of the metal oxide fine particles measured by the refractive index measurement method B (standard solution method) was 1.98.
Among the above measurement results, main data related to the present invention are shown in Table 2.

[比較例9]
金属酸化物微粒子を含む水分散ゾルの調製
比較例3と同様な方法で調製されたチタン系微粒子RCP−3の水分散ゾル(固形分含有量が2.0重量%)7.50kgに、5.0重量%濃度のアンモニア水57.0gを混合したのち、前記チタン系微粒子の重量をCで表し、さらにその被覆層の重量をSで表したとき、その重量比(S/C)が酸化物換算基準で20/100となるように、ケイ素成分をSiO2換算基準で28重量%含む正珪酸エチル(多摩化学工業(株)製)144.2gとメタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)7.30kgとを混合した。次いで、この混合溶液を50℃の温度に加熱して18時間、攪拌した。
次に、得られた混合溶液を室温まで冷却してから、限外濾過膜(旭化成(株)製、SIP−1013)を用いてメタノールを除去して分散媒を水に置換した。さらに、濃縮して固形分含有量が20.0重量%の水分散ゾルを調製した。これにより、前記チタン系微粒子の表面を正珪酸エチルの加水分解縮合物、すなわち二酸化ケイ素で被覆してなる金属酸化物微粒子(以下、「RCSP−3」という。)を含む水分散ゾル0.88kgを得た。
なお、前記金属酸化物微粒子の被覆層を形成してなる前記二酸化ケイ素の屈折率は、前記チタン系微粒子の屈折率より1.13低い1.45であった。
[Comparative Example 9]
Preparation of water-dispersed sol containing metal oxide fine particles Water-dispersed sol of titanium-based fine particles RCP-3 prepared in the same manner as in Comparative Example 3 (solid content: 2.0% by weight) 7. After mixing 57.0 g of 5.0 wt% ammonia water in 50 kg, the weight of the titanium fine particles is represented by C, and the weight of the coating layer is represented by S, and the weight ratio (S / 144.2 g of normal ethyl silicate (manufactured by Tama Chemical Co., Ltd.) containing 28% by weight of a silicon component on a SiO 2 conversion basis and methanol (Hayashi Junyaku ( Co., Ltd., methyl alcohol concentration: 99.9% by weight) and 7.30 kg. Subsequently, this mixed solution was heated to a temperature of 50 ° C. and stirred for 18 hours.
Next, after cooling the obtained mixed solution to room temperature, methanol was removed using an ultrafiltration membrane (Asahi Kasei Co., Ltd., SIP-1013), and the dispersion medium was replaced with water. Further, it was concentrated to prepare an aqueous dispersion sol having a solid content of 20.0% by weight. Accordingly, 0.88 kg of an aqueous dispersion sol containing metal oxide fine particles (hereinafter referred to as “RCSP-3”) obtained by coating the surface of the titanium-based fine particles with a hydrolyzed condensate of normal ethyl silicate, that is, silicon dioxide. Got.
The refractive index of the silicon dioxide formed by forming the coating layer of the metal oxide fine particles was 1.45, which is 1.13 lower than the refractive index of the titanium-based fine particles.

このようにして得られた金属酸化物微粒子を含む水分散ゾルは透明な乳白色であり、その濁度は10.64cm-1であった。また、この水分散ゾル中に含まれる前記金属酸化物微粒子の平均粒子径は116nmであり、さらに100nm以上の粒子径を有する粗大粒子の分布頻度は77.2%であった。
さらに、この金属酸化物微粒子中に含まれる金属成分の含有量を測定したところ、各金属成分の酸化物換算基準で、TiO266.3重量%、SnO28.1重量%、SiO225.4重量%およびK2O0.2重量%であった。なお、この金属含有量より求められる前記金属酸化物微粒子の比重は3.53であった。
また、上記の「粒子の屈折率測定法A」に記載の方法に基づき、分光エリプソメーターを用いて測定された塗膜屈折率Nav’は、前記塗料組成物中に含まれる粒子の重量分率mが10重量%、20重量%、30重量%、40重量%、50重量%、55重量%であるとき、それぞれ1.535、1.580、1.628、1.681、1.742、1.777であった。さらに、前記塗膜屈折率Nav’と前記体積分率・重量分率の変換式およびマクスウェル−ガーネットの式から算出される塗膜屈折率Navとから求められる偏差平方和の最小値は0.000023であり、その最小値を示す粒子の屈折率は2.24であった。これにより、前記金属酸化物微粒子の屈折率は2.24であるとみなすことができた。因みに、上記の屈折率測定法B(標準液法)で測定された前記金属酸化物微粒子の屈折率は2.23であった。
上記の測定結果のうち、本発明に関係する主要データを表2に示す。
The water-dispersed sol containing the metal oxide fine particles thus obtained was transparent milky white, and its turbidity was 10.64 cm −1 . The average particle diameter of the metal oxide fine particles contained in the water-dispersed sol was 116 nm, and the distribution frequency of coarse particles having a particle diameter of 100 nm or more was 77.2%.
Furthermore, when the content of the metal component contained in the metal oxide fine particles was measured, it was 66.3% by weight of TiO 2 , 8.1% by weight of SnO 2 , SiO 2 25 based on the oxide conversion standard of each metal component. .4 was wt% and K 2 O0.2% by weight. The specific gravity of the metal oxide fine particles determined from the metal content was 3.53.
The coating film refractive index Nav ′ measured using a spectroscopic ellipsometer based on the method described in the above “Particle Refractive Index Measurement Method A” is a weight fraction of particles contained in the coating composition. When m is 10%, 20%, 30%, 40%, 50%, 55% by weight, 1.535, 1.580, 1.628, 1.681, 1.742, 1.777. Further, the minimum value of the deviation sum of squares obtained from the coating film refractive index Nav ′ and the coating volume refractive index Nav calculated from the volume fraction / weight fraction conversion formula and the Maxwell-Garnet formula is 0.000023. The refractive index of the particles showing the minimum value was 2.24. Thereby, the refractive index of the metal oxide fine particles could be regarded as 2.24. Incidentally, the refractive index of the metal oxide fine particles measured by the refractive index measurement method B (standard solution method) was 2.23.
Among the above measurement results, main data related to the present invention are shown in Table 2.

[比較例10]
金属酸化物微粒子を含む水分散ゾルの調製
比較例4と同様な方法で調製されたチタン系微粒子RCP−4の水分散ゾル(固形分含有量が2.0重量%)7.50kgに、5.0重量%濃度のアンモニア水57.0gを混合したのち、前記チタン系微粒子の重量をCで表し、さらにその被覆層の重量をSで表したとき、その重量比(S/C)が酸化物換算基準で20/100となるように、ケイ素成分をSiO2換算基準で28重量%含む正珪酸エチル(多摩化学工業(株)製)144.2gとメタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)7.30kgとを混合した。次いで、この混合溶液を50℃の温度に加熱して18時間、攪拌した。
次に、得られた混合溶液を室温まで冷却してから、限外濾過膜(旭化成(株)製、SIP−1013)を用いてメタノールを除去して分散媒を水に置換した。さらに、濃縮して固形分含有量が20.0重量%の水分散ゾルを調製した。これにより、前記チタン系微粒子の表面を正珪酸エチルの加水分解縮合物、すなわち二酸化ケイ素で被覆してなる金属酸化物微粒子(以下、「RCSP−4」という。)を含む水分散ゾル0.87kgを得た。
なお、前記金属酸化物微粒子の被覆層を形成してなる前記二酸化ケイ素の屈折率は、前記チタン系微粒子の屈折率より0.93低い1.45であった。
[Comparative Example 10]
Preparation of water-dispersed sol containing metal oxide fine particles Water-dispersed sol of titanium-based fine particles RCP-4 prepared in the same manner as in Comparative Example 4 (solid content: 2.0% by weight) 7. After mixing 57.0 g of 5.0 wt% ammonia water in 50 kg, the weight of the titanium fine particles is represented by C, and the weight of the coating layer is represented by S, and the weight ratio (S / 144.2 g of normal ethyl silicate (manufactured by Tama Chemical Co., Ltd.) containing 28% by weight of a silicon component on a SiO 2 conversion basis and methanol (Hayashi Junyaku ( Co., Ltd., methyl alcohol concentration: 99.9% by weight) and 7.30 kg. Subsequently, this mixed solution was heated to a temperature of 50 ° C. and stirred for 18 hours.
Next, after cooling the obtained mixed solution to room temperature, methanol was removed using an ultrafiltration membrane (Asahi Kasei Co., Ltd., SIP-1013), and the dispersion medium was replaced with water. Further, it was concentrated to prepare an aqueous dispersion sol having a solid content of 20.0% by weight. Thus, 0.87 kg of an aqueous dispersion sol containing metal oxide fine particles (hereinafter referred to as “RCSP-4”) obtained by coating the surface of the titanium-based fine particles with a hydrolyzed condensate of normal ethyl silicate, that is, silicon dioxide. Got.
The refractive index of the silicon dioxide formed by forming the coating layer of the metal oxide fine particles was 1.45, 0.93 lower than the refractive index of the titanium-based fine particles.

このようにして得られた金属酸化物微粒子を含む水分散ゾルは乳白色であり、その濁度は16.21cm-1であった。また、この水分散ゾル中に含まれる前記金属酸化物微粒子の平均粒子径は106nmであり、さらに100nm以上の粒子径を有する粗大粒子の分布頻度は58.1%であった。
さらに、この金属酸化物微粒子中に含まれる金属成分の含有量を測定したところ、各金属成分の酸化物換算基準で、TiO266.3重量%、SnO28.1重量%、SiO225.4重量%およびK2O0.2重量%であった。なお、この金属含有量より求められる前記金属酸化物微粒子の比重は3.53であった。
また、上記の「粒子の屈折率測定法A」に記載の方法に基づき、分光エリプソメーターを用いて測定された塗膜屈折率Nav’は、前記塗料組成物中に含まれる粒子の重量分率mが10重量%、20重量%、30重量%、40重量%、50重量%、55重量%であるとき、それぞれ1.530、1.565、1.601、1.649、1.699、1.725であった。さらに、前記塗膜屈折率Nav’と前記体積分率・重量分率の変換式およびマクスウェル−ガーネットの式から算出される塗膜屈折率Navとから求められる偏差平方和の最小値は0.000023であり、その最小値を示す粒子の屈折率は2.05であった。これにより、前記金属酸化物微粒子の屈折率は2.05であるとみなすことができた。因みに、上記の屈折率測定法B(標準液法)で測定された前記金属酸化物微粒子の屈折率は2.05であった。
上記の測定結果のうち、本発明に関係する主要データを表2に示す。
The aqueous dispersion sol containing the metal oxide fine particles thus obtained was milky white and had a turbidity of 16.21 cm −1 . The average particle diameter of the metal oxide fine particles contained in the water-dispersed sol was 106 nm, and the distribution frequency of coarse particles having a particle diameter of 100 nm or more was 58.1%.
Furthermore, when the content of the metal component contained in the metal oxide fine particles was measured, it was 66.3% by weight of TiO 2 , 8.1% by weight of SnO 2 , SiO 2 25 based on the oxide conversion standard of each metal component. .4 was wt% and K 2 O0.2% by weight. The specific gravity of the metal oxide fine particles determined from the metal content was 3.53.
The coating film refractive index Nav ′ measured using a spectroscopic ellipsometer based on the method described in the above “Particle Refractive Index Measurement Method A” is a weight fraction of particles contained in the coating composition. When m is 10%, 20%, 30%, 40%, 50%, 55% by weight, 1.530, 1.565, 1.601, 1.649, 1.699, 1.725. Further, the minimum value of the deviation sum of squares obtained from the coating film refractive index Nav ′ and the coating volume refractive index Nav calculated from the volume fraction / weight fraction conversion formula and the Maxwell-Garnet formula is 0.000023. The refractive index of the particles showing the minimum value was 2.05. Thereby, it could be considered that the refractive index of the metal oxide fine particles was 2.05. Incidentally, the refractive index of the metal oxide fine particles measured by the refractive index measurement method B (standard solution method) was 2.05.
Among the above measurement results, main data related to the present invention are shown in Table 2.

[比較例11]
金属酸化物微粒子を含む水分散ゾルの調製
比較例5と同様な方法で調製されたチタン系微粒子RCP−5の水分散ゾル(固形分含有量が2.0重量%)7.50kgに、5.0重量%濃度のアンモニア水57.0gを混合したのち、前記チタン系微粒子の重量をCで表し、さらにその被覆層の重量をSで表したとき、その重量比(S/C)が酸化物換算基準で20/100となるように、ケイ素成分をSiO2換算基準で28重量%含む正珪酸エチル(多摩化学工業(株)製)144.2gとメタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)7.30kgとを混合した。次いで、この混合溶液を50℃の温度に加熱して18時間、攪拌した。
次に、得られた混合溶液を室温まで冷却してから、限外濾過膜(旭化成(株)製、SIP−1013)を用いてメタノールを除去して分散媒を水に置換した。さらに、濃縮して固形分含有量が20.0重量%の水分散ゾルを調製した。これにより、前記チタン系微粒子の表面を正珪酸エチルの加水分解縮合物、すなわち二酸化ケイ素で被覆してなる金属酸化物微粒子(以下、「RCSP−5」という。)を含む水分散ゾル0.88kgを得た。
なお、前記金属酸化物微粒子の被覆層を形成してなる前記二酸化ケイ素の屈折率は、前記チタン系微粒子の屈折率より1.25低い1.45であった。
[Comparative Example 11]
Preparation of water-dispersed sol containing metal oxide fine particles Water-dispersed sol of titanium-based fine particles RCP-5 prepared in the same manner as in Comparative Example 5 (solid content: 2.0% by weight) 7. After mixing 57.0 g of 5.0 wt% ammonia water in 50 kg, the weight of the titanium fine particles is represented by C, and the weight of the coating layer is represented by S, and the weight ratio (S / 144.2 g of normal ethyl silicate (manufactured by Tama Chemical Co., Ltd.) containing 28% by weight of a silicon component on a SiO 2 conversion basis and methanol (Hayashi Junyaku ( Co., Ltd., methyl alcohol concentration: 99.9% by weight) and 7.30 kg. Subsequently, this mixed solution was heated to a temperature of 50 ° C. and stirred for 18 hours.
Next, after cooling the obtained mixed solution to room temperature, methanol was removed using an ultrafiltration membrane (Asahi Kasei Co., Ltd., SIP-1013), and the dispersion medium was replaced with water. Further, it was concentrated to prepare an aqueous dispersion sol having a solid content of 20.0% by weight. As a result, 0.88 kg of an aqueous dispersion sol containing metal oxide fine particles (hereinafter referred to as “RCSP-5”) obtained by coating the surface of the titanium-based fine particles with a hydrolyzed condensate of normal ethyl silicate, that is, silicon dioxide. Got.
The refractive index of the silicon dioxide formed by forming the coating layer of the metal oxide fine particles was 1.45, which is 1.25 lower than the refractive index of the titanium-based fine particles.

