JP5514323B2 - アドホックネットワーク通信装置、通信システム及び通信方法 - Google Patents

アドホックネットワーク通信装置、通信システム及び通信方法 Download PDF

Info

Publication number
JP5514323B2
JP5514323B2 JP2012540637A JP2012540637A JP5514323B2 JP 5514323 B2 JP5514323 B2 JP 5514323B2 JP 2012540637 A JP2012540637 A JP 2012540637A JP 2012540637 A JP2012540637 A JP 2012540637A JP 5514323 B2 JP5514323 B2 JP 5514323B2
Authority
JP
Japan
Prior art keywords
communication device
communication
time slot
hoc network
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012540637A
Other languages
English (en)
Other versions
JPWO2012056584A1 (ja
Inventor
弘起 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JPWO2012056584A1 publication Critical patent/JPWO2012056584A1/ja
Application granted granted Critical
Publication of JP5514323B2 publication Critical patent/JP5514323B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks

Description

本発明は、アドホックネットワーク通信装置、通信システム及び通信方法に関する。
アドホックネットワークとは、主に各種無線通信を利用したネットワーク構築手法の一つである。アドホックネットワークは、専用の基地局又はルータ等を必要とせず、通信装置同士が自律的に接続することによって構成されるネットワークである。アドホックネットワークは、インフラストラクチャネットワークと比較すると、ルータ及び無線通信装置等においてルーティングに関する設定等を必要としない場合が多い。
アドホックネットワークでは、通信装置同士がお互いに無線の届かない場所に存在する場合、その通信装置同士が直接データを送受信することはできない。そこで、アドホックネットワークでは、一般的に、無線の届く範囲内に存在する通信装置が中継器の役割を果たし、いわゆるバケツリレーのようにデータを転送するマルチホップ通信を行う。
アドホックネットワークに関する仕様検討及び標準化活動は、IETF(Internet Engineering Task Force)のMANET(Mobile Ad-hoc Networks)ワーキンググループ、及びROLL(Routing Over Low power and Lossy networks)を中心に進められている。
非特許文献1は、MANETの標準的な仕様を記載している。非特許文献2は、アドホックネットワークにおいて、通信装置が通信を開始する時に初めてルーティングテーブルを構築するReactive型ルーティングプロトコルの仕様を記載している。非特許文献3は、アドホックネットワークにおいて、通信装置が定期的に情報交換を行い、予めルーティングテーブルを構築しておくProactive型ルーティングプロトコルの仕様を記載している。非特許文献4は、不安定かつ低電力な無線ネットワークにおけるルーティングプロトコルの仕様を記載している。非特許文献4は、主に、センサを備えた性能の低い通信装置がセンシングデータを収集するセンサネットワークにおいて、最適なルーティングテーブルを構築する際に用いられる。
センサネットワークは、一般的に、アドホックネットワークによって構築され、センサを備えた多数(数百台以上)の装置が、それぞれ測定したセンシングデータを、一斉にデータを収集する通信装置(以下「データ収集装置」)に送信するようなネットワーク構成を有する。センサネットワークは、主に、所定時間内に所定のネットワークに属する多数の通信装置からデータを収集するシステムに用いられる。具体的には、例えば、工場又はビル等の遠隔監視システム、スマートグリッドシステム、住宅の各種状態を監視するシステム等に使用される。
しかし、多数の通信装置が一斉にデータ収集装置にデータを送信すると、通信データの衝突を引き起こす可能性がある。そのため、例えば、特許文献1では、基地局から割り当てられた送信可能期間にのみ、各通信装置がデータを送信する技術が記載されている。これにより、通信データの衝突を回避する。
特開2010−21894号公報
"Mobile Ad hoc Networking(MANET)",RFC2501,1999年1月,http://www.ietf.org/rfc/rfc2501.txt "Ad hoc On-Demand Distance Vector(AODV) Routing",RFC3561,2003年7月,http://www.ietf.org/rfc/rfc3561.txt "Optimized Link State Routing Protocol(OLSR)",RFC3626,2003年10月,http://www.ietf.org/rfc/rfc3626.txt "IPv6 Routing Protocol for Low power and Lossy Networks (RPL)"、2010年6月,http://tools.ietf.org/id/draft-ietf-roll-rpl-10.txt
無線通信において通信データの衝突を回避する方法の一つとして、時分割方式という方法がある。時分割方式とは、所定の時間間隔(以下「タイムスロット」)において、そのタイムスロットを割り当てられた通信装置のみがデータを送信することにより、通信データの衝突を回避する方法である。
どの通信装置にどのタイムスロットを割り当てるかの判定方法としては、次のような方法が考えられる。まず、各通信装置がタイムスロットの割り当ての計算に必要な情報を、その計算を行う装置(以下「計算装置」)に送信する。次に、その計算装置が、受信した情報を基に、最適なタイムスロットの割り当てを計算する。次に、その計算結果(すなわち、タイムスロットの割り当て結果)を、各通信装置に返信する。