このようにして得られた金属酸化物微粒子を含む水分散ゾルは乳白色であり、その濁度は21.29cm-1であった。また、この水分散ゾル中に含まれる前記金属酸化物微粒子の平均粒子径は387nmであり、さらに100nm以上の粒子径を有する粗大粒子の分布頻度は100%であった。
さらに、この金属酸化物微粒子中に含まれる金属成分の含有量を測定したところ、各金属成分の酸化物換算基準で、TiO279.8重量%およびSiO220.2重量%であった。なお、この金属含有量より求められる前記金属酸化物微粒子の比重は3.58であった。
また、上記の「粒子の屈折率測定法A」に記載の方法に基づき、分光エリプソメーターを用いて測定された塗膜屈折率Nav’は、前記塗料組成物中に含まれる粒子の重量分率mが10重量%、20重量%、30重量%、40重量%、50重量%、55重量%であるとき、それぞれ1.527、1.561、1.597、1.638、1.684、1.710であった。さらに、前記塗膜屈折率Nav’と前記体積分率・重量分率の変換式およびマクスウェル−ガーネットの式から算出される塗膜屈折率Navとから求められる偏差平方和の最小値は0.000006であり、その最小値を示す粒子の屈折率は2.05であった。これにより、前記金属酸化物微粒子の屈折率は2.05であるとみなすことができた。因みに、上記の屈折率測定法B(標準液法)で測定された前記金属酸化物微粒子の屈折率は2.05であった。
上記の測定結果のうち、本発明に関係する主要データを表2に示す。
The aqueous dispersion sol containing the metal oxide fine particles thus obtained was milky white and had a turbidity of 21.29 cm −1 . The average particle size of the metal oxide fine particles contained in the water-dispersed sol was 387 nm, and the distribution frequency of coarse particles having a particle size of 100 nm or more was 100%.
Furthermore, when the content of the metal component contained in the metal oxide fine particles was measured, it was 79.8% by weight of TiO 2 and 20.2% by weight of SiO 2 on the oxide conversion standard of each metal component. The specific gravity of the metal oxide fine particles determined from the metal content was 3.58.
The coating film refractive index Nav ′ measured using a spectroscopic ellipsometer based on the method described in the above “Particle Refractive Index Measurement Method A” is a weight fraction of particles contained in the coating composition. When m is 10%, 20%, 30%, 40%, 50%, 55% by weight, 1.527, 1.561, 1.597, 1.638, 1.684, 1.710. Further, the minimum value of the sum of square deviations obtained from the coating film refractive index Nav ′, the volume fraction / weight fraction conversion formula, and the coating film refractive index Nav calculated from the Maxwell-Garnet formula is 0.000006. The refractive index of the particles showing the minimum value was 2.05. Thereby, it could be considered that the refractive index of the metal oxide fine particles was 2.05. Incidentally, the refractive index of the metal oxide fine particles measured by the refractive index measurement method B (standard solution method) was 2.05.
Among the above measurement results, main data related to the present invention are shown in Table 2.

[比較例12]
金属酸化物微粒子を含む水分散ゾルの調製
比較例6と同様な方法で調製されたチタン系微粒子RCP−6の水分散ゾル(固形分含有量が2.0重量%)7.50kgに、5.0重量%濃度のアンモニア水57.0gを混合したのち、前記チタン系微粒子の重量をCで表し、さらにその被覆層の重量をSで表したとき、その重量比(S/C)が酸化物換算基準で20/100となるように、ケイ素成分をSiO2換算基準で28重量%含む正珪酸エチル(多摩化学工業(株)製)144.2gとメタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)7.30kgとを混合した。次いで、この混合溶液を50℃の温度に加熱して18時間、攪拌した。
次に、得られた混合溶液を室温まで冷却してから、限外濾過膜(旭化成(株)製、SIP−1013)を用いてメタノールを除去して分散媒を水に置換した。さらに、濃縮して固形分含有量が20.0重量%の水分散ゾルを調製した。これにより、前記チタン系微粒子の表面を正珪酸エチルの加水分解縮合物、すなわち二酸化ケイ素で被覆してなる金属酸化物微粒子(以下、「RCSP−6」という。)を含む水分散ゾル0.88kgを得た。
なお、前記金属酸化物微粒子の被覆層を形成してなる前記二酸化ケイ素の屈折率は、前記チタン系微粒子の屈折率より0.52低い1.45であった。
[Comparative Example 12]
Preparation of water-dispersed sol containing metal oxide fine particles Water-dispersed sol of titanium-based fine particles RCP-6 prepared in the same manner as in Comparative Example 6 (solid content: 2.0% by weight) 7. After mixing 57.0 g of 5.0 wt% ammonia water in 50 kg, the weight of the titanium fine particles is represented by C, and the weight of the coating layer is represented by S, and the weight ratio (S / 144.2 g of normal ethyl silicate (manufactured by Tama Chemical Co., Ltd.) containing 28% by weight of a silicon component on a SiO 2 conversion basis and methanol (Hayashi Junyaku ( Co., Ltd., methyl alcohol concentration: 99.9% by weight) and 7.30 kg. Subsequently, this mixed solution was heated to a temperature of 50 ° C. and stirred for 18 hours.
Next, after cooling the obtained mixed solution to room temperature, methanol was removed using an ultrafiltration membrane (Asahi Kasei Co., Ltd., SIP-1013), and the dispersion medium was replaced with water. Further, it was concentrated to prepare an aqueous dispersion sol having a solid content of 20.0% by weight. Thus, 0.88 kg of an aqueous dispersion sol containing metal oxide fine particles (hereinafter referred to as “RCSP-6”) obtained by coating the surface of the titanium-based fine particles with a hydrolyzed condensate of normal ethyl silicate, that is, silicon dioxide. Got.
The refractive index of the silicon dioxide formed by forming the coating layer of the metal oxide fine particles was 1.45, which is 0.52 lower than the refractive index of the titanium-based fine particles.

このようにして得られた金属酸化物微粒子を含む水分散ゾルは乳白色であり、その濁度は18.01cm-1であった。また、この水分散ゾル中に含まれる前記金属酸化物微粒子の平均粒子径は300nmであり、さらに100nm以上の粒子径を有する粗大粒子の分布頻度は100%であった。
さらに、この金属酸化物微粒子中に含まれる金属成分の含有量を測定したところ、各金属成分の酸化物換算基準で、TiO264.8重量%、SiO220.1重量%およびAl2315.1重量%であった。なお、この金属含有量より求められる前記金属酸化物微粒子の比重は3.55であった。
また、上記の「粒子の屈折率測定法A」に記載の方法に基づき、分光エリプソメーターを用いて測定された塗膜屈折率Nav’は、前記塗料組成物中に含まれる粒子の重量分率mが10重量%、20重量%、30重量%、40重量%、50重量%、55重量%であるとき、それぞれ1.513、1.531、1.543、1.569、1.591、1.603であった。さらに、前記塗膜屈折率Nav’と前記体積分率・重量分率の変換式およびマクスウェル−ガーネットの式から算出される塗膜屈折率Navとから求められる偏差平方和の最小値は0.000043であり、その最小値を示す粒子の屈折率は1.76であった。これにより、前記金属酸化物微粒子の屈折率は1.76であるとみなすことができた。因みに、上記の屈折率測定法B(標準液法)で測定された前記金属酸化物微粒子の屈折率は1.75であった。
上記の測定結果のうち、本発明に関係する主要データを表2に示す。
The aqueous dispersion sol containing the metal oxide fine particles thus obtained was milky white and its turbidity was 18.01 cm −1 . The average particle diameter of the metal oxide fine particles contained in the water-dispersed sol was 300 nm, and the distribution frequency of coarse particles having a particle diameter of 100 nm or more was 100%.
Furthermore, when the content of the metal component contained in the metal oxide fine particles was measured, TiO 2 64.8% by weight, SiO 2 20.1% by weight, and Al 2 O in terms of oxide conversion standard of each metal component. 3 15.1 wt%. The specific gravity of the metal oxide fine particles determined from the metal content was 3.55.
The coating film refractive index Nav ′ measured using a spectroscopic ellipsometer based on the method described in the above “Particle Refractive Index Measurement Method A” is a weight fraction of particles contained in the coating composition. When m is 10%, 20%, 30%, 40%, 50%, 55% by weight, 1.513, 1.531, 1.543, 1.569, 1.591, It was 1.603. Furthermore, the minimum value of the deviation sum of squares obtained from the coating film refractive index Nav ′ and the coating volume refractive index Nav calculated from the volume fraction / weight fraction conversion formula and the Maxwell-Garnet formula is 0.000043. The refractive index of the particles showing the minimum value was 1.76. Thereby, it could be considered that the refractive index of the metal oxide fine particles was 1.76. Incidentally, the refractive index of the metal oxide fine particles measured by the refractive index measurement method B (standard solution method) was 1.75.
Among the above measurement results, main data related to the present invention are shown in Table 2.

[比較例13]
金属酸化物微粒子を含む水分散ゾルの調製
参考例1と同様な方法で調製されたチタン系微粒子CP−1の水分散ゾル(固形分含有量が2.0重量%)7.50kgを、限外濾過膜(旭化成(株)製、SIP−1013)を用いて濃縮して固形分含有量が20.0重量%の水分散ゾルを調製した。これにより、前記チタン系微粒子の表面をシリカ系酸化物またはシリカ系複合酸化物で被覆していない金属酸化物微粒子(以下、「RCSP−7」という。)を含む水分散ゾル1.32kgを得た。
このようにして得られた金属酸化物微粒子(チタン系微粒子)を含む水分散ゾルは透明な乳白色であり、その濁度は6.57cm-1であった。また、この水分散ゾル中に含まれる前記金属酸化物微粒子の平均粒子径は31nmであり、さらに100nm以上の粒子径を有する粗大粒子の分布頻度は0%であった。
さらに、この金属酸化物微粒子中に含まれる金属成分の含有量は、前記チタン系微粒子CP−1と同様に、各金属成分の酸化物換算基準で、TiO284.4重量%、SnO29.9重量%、SiO25.3重量%およびK2O0.4重量%であった。なお、この金属含有量より求められる前記金属酸化物微粒子の比重は4.20であった。
また、上記の「粒子の屈折率測定法A」に記載の方法に基づき、分光エリプソメーターを用いて測定された塗膜屈折率Nav’は、前記塗料組成物中に含まれる粒子の重量分率mが10重量%、20重量%、30重量%、40重量%、50重量%、55重量%であるとき、それぞれ1.544、1.584、1.630、1.683、1.743、1.775であった。さらに、前記塗膜屈折率Nav’と前記体積分率・重量分率の変換式およびマクスウェル−ガーネットの式から算出される塗膜屈折率Navとから求められる偏差平方和の最小値は0.000167であり、その最小値を示す粒子の屈折率は2.35であった。これにより、前記金属酸化物微粒子の屈折率は2.35であるとみなすことができた。
上記の測定結果のうち、本発明に関係する主要データを表2に示す。
[Comparative Example 13]
Preparation of water-dispersed sol containing metal oxide fine particles
An aqueous dispersion sol (solid content 2.0% by weight) of 7.50 kg of titanium-based fine particles CP-1 prepared by the same method as in Reference Example 1 was added to an ultrafiltration membrane (Asahi Kasei Co., Ltd., SIP). -1013) to prepare an aqueous dispersion sol having a solid content of 20.0% by weight. As a result, 1.32 kg of an aqueous dispersion sol containing metal oxide fine particles (hereinafter referred to as “RCSP-7”) in which the surface of the titanium-based fine particles is not coated with silica-based oxide or silica-based composite oxide. It was.
The water-dispersed sol containing the metal oxide fine particles (titanium-based fine particles) thus obtained was transparent milky white and had a turbidity of 6.57 cm −1 . The average particle diameter of the metal oxide fine particles contained in the water-dispersed sol was 31 nm, and the distribution frequency of coarse particles having a particle diameter of 100 nm or more was 0%.
Furthermore, the content of the metal component contained in the metal oxide fine particles is 84.4% by weight of TiO 2 and SnO 2 9.9 based on the oxide conversion standard of each metal component, similar to the titanium fine particles CP-1. Wt%, SiO 2 5.3 wt% and K 2 O 0.4 wt%. The specific gravity of the metal oxide fine particles determined from the metal content was 4.20.
The coating film refractive index Nav ′ measured using a spectroscopic ellipsometer based on the method described in the above “Particle Refractive Index Measurement Method A” is a weight fraction of particles contained in the coating composition. When m is 10%, 20%, 30%, 40%, 50%, 55% by weight, 1.544, 1.584, 1.630, 1.683, 1.743, 1.775. Further, the minimum value of the deviation sum of squares obtained from the coating film refractive index Nav ′, the volume fraction / weight fraction conversion formula and the coating refractive index Nav calculated from the Maxwell-Garnet formula is 0.000167. The refractive index of the particles showing the minimum value was 2.35. Thereby, it could be considered that the refractive index of the metal oxide fine particles was 2.35.
Among the above measurement results, main data related to the present invention are shown in Table 2.