しかし、センサネットワークでは、この方法でタイムスロットを割り当てることは困難である。なぜなら、センサネットワークでは、通信装置の数が非常に多いため、多数の通信装置が自身の情報(データ)を一斉に計算装置に送信すると、通信データの衝突が発生してしまうからである。すなわち、計算装置は、各通信装置からタイムスロットの割り当ての計算に必要なデータを受信できない可能性が高い。さらに、もし仮に計算装置がそのデータを受信できたとしても、計算結果を多数の通信装置に送信する際、そこでもまた通信データの衝突が発生するため、計算結果を送信できない可能性が高い。
そこで本発明の目的は、センサネットワーク等のように多数の通信装置が存在するアドホックネットワークにおいて、通信データの衝突を少なくし、通信装置同士が安定した通信を行えるようにすることである。
本発明のアドホックネットワーク通信装置は、複数の通信装置が無線通信によって相互に接続されているアドホックネットワークに属する通信装置であって、データの送受信を行う通信部と、データを他の通信装置に送信するタイミングに関する情報を示すタイムスロットを管理するタイムスロット管理部と、通信部を通じてタイムスロットを他の通信装置から取得又は他の通信装置に分与し、取得又は分与したタイムスロットをタイムスロット管理部に管理させ、タイムスロット管理部で管理されたタイムスロットに記載のタイミングに基づき、通信部を通じてデータを他の通信装置に送信する送信タイミング管理制御部と、を備える。
好適な実施形態では、送信タイミング管理制御部は、所定の条件に基づき、他の通信装置から取得又は他の通信装置に分与するタイムスロットの数を決定してもよい。
このとき、所定の条件として、タイムスロットを取得又は分与する通信装置と、データを収集する所定の通信装置との論理的なネットワークの距離に基づいて、タイムスロットの数を決定してもよい。
さらに、所定の条件として、タイムスロットを取得又は分与する他の通信装置との通信帯域の広さに基づいて、タイムスロットの数を決定してもよい。
さらに、タイムスロットを他の通信装置に分与する際、通信帯域が狭い場合は、通信帯域が広い場合よりも多くのタイムスロットを分与するようにしてもよい。
また、通信装置が、当該通信装置の優先度を表すランク値を保持し、所定の条件として、当該通信装置が保持するランク値と、タイムスロットを取得又は分与する他の通信装置が保持するランク値との差分に基づいて、タイムスロットの数を決定してもよい。
好適な実施形態では、送信タイミング管理制御部は、連続で実行される複数のタイムスロットを他の通信装置に分与もしくは他の通信装置から取得するようにしてもよい。
これにより、通信装置が保持するデータを、データ収集装置により早く届けることができる。
好適な実施形態では、送信タイミング管理制御部は、他の通信装置に対して接続されているか否かの確認を行い、他の通信装置から所定の時間、応答がなかった場合は他の通信装置に分与したタイムスロットを回収してもよい。
これにより、有限であるタイムスロットを有効に利用できる。
好適な実施形態では、前記送信タイミング管理制御部は、他の通信装置からタイムスロットの取得を要求されたとき、当該通信装置において分与すべきタイムスロットが不足している場合は、当該通信装置は、第3の通信装置にタイムスロットの取得を要求してもよい。
これにより、有限であるタイムスロットを有効に配分できる。
本発明の一実施形態に係るアドホックネットワーク通信システムの構成例。 アドホックネットワーク通信経路表の一例。 送信タイミング管理テーブルの一例。 自己情報管理テーブルの一例。 通信装置の全体の処理概要を示すフローチャートの一例。 タイムスロット要求処理、及びタイムスロット分与処理のフローチャートの一例。 タイムスロット更新処理のフローチャートの一例。 タイムスロット返却要求処理のフローチャートの一例。 タイムスロット調停処理のフローチャートの一例。 実施例1に係るアドホックネットワークのネットワークトポロジの一例。 実施例2に係るネットワークトポロジの変化を考慮したタイムスロットの分与方法の一例。 実施例3に係る通信特性を考慮したタイムスロットの分与方法の一例。 実施例5に係るタイムスロットの番号を連番としない場合のタイムスロットの説明図。
以下、本発明の一実施形態に係るアドホックネットワーク通信システムについて、図面を参照して説明する。
実施例1のシステム構成を説明する前に、本実施例の概要を説明する。
図10は、実施例1に係るアドホックネットワークのネットワークトポロジの一例である。ここでは、本実施形態に係るアドホックネットワークの動作概要を簡単に説明する。なお、ネットワークトポロジとは、データの論理的な通信経路であり、無線又は有線等によって物理的に接続されている通信経路とは異なる。
センサネットワークは、図10(a)に示すようなツリー型のネットワークトポロジで構成することができる。例えば、図10(a)において、通信装置1001(A)が、データ収集装置もしくは他のネットワーク網に対するゲートウェイ(以下「GW」)装置であるとする。通信装置1003(D)がセンサ等によって収集したデータは、通信装置1002(B)を経由して、通信装置1001(A)に送信される。以下、通信装置1001(A)を通信装置(A)と、通信装置1002(B)を通信装置(B)と、通信装置1003(D)を通信装置(D)と、通信装置1004(E)を通信装置(E)と略記する場合がある。
タイムスロットにはそれぞれ番号が付与されており、付与された番号の順番に実行される。各通信装置(A)〜(G)には、それぞれ図10(a)に示すように、タイムスロットが分与される。
図示の例では、通信装置(A)は、タイムスロットを全て配下の各通信装置に分け与えてしまうため、タイムスロットを一つも有さない。通信装置(A)の直下に位置する通信装置(B)は一つのタイムスロット(1)を有する。同様に、通信装置(A)の直下に位置する他の通信装置(C)も一つのタイムスロット(6)を有する。
通信装置(B)の直下に位置する通信装置(D)は、2つの連続したタイムスロット(2),(3)を有する。通信装置(B)の直下に位置する他の通信装置(E)は、他の2つの連続したタイムスロット(4),(5)を有する。
同様に、通信装置(C)の直下に位置する通信装置(F)は、2つの連続したタイムスロット(7),(8)を有する。通信装置(C)の直下に位置する他の通信装置(G)は、他の2つの連続したタイムスロット(9),(10)を有する。
タイムスロットの番号は、基準時刻からの送信タイミングを示す。各通信装置(A)〜(G)は、基準時刻を共有している。各通信装置(A)〜(G)は、保持しているタイムスロットの番号に対応する時刻が到来すると、それまでに保持していたデータ(計測データ)を、上位の通信装置に送信する。データの最終目的地は、通信装置(A)である。