[比較例14]
金属酸化物微粒子を含む水分散ゾルの調製
参考例2と同様な方法で調製されたチタン系微粒子CP−2の水分散ゾル(固形分含有量が2.0重量%)7.50kgを、限外濾過膜(旭化成(株)製、SIP−1013)を用いて濃縮して固形分含有量が20重量%の水分散ゾルを調製した。これにより、前記チタン系微粒子の表面をシリカ系酸化物またはシリカ系複合酸化物で被覆していない金属酸化物微粒子(以下、「RCSP−8」という。)を含む水分散ゾル1.31kgを得た。
このようにして得られた金属酸化物微粒子(チタン系微粒子)を含む水分散ゾルは透明な乳白色であり、その濁度は6.63cm-1であった。また、この水分散ゾル中に含まれる前記前記金属酸化物微粒子の平均粒子径は35nmであり、さらに100nm以上の粒子径を有する粗大粒子の分布頻度は0%であった。
さらに、この金属酸化物微粒子中に含まれる金属成分の含有量は、前記チタン系微粒子CP−2と同様に、各金属成分の酸化物換算基準で、TiO288.5重量%、SnO211.1重量%、およびK2O0.4重量%であった。なお、この金属含有量より求められる前記金属酸化物微粒子の比重は4.44であった。
また、上記の「粒子の屈折率測定法A」に記載の方法に基づき、分光エリプソメーターを用いて測定された塗膜屈折率Nav’は、前記塗料組成物中に含まれる粒子の重量分率mが10重量%、20重量%、30重量%、40重量%、50重量%、55重量%であるとき、それぞれ1.532,1.598,1.622、1.681、1.746、1.783であった。さらに、前記塗膜屈折率Nav’と前記体積分率・重量分率の変換式およびマクスウェル−ガーネットの式から算出される塗膜屈折率Navとから求められる偏差平方和の最小値は0.000421であり、その最小値を示す粒子の屈折率は2.38であった。これにより、前記金属酸化物微粒子の屈折率は2.38であるとみなすことができた。
上記の測定結果のうち、本発明に関係する主要データを表2に示す。
[Comparative Example 14]
Preparation of water-dispersed sol containing metal oxide fine particles
An aqueous dispersion sol (solid content 2.0% by weight) 7.50 kg of titanium-based fine particles CP-2 prepared by the same method as in Reference Example 2 was added to an ultrafiltration membrane (Asahi Kasei Co., Ltd., SIP). -1013) to prepare an aqueous dispersion sol having a solid content of 20% by weight. As a result, 1.31 kg of an aqueous dispersion sol containing metal oxide fine particles (hereinafter referred to as “RCSP-8”) in which the surface of the titanium-based fine particles is not coated with silica-based oxide or silica-based composite oxide. It was.
The water-dispersed sol containing the metal oxide fine particles (titanium fine particles) thus obtained was transparent milky white and had a turbidity of 6.63 cm −1 . The average particle diameter of the metal oxide fine particles contained in the water-dispersed sol was 35 nm, and the distribution frequency of coarse particles having a particle diameter of 100 nm or more was 0%.
Furthermore, the content of the metal component contained in the metal oxide fine particles is 88.5% by weight of TiO 2 and SnO 2 11 in terms of the oxide conversion standard of each metal component, similar to the titanium-based fine particles CP-2. 0.1% by weight and 0.4% by weight of K 2 O. The specific gravity of the metal oxide fine particles determined from the metal content was 4.44.
The coating film refractive index Nav ′ measured using a spectroscopic ellipsometer based on the method described in the above “Particle Refractive Index Measurement Method A” is a weight fraction of particles contained in the coating composition. When m is 10%, 20%, 30%, 40%, 50%, 55% by weight, 1.532, 1.598, 1.622, 1.681, 1.746, 1.783. Further, the minimum value of the deviation sum of squares obtained from the coating film refractive index Nav ′, the volume fraction / weight fraction conversion formula and the coating refractive index Nav calculated from the Maxwell-Garnet formula is 0.000421. The refractive index of the particles showing the minimum value was 2.38. Thereby, it could be considered that the refractive index of the metal oxide fine particles was 2.38.
Among the above measurement results, main data related to the present invention are shown in Table 2.

Figure 0005514487
Figure 0005514487

[実施例14および比較例15]
実施例6〜13と同様な方法で調製された金属酸化物微粒子CSP−1、CSP−2、CSP−3、CSP−4、CSP−5、CSP−6、CSP−7またはCSP−8を含む各水分散ゾル、および比較例7〜14と同様な方法で調製された金属酸化物微粒子RCSP−1、RCSP−2、RCSP−3、RCSP−4、RCSP−5、RCSP−6、RCSP−7またはRCSP−8を含む各水分散ゾルをそれぞれ、上記の「粒子の光触媒活性試験」に供して、これらの水分散ゾル中に含まれる各金属酸化物微粒子が保有する光触媒活性の度合いを、該試験で用いられるサンセットイエロー染料の退色変化率で評価した。その評価結果を表3に示す。
結果として、実施例の水分散ゾル中に含まれる各金属酸化物微粒子は、比較例の水分散ゾル中に含まれる各金属酸化物微粒子と較べると、光触媒活性がかなり低いことが分かった。よって、本発明に係る前記水分散ゾルを出発原料として硬化性塗膜形成用塗布液などを調製して、これをプラスチック基材などに塗布して得られる塗膜は耐候性に優れているであろうことが認められた。
[Example 14 and Comparative Example 15]
Metal oxide fine particles CSP-1, CSP-2, CSP-3, CSP-4, CSP-5, CSP-6, CSP-7 or CSP-8 prepared by the same method as in Examples 6 to 13 are included. Each water dispersion sol, and metal oxide fine particles RCSP-1, RCSP-2, RCSP-3, RCSP-4, RCSP-5, RCSP-6, RCSP-7 prepared by the same method as Comparative Examples 7-14 Alternatively, each water-dispersed sol containing RCSP-8 is subjected to the above-mentioned “photocatalytic activity test of particles”, and the degree of photocatalytic activity possessed by each metal oxide fine particle contained in these water-dispersed sols is determined. Evaluation was based on the fading change rate of the sunset yellow dye used in the test. The evaluation results are shown in Table 3.
As a result, it was found that each metal oxide fine particle contained in the water-dispersed sol of the example had considerably lower photocatalytic activity than each metal oxide fine particle contained in the water-dispersed sol of the comparative example. Therefore, the coating film obtained by preparing a coating liquid for forming a curable coating film using the water-dispersed sol according to the present invention as a starting material and applying it to a plastic substrate or the like has excellent weather resistance. It was recognized that it would be.

Figure 0005514487
Figure 0005514487

[実施例15および比較例16]
実施例6〜13と同様な方法で調製された金属酸化物微粒子CSP−1、CSP−2、CSP−3、CSP−4、CSP−5、CSP−6、CSP−7またはCSP−8を含む各水分散ゾル、および比較例7〜14と同様な方法で調製された金属酸化物微粒子RCSP−1、RCSP−2、RCSP−3、RCSP−4、RCSP−5、RCSP−6、RCSP−7またはRCSP−8を含む各水分散ゾルをそれぞれ、上記の「粒子の耐光性試験」に供して、これらの水分散ゾル中に含まれる各金属酸化物微粒子の青変色(ブルーイング)の度合いを、該試験で用いられる紫外線の照射時間との関係で評価した。その評価結果を表4に示す。
結果として、実施例の水分散ゾル中に含まれる各金属酸化物微粒子は、比較例の水分散ゾル中に含まれる各金属酸化物微粒子と較べると、青変色が起こりづらいことが分かった。よって、本発明に係る前記水分散ゾルを出発原料として硬化性塗膜形成用塗布液などを調製して、これをプラスチック基材などに塗布して得られる塗膜は耐光性に優れているであろうことが認められた。
[Example 15 and Comparative Example 16]
Metal oxide fine particles CSP-1, CSP-2, CSP-3, CSP-4, CSP-5, CSP-6, CSP-7 or CSP-8 prepared by the same method as in Examples 6 to 13 are included. Each water-dispersed sol, and metal oxide fine particles RCSP-1, RCSP-2, RCSP-3, RCSP-4, RCSP-5, RCSP-6, RCSP-7 prepared by the same method as Comparative Examples 7-14 Alternatively, each water-dispersed sol containing RCSP-8 is subjected to the above-mentioned “light resistance test of particles” to determine the degree of blue discoloration (blueing) of each metal oxide fine particle contained in these water-dispersed sols. Evaluation was made in relation to the irradiation time of ultraviolet rays used in the test. The evaluation results are shown in Table 4.
As a result, it was found that each metal oxide fine particle contained in the water-dispersed sol of the example was less likely to cause blue discoloration than each metal oxide fine particle contained in the water-dispersed sol of the comparative example. Therefore, the coating film obtained by preparing a coating liquid for forming a curable coating film using the water-dispersed sol according to the present invention as a starting material and applying it to a plastic substrate or the like is excellent in light resistance. It was recognized that it would be.

Figure 0005514487
Figure 0005514487

[実施例16]
金属酸化物微粒子を含むメタノール分散ゾルの調製
実施例6〜13と同様な方法で調製された金属酸化物微粒子CSP−1、CSP−2、CSP−3、CSP−4、CSP−5、CSP−6、CSP−7またはCSP−8を含む各水分散ゾル7.00kgをそれぞれ、表面処理剤としてのテトラエトキシシラン(多摩化学工業(株)製)134.6gを溶解させたメタノール溶液7.00kgに撹拌下で添加した後、50℃の温度で6時間、加熱した。
次に、これらの混合溶液を室温まで冷却してから、限外濾過膜装置(旭化成(株)製濾過膜、SIP−1013)を用いて分散媒を水からメタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)にそれぞれ置換した。その結果、これより得られた各メタノール分散液中に含まれる固形分濃度は約10.9重量%であり、また水分含有量は約0.3重量%であった。
さらに、これらのメタノール分散液を限外濾過膜装置を用いてそれぞれ濃縮して、固形分含有量が20重量%の金属酸化物微粒子CSP−1、CSP−2、CSP−3、CSP−4、CSP−5、CSP−6、CSP−7またはCSP−8を含むメタノール分散ゾル0.70kgをそれぞれ調製した。
このようにして得られた金属酸化物微粒子を含むメタノール分散ゾルの外観および濁度は、表5に示すとおりであった。
[Example 16]
Preparation of methanol-dispersed sol containing metal oxide fine particles Metal oxide fine particles CSP-1, CSP-2, CSP-3, CSP-4, CSP-5, CSP- prepared by the same method as in Examples 6-13. 6. 7.00 kg of methanol solution in which 134.6 g of tetraethoxysilane (manufactured by Tama Chemical Co., Ltd.) as a surface treatment agent was dissolved in 7.00 kg of each water dispersion sol containing CSP-7 or CSP-8. Was added with stirring and then heated at a temperature of 50 ° C. for 6 hours.
Next, these mixed solutions are cooled to room temperature, and then the dispersion medium is changed from water to methanol (manufactured by Hayashi Junyaku Co., Ltd.) using an ultrafiltration membrane device (filter membrane manufactured by Asahi Kasei Co., Ltd., SIP-1013). , Methyl alcohol concentration: 99.9% by weight). As a result, the solid content concentration contained in each methanol dispersion obtained from this was about 10.9% by weight, and the water content was about 0.3% by weight.
Furthermore, these methanol dispersion liquids were concentrated using an ultrafiltration membrane device, respectively, to obtain metal oxide fine particles CSP-1, CSP-2, CSP-3, CSP-4 having a solid content of 20% by weight, 0.70 kg of methanol dispersion sol containing CSP-5, CSP-6, CSP-7 or CSP-8 was prepared.
The appearance and turbidity of the methanol-dispersed sol containing the metal oxide fine particles thus obtained were as shown in Table 5.

[実施例17]
金属酸化物微粒子を含むPGM分散ゾルの調製
実施例16と同様な方法で調製された金属酸化物微粒子CSP−1、CSP−2またはCSP−5を含む各メタノール分散ゾル0.70kgをそれぞれ、ロータリーエバポレーター(BUCHI社製R−124)のフラスコ中に入れ、さらにプロピレングリコールモノメチルエーテル(PGM)0.56kgを該フラスコ中に入れる。
次いで、ロータリーエバポレーターを駆動して、温度60℃、圧力−0.035MPaの減圧条件下で、前記フラスコを50rpmの速度で回転させると、上記で使用された有機溶媒(すなわち、メタノール)が蒸発してくるので、これを冷却して系外に排出した。
この操作を1時間続けて、前記メタノール分散ゾル中に含まれるメタノールをプロピレングリコールモノメチルエーテル(PGM)と溶媒置換したPGM分散ゾルをそれぞれ得た。さらに、プロピレングリコールモノメチルエーテル(PGM)の含有量を調整して、固形分含有量が20重量%の金属酸化物微粒子CSP−1、CSP−2またはCSP−5を含むPGM分散ゾル0.56kgをそれぞれ調製した。
このようにして得られた金属酸化物微粒子を含むPGM分散ゾルの外観および濁度は、表5に示すとおりであった。
[Example 17]
Preparation of PGM-dispersed sol containing metal oxide fine particles 0.70 kg of each methanol-dispersed sol containing metal oxide fine particles CSP-1, CSP-2 or CSP-5 prepared in the same manner as in Example 16, respectively. Into a flask of an evaporator (R-124 manufactured by BUCHI), 0.56 kg of propylene glycol monomethyl ether (PGM) is further placed in the flask.
Next, when the rotary evaporator is driven and the flask is rotated at a speed of 50 rpm under a reduced pressure condition of a temperature of 60 ° C. and a pressure of −0.035 MPa, the organic solvent (that is, methanol) used above evaporates. As it came, it was cooled and discharged out of the system.
This operation was continued for 1 hour to obtain PGM dispersion sols in which methanol contained in the methanol dispersion sol was substituted with propylene glycol monomethyl ether (PGM). Further, by adjusting the content of propylene glycol monomethyl ether (PGM), 0.56 kg of PGM dispersion sol containing metal oxide fine particles CSP-1, CSP-2 or CSP-5 having a solid content of 20% by weight Each was prepared.
The appearance and turbidity of the PGM-dispersed sol containing the metal oxide fine particles obtained in this manner were as shown in Table 5.