通信装置(D),(E)から見た上位通信装置は、通信装置(B)である。同様に、通信装置(F),(G)から見た上位通信装置は、通信装置(C)である。通信装置(B),(C)から見た上位通信装置は、通信装置(A)である。
タイムスロット(1)に対応する時刻が到来すると、通信装置(B)は、通信装置(A)にデータを送信できる。タイムスロット(2),(3)に対応する時刻では、通信装置(D)は、上位の通信装置(B)を中継装置として、通信装置(A)にデータを送信することができる。通信装置(D)は、連続した2つのタイムスロット(2),(3)を確保しているため、2回連続してホップすることができ、速やかにデータを通信装置(A)に届けることができる。
タイムスロット(4),(5)に対応する時刻が到来すると、通信装置(D)で述べたと同様に、通信装置(E)は、通信装置(B)を介して、通信装置(A)にデータを送信することができる。タイムスロット(6)に対応する時刻が到来すると、通信装置(B)で述べたと同様に、通信装置(C)は、通信装置(A)にデータを送信できる。
以下同様に、タイムスロット(7),(8)に対応する時刻が到来すると、通信装置(F)は、上位の通信装置(C)を中継装置として、最上位の通信装置(A)にデータを送信することができる。タイムスロット(9),(10)に対応する時刻が到来すると、通信装置(G)は、通信装置(C)を介して通信装置(A)にデータを送信できる。
さらに説明を加えると、例えば、通信装置(D)が収集したデータは、図10(b)に示すタイムスロット(2)1012のタイミングで、通信装置(B)に送信される。通信装置(B)は、通信装置(D)から受け取ったデータを、タイムスロット(3)1013のタイミングで、通信装置(A)に転送する。
これにより、通信装置(D)がセンサ等によって収集したデータを、通信装置(A)に送信することができる。
なお、論理的なネットワークにおいて下流に位置する通信装置にタイムスロットを分与する場合は、自装置とデータ収集装置との間の論理的なネットワークの距離(例えば、ホップ数)を確認し、その数の分のタイムスロットを連番で分与する事が望ましい。タイムスロットは番号順に実行されるので、データをより早くデータ収集装置(A)に到達させることができる。なお、本明細書では、論理的ネットワークにおいて、データ収集装置(A)側を上流と呼び、ツリーの末端側(D)〜(G)を下流と呼ぶ。
ここで、例えば、センサネットワークの通信機器間の通信速度は、約4.2kbpsであるため、無線LAN(Local Area network)等と比較するとかなり遅い。従って、センサネットワークでは、1つのタイムスロットの時間間隔は、約500msecに設定される。なお、上記の数値は、説明のための例示であって、本発明の範囲を限定するものではない。
図1は、本発明の一実施形態に係るアドホックネットワーク通信システムの構成例である。この通信システムは、一方の通信装置100と他方の通信装置101とが、無線によるアドホックネットワークを構成している。以下、通信装置100を中心に説明する。通信装置100は、一方のネットワーク網130を介して一方のサーバ140と接続されており、さらに、他方のネットワーク網131を介して他方のサーバ141とも接続されている。
アドホックネットワーク側から見ると、ネットワーク網130,131は、アドホックネットワークとは別のネットワークである。なお、ネットワーク網130,131は、例えば、携帯電話通信網、光回線網、又は公衆無線LANネットワークなどである。
通信装置100は、CPU(Central Processing Unit)111、メモリ112、及び記憶部114を備える。通信装置100が有する各種プログラムは、記憶部114に記憶されており、必要に応じてメモリ112を介してCPU111に読み込まれ実行される。通信装置100は、通信部113を介して、ネットワーク網130,131に接続されている。
通信部113は、他の通信装置101とアドホックネットワーク通信を行うための第1通信インターフェイスと、ネットワーク網130,131に接続するための第2通信インターフェイスとを備える。通信部113は、第1通信インターフェイスを介して、ネットワーク網130,131の選択、ネットワーク網130,131との切断、パケット送受信、通信可否判定、及び通信量の測定等、様々な通信制御を行う。また、通信部113は、アドホックネットワーク通信を行うための第2通信インターフェイスとして、例えば、無線LANのアドホックモード、特定小電力無線通信、又は専用のネットワーク機器を用いてもよい。
記憶部114には、通信制御部115、アドホックネットワーク通信制御部116、及び送信タイミング管理制御部117が、プログラムとして記憶されている。また各種制御に用いられるアドホックネットワーク通信経路表118、送信タイミング管理テーブル119、及び自己情報管理テーブル120が、データとして記憶されている。
送信タイミング管理テーブル119は、送信タイミングを管理するテーブルである。送信タイミング管理テーブル119は、タイムスロットを管理する。タイムスロットとは、通信装置100がセンサ等によって収集したデータを他の通信装置101に送信するタイミングに関する情報を示す。送信タイミング管理テーブル119は、後述の自己情報管理テーブル120と共に「タイムスロット管理部」に対応する。
通信制御部115は、ネットワーク網130,131を介するサーバ140,141との通信を制御する。通信制御に用いられる通信プロトコルは、例えば、TCP/IP等である。ただし、他の通信プロトコルでもよい。
アドホックネットワーク通信制御部116は、アドホックネットワークを構築する場合の通信制御を担当する。アドホックネットワーク通信制御部116は、例えば、AODV(Ad hoc On-Demand Distance Vector)、又はOSLR(Optimized Link State Routing Protocol)等のルーティングプロトコルを用いて、他の通信装置101の検知、及びルーティングテーブルの構築等を行う。
送信タイミング管理制御部117は、通信部113を通じて、タイムスロットを他の通信装置101から取得したり、又は、他の通信装置101に分与したりする。その取得又は分与したタイムスロットは、送信タイミング管理テーブル119に記憶される。送信タイミング管理制御部117は、タイムスロットに記載された送信タイミングに基づいて、データを他の通信装置101に送信する。
例えば、送信タイミング管理制御部117は、自装置100のタイムスロットの管理、自装置100のデータ送信タイミングの管理、及び他の通信装置101とのタイムスロットの調停を行う。ここで、他の通信装置101とのタイムスロットの調停とは、自装置100が保有するタイムスロットの一部又は全部を他の通信装置101に分与したり、自装置100のタイムスロットの数を増加させるために、他の通信装置101からタイムスロットを取得したりすることである。
送信タイミング管理制御部117は、他の通信装置101から取得するタイムスロットの数、または、他の通信装置101に分与するタイムスロットの数を、所定の条件に基づいて決定してもよい。
例えば、送信タイミング管理制御部117は、タイムスロットを取得又は分与する通信装置100と、データ収集装置との間の論理的なネットワークの距離に基づいて、タイムスロットの数を決定してもよい。
送信タイミング管理制御部117は、タイムスロットを取得又は分与する他の通信装置101との通信帯域の広さに基づいて、タイムスロットの数を決定してもよい。タイムスロットを他の通信装置101に分与する際、通信帯域が狭い場合は、通信帯域が広い場合よりも多くのタイムスロットを分与するようにしてもよい。
各通信装置はそれぞれ優先度を表すランク値を保持し、送信タイミング管理制御部117は、自装置100が保持するランク値と、タイムスロットを取得又は分与する他の通信装置101が保持するランク値との差分に基づいて、タイムスロットの数を決定してもよい。
送信タイミング管理制御部117は、連続で実行される複数のタイムスロットを、他の通信装置101に分与したり、または、他の通信装置101から取得したりしてもよい。
送信タイミング管理制御部117は、他の通信装置101に接続されているか否かの確認を行い、他の通信装置101から所定の時間応答がなかった場合は、他の通信装置101に分与したタイムスロットを回収するようにしてもよい。
送信タイミング管理制御部117は、他の通信装置101からタイムスロットの取得を要求されたとき、自装置100において分与すべきタイムスロットが不足している場合は、自装置100は、第3の通信装置にタイムスロットの取得を要求し、その取得したタイムスロットを他の通信装置101に分与してもよい。
なお、上記の送信タイミング管理制御部117に関する処理の詳細については、後述する。
本実施例では、通信制御部115、アドホックネットワーク通信制御部116、及び送信タイミング管理制御部117は、プログラムとして記憶部114に記憶され、CPU111にて実行されている。これに代えて、これらの機能の少なくとも一部を、専用のハードウェア装置で実現しても良い。
サーバ140は、CPU151、メモリ152、及び記憶部154を備える。サーバ140が有する各種プログラムは、記憶部154に記憶され、必要に応じてメモリ152を介してCPU151に読み込まれて実行される。サーバ140は、さらに通信部153を備え、ネットワーク網130に接続している。
通信部153は、ネットワーク網130,131の選択、ネットワーク網130,131との切断、パケット送受信、通信可否判定、及び通信量の測定など、様々な通信制御を行う。
記憶部154には、通信制御部155が、プログラムとして記憶されている。また、各種制御に用いられる通信経路表156、及び接続装置管理テーブル158がデータとして記憶されている。
通信制御部155は、通信経路表156を生成する。さらに、通信制御部155は、ネットワーク網130を介して、他の装置と通信を行う際の通信制御を行う。
なお、プログラムは、予め記憶部154に記憶されていても良いし、必要に応じて、記憶媒体もしくは通信ネットワークを介して取得され、記憶部154に記憶されてもよい。
図2は、アドホックネットワーク通信経路表118の一例である。アドホックネットワーク通信経路表118は、アドホックネットワーク通信経路の構成及び状態を管理する。アドホックネットワーク通信経路表118は、通信装置名201と、リンク状態202と、ランク203と、通信品質204とを保持する。
通信装置名201とは、アドホックネットワークに属する通信装置を識別する情報である。リンク状態202は、通信の可否及び状態を示す情報である。ランク203は、各通信装置がデータ収集装置からネットワーク的にどのくらい離れているのかを示す情報である。通信品質204は、アドホックネットワーク通信経路の通信品質を指標化した値である。アドホックネットワーク通信経路表118は、AODV又はOSLR等のルーティングプロトコルを用いてネットワークトポロジを構築する際に用いられる。アドホックネットワーク通信経路表118は、アドホックネットワークを構成している通信装置間で、通信状態及びホップ数等の情報を交換することによって作成することができる。
図3は、送信タイミング管理テーブル119の一例である。送信タイミング管理テーブル119は、自装置100が認識している各通信装置のタイムスロットに関する情報を保持する。例えば、送信タイミング管理テーブル119は、通信装置名301と、タイムスロットの取得又は分与を示す通信装置状況302と、取得又は分与の有効時間を示す有効時間303と、自装置100が有するタイムスロット数305とを保持する。
タイムスロットには、それぞれ異なる番号が付与されている。そして、例えば、10番のタイムスロットを割り当てられた通信装置は、基準時刻から10番目のタイムスロットの時間帯にデータを送信する。なお、アドホックネットワークに属する各通信装置の時刻は同期されているものとする。
図4は、自己情報管理テーブル120の一例である。自己情報管理テーブル120は、自己の通信装置(自装置)の各種情報を保持する。例えば、自己情報管理テーブル120は、ステイタス401と、ランク402と、分与優先ポリシー403と、タイムスロット数404とを保持する。
ステイタス401は、現在の通信装置の状態を示す情報である。ステイタス401には、例えば、通常運用時における「通常モード」、タイムスロットを他の通信装置と調停する「調停モード」、並びに一切のタイムスロットを使用しない「停止モード」などの状態が示される。ランク402は、自装置とデータ収集装置とのネットワーク上の距離を示す情報である。分与優先ポリシー403は、タイムスロットを分与する場合の判断基準を示す情報である。タイムスロット数404は、自装置が現在保有しているタイムスロットの数を示す情報である。
分与優先ポリシー403は、他の通信装置からタイムスロットの要求があった場合に、その通信装置にタイムスロットを分け与えるポリシーを規定する。分与優先ポリシー403には、例えば、自らのタイムスロットを少しずつ分与するか、または、他の通信装置が更に他の通信装置に対して積極的に分与できるように一度に多くのタイムスロットを分与するか等を設定することができる。