[比較例17]
金属酸化物微粒子を含むメタノール分散ゾルの調製
比較例7〜14と同様な方法で調製された金属酸化物微粒子RCSP−1、RCSP−2、RCSP−3、RCSP−4、RCSP−5、RCSP−6、RCSP−7またはRCSP−8を含む各水分散ゾル7.00kgをそれぞれ、表面処理剤としてのテトラエトキシシラン(多摩化学工業(株)製)134.6gを溶解させたメタノール溶液7.00kgに撹拌下で添加した後、50℃の温度で6時間、加熱した。
次に、これらの混合溶液を室温まで冷却してから、限外濾過膜装置(旭化成(株)製濾過膜、SIP−1013)を用いて分散媒を水からメタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)にそれぞれ置換した。その結果、得られた各メタノール分散液中に含まれる固形分濃度は約10.9重量%であり、また水分含有量は0.3重量%であった。
さらに、これらのメタノール分散液を限外濾過膜装置を用いてそれぞれ濃縮して、固形分含有量が20重量%の金属酸化物微粒子RCSP−1、RCSP−2、RCSP−3、RCSP−4、RCSP−5、RCSP−6、RCSP−7またはRCSP−8を含むメタノール分散ゾル0.70kgをそれぞれ調製した。
このようにして得られた金属酸化物微粒子を含むメタノール分散ゾルの外観および濁度は、表5に示すとおりであった。
[Comparative Example 17]
Preparation of methanol-dispersed sol containing metal oxide fine particles Metal oxide fine particles RCSP-1, RCSP-2, RCSP-3, RCSP-4, RCSP-5, RCSP- prepared by the same method as Comparative Examples 7-14 6, 7.00 kg of methanol solution in which 134.6 g of tetraethoxysilane (manufactured by Tama Chemical Co., Ltd.) as a surface treatment agent was dissolved in 7.00 kg of each water dispersion sol containing RCSP-7 or RCSP-8. Was added with stirring and then heated at a temperature of 50 ° C. for 6 hours.
Next, these mixed solutions are cooled to room temperature, and then the dispersion medium is changed from water to methanol (manufactured by Hayashi Junyaku Co., Ltd.) using an ultrafiltration membrane device (filter membrane manufactured by Asahi Kasei Co., Ltd., SIP-1013). , Methyl alcohol concentration: 99.9% by weight). As a result, the solid content concentration contained in each of the obtained methanol dispersions was about 10.9% by weight, and the water content was 0.3% by weight.
Furthermore, these methanol dispersion liquids were concentrated using an ultrafiltration membrane device, respectively, to obtain metal oxide fine particles RCSP-1, RCSP-2, RCSP-3, RCSP-4 having a solid content of 20% by weight, 0.70 kg of methanol-dispersed sol containing RCSP-5, RCSP-6, RCSP-7, or RCSP-8 was prepared.
The appearance and turbidity of the methanol-dispersed sol containing the metal oxide fine particles thus obtained were as shown in Table 5.

Figure 0005514487
Figure 0005514487

[調製例1]
光学基材用塗布液(ハードコート層膜形成用塗布液)の調製
γ―グリシドキシプロピルトリメトキシシラン(東レ・ダウコーニング(株)製Z−6040)114g、γ―グリシドキシプロピルメチルジエトキシシラン(東レ・ダウコーニング(株)製Z−6042)29gおよびメタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)71gの混合液を入れた容器を複数用意し、これらの混合液中に攪拌しながら0.01Nの塩酸水溶液36gを滴下した。更に、この混合液を室温で一昼夜攪拌して、シラン化合物の加水分解を行った。
次いで、これらの加水分解液が入った容器中に、実施例16で調製されたメタノール分散ゾル(固形分濃度:20重量%)のうち、屈折率が2.20未満の金属酸化物微粒子CSP−1、CSP−2、CSP−4、CSP−5、CSP−6またはCSP−7を含む各メタノール分散ゾルについては、それぞれ490g、屈折率が2.20以上の金属酸化物微粒子CSP−3またはCSP−8を含む各メタノール分散ゾルについては、それぞれ450g、さらに純水71g、トリス(2.4-ペンタンジオナト)アルミニウムIII(東京化成工業(株)製)3gおよびレベリング剤としてシリコーン系界面活性剤(東レ・ダウコーニング(株)製、L−7001)0.7gを加え、室温で一昼夜攪拌して、光学基材用塗料組成物としてのハードコート層膜形成用塗料組成物HX−1(1)、HX−2(1)、HX−3(1)、HX−4(1)、HX−5(1)、HX−6(1)、HX−7(1)、HX−8(1)をそれぞれ調製した。なお、これらの塗料組成物は、順にCSP−1、CSP−2、CSP−3、CSP−4、CSP−5、CSP−6、CSP−7、CSP−8の金属酸化物微粒子をそれぞれ含むものである。
[Preparation Example 1]
Preparation of coating liquid for optical substrate (coating liquid for forming hard coat layer film ) 114 g of γ-glycidoxypropyltrimethoxysilane (Z-6040 manufactured by Toray Dow Corning Co., Ltd.), γ-glycidoxypropylmethyldi Prepare a plurality of containers containing a mixed liquid of 29 g of ethoxysilane (Z-6042 manufactured by Toray Dow Corning Co., Ltd.) and 71 g of methanol (Mayashi Junyaku Co., Ltd., methyl alcohol concentration: 99.9 wt%), While stirring, 36 g of 0.01N hydrochloric acid aqueous solution was dropped into these mixed solutions. Furthermore, this liquid mixture was stirred at room temperature all day and night to hydrolyze the silane compound.
Next, in a container containing these hydrolyzed solutions, among the methanol-dispersed sol prepared in Example 16 (solid content concentration: 20% by weight), the metal oxide fine particles CSP- having a refractive index of less than 2.20. 1, CSP-2, CSP-4, CSP-5, CSP-6 or CSP-7, 490 g, metal oxide fine particles CSP-3 or CSP having a refractive index of 2.20 or more, respectively. For each methanol-dispersed sol containing -8, 450 g, 71 g of pure water, 3 g of Tris (2.4-pentanedionato) aluminum III (manufactured by Tokyo Chemical Industry Co., Ltd.) and a silicone surfactant as a leveling agent (Toray Dow Corning Co., Ltd., L-7001) 0.7 g was added and stirred at room temperature all day and night to form a hard coating as a coating composition for optical substrates. Layer film forming coating composition HX-1 (1), HX-2 (1), HX-3 (1), HX-4 (1), HX-5 (1), HX-6 (1), HX-7 (1) and HX-8 (1) were prepared. These coating compositions contain metal oxide fine particles of CSP-1, CSP-2, CSP-3, CSP-4, CSP-5, CSP-6, CSP-7, and CSP-8, respectively. .

[調製例2]
光学基材用塗布液(ハードコート層膜形成用塗布液)の調製
γ―グリシドキシプロピルトリメトキシシラン(東レ・ダウコーニング(株)製Z−6040)114g、γ―グリシドキシプロピルメチルジエトキシシラン(東レ・ダウコーニング(株)製Z−6042)29gおよびメタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)71gの混合液を入れた容器を複数用意し、これらの混合液中に攪拌しながら0.01Nの塩酸水溶液36gを滴下した。更に、この混合液を室温で一昼夜攪拌して、シラン化合物の加水分解を行った。
次いで、これらの加水分解液が入った容器中に、比較例17で調製されたメタノール分散ゾル(固形分濃度:20重量%)のうち、屈折率が2.20未満の金属酸化物微粒子RCSP−1、RCSP−2、RCSP−4、RCSP−5またはRCSP−6を含む各メタノール分散ゾルについては、それぞれ490g、屈折率が2.20以上の金属酸化物微粒子RCSP−3、RCSP−7またはRCSP−8を含む各メタノール分散ゾルについては、それぞれ450g、さらに純水71g、トリス(2.4-ペンタンジオナト)アルミニウムIII(東京化成工業(株)製)3gおよびレベリング剤としてシリコーン系界面活性剤(東レ・ダウコーニング(株)製、L−7001)0.7gを加え、室温で一昼夜攪拌して、光学基材用塗料組成物としてのハードコート層膜形成用塗料組成物HY−1(1)、HY−2(1)、HY−3(1)、HY−4(1)、HY−5(1)、HY−6(1)、HY−7(1)、HY−8(1)をそれぞれ調製した。なお、これらの塗料組成物は、順にRCSP−1、RCSP−2、RCSP−3、RCSP−4、RCSP−5、RCSP−6、RCSP−7、RCSP−8の金属酸化物微粒子をそれぞれ含むものである。
[Preparation Example 2]
Preparation of coating liquid for optical substrate (coating liquid for forming hard coat layer film ) 114 g of γ-glycidoxypropyltrimethoxysilane (Z-6040 manufactured by Toray Dow Corning Co., Ltd.), γ-glycidoxypropylmethyldi Prepare a plurality of containers containing a mixed liquid of 29 g of ethoxysilane (Z-6042 manufactured by Toray Dow Corning Co., Ltd.) and 71 g of methanol (Mayashi Junyaku Co., Ltd., methyl alcohol concentration: 99.9 wt%), While stirring, 36 g of 0.01N hydrochloric acid aqueous solution was dropped into these mixed solutions. Furthermore, this liquid mixture was stirred at room temperature all day and night to hydrolyze the silane compound.
Next, among the methanol dispersion sol prepared in Comparative Example 17 (solid content concentration: 20% by weight) in a container containing these hydrolysis solutions, metal oxide fine particles RCSP- having a refractive index of less than 2.20. 1, each methanol dispersion sol containing RCSP-2, RCSP-4, RCSP-5 or RCSP-6 is 490 g, metal oxide fine particles RCSP-3, RCSP-7 or RCSP having a refractive index of 2.20 or more, respectively. For each methanol-dispersed sol containing -8, 450 g, 71 g of pure water, 3 g of Tris (2.4-pentanedionato) aluminum III (manufactured by Tokyo Chemical Industry Co., Ltd.) and a silicone surfactant as a leveling agent (Toray Dow Corning Co., Ltd., L-7001) 0.7 g was added and stirred at room temperature for a whole day and night. HY-1 (1), HY-2 (1), HY-3 (1), HY-4 (1), HY-5 (1), HY-6 (1), HY-7 (1), and HY-8 (1) were prepared. These coating compositions contain RCSP-1, RCSP-2, RCSP-3, RCSP-4, RCSP-5, RCSP-6, RCSP-7, and RCSP-8, respectively, in order. .

[調製例3]
光学基材用塗布液(ハードコート層膜形成用塗布液)の調製
γ―グリシドキシプロピルトリメトキシシラン(東レ・ダウコーニング(株)製、Z−6040)135gおよびメタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)50gの混合液を入れた容器を複数用意し、これらの混合液中に攪拌しながら0.01Nの塩酸水溶液35gを滴下した。更に、これらの混合液を室温で一昼夜攪拌して、シラン化合物の加水分解を行った。
次いで、これらの加水分解液が入った容器中に、実施例16で調製されたメタノール分散ゾル(固形分濃度:20重量%)のうち、屈折率が2.20未満の金属酸化物微粒子CSP−1、CSP−2、CSP−4、CSP−5、CSP−6またはCSP−7を含む各メタノール分散ゾルについては、それぞれ600g、屈折率が2.20以上の金属酸化物微粒子CSP−3またはCSP−8を含む各メタノール分散ゾルについては、それぞれ550g、さらにトリス(2.4-ペンタンジオナト)鉄III(東京化成工業(株)製)4g、グリセロールポリグリシジルエーテル(ナガセ化成工業(株)製、デナコールEX−314、エポキシ当量145)8gおよびレベリング剤としてシリコーン系界面活性剤(東レ・ダウコーニング(株)製、L−7001)0.5gを加えて、室温で一昼夜攪拌して、光学基材用塗料組成物としてのハードコート層膜形成用塗料組成物HX−1(2)、HX−2(2)、HX−3(2)、HX−4(2)、HX−5(2)、HX−6(2)、HX−7(2)、HX−8(2)をそれぞれ調製した。なお、これらの塗料組成物は、順にCSP−1、CSP−2、CSP−3、CSP−4、CSP−5、CSP−6、CSP−7、CSP−8の金属酸化物微粒子をそれぞれ含むものである。
[Preparation Example 3]
Preparation of coating liquid for optical substrate (coating liquid for forming hard coat layer film ) 135 g of γ-glycidoxypropyltrimethoxysilane (manufactured by Toray Dow Corning Co., Ltd., Z-6040) and methanol (Hayashi Junyaku Co., Ltd.) ), Methyl alcohol concentration: 99.9% by weight) A plurality of containers containing 50 g of a mixed solution were prepared, and 35 g of a 0.01N hydrochloric acid aqueous solution was dropped into these mixed solutions while stirring. Furthermore, these mixed liquids were stirred at room temperature for a whole day and night to hydrolyze the silane compound.
Next, in a container containing these hydrolyzed solutions, among the methanol-dispersed sol prepared in Example 16 (solid content concentration: 20% by weight), the metal oxide fine particles CSP- having a refractive index of less than 2.20. 1, CSP-2, CSP-4, CSP-5, CSP-6 or CSP-7, each methanol dispersion sol is 600 g, metal oxide fine particles CSP-3 or CSP having a refractive index of 2.20 or more, respectively. For each methanol-dispersed sol containing -8, 550 g, 4 g of Tris (2.4-pentanedionato) iron III (manufactured by Tokyo Chemical Industry Co., Ltd.), glycerol polyglycidyl ether (manufactured by Nagase Chemical Industry Co., Ltd.) , Denacol EX-314, epoxy equivalent 145) 8 g and a silicone surfactant as a leveling agent (manufactured by Dow Corning Toray, L -7001) Add 0.5 g, stir at room temperature all day and night, and form hard coat layer film-forming coating composition HX-1 (2), HX-2 (2), HX as a coating composition for optical substrates -3 (2), HX-4 (2), HX-5 (2), HX-6 (2), HX-7 (2), and HX-8 (2) were prepared. These coating compositions contain metal oxide fine particles of CSP-1, CSP-2, CSP-3, CSP-4, CSP-5, CSP-6, CSP-7, and CSP-8, respectively. .