分与するタイムロットの数は、分与する通信装置のランクに応じて決定してもよい。例えば、ランクが上位の通信装置は、配下に多数の通信装置が接続される可能性があるので、タイムスロットを多く分与する。これに対し、ランクが下位の通信装置には、分与するタイムスロットを制限することができる。
図5は、通信装置の全体の処理概要を示すフローチャートの一例である。
まず、通信装置100は、通信経路を構築する(501)。
次に、通信装置100は、タイムスロットの要求が必要か否かを判断する(502)。タイムスロットの要求が必要と判断した場合は(502:Yes)、スロット要求処理を実行し(503)、ステップ504に進む。一方、タイムスロットの要求が不必要と判断した場合は(502:No)、ステップ504に進む。
タイムスロット要求処理が必要な場合とは、例えば、自己情報管理テーブル120の取得タイムスロット数404の値が0になっている場合、初めてアドホックネットワークに参加した場合、又は、センシングデータが急増し大量の通信帯域が必要となった場合などである。なお、タイムスロット要求処理の詳細は後述する。
次に、通信装置100は、タイムスロットの更新が必要か否かを判断する(504)。タイムスロットの更新が必要と判断した場合は(504:Yes)、タイムスロット更新処理を実行し(505)、ステップ506に進む。一方、タイムスロットの更新が不必要と判断した場合は(504:No)、ステップ506に進む。
タイムスロット更新処理が必要な場合とは、例えば、アドホックネットワーク通信経路表118のリンク状態202において、自装置がタイムスロットを分与された相手の通信装置(タイムスロットの分与元)との経路が切れた場合、送信タイミング管理テーブル119において自装置が有するタイムスロットの有効時間303が切れた場合、又は、通信経路の変更によりタイムスロットの割り当てを再確認する必要がある場合などである。なお、タイムスロット更新処理の詳細は後述する。
次に、通信装置100は、タイムスロットの分与が必要か否かを判断する(506)。タイムスロットの分与が必要と判断した場合は(506:Yes)、スロット分与処理を実行し(507)、ステップ508に進む。一方、タイムスロットの分与が不必要と判断した場合は(506:No)、ステップ508に進む。タイムスロット分与処理が必要な場合とは、例えば、自装置がタイムスロット分与要求を受けた場合などである。なお、タイムスロット分与処理の詳細は後述する。
次に、通信装置100は、スロット返却が必要か否かを判断する(508)。スロット返却が必要と判断した場合は(508:Yes)、スロット返却処理を実行し(509)、ステップ510に進む。一方、スロット返却が不必要と判断した場合は(508:No)、ステップ510に進む。タイムスロット返却処理が必要な場合とは、例えば、他の通信装置からタイムスロット返却要求を受けた場合、自装置がアドホックネットワークから離脱する際に分与されたタイムスロットを分与元の通信装置に返却する場合、又は、一度取得したが不必要と判断したタイムスロットを分与元の通信装置に返却する場合などである。なお、タイムスロット返却処理の詳細は後述する。
次に、通信装置100は、タイムスロットの調停が必要か否かを判断する(510)。タイムスロットの調停が必要と判断した場合は(510:Yes)、タイムスロット調停処理を実行し(511)、ステップ512に進む。一方、タイムスロットの調停が不必要と判断した場合は(510:No)、ステップ512に進む。タイムスロット調停処理が必要な場合とは、例えば、他の通信装置からタイムスロット分与要求を受けたが、分与可能なタイムスロットが無く、分与するためには他の通信装置からタイムスロットを取得する必要がある場合などである。なお、タイムスロット調停処理の詳細は後述する。
最後に、通信装置100は、タイムスロット管理テーブルを更新する(512)。タイムスロット管理テーブルの更新とは、送信タイミング管理テーブル119及び自己情報管理テーブル120を更新することである。必要であれば、ステップ512で、アドホックネットワーク通信経路表118を更新しても良い。例えば、タイムスロットの調停に失敗した通信装置との通信経路を削除する場合等に、アドホックネットワーク通信経路表118を更新してもよい。
なお、図5のフローチャートでは、各処理を順番に実行しているが、その順番は問わない。各テーブルは、適宜更新されてもよい。
図6は、タイムスロット要求処理及びタイムスロット分与処理を示すフローチャートの一例である。図6の処理では、「第1通信装置」としての通信装置Aが「第2通信装置」としての通信装置Bに対してタイムスロットを要求し、通信装置Bは通信装置Aにタイムスロットを分与する。
まず、通信装置Aは、自装置が必要なタイムスロット数を記載したタイムスロット要求メッセージを、通信装置Bに送信する(601)。通信装置Bは、通信装置Aからタイムスロット要求メッセージを受信する(602)。
タイムスロット要求を受けた通信装置Bは、自己情報管理テーブル119を参照して自装置が保有するタイムスロットの状況を確認し、タイムスロットの調停が必要か否かを判断する(603)。調停が必要と判断した場合は(603:Yes)、通信装置Aに対して待機メッセージを送信し(604)、タイムスロット調停処理を実行する(605)。一方、調停が不要と判断した場合は(603:No)、ステップ610に進む。
タイムスロットの調停が必要か否かの判断は、自装置のタイムスロットの空き状況から即時に判断しても良いし、他の通信装置からのタイムスロット要求メッセージを所定の時間受け付け、その所定の時間内に受信したタイムスロットの要求数に応じて判断しても良い。
なお、通信装置Aと通信装置Bの間では、ユニキャスト通信が行われる場合を例に挙げて説明するが、これに代えて、ブロードキャスト通信又はマルチキャスト通信によって、周囲の全ての通信装置に一斉にタイムスロット要求メッセージを送信しても良い。また、タイムスロット要求メッセージに、そのタイムスロットの緊急性を示す情報を記載できるようにしてもよい。
次に、通信装置Aは、待機メッセージを受信したか否かを判断する(606)。待機メッセージを受信した場合は(606:Yes)、待機すべきタイムアウト時間を設定する(607)。タイムアウト終了後(608:Yes)、通信装置Bに対してタイムスロット要求メッセージを再送し(609)、ステップ606に進む。一方、待機メッセージを受信していない場合は(606:No)、ステップ613に進む。