[調製例4]
光学基材用塗布液(ハードコート層膜形成用塗布液)の調製
γ―グリシドキシプロピルトリメトキシシラン(東レ・ダウコーニング(株)製、Z−6040)135gおよびメタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)50gの混合液を入れた容器を複数用意し、これらの混合液中に攪拌しながら0.01Nの塩酸水溶液25gを滴下した。更に、これらの混合液を室温で一昼夜攪拌して、シラン化合物の加水分解を行った。
次いで、これらの加水分解液が入った容器中に、比較例17で調製されたメタノール分散ゾル(固形分濃度:20重量%)のうち、屈折率が2.20未満の金属酸化物微粒子RCSP−1、RCSP−2、RCSP−4、RCSP−5およびRCSP−6を含む各メタノール分散ゾルについては、それぞれ600g、屈折率が2.20以上の金属酸化物微粒子RCSP−3、RCSP−7またはRCSP−8を含む各メタノール分散ゾルについては、それぞれ550g、さらにトリス(2.4-ペンタンジオナト)鉄III(東京化成工業(株)製)4g、グリセロールポリグリシジルエーテル(ナガセ化成工業(株)製、デナコールEX−314、エポキシ当量145)8gおよびレベリング剤としてシリコーン系界面活性剤(東レ・ダウコーニング(株)製、L−7001)0.5gを加えて、室温で一昼夜攪拌して、光学基材用塗料組成物としてのハードコート層膜形成用塗料組成物HY−1(2)、HY−2(2)、HY−3(2)、HY−4(2)、HY−5(2)、HY−6(2) HY−7(2)、HY−8(2)、をそれぞれ調製した。なお、これらの塗料組成物は、順にRCSP−1、RCSP−2、RCSP−3、RCSP−4、RCSP−5、RCSP−6、RCSP−7、RCSP−8の金属酸化物微粒子をそれぞれ含むものである。
[Preparation Example 4]
Preparation of coating liquid for optical substrate (coating liquid for forming hard coat layer film ) 135 g of γ-glycidoxypropyltrimethoxysilane (manufactured by Toray Dow Corning Co., Ltd., Z-6040) and methanol (Hayashi Junyaku Co., Ltd.) ), Methyl alcohol concentration: 99.9% by weight) A plurality of containers containing 50 g of a mixed solution were prepared, and 25 g of a 0.01 N hydrochloric acid aqueous solution was dropped into these mixed solutions while stirring. Furthermore, these mixed liquids were stirred at room temperature for a whole day and night to hydrolyze the silane compound.
Next, among the methanol dispersion sol prepared in Comparative Example 17 (solid content concentration: 20% by weight) in a container containing these hydrolysis solutions, metal oxide fine particles RCSP- having a refractive index of less than 2.20. 1, each methanol dispersion sol containing RCSP-2, RCSP-4, RCSP-5 and RCSP-6 is 600 g, metal oxide fine particles RCSP-3, RCSP-7 or RCSP having a refractive index of 2.20 or more. For each methanol-dispersed sol containing -8, 550 g, 4 g of Tris (2.4-pentanedionato) iron III (manufactured by Tokyo Chemical Industry Co., Ltd.), glycerol polyglycidyl ether (manufactured by Nagase Chemical Industry Co., Ltd.) , Denacol EX-314, Epoxy equivalent 145) 8g, and silicone surfactant as leveling agent (Toray Dowconi Ng Co., Ltd., L-7001) 0.5 g was added and stirred at room temperature all day and night to form a hard coat layer film-forming coating composition HY-1 (2), HY as a coating composition for an optical substrate. -2 (2), HY-3 (2), HY-4 (2), HY-5 (2), HY-6 (2) HY-7 (2), HY-8 (2) did. These coating compositions contain RCSP-1, RCSP-2, RCSP-3, RCSP-4, RCSP-5, RCSP-6, RCSP-7, and RCSP-8, respectively, in order. .

[調製例5]
光学基材用塗布液(プライマー層膜形成用塗布液)の調製
市販の熱可塑性樹脂であるポリウレタンエマルジョン「スーパーフレックス150」(第一工業製薬製、水分散型ウレタンエラストマー固形分含有量30%)170gを入れた容器を複数用意し、これらに、実施例16で調製されたメタノール分散ゾル(固形分濃度:20重量%)のうち、屈折率が2.20未満の金属酸化物微粒子CSP−1、CSP−2、CCSP−4、CSP−5、CSP−6、またはCSP−7を含む各メタノール分散ゾルについてはそれぞれ395g、屈折率が2.20以上の金属酸化物微粒子CSP−3またはCSP−8を含む各メタノール分散ゾルについてはそれぞれ410g、および純水110gを加えて、1時間攪拌した。
次いで、これらの混合液に、メタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)500g、更にレベリング剤としてシリコーン系界面活性剤(東レ・ダウコーニング(株)製、L−7604)0.3gを加えて、室温で一昼夜攪拌して、光学基材用塗料組成物としてのプライマー層膜形成用塗料組成物PX−1、PX−2、PX−3、PX−4、PX−5、PX−6 、PX−7、PX−8をそれぞれ調製した。なお、これらの塗料組成物は、順にCSP−1、CSP−2、CSP−3、CSP−4、CSP−5、CSP−6、CSP−7、CSP−8の金属酸化物微粒子をそれぞれ含むものである。
[Preparation Example 5]
Preparation of coating liquid for optical substrate (coating liquid for primer layer film formation) Polyurethane emulsion “Superflex 150” (Daiichi Kogyo Seiyaku Co., Ltd., water dispersion type urethane elastomer solid content 30%) which is a commercially available thermoplastic resin A plurality of containers containing 170 g were prepared, and among these, the metal oxide fine particles CSP-1 having a refractive index of less than 2.20 among the methanol-dispersed sol prepared in Example 16 (solid content concentration: 20 wt%). , CSP-2, CCSP-4, CSP-5, CSP-6, or CSP-7, each of the methanol dispersion sol is 395 g, and the metal oxide fine particles CSP-3 or CSP- having a refractive index of 2.20 or more. For each methanol-dispersed sol containing 8, 410 g and 110 g of pure water were added and stirred for 1 hour.
Next, 500 g of methanol (Hayashi Junyaku Co., Ltd., methyl alcohol concentration: 99.9% by weight) is added to these mixed solutions, and a silicone surfactant (manufactured by Toray Dow Corning Co., Ltd., L) as a leveling agent. -7604) 0.3 g was added and stirred at room temperature for a whole day and night to form a primer layer film-forming coating composition PX-1, PX-2, PX-3, PX-4 as a coating composition for an optical substrate. PX-5, PX-6, PX-7, and PX-8 were prepared. These coating compositions contain metal oxide fine particles of CSP-1, CSP-2, CSP-3, CSP-4, CSP-5, CSP-6, CSP-7, and CSP-8, respectively. .

[調製例6]
光学基材用塗布液(プライマー層膜形成用塗布液)の調製
市販の熱可塑性樹脂であるポリウレタンエマルジョン「スーパーフレックス150」(第一工業製薬製、水分散型ウレタンエラストマー固形分含有量30%)170gを入れた容器を複数用意し、これらに、比較例17で調製されたメタノール分散ゾル(固形分濃度:20重量%)のうち、屈折率が2.20未満の金属酸化物微粒子RCSP−1、RCSP−2、RCSP−4、RCSP−5またはRCSP−6を含む各メタノール分散ゾルについてはそれぞれ430g、屈折率が2.20以上の金属酸化物微粒子RCSP−3、RCSP−7またはRCSP−8を含む各メタノール分散ゾルについてはそれぞれ395g、および純水110gを加えて、1時間攪拌した。
次いで、これらの混合液に、メタノール(林純薬(株)製、メチルアルコール濃度:99.9重量%)500g、更にレベリング剤としてシリコーン系界面活性剤(東レ・ダウコーニング(株)製、L−7604)0.3gを加えて、室温で一昼夜攪拌して、光学基材用塗料組成物としてのプライマー層膜形成用塗料組成物PY−1、PY−2、PY−3、PY−4、PY−5、PY−6、PY−7およびPY−8をそれぞれ調製した。なお、これらの塗料組成物は、順にRCSP−1、RCSP−2、RCSP−3、RCSP−4、RCSP−5、RCSP−6、RCSP−7、RCSP−8の金属酸化物微粒子をそれぞれ含むものである。
[Preparation Example 6]
Preparation of coating liquid for optical substrate (coating liquid for primer layer film formation) Polyurethane emulsion “Superflex 150” (Daiichi Kogyo Seiyaku Co., Ltd., water dispersion type urethane elastomer solid content 30%) which is a commercially available thermoplastic resin A plurality of containers containing 170 g were prepared, and among these, the metal oxide fine particles RCSP-1 having a refractive index of less than 2.20 among the methanol-dispersed sol (solid content concentration: 20 wt%) prepared in Comparative Example 17 was prepared. Each of the methanol dispersion sols containing RCSP-2, RCSP-4, RCSP-5 or RCSP-6 is 430 g and metal oxide fine particles RCSP-3, RCSP-7 or RCSP-8 having a refractive index of 2.20 or more. Each methanol-dispersed sol containing 395 g and 110 g of pure water was added and stirred for 1 hour.
Next, 500 g of methanol (Hayashi Junyaku Co., Ltd., methyl alcohol concentration: 99.9% by weight) is added to these mixed solutions, and a silicone surfactant (manufactured by Toray Dow Corning Co., Ltd., L) as a leveling agent. -7604) Add 0.3 g, stir at room temperature for a whole day and night, primer layer film forming coating composition PY-1, PY-2, PY-3, PY-4 as a coating composition for an optical substrate, PY-5, PY-6, PY-7, and PY-8 were prepared respectively. These coating compositions contain RCSP-1, RCSP-2, RCSP-3, RCSP-4, RCSP-5, RCSP-6, RCSP-7, and RCSP-8, respectively, in order. .

[調製例7]
試験用プラスチックレンズ基板の作成(1)
(1)プラスチックレンズ基材の前処理
市販のプラスチックレンズ基材「モノマー名:MR−174」(三井化学(株)製、基材の屈折率1.74)および「モノマー名:MR−7」(三井化学(株)製、基材の屈折率1.67)を、以下の試験および評価に必要な枚数準備した。
次いで、これらのプラスチックレンズ基材を、40℃に保った10重量%濃度のKOH水溶液に2分間浸漬してエッチング処理を行った。更に、これらを取り出して水洗したのち、十分に乾燥させた。
[Preparation Example 7]
Preparation of plastic lens substrate for testing (1)
(1) Pretreatment of plastic lens substrate Commercially available plastic lens substrate “monomer name: MR-174” (manufactured by Mitsui Chemicals, Inc., refractive index of substrate 1.74) and “monomer name: MR-7” (Mitsui Chemicals Co., Ltd., the refractive index of the base material 1.67) was prepared for the following tests and evaluations.
Subsequently, these plastic lens base materials were immersed in a 10 wt% KOH aqueous solution kept at 40 ° C. for 2 minutes for etching treatment. Further, these were taken out, washed with water, and then sufficiently dried.

(2)ハードコート層膜の形成
前記プラスチックレンズ基材の表面に、調製例1および2で得られたハードコート層膜形成用の塗料組成物(ハードコート用塗料)をそれぞれ塗布して塗膜を形成した。なお、この塗料組成物の塗布は、ディッピング法(引き上げ速度250mm/分)を用いて行った。
次に、前記塗膜を90℃で10分間、乾燥させた後、110℃で2時間、加熱処理して、塗膜(ハードコート層)の硬化を行った。
なお、このようにして形成された前記ハードコート層膜の硬化後の膜厚は、概ね2.0〜2.6μmであった。
(2) Formation of hard coat layer film The coating composition (hard coat paint) for forming the hard coat layer film obtained in Preparation Examples 1 and 2 was applied to the surface of the plastic lens substrate, respectively. Formed. In addition, application | coating of this coating composition was performed using the dipping method (drawing speed 250mm / min).
Next, after drying the said coating film for 10 minutes at 90 degreeC, it heat-processed for 2 hours at 110 degreeC, and hardened | cured the coating film (hard-coat layer).
In addition, the film thickness after hardening of the said hard-coat layer film | membrane formed in this way was about 2.0-2.6 micrometers.

(3)反射防止膜層の形成
前記ハードコート層膜の表面に、以下に示す構成の無機酸化物成分を真空蒸着法によって蒸着させた。ここでは、ハードコート層側から大気側に向かって、SiO2:0.06λ、ZrO2:0.15λ、SiO2:0.04λ、ZrO2:0.25λ、SiO2:0.25λの順序で積層された反射防止層膜の層をそれぞれ形成した。また、設計波長λは、520nmとした。
(3) Formation of antireflection film layer An inorganic oxide component having the following constitution was deposited on the surface of the hard coat layer film by a vacuum deposition method. Here, the order of SiO 2 : 0.06λ, ZrO 2 : 0.15λ, SiO 2 : 0.04λ, ZrO 2 : 0.25λ, and SiO 2 : 0.25λ from the hard coat layer side toward the atmosphere side. Each of the layers of the antireflection layer film laminated in (1) was formed. The design wavelength λ was 520 nm.

[調製例8]
試験用プラスチックレンズ基板の作成(2)
(1)プラスチックレンズ基材の前処理
調製例7と同様な条件下で、プラスチック基材の前処理を行なった。
(2)プライマー層膜の形成
前記プラスチックレンズ基材の表面に、調製例5および6で得られたプライマー層膜形成用の塗料組成物(プライマー用塗料)をそれぞれ塗布して塗膜を形成した。なお、この塗料組成物の塗布は、ディッピング法(引き上げ速度120mm/分)を用いて行った。
次に、前記塗膜を100℃で10分間、加熱処理して、塗膜(プライマー層)の予備硬化を行った。
なお、このようにして形成された前記プライマー層の予備硬化後の膜厚は、概ね0.5〜0.7μmであった。
[Preparation Example 8]
Preparation of plastic lens substrate for testing (2)
(1) Pretreatment of plastic lens substrate Under the same conditions as in Preparation Example 7, the plastic substrate was pretreated.
(2) Formation of primer layer film The surface of the plastic lens substrate was coated with the primer layer film-forming paint composition (primer paint) obtained in Preparation Examples 5 and 6 to form a coating film. . In addition, application | coating of this coating composition was performed using the dipping method (pickup speed 120mm / min).
Next, the said coating film was heat-processed at 100 degreeC for 10 minute (s), and the coating film (primer layer) was pre-hardened.
In addition, the film thickness after preliminary curing of the primer layer formed in this manner was approximately 0.5 to 0.7 μm.

(3)ハードコート層膜の形成
前記プライマー層膜を形成してなるプラスチックレンズ基材の表面に、調製例3および4で得られたハードコート層膜形成用の塗料組成物(ハードコート用塗料)をそれぞれ塗布した。なお、この塗料組成物の塗布は、ディッピング法(引き上げ速度250mm/分)を用いて行った。
次に、前記塗膜を90℃で10分間、乾燥させた後、110℃で2時間、加熱処理して、塗膜(ハードコート層)の硬化を行った。この際、前記プライマー層の本硬化も同時に行った。
なお、このようにして形成された前記ハードコート層の膜厚は、概ね2.0〜2.6μmであった。
(4)反射防止膜層膜の形成
調製例7と同様な条件下で、前記ハードコート層の表面に、反射防止層膜の層をそれぞれ形成した。
(3) Formation of Hard Coat Layer Film A coating composition for forming a hard coat layer film obtained in Preparation Examples 3 and 4 (hard coat paint) is formed on the surface of the plastic lens substrate formed with the primer layer film. ) Was applied respectively. In addition, application | coating of this coating composition was performed using the dipping method (drawing speed 250mm / min).
Next, after drying the said coating film for 10 minutes at 90 degreeC, it heat-processed for 2 hours at 110 degreeC, and hardened | cured the coating film (hard-coat layer). At this time, the main curing of the primer layer was also performed at the same time.
In addition, the film thickness of the hard coat layer thus formed was approximately 2.0 to 2.6 μm.
(4) Formation of Antireflective Film Layer Film Under the same conditions as in Preparation Example 7, an antireflective layer film layer was formed on the surface of the hard coat layer.

[評価試験1]
調製例1で得られたハードコート層膜形成用の塗料組成物HX−1(1)、HX−2(1)、HX−3(1)、HX−4(1)、HX−5(1)、HX−6(1)、HX−7(1)およびHX−8(1)を用いて、調製例7に示す方法でプラスチックレンズ基材上にハードコート層および反射防止膜層をそれぞれ形成した。なお、ここでは、前記プラスチックレンズ基材「モノマー名:MR−7」を使用した。
このようにして得られた基板HX−1、HX−2、HX−3、HX−4、HX−5、HX−6、HX−7およびHX−8について、上記の評価試験法を用いて、外観(干渉縞)、外観(曇り)、耐擦傷性、密着性、耐候性および耐光性を試験して評価した。その結果を表6に示す。
[Evaluation Test 1]
Coating composition HX-1 (1), HX-2 (1), HX-3 (1), HX-4 (1), HX-5 (1) for forming a hard coat layer film obtained in Preparation Example 1 ), HX-6 (1), HX-7 (1) and HX-8 (1), respectively, a hard coat layer and an antireflection film layer are formed on the plastic lens substrate by the method shown in Preparation Example 7. did. Here, the plastic lens substrate “monomer name: MR-7” was used.
For the substrates HX-1, HX-2, HX-3, HX-4, HX-5, HX-6, HX-7 and HX-8 obtained in this way, using the above evaluation test method, Appearance (interference fringes), appearance (cloudiness), scratch resistance, adhesion, weather resistance and light resistance were tested and evaluated. The results are shown in Table 6.

Figure 0005514487
Figure 0005514487

[評価試験2]
調製例2で得られたハードコート層膜形成用の塗料組成物HY−1(1)、HY−2(1)、HY−3(1)、HY−4(1)、HY−5(1)、HY−6(1)、HY−7(1)およびHY−8(1)を用いて、調製例7に示す方法でプラスチックレンズ基材上にハードコート層および反射防止膜層をそれぞれ形成した。なお、ここでは、前記プラスチックレンズ基材「モノマー名:MR−7」を使用した。
このようにして得られた基板HY−1、HY−2、HY−3、HY−4、HY−5、HY−6、HY−7およびHY−8について、上記の評価試験法を用いて、外観(干渉縞)、外観(曇り)、耐擦傷性、密着性、耐候性および耐光性を試験して評価した。その結果を表7に示す。
[Evaluation Test 2]
Coating composition HY-1 (1), HY-2 (1), HY-3 (1), HY-4 (1), HY-5 (1) for forming the hard coat layer film obtained in Preparation Example 2 ), HY-6 (1), HY-7 (1) and HY-8 (1), a hard coat layer and an antireflection film layer are formed on the plastic lens substrate by the method shown in Preparation Example 7, respectively. did. Here, the plastic lens substrate “monomer name: MR-7” was used.
With respect to the substrates HY-1, HY-2, HY-3, HY-4, HY-5, HY-6, HY-7, and HY-8 thus obtained, the above evaluation test method was used. Appearance (interference fringes), appearance (cloudiness), scratch resistance, adhesion, weather resistance and light resistance were tested and evaluated. The results are shown in Table 7.

Figure 0005514487
Figure 0005514487

[評価試験3]
調製例5で得られたプライマー層膜形成用の塗料組成物PX−1、PX−2、PX−3、PX−4、PX−5、PX−6、PX−7およびPX−8、および調製例3で得られた表8に示すハードコート層膜形成用塗料組成物を用いて、調製例8に示す方法でプラスチックレンズ基材上にプライマー層、ハードコート層および反射防止膜層をそれぞれ形成した。
なお、ここでは、前記プラスチックレンズ基材「モノマー名:MR−174」を使用した。
このようにして得られた基板PX−1、PX−2、PX−3、PX−4、PX−5、PX−6、PX−7およびPX−8について、上記の評価試験法を用いて、外観(干渉縞)、外観(曇り)、耐擦傷性、密着性、耐候性および耐光性を試験して評価した。その結果を表8に示す。なお、耐光性については、試験に用いた基板自体の変色があるため、試験を取りやめた。
[Evaluation Test 3]
Coating composition PX-1, PX-2, PX-3, PX-4, PX-5, PX-6, PX-7 and PX-8 for primer layer film formation obtained in Preparation Example 5, and preparation Using the coating composition for hard coat layer film formation shown in Table 8 obtained in Example 3, a primer layer, a hard coat layer, and an antireflection film layer were formed on the plastic lens substrate by the method shown in Preparation Example 8, respectively. did.
Here, the plastic lens substrate “monomer name: MR-174” was used.
For the substrates PX-1, PX-2, PX-3, PX-4, PX-5, PX-6, PX-7 and PX-8 obtained in this way, using the above evaluation test method, Appearance (interference fringes), appearance (cloudiness), scratch resistance, adhesion, weather resistance and light resistance were tested and evaluated. The results are shown in Table 8. In addition, about light resistance, since there was discoloration of the board | substrate itself used for the test, the test was canceled.

Figure 0005514487
Figure 0005514487

[評価試験4]
調製例6で得られたプライマー層膜形成用の塗料組成物PY−1、PY−2、PY−3、PY−4、PY−5、PY−6、PY−7およびPY−8、および調製例4で得られた表9に示すハードコート層膜形成用塗料組成物を用いて、調製例8に示す方法でプラスチックレンズ基材上にプライマー層、ハードコート層および反射防止膜層をそれぞれ形成した。なお、ここでは、前記プラスチックレンズ基材「モノマー名:MR−174」を使用した。
このようにして得られた基板PY−1、PY−2、PY−3、PY−4、PY−5、PY−6、PY−7およびPY−8について、上記の評価試験法を用いて、外観(干渉縞)、外観(曇り)、耐擦傷性、密着性、耐候性および耐光性を試験して評価した。その結果を表9に示す。なお、耐光性については、試験に用いた基板自体の変色があるため、試験を取りやめた。
[Evaluation Test 4]
Coating composition PY-1, PY-2, PY-3, PY-4, PY-5, PY-6, PY-7 and PY-8 for primer layer film formation obtained in Preparation Example 6, and preparation Using the coating composition for hard coat layer film formation shown in Table 9 obtained in Example 4, a primer layer, a hard coat layer, and an antireflection film layer were formed on the plastic lens substrate by the method shown in Preparation Example 8, respectively. did. Here, the plastic lens substrate “monomer name: MR-174” was used.
For the substrates PY-1, PY-2, PY-3, PY-4, PY-5, PY-6, PY-7, and PY-8 obtained in this way, using the above evaluation test method, Appearance (interference fringes), appearance (cloudiness), scratch resistance, adhesion, weather resistance and light resistance were tested and evaluated. The results are shown in Table 9. In addition, about light resistance, since there was discoloration of the board | substrate itself used for the test, the test was canceled.

Figure 0005514487
Figure 0005514487

Claims (24)