待機時間であるタイムアウト時間は、所定の時間として予め設定しておいてもよいし、通信装置Bがタイムアウト時間を決定して通信装置Aに送信しても良い。さらに、通信装置Bがタイムアウト時間を決定する場合、他の通信装置からのタイムスロット要求メッセージを受け付けた所定の時間、又は、タイムスロットの調停処理にかかる時間(例えば、何ホップ先までの調停を前提とするか)などを考慮して決定してもよい。また、通信装置Aの要求メッセージの再送において、予め再送回数を設定しておき、その再送回数以降は要求メッセージを再送しないようにしても良い。
次に、通信装置Bは、分与可能なタイムスロットがあるか否かを判断する(610)。分与できるタイムスロットがある場合は(610:Yes)、分与するタイムスロットの数、タイムスロットの番号、及び送信タイミングなどを記載したタイムスロット供給メッセージを通信装置Aに送信する(611)。一方、分与できるタイムスロットがない場合は(610:No)、タイムスロット供給不可メッセージを通信装置Aに送信する(612)。
最後に、通信装置Aは、通信装置Bからの返信メッセージを確認し(613)、タイムスロットの取得ができたか否かを確認する(614)。タイムスロットの取得ができた場合は(614:Yes)、自装置のタイムスロット管理テーブルを更新し(615)、処理を終了する。一方、タイムスロットの取得ができなかった場合は(614:No)、処理を終了する。
なお、本実施例において、通信装置Aは、通信装置Bからのみ返信メッセージを受信している。これに代えて、通信装置Aは、複数の通信装置から返信メッセージを受信し、返信メッセージを送信した各通信装置の中で最適な通信装置からタイムスロットを取得できるようにしてもよい。そのとき、使用しなくなったタイムスロットを分与元の通信装置に返却するようにしてもよい。
図7は、タイムスロット更新処理のフローチャートの一例である。本処理では、通信装置Aがタイムスロットの更新及び確認を行う。
まず、通信装置Aは、アドホックネットワーク通信経路表118を参照し、通信装置Bの通信経路が存在しているか否かを判断する(701)。通信装置Bとの通信経路が存在する場合は(701:Yes)、ステップ702に進む。一方、通信装置Bとの通信経路が存在しない場合は(701:No)、ステップ703に進む。
通信装置Aは、送信タイミング管理テーブル119を参照して、通信装置Bの有効時間303を超過しているか否かを判断する(702)。超過している場合は(702:Yes)、通信装置Bから分与されたタイムスロットを使用し続けてよいかを確認するため、タイムスロット確認メッセージを通信装置Bに送信する(703)。一方、ステップ702において、超過していない場合は(702:No)、処理を終了する。
通信装置Bは、通信装置Aからタイムスロット確認メッセージを受信し、これに応答するタイムスロット確認応答メッセージを通信装置Aに送信する(704)。タイムスロット確認メッセージ、及びタイムスロット確認応答メッセージは、通信品質が悪いときは複数回送信しても良い。
通信装置Aは、通信装置Bから送信されたタイムスロット確認応答メッセージを受信し、通信装置Bから分与されたタイムスロットを継続して使用できるか否かを判断する(705)。継続して使用できる場合(705:Yes)、送信タイミング管理テーブル119において、通信装置Bの有効時間303を更新する(706)。一方、継続して使用できない場合(705:No)、送信タイミングテーブル119において、通信装置Bの有効時間303を0とする、または、削除する(707)。
通信装置Aがタイムスロットを継続して使用できるか否かの判断方法は、例えば、所定の時間内にタイムスロット確認応答メッセージを受信できたか否か、又は、タイムスロット確認応答メッセージにタイムスロットの継続使用を許可する旨記載されているか否か、などで判断する。
図8は、タイムスロット返却要求処理のフローチャートの一例である。本処理では、通信装置Bが、通信装置Aに対して、分与したタイムスロットの返却を要求する。
まず、通信装置Bは、通信装置Aに対してタイムスロット返却要求メッセージを送信する(801)。タイムスロット返却要求メッセージには、返却を要求するタイムスロットの数、返却を要求するタイムスロットの番号、及び返却の緊急度等を記載する。
通信装置Aは、返却可能なタイムスロットがあるか否かを確認する(802)。通信装置Aに返却可能なタイムスロットがある場合は(802:Yes)、そのタイムスロットを通信装置Bに返却し、送信タイミング管理テーブル119及び自己情報管理テーブル119を更新する(803)。一方、通信装置Aに返却可能なタイムスロットがない場合は(802:No)、通信装置Bにタイムスロットの返却が不可であることを示す返却不可メッセージを送信する(804)。
通信装置Bは、返却不可メッセージを受信すると、強制的に全てのタイムスロットの返却を要求するか否かを判断する(805)。通信装置Bが、強制的な返却を要求すべきと判断した場合は(805:Yes)、スロット強制返却要求メッセージを通信装置Aに送信し(806)、ステップ809に進む。一方、通信装置Bが、強制的な返却を要求する必要はないと判断した場合は(805:No)、ステップ809に進む。強制的な返却の要求があったときは、例え通信装置Aがタイムスロットの返却によって全てのタイムスロットを失ったとしても、通信装置Bにタイムスロットを返却しなければならない。これが実行される場合としては、例えば、通信装置Bが、自装置よりランクが低い通信装置Aから全てのタイムスロットを取得し、自装置よりランクの高い他の通信装置にそのタイムスロットを分与する必要がある場合などである。
通信装置Aは、通信装置Bからのタイムスロット強制返却要求メッセージを受信し、タイムスロットの返却処理を実行し(807)、タイムスロットの返却メッセージを通信装置Bに送信する(808)。
通信装置Bは、通信装置Aから返却されたタイムスロットを確認し、送信タイミング管理テーブル119及び自己情報管理テーブル119を更新する(809)。
また、通信装置Aは、自らが保持しているタイムスロットが全てなくなり、別の通信装置からタイムスロットを取得する必要がある場合は経路変更を行う(810)。
なお、図8のフローチャートでは、通信装置Aは通信装置Bからのタイムスロット返却要求に応じてタイムスロットを返却しているが、これに代えて、通信装置Aから通信装置Bに対して自主的にタイムスロットを返却しても良い。例えば、通信装置Aがより有効な別の通信装置から新たにタイムスロットを取得し、通信装置Bから取得したタイムスロットが不必要となった場合などである。
図9は、タイムスロット調停処理のフローチャートの一例である。本処理では、通信装置Aは通信装置Cからタイムスロット要求を受けたが、通信装置Aは通信装置Cに分与可能なタイムスロットを保持していないものとする。
まず、通信装置Cが通信装置Aに対してタイムスロット要求メッセージを送信する(901)。