動的光散乱法で測定した平均粒子径が15〜60nmの酸化チタン系微粒子の表面を、少なくともシリカ系酸化物またはシリカ系複合酸化物で被覆してなる金属酸化物微粒子を含む水分散ゾルであって、
(1)前記酸化チタン系微粒子が、下記要件(i)および(ii)を満たし、ルチル型の結晶構造を有する、チタニウムと、スズとを含む複合酸化物またはチタニウムと、スズと、ケイ素とを含む複合酸化物の結晶性微粒子であり、しかも7.5〜14.0nmのX線回折結晶子径と70〜155m2/gの比表面積とを有し、さらにその屈折率が2.2〜2.7の範囲にあり、
(2)前記被覆層が、前記酸化チタン系微粒子の屈折率より0.2以上低い屈折率を有し、しかも該被覆層を設けてなる前記金属酸化物微粒子の屈折率が2.0〜2.5の範囲にあり、さらに
(3)前記水分散ゾルが、1〜30重量%の前記金属酸化物微粒子を含み、しかもその濁度が0.1〜10cm-1の範囲にある
ことを特徴とする金属酸化物微粒子の水分散ゾル。
要件(i):前記酸化チタン系微粒子のX線回折から求められる、(310)結晶面の面間隔d1が0.1440〜0.1460nmの範囲にあり、また(301)結晶面の面間隔d2が0.1355〜0.1370nmの範囲にある。
要件(ii):前記酸化チタン系微粒子のX線回折から求められる、(310)結晶面のピーク強度P1と(110)結晶面のピーク強度P2との相対ピーク強度比(P1/P2)が9/100〜20/100の範囲にある。
An aqueous dispersion sol containing metal oxide fine particles obtained by coating the surface of titanium oxide fine particles having an average particle diameter of 15 to 60 nm measured by a dynamic light scattering method with at least a silica-based oxide or a silica-based composite oxide. There,
(1) The titanium oxide-based fine particles satisfy the following requirements (i) and (ii), and have a rutile crystal structure: a composite oxide or titanium containing titanium and tin; and tin and silicon And a composite oxide crystalline fine particle having an X-ray diffraction crystallite diameter of 7.5 to 14.0 nm and a specific surface area of 70 to 155 m 2 / g, and a refractive index of 2.2 to In the range of 2.7,
(2) The coating layer has a refractive index lower by 0.2 or more than the refractive index of the titanium oxide fine particles, and the refractive index of the metal oxide fine particles provided with the coating layer is 2.0-2. And (3) the water-dispersed sol contains 1 to 30% by weight of the metal oxide fine particles, and the turbidity is in the range of 0.1 to 10 cm −1. An aqueous dispersion sol of metal oxide fine particles.
Requirement (i): The interplanar spacing d 1 of the (310) crystal plane determined from X-ray diffraction of the titanium oxide-based fine particles is in the range of 0.1440 to 0.1460 nm, and (301) the interplanar spacing of the crystal plane. d 2 is in the range of 0.1355~0.1370nm.
Requirements (ii): wherein as determined by X-ray diffraction of the titanium oxide-based fine particles, (310) crystal face of the peak intensity P 1 and (110) relative peak intensity ratio of the peak intensity P 2 of the crystal plane (P 1 / P 2 ) is in the range of 9/100 to 20/100.
前記酸化チタン系微粒子が、チタニウムと、スズとを含む複合酸化物またはチタニウムと、スズと、ケイ素とを含む複合酸化物粒子を焼成して粉砕したものであることを特徴とする請求項1に記載の金属酸化物微粒子の水分散ゾル。 The titanium oxide-based fine particles are obtained by firing and pulverizing composite oxide particles containing titanium and tin or composite oxide particles containing titanium, tin , and silicon. An aqueous dispersion sol of the metal oxide fine particles described. 前記シリカ系酸化物が、二酸化ケイ素であることを特徴とする請求項1に記載の金属酸化物微粒子の水分散ゾル。   The water-dispersed sol of metal oxide fine particles according to claim 1, wherein the silica-based oxide is silicon dioxide. 前記シリカ系複合酸化物が、ケイ素と、ジルコニウム、アンチモン、スズおよびアルミニウムから選ばれた少なくとも1種の金属元素とを含むシリカ系複合酸化物であることを特徴とする請求項1に記載の金属酸化物微粒子の水分散ゾル。   The metal according to claim 1, wherein the silica-based composite oxide is a silica-based composite oxide containing silicon and at least one metal element selected from zirconium, antimony, tin, and aluminum. Water dispersion sol of fine oxide particles. 前記酸化チタン系微粒子を動的光散乱法で測定したときの粒子径頻度分布において、100nm以上の粒子径を有する酸化チタン系微粒子の分布頻度が1%以下であることを特徴とする請求項1〜4のいずれかに記載の金属酸化物微粒子の水分散ゾル。   2. The particle frequency distribution when the titanium oxide fine particles are measured by a dynamic light scattering method, wherein the distribution frequency of titanium oxide fine particles having a particle diameter of 100 nm or more is 1% or less. A water-dispersed sol of metal oxide fine particles according to any one of -4. 前記複合酸化物粒子が、過酸化チタン酸と、スズ酸カリウムとを含む混合水溶液または過酸化チタン酸と、スズ酸カリウムと、ケイ素化合物とを含む混合水溶液をオートクレーブに入れて150〜250℃の温度で水熱処理して、チタニウムと、スズとを含む複合酸化物またはチタニウムと、スズと、ケイ素とを含む複合酸化物を生成させ、次いで該複合酸化物を乾燥して粒状にしたものであることを特徴とする請求項2に記載の金属酸化物微粒子の水分散ゾル。 The composite oxide particles are mixed aqueous solution containing titanic acid peroxide and potassium stannate or mixed aqueous solution containing titanic acid peroxide, potassium stannate , and silicon compound in an autoclave and heated to 150 to 250 ° C. It is hydrothermally treated at a temperature to produce a composite oxide containing titanium and tin or a composite oxide containing titanium, tin and silicon, and then drying and granulating the composite oxide. The water-dispersed sol of metal oxide fine particles according to claim 2. 前記ケイ素化合物が、シリカ微粒子、珪酸およびシリコンアルコキシドから選ばれた少なくとも1種であることを特徴とする請求項6に記載の金属酸化物微粒子の水分散ゾル。   The water-dispersed sol of metal oxide fine particles according to claim 6, wherein the silicon compound is at least one selected from silica fine particles, silicic acid, and silicon alkoxide. 前記複合酸化物粒子が、前記複合酸化物を含む混合水溶液をスプレードライヤーに供して噴霧乾燥することにより、該複合酸化物の乾燥と粒状化を同時に行ったものであることを特徴とする請求項6または7に記載の金属酸化物微粒子の水分散ゾル。   The composite oxide particles are obtained by simultaneously drying and granulating the composite oxide by subjecting the mixed aqueous solution containing the composite oxide to spray drying using a spray dryer. An aqueous dispersion sol of metal oxide fine particles according to 6 or 7. 前記酸化チタン系微粒子が、前記複合酸化物粒子を酸素含有雰囲気下で300〜800℃の温度にて焼成して、X線回折結晶子径が7.5〜14.0nmの複合酸化物粒子を生成させ、次いで該複合酸化物粒子を粉砕装置に供して粉砕したものであることを特徴とする請求項2〜8のいずれかに記載の金属酸化物微粒子の水分散ゾル。   The titanium oxide-based fine particles are obtained by firing the composite oxide particles at a temperature of 300 to 800 ° C. in an oxygen-containing atmosphere to obtain composite oxide particles having an X-ray diffraction crystallite diameter of 7.5 to 14.0 nm. The water-dispersed sol of metal oxide fine particles according to any one of claims 2 to 8, which is produced and then pulverized by using a pulverizer. 前記酸化チタン系微粒子が、前記の複合酸化物粒子を粉砕装置に供して粉砕したものを純水または超純水に分散させたのち、該水分散液を湿式分級装置に供して、動的光散乱法で測定したときの粒子径が100nm以上の粗大粒子を少なくとも分離・除去したものであることを特徴とする請求項9に記載の金属酸化物微粒子の水分散ゾル。   The titanium oxide-based fine particles are dispersed in pure water or ultrapure water by pulverizing the composite oxide particles in a pulverizer, and then the aqueous dispersion is used in a wet classifier. 10. The water-dispersed sol of fine metal oxide particles according to claim 9, wherein at least coarse particles having a particle diameter of 100 nm or more as measured by a scattering method are separated and removed. 前記金属酸化物微粒子が、前記酸化チタン系微粒子を含む水分散液中に、シリコンアルコキシドおよび珪酸から選ばれた少なくとも1種のケイ素化合物を混合し、次いで該ケイ素化合物を加水分解させて前記酸化チタン系微粒子の表面をシリカ系酸化物で被覆したものであることを特徴とする請求項1〜3および5〜10のいずれかに記載の金属酸化物微粒子の水分散ゾル。   The metal oxide fine particles are mixed with at least one silicon compound selected from silicon alkoxide and silicic acid in an aqueous dispersion containing the titanium oxide fine particles, and then the silicon compound is hydrolyzed to produce the titanium oxide. The water-dispersed sol of metal oxide fine particles according to any one of claims 1 to 3 and 5 to 10, wherein the surface of the fine particles is coated with a silica-based oxide. 前記金属酸化物微粒子が、前記酸化チタン系微粒子を含む水分散液中に、シリコンアルコキシドおよび珪酸から選ばれた少なくとも1種のケイ素化合物と、過酸化ジルコン酸塩、アンチモン酸塩、スズ酸塩およびアルミン酸塩から選ばれた少なくとも1種の金属化合物とを混合し、次いで該ケイ素化合物および該金属化合物を加水分解させて前記酸化チタン系微粒子の表面をシリカ系複合酸化物で被覆したものであることを特徴とする請求項1、2および4〜10のいずれかに記載の金属酸化物微粒子の水分散ゾル。   In the aqueous dispersion in which the metal oxide fine particles include the titanium oxide fine particles, at least one silicon compound selected from silicon alkoxide and silicic acid, zirconate peroxide, antimonate, stannate and At least one metal compound selected from aluminates is mixed, and then the silicon compound and the metal compound are hydrolyzed to coat the surface of the titanium oxide fine particles with a silica-based composite oxide. The water-dispersed sol of metal oxide fine particles according to any one of claims 1, 2, and 4 to 10. 前記シリコンアルコキシドが、テトラメトキシシランもしくはその縮合物、またはテトラエトキシシランもしくはその縮合物であることを特徴とする請求項7、11および12のいずれかに記載の金属酸化物微粒子の水分散ゾル。   13. The water-dispersed sol of fine metal oxide particles according to claim 7, 11 or 12, wherein the silicon alkoxide is tetramethoxysilane or a condensate thereof, or tetraethoxysilane or a condensate thereof. 前記金属酸化物微粒子が、前記酸化チタン系微粒子の重量をCで表し、さらにその被覆層の重量をSで表したとき、その重量比(S/C)が酸化物換算基準で1/100〜50/100の範囲となるように前記酸化チタン系微粒子の表面上に前記シリカ系酸化物または前記シリカ系複合酸化物を被覆したものであることを特徴とする請求項1〜13のいずれかに記載の金属酸化物微粒子の水分散ゾル。   When the metal oxide fine particles represent the weight of the titanium oxide-based fine particles as C and the weight of the coating layer as S, the weight ratio (S / C) is 1/100 to 1 in terms of oxide. The surface of the titanium oxide-based fine particles is coated with the silica-based oxide or the silica-based composite oxide so as to be in a range of 50/100. An aqueous dispersion sol of the metal oxide fine particles described. 動的光散乱法で測定した平均粒子径が15〜60nmであり、下記要件(i)および(ii)を満たす酸化チタン系微粒子の表面を、少なくともシリカ系酸化物で被覆してなる金属酸化物微粒子を含む水分散ゾルの調製方法であって、
(a)過酸化チタン酸と、スズ酸カリウムとを含む混合水溶液または過酸化チタン酸と、スズ酸カリウムと、ケイ素化合物とを含む混合水溶液をオートクレーブに入れて150〜250℃の温度で水熱処理して、チタニウムと、スズとを含む複合酸化物またはチタニウムと、スズと、ケイ素とを含む複合酸化物を生成させる工程、
(b)前記工程(a)で生成された複合酸化物を乾燥して粒状にすることにより、チタニウムと、スズとを含む平均粒子径1〜80μmの複合酸化物粒子またはチタニウムと、スズと、ケイ素とを含む平均粒子径1〜80μmの複合酸化物粒子を得る工程、
(c')前記工程(b)で得られた複合酸化物粒子を酸素含有雰囲気下、300〜800℃の温度で焼成して、X線回折結晶子径が7.5〜14.0nmの複合酸化物粒子を生成させる工程、
(d')前記工程(c')で生成された複合酸化物粒子を粉砕装置に供して粉砕して、粉砕されたものを純水または超純水に分散させて水分散液を得る工程、
(f)前記工程(d')で得られた水分散液、または該分散液を湿式分級装置に供して、動的光散乱法で測定したときの粒子径が100nm以上の粗大粒子を少なくとも分離・除去する工程(e)をさらに経て得られた水分散液中に、(i)シリコンアルコキシドおよび珪酸から選ばれた少なくとも1種のケイ素化合物を混合して、該ケイ素化合物を加水分解させることにより前記酸化チタン系微粒子の表面をシリカ系酸化物で被覆した金属酸化物微粒子を含む水分散ゾルを得る工程
を含むことを特徴とする金属酸化物微粒子の水分散ゾルの調製方法。
要件(i):前記酸化チタン系微粒子のX線回折から求められる、(310)結晶面の面間隔d1が0.1440〜0.1460nmの範囲にあり、また(301)結晶面の面間隔d2が0.1355〜0.1370nmの範囲にある。
要件(ii):前記酸化チタン系微粒子のX線回折から求められる、(310)結晶面のピーク強度P1と(110)結晶面のピーク強度P2との相対ピーク強度比(P1/P2)が9/100〜20/100の範囲にある。
Metal oxide formed by coating the surface of titanium oxide fine particles having an average particle diameter of 15 to 60 nm measured by a dynamic light scattering method and satisfying the following requirements (i) and (ii) with at least a silica-based oxide A method for preparing an aqueous dispersion sol containing fine particles,
(A) A mixed aqueous solution containing titanic acid peroxide and potassium stannate or a mixed aqueous solution containing titanic acid peroxide, potassium stannate, and a silicon compound is placed in an autoclave and hydrothermally treated at a temperature of 150 to 250 ° C. And producing a composite oxide containing titanium and tin or a composite oxide containing titanium, tin and silicon,
(B) The composite oxide produced in the step (a) is dried and granulated, so that composite oxide particles or titanium having an average particle diameter of 1 to 80 μm containing titanium and tin, and tin , Obtaining composite oxide particles having an average particle diameter of 1 to 80 μm containing silicon,
(C ′) The composite oxide particles obtained in the step (b) are baked at a temperature of 300 to 800 ° C. in an oxygen-containing atmosphere, and a composite having an X-ray diffraction crystallite diameter of 7.5 to 14.0 nm. Producing oxide particles;
(D ′) a step of subjecting the composite oxide particles produced in the step (c ′) to a pulverizer and pulverization, and dispersing the pulverized one in pure water or ultrapure water to obtain an aqueous dispersion;
(F) The aqueous dispersion obtained in the step (d ′) or the dispersion is subjected to a wet classifier to separate at least coarse particles having a particle diameter of 100 nm or more as measured by a dynamic light scattering method. -By mixing (i) at least one silicon compound selected from silicon alkoxide and silicic acid into the aqueous dispersion obtained through the step (e) to be further removed, and hydrolyzing the silicon compound A method for preparing an aqueous dispersion sol of metal oxide fine particles, comprising a step of obtaining an aqueous dispersion sol containing metal oxide fine particles having the surface of the titanium oxide fine particles coated with a silica-based oxide.
Requirement (i): The interplanar spacing d 1 of the (310) crystal plane determined from X-ray diffraction of the titanium oxide-based fine particles is in the range of 0.1440 to 0.1460 nm, and (301) the interplanar spacing of the crystal plane. d 2 is in the range of 0.1355~0.1370nm.
Requirements (ii): wherein as determined by X-ray diffraction of the titanium oxide-based fine particles, (310) crystal face of the peak intensity P 1 and (110) relative peak intensity ratio of the peak intensity P 2 of the crystal plane (P 1 / P 2 ) is in the range of 9/100 to 20/100.
動的光散乱法で測定した平均粒子径が15〜60nmであり、下記要件(i)および(ii)を満たす酸化チタン系微粒子の表面を、少なくともシリカ系複合酸化物で被覆してなる金属酸化物微粒子を含む水分散ゾルの調製方法であって、
(a)過酸化チタン酸と、スズ酸カリウムとを含む混合水溶液または過酸化チタン酸と、スズ酸カリウムと、ケイ素化合物とを含む混合水溶液をオートクレーブに入れて150〜250℃の温度で水熱処理して、チタニウムと、スズとを含む複合酸化物またはチタニウムと、スズと、ケイ素とを含む複合酸化物を生成させる工程、
(b)前記工程(a)で生成された複合酸化物を乾燥して粒状にすることにより、チタニウムと、スズとを含む平均粒子径1〜80μmの複合酸化物粒子またはチタニウムと、スズと、ケイ素とを含む平均粒子径1〜80μmの複合酸化物粒子を得る工程、
(c')前記工程(b)で得られた複合酸化物粒子を酸素含有雰囲気下、300〜800℃の温度で焼成して、X線回折結晶子径が7.5〜14.0nmの複合酸化物粒子を生成させる工程、
(d')前記工程(c')で生成された複合酸化物粒子を粉砕装置に供して粉砕して、粉砕されたものを純水または超純水に分散させて水分散液を得る工程、
(f)前記工程(d')で得られた水分散液、または該分散液を湿式分級装置に供して、
動的光散乱法で測定したときの粒子径が100nm以上の粗大粒子を少なくとも分離・除去する工程(e)をさらに経て得られた水分散液中に、(i)シリコンアルコキシドおよび珪酸から選ばれた少なくとも1種のケイ素化合物と、過酸化ジルコン酸塩、アンチモン酸塩、スズ酸塩およびアルミン酸塩から選ばれた少なくとも1種の金属化合物を混合して、該ケイ素化合物および該金属化合物を加水分解させることにより前記酸化チタン系微粒子の表面をシリカ系複合酸化物で被覆した金属酸化物微粒子を含む水分散ゾルを得る工程を含むことを特徴とする金属酸化物微粒子の水分散ゾルの調製方法。
要件(i):前記酸化チタン系微粒子のX線回折から求められる、(310)結晶面の面間隔d1が0.1440〜0.1460nmの範囲にあり、また(301)結晶面の面間隔d2が0.1355〜0.1370nmの範囲にある。
要件(ii):前記酸化チタン系微粒子のX線回折から求められる、(310)結晶面のピーク強度P1と(110)結晶面のピーク強度P2との相対ピーク強度比(P1/P2)が9/100〜20/100の範囲にある。
Metal oxide obtained by coating the surface of titanium oxide fine particles having an average particle diameter of 15 to 60 nm measured by a dynamic light scattering method and satisfying the following requirements (i) and (ii) with at least a silica-based composite oxide A method for preparing an aqueous dispersion sol containing fine particles,
(A) A mixed aqueous solution containing titanic acid peroxide and potassium stannate or a mixed aqueous solution containing titanic acid peroxide, potassium stannate, and a silicon compound is placed in an autoclave and hydrothermally treated at a temperature of 150 to 250 ° C. And producing a composite oxide containing titanium and tin or a composite oxide containing titanium, tin and silicon,
(B) The composite oxide produced in the step (a) is dried and granulated, so that composite oxide particles or titanium having an average particle diameter of 1 to 80 μm containing titanium and tin, and tin , Obtaining composite oxide particles having an average particle diameter of 1 to 80 μm containing silicon,
(C ′) The composite oxide particles obtained in the step (b) are baked at a temperature of 300 to 800 ° C. in an oxygen-containing atmosphere, and a composite having an X-ray diffraction crystallite diameter of 7.5 to 14.0 nm. Producing oxide particles;
(D ′) a step of subjecting the composite oxide particles produced in the step (c ′) to a pulverizer and pulverization, and dispersing the pulverized one in pure water or ultrapure water to obtain an aqueous dispersion;
(F) The aqueous dispersion obtained in the step (d ′) or the dispersion is used in a wet classifier,
In the aqueous dispersion obtained further through the step (e) of separating and removing at least coarse particles having a particle diameter of 100 nm or more as measured by a dynamic light scattering method, (i) selected from silicon alkoxide and silicic acid In addition, at least one silicon compound and at least one metal compound selected from zirconate peroxide, antimonate, stannate, and aluminate are mixed to hydrolyze the silicon compound and the metal compound. A method for preparing a water-dispersed sol of metal oxide fine particles, comprising a step of obtaining a water-dispersed sol containing metal oxide fine particles in which the surface of the titanium oxide-based fine particles is coated with a silica-based composite oxide by decomposition. .
Requirement (i): The interplanar spacing d 1 of the (310) crystal plane determined from X-ray diffraction of the titanium oxide-based fine particles is in the range of 0.1440 to 0.1460 nm, and (301) the interplanar spacing of the crystal plane. d 2 is in the range of 0.1355~0.1370nm.
Requirements (ii): wherein as determined by X-ray diffraction of the titanium oxide-based fine particles, (310) crystal face of the peak intensity P 1 and (110) relative peak intensity ratio of the peak intensity P 2 of the crystal plane (P 1 / P 2 ) is in the range of 9/100 to 20/100.
前記工程(a)で使用されるケイ素化合物が、シリカ微粒子、珪酸およびシリコンアルコキシドから選ばれた少なくとも1種であることを特徴とする請求項15または16に記載の金属酸化物微粒子の水分散ゾルの調製方法。   17. The water-dispersed sol of metal oxide fine particles according to claim 15 or 16, wherein the silicon compound used in the step (a) is at least one selected from silica fine particles, silicic acid and silicon alkoxide. Preparation method. 前記工程(a)で得られた混合水溶液のpHを、前記工程(b)に供する前に、3〜10の範囲に調整しておくことを特徴とする請求項15〜17のいずれかに記載の金属酸化物微粒子の水分散ゾルの調製方法。   18. The pH of the mixed aqueous solution obtained in the step (a) is adjusted to a range of 3 to 10 before being used in the step (b). Of preparing an aqueous dispersion sol of metal oxide fine particles. 前記工程(b)において、前記工程(a)で得られた混合水溶液をスプレードライヤーを用いて噴霧乾燥することにより、該混合水溶液中に含まれる複合酸化物の乾燥と粒状化を同時に行うことを特徴とする請求項15〜18のいずれかに記載の金属酸化物微粒子の水分散ゾルの調製方法。   In the step (b), the mixed aqueous solution obtained in the step (a) is spray-dried using a spray dryer to simultaneously dry and granulate the composite oxide contained in the mixed aqueous solution. The method for preparing an aqueous dispersion sol of metal oxide fine particles according to any one of claims 15 to 18. 前記工程(a)で使用されるケイ素化合物および前記工程(f)で使用されるシリコンアルコキシドが、テトラメトキシシランもしくはその縮合物、またはテトラエトキシシランもしくはその縮合物であることを特徴とする請求項15〜19のいずれかに記載の金属酸化物微粒子の水分散ゾルの調製方法。   The silicon compound used in the step (a) and the silicon alkoxide used in the step (f) are tetramethoxysilane or a condensate thereof, or tetraethoxysilane or a condensate thereof. A method for preparing an aqueous dispersion sol of metal oxide fine particles according to any one of 15 to 19. 前記工程(f)で得られた水分散ゾルに、さらに陰イオン交換樹脂および/または陽イオン交換樹脂を添加して撹拌することにより、該水分散ゾル中に含まれるイオン化物質を除去しておくことを特徴とする請求項15〜20のいずれかに記載の金属酸化物微粒子の水分散ゾルの調製方法。   By adding an anion exchange resin and / or a cation exchange resin to the water dispersion sol obtained in the step (f) and stirring, the ionized substance contained in the water dispersion sol is removed. The method for preparing an aqueous dispersion sol of metal oxide fine particles according to any one of claims 15 to 20. 請求項1〜14のいずれかに記載の金属酸化物微粒子の水分散ゾルに含まれる金属酸化物微粒子を、有機溶媒中に分散してなる金属酸化物微粒子の有機溶媒分散ゾル。   An organic solvent-dispersed sol of metal oxide fine particles obtained by dispersing metal oxide fine particles contained in the water-dispersed sol of metal oxide fine particles according to claim 1 in an organic solvent. 前記有機溶媒が、アルコール類、エーテル類およびケトン類から選ばれた有機化合物の少なくとも1種であることを特徴とする請求項22に記載の金属酸化物微粒子の有機溶媒分散ゾル。   The organic solvent-dispersed sol of metal oxide fine particles according to claim 22, wherein the organic solvent is at least one organic compound selected from alcohols, ethers and ketones. 前記有機溶媒分散ゾルが、請求項1〜14のいずれかに記載の金属酸化物微粒子の水分散ゾルを溶媒置換装置に供して、該水分散ゾル中に含まれる水を有機溶媒に置換したものであることを特徴とする請求項22または23に記載の金属酸化物微粒子の有機溶媒分散ゾル。   The organic solvent-dispersed sol is obtained by subjecting the water-dispersed sol of metal oxide fine particles according to any one of claims 1 to 14 to a solvent displacement device, and replacing water contained in the water-dispersed sol with an organic solvent. 24. The organic solvent-dispersed sol of metal oxide fine particles according to claim 22 or 23.
JP2009187055A 2008-12-27 2009-08-12 Water-dispersed sol of high refractive index metal oxide fine particles, preparation method thereof, and organic solvent-dispersed sol of the metal oxide fine particles Active JP5514487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009187055A JP5514487B2 (en) 2008-12-27 2009-08-12 Water-dispersed sol of high refractive index metal oxide fine particles, preparation method thereof, and organic solvent-dispersed sol of the metal oxide fine particles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008335587 2008-12-27
JP2008335587 2008-12-27
JP2009187055A JP5514487B2 (en) 2008-12-27 2009-08-12 Water-dispersed sol of high refractive index metal oxide fine particles, preparation method thereof, and organic solvent-dispersed sol of the metal oxide fine particles