タイムスロット要求メッセージを受信した通信装置Aは、分与可能なタイムスロットがないため、タイムスロット調停を実行する(902)。なお、この処理は、図6を用いて説明した処理と同じである。
通信装置Aは、タイムスロットの調停方法を判断する(903)。調停方法の判断は、例えば、タイムスロット要求元である通信装置Cの分与優先度及び他の通信装置のランク等を考慮し、タイムスロットを要求すべき通信装置の選択、及び要求すべきタイムスロット数の決定などを行う。例えば、通常は自装置がタイムスロットを分与した通信装置に対してタイムスロットの返却を要求する。しかし、タイムスロット要求元の通信装置の優先度が高く、自装置が分与した通信装置からタイムスロットの返却がなされなかった場合は、次は、自装置に分与してくれた通信装置に、さらにタイムスロットを要求する、などを定義しておいてもよい。
ここでは、通信装置Aは、通信装置Bに対してタイムスロットを要求し、さらに通信装置Bは、その先の通信装置Dに対してタイムスロットを要求するものとする。
ステップ903の続きとして、通信装置Aは、通信装置Bにタイムスロット要求メッセージを送信する(904)。
タイムスロット要求メッセージを受信した通信装置Bは、分与可能なタイムスロットがないため、通信装置Aに対して回答を待つよう待機メッセージを送信する(905)。
通信装置Bは、通信装置Dにタイムスロット要求メッセージを送信する(909)。
通信装置Aは、ステップ905において通信装置Bから送信された待機メッセージを受信し、タイムアウト時間を設定する(906)。通信装置Aは、タイムアウト時間終了後(907:Yes)、必要に応じてタイムスロット要求メッセージを通信装置Bに再送する(908)。
一方、通信装置Dは、ステップ909におけるタイムスロット要求メッセ−ジを受信すると、タイムスロット要求応答メッセージを通信装置Bに返信し、タイムスロットを分与する。
通信装置Bは、受信したタイムスロット要求応答メッセージを確認する(910)。通信装置Bは、タイムスロット要求応答メッセージを通信装置Aに返信し、通信装置Dから分与されたタイムスロットを通信装置Aに分与する。
通信装置Aは、受信したタイムスロット要求応答メッセージを確認する(911)。通信装置Aは、通信装置Cにタイムスロット要求応答メッセージを送信し、通信装置Bから分与されたタイムスロットを通信装置Cに分与する。
通信装置Cは、タイムスロット要求応答メッセージを受信し、そのタイムスロットを取得する。
なお、タイムスロットを要求する通信装置の種類及びタイムスロットを要求する範囲を規定してもよい。また、自装置が接続している通信経路の状態及び通信品質、又はタイムスロットを要求してきた通信装置の優先度等に応じて、分与するタイムスロットの数を増減させてもよい。例えば、緊急に通信を行う必要があるアプリケーションは、優先的にタイムスロットを取得できるよう、広範囲の通信装置とのタイムスロットの調停を許可し、定期的な通信を必要としないアプリケーションは、タイムスロットの調停範囲を限定してもよい。
本実施例によれば、アドホックネットワークにおいて、複数の(多数の)通信装置が特定の通信装置(データ収集装置)にデータを送信する場合に、各通信装置間で送信タイミングを自律的に調整することができる。従って、本実施例では、各通信装置の送信タイミングを集中制御するための管理サーバを設ける必要がない。このため、本実施例では、送信タイミングを調整するためのデータがネットワークに多量に流れるのを防止して、センシングデータの通信に使用する帯域を確保でき、センシングデータを高い信頼性で収集することができる。
図11を参照して実施例2を説明する。本実施例を含む以下の各実施例は、実施例1の変形例に該当する。そこで、実施例1との相違を中心に説明する。図11は、ネットワークトポロジの変化を考慮したタイムスロットの分与方法の一例を示す説明図である。
図11(a)は、必要な数のタイムスロットだけを随時分与した場合の説明図である。
図11(a)の左側に示すように、通信装置1101a(A)は、通信装置1102a(B)に1つのタイムスロットを分与する。その後、通信装置1103a(C)と1104a(D)が通信装置1102a(B)に接続されたとする。このとき、通信装置1102a(B)は、自らのタイムスロット1112aを分与することができない。
そこで、図11(a)右側に示すように、通信装置1102a(B)は、通信装置1101a(A)とタイムスロット調停を行い、通信装置1101a(A)から2つのタイムスロット1121aと1122aを取得する。通信装置1102a(B)は先ほど取得した2つのタイムスロットを、それぞれ通信装置1103a(C)と1104a(D)に分与する。
図11(b)は、余裕を持って多数のタイムスロットを事前に分与した場合の説明図である。
図11(b)左側に示すように、通信装置1101b(A)は、通信装置1102b(B)に3つのタイムスロット1102bを分与する。その後、通信装置1103b(C)と1104b(D)が通信装置1102b(B)に接続されたとする。
図11(b)右側に示すように、通信装置1102b(B)は余分なタイムスロットを保持しているので、自らの2つのタイムスロット1121bと1122bを、通信装置1103b(C)と1104b(D)に分与する。
以下、通信装置1101a(A),1101b(A)を通信装置(A)と、通信装置1102a(B),1102b(B)を通信装置(B)と、通信装置1103a(C),1103b(C)を通信装置(C)と、通信装置1104a(D),1104b(D)を通信装置(D)と呼ぶことがある。
図11(a)に示す構成のメリットは、有限な数であるタイムスロットを無駄なく効率的に利用できる点である。必要な数のタイムスロットを必要な通信装置に随時分与するため、分与したにもかかわらず利用されないタイムスロットの数が少なくなり、効率的に利用できる。
一方、図11(a)に示す構成のデメリットは、タイムスロットを分与した通信装置(B)に対して、他の通信装置(C),(D)から新たにタイムスロットの要求があったとき、必ずタイムスロット調停となってしまう点である。タイムスロット調停が実行されると、その都度、分与元の通信装置(B)においてスロット要求等が実行されてしまうため、ネットワークが混雑し、使用可能な通信帯域が狭くなる。
図11(b)に示す構成のメリットは、タイムスロット調停処理の回数を減らせることである。タイムスロットの分与を受けた通信装置(B)に対して、他の通信装置(C),(D)からタイムスロットの要求があった場合、タイムスロットの分与を受けた通信装置(B)は、余分にタイムスロットを保持しているため、タイムスロット調停処理を行うことなく、すぐに他の通信装置(C),(D)にタイムスロットを分与する事ができる。