Publications (2)

Publication Number Publication Date
JP2010168266A JP2010168266A (en) 2010-08-05
JP5514487B2 true JP5514487B2 (en) 2014-06-04

Family

ID=42700765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009187055A Active JP5514487B2 (en) 2008-12-27 2009-08-12 Water-dispersed sol of high refractive index metal oxide fine particles, preparation method thereof, and organic solvent-dispersed sol of the metal oxide fine particles

Country Status (1)

Country Link
JP (1) JP5514487B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5511368B2 (en) * 2009-12-25 2014-06-04 日揮触媒化成株式会社 Method for preparing organic solvent-dispersed sol containing high refractive index metal oxide fine particles, organic solvent-dispersed sol, and coating composition obtained using the organic solvent-dispersed sol
CN103429693A (en) * 2011-03-18 2013-12-04 迪睿合电子材料有限公司 Light-reflective anisotropic conductive adhesive and light-emitting device
CN103717535B (en) * 2011-06-03 2016-02-10 日产化学工业株式会社 The metal oxide particle of titanium dioxide is coated to containing silicon-dioxide-tindioxide composite oxides
JP5962612B2 (en) * 2013-08-08 2016-08-03 信越化学工業株式会社 Method for producing organosol
KR102445099B1 (en) * 2017-03-31 2022-09-19 니끼 쇼꾸바이 카세이 가부시키가이샤 Method for producing iron-containing rutile-type titanium oxide fine particle dispersion, iron-containing rutile type titanium oxide fine particle and use thereof
WO2019211787A1 (en) * 2018-05-02 2019-11-07 Colorobbia Consulting S.R.L. NITROGEN-DOPED TiO2 NANOPARTICLES AND THE USE THEREOF IN PHOTOCATALYSIS
CN115315412A (en) 2020-03-31 2022-11-08 日挥触媒化成株式会社 Method for producing zirconia-coated titanium oxide fine particles, and use thereof
CN117295691A (en) 2021-05-11 2023-12-26 日挥触媒化成株式会社 Rutile type titanium oxide particle, dispersion liquid, coating liquid for forming coating film, and substrate with coating film

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3203142B2 (en) * 1994-04-21 2001-08-27 セイコーエプソン株式会社 Coating solution for forming film and lens made of synthetic resin
JP3881051B2 (en) * 1996-01-26 2007-02-14 触媒化成工業株式会社 Coating liquid for forming transparent film and substrate with film
JP3982933B2 (en) * 1999-01-14 2007-09-26 触媒化成工業株式会社 Coating liquid for coating formation and lens made of synthetic resin
KR100809758B1 (en) * 2004-06-29 2008-03-04 미쓰이 가가쿠 가부시키가이샤 Fine particles of tin-modified rutile-type titanium dioxide
JP2006342311A (en) * 2005-06-10 2006-12-21 Mitsui Chemicals Inc High refractive index thin film
JP4906361B2 (en) * 2006-01-27 2012-03-28 三井化学株式会社 Inorganic oxide ultrafine particles and production method thereof
JP5255270B2 (en) * 2007-12-27 2013-08-07 日揮触媒化成株式会社 Inorganic oxide fine particles having a core-shell structure, dispersed sol containing the fine particles, and coating solution for optical substrate
EP2383319B1 (en) * 2008-12-27 2018-03-21 JGC Catalysts and Chemicals Ltd. Coating composition containing high-refractive-index metal oxide fine particles, and curable coating film obtained by applying the coating composition onto base

Also Published As

Publication number Publication date
JP2010168266A (en) 2010-08-05

Similar Documents

Publication Publication Date Title
JP5754943B2 (en) COATING COMPOSITION CONTAINING HIGH REFRACTIVE OPTICAL METAL OXIDE PARTICLES AND CURABLE COATING OBTAINED BY COATING THE COATING COMPOSITION ON A SUBSTRATE
JP5854584B2 (en) Method for preparing water-dispersed sol containing fine metal oxide fine particles, water-dispersed sol obtained from the method, organic solvent-dispersed sol containing the fine particles, and coating composition
JP5455501B2 (en) Dispersion of core-shell composite oxide fine particles, method for producing the dispersion, coating composition containing the core-shell composite oxide fine particles, curable coating, and substrate with curable coating
JP5255270B2 (en) Inorganic oxide fine particles having a core-shell structure, dispersed sol containing the fine particles, and coating solution for optical substrate
JP5514487B2 (en) Water-dispersed sol of high refractive index metal oxide fine particles, preparation method thereof, and organic solvent-dispersed sol of the metal oxide fine particles
JP5557662B2 (en) Dispersion of core-shell type inorganic oxide fine particles, process for producing the same, and coating composition containing the dispersion
JP6049368B2 (en) Al-modified inorganic oxide fine particles, production method thereof, dispersion, and coating composition
KR101437200B1 (en) Surface-coated titanium dioxide, process for producing the same, and coating compositions containing the same
JP2011026183A (en) Method for producing silica-based fine particle-dispersed sol, silica-based fine particle-dispersed sol, coating composition containing silica-based fine particle-dispersed sol, curable coating film, and base with curable coating film
JP5511368B2 (en) Method for preparing organic solvent-dispersed sol containing high refractive index metal oxide fine particles, organic solvent-dispersed sol, and coating composition obtained using the organic solvent-dispersed sol
US9534122B2 (en) Oligomer-modified fine particles, method for producing the same, and coating containing the particles
JP6080583B2 (en) Surface-modified inorganic composite oxide fine particles, production method thereof, dispersion containing the fine particles, coating solution for optical substrate, coating film for optical substrate, and coated substrate
JP6253484B2 (en) Coating composition, hard coat layer, optical substrate with hard coat layer, and production method thereof
JP6278902B2 (en) Water and / or organic solvent dispersion containing linked crystalline inorganic oxide fine particle group, method for producing the same, and coating solution for optical substrate containing linked crystalline inorganic oxide fine particle group

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101004

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140331

R150 Certificate of patent or registration of utility model

Ref document number: 5514487

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250