一方、図11(b)のデメリットは、分与したにも関わらず使用されないタイムスロットの数が多くなる可能性が高い点である。このため、通信帯域を効率的に利用できない可能性がある。
どちらが適切かは、対象となるシステム及びアプリケーションにより異なる。例えば、停電により通信装置の電源が一斉に切断され、その後、電気が回復した場合は、全ての通信装置がタイムスロットの要求を実行する。この場合、図11(b)の方法に従い、データ収集装置などランクが上位の通信装置は、ランクが下位の通信装置に対して予め余裕を持ってタイムスロットを分与する事により、タイムスロット要求及びタイムスロット調停の多発を防ぐことができる。
同様に、例えば、集合住宅全体のゲートウェイとなるデータ収集装置の配下に、各住居毎のゲートウェイとなる通信装置が設けられる場合、各住居用の通信装置には、多めにタイムスロットを分け与えておくとよい。各住居毎のゲートウェイとなる通信装置の下には、複数の他の通信装置が接続される可能性があり、それらの他の通信装置がセンシングデータの送信を一斉に開始する可能性があるためである。
図12を参照して実施例3を説明する。図12は、通信特性を考慮したタイムスロットの分与方法の一例を示す説明図である。
図12において、通信装置1202(B)と1203(C)とは、例えば、特定小電力無線のような比較的通信速度の遅い通信経路で結ばれている。通信装置1202(B)と1203(D)とは、例えば、無線LANのような比較的通信速度の速い通信経路で結ばれているとする。
1つ当たりのタイムスロットを、高速な通信経路に合わせて短く設定する。低速な通信経路に接続される通信装置1203(C)には、多くの(例えば5つの)タイムスロット1213を分与する。高速な通信経路に接続される通信装置1204(D)には、少数の(例えば1つの)タイムスロット1214を分与する。
通信装置1202(B)と1203(C)との間の通信速度は遅いが、長い通信時間を確保できるため、通信装置1203(C)から通信装置1202(B)に所定のデータ量を伝送できる。一方、通信装置1202(B)と1203(D)との間の通信速度は速いので、通信時間が短くとも、所定のデータ量を伝送できる。
ずなわち、各通信装置の通信速度が異なる場合は、最も速い通信速度に合わせてタイムスロットのサイズを設定し、各通信経路の通信速度に応じて、各通信装置に分与するタイムスロットの数を変更する。これにより、システム全体として、タイムスロットを効率的に利用することができる。
なお、例えば、特定小電力無線のような通信速度の遅い通信装置1203(C)は、原則として、他の通信装置にタイムスロットを分与しない構成としてもよい。通信速度の遅い通信装置が、必要数のタイムスロットを確保して、データを転送できるようにするためである。
また、各通信装置の通信品質が異なる場合、通信品質に応じて、分与するタイムスロットの数を変更してもよい。例えば、無線通信の通信品質によって、通信装置のランクが変化する場合について考える。その場合、通信装置のランクによって、必要なタイムスロットの数も変わる。通信品質が低くなるほど、必要なタイムスロットの数は増える。
通信品質に応じて割り当てるタイムスロットの数を動的に調整する場合、もし無線通信の通信品質が頻繁に変化すると、通信装置のランクが頻繁に変更される。これにより、通信装置が必要とするタイムスロットの数も頻繁に変化するため、通信装置は、タイムスロットの返却と取得を繰り返すことになる。タイムスロットの返却及び取得が頻繁に繰り返されると、アドホックネットワークが混雑し、センシングデータを送信するための帯域が狭くなる。
従って、通信装置のランクが変化しても、タイムスロットの返却とタイムスロットの取得とが頻繁に繰り返されない程度に、予め余裕を持ってタイムスロットを分与しておくことが望ましい。
なお、無線通信の通信品質が不安定な場合は、その通信装置にタイムスロットを分与しない構成でもよい。タイムスロットを分与されなかった通信装置は、データ収集装置にセンシングデータを送信できなくなる。しかし、センサネットワーク全体では安定した通信が可能となる。一部の通信装置をセンサネットワークから切り離しても、他の通信装置からのセンシングデータを利用して、遠隔監視または遠隔制御等の処理を行うことができる場合がある。他の通信装置で代替可能な通信装置は、その通信品質が不安定な期間に限って、タイムスロットを分け与えない構成とすることができる。
本実施例では、タイムスロットの利用方法の一例について説明する。タイムスロットの役割は、タイムスロットとセンシングデータの送信タイミングとを連携させ、センシングデータをデータ収集装置に到達させるために使用される。
そこで、通常のデータは、例えば、CSMA/CA(Carrier Sense Multiple Access/Collision Avoidance)による自律的な送信を行い、衝突を防止する必要があるデータのみ、前記各実施例で述べたように、タイムスロットを利用して送信してもよい。
通常のセンシングデータ(及び経路制御メッセージ等)は、CSMA/CAを用いて送信する。緊急性を有するデータは、本発明に係るタイムスロットを用いて、送信する。緊急性を有するデータとは、例えば、所定時間にデータ収集装置に届いている必要がある制御用データ、または、通信途中での消失が許されないデータ等である。つまり、いわゆるミッションクリティカルな処理で使用されるデータは、所定時間内に収集される必要があるため、信頼性の高い通信が求められる。このような場合は、本発明に係るタイムスロットを使用して、データを高い信頼性で送り届ける。
これにより、ベストエフォートな通信と、タイムスロットによる確実な通信とを両立したシステムを構築することができる。
図13を参照して実施例5を説明する。実施例1では、タイムスロットの番号を連番で付与する場合を説明した。実施例5では、番号の連続性を問わずに、通信装置間でタイムスロットをやり取りする場合を説明する。
図13は、本実施例によるタイムスロットの分与方法を示す説明図である。
各通信装置は、それぞれ図13(a)に示すように、連番ではないタイムスロットが分与されたものとする。例えば、大元の通信装置(A)の下に位置する通信装置(B)は4番のタイムスロットを保持する。通信装置(B)とともに通信装置(A)の下に位置する通信装置(C)は、7番のタイムスロットを有する。通信装置(B)の下に位置する一方の通信装置(D)は、1番及び3番のタイムスロットを有する。通信装置(B)の下に位置する他方の通信装置(E)は、2番及び5番のタイムスロットを有する。通信装置(C)の下に位置する一方の通信装置(F)は、6番及び8番のタイムスロットを有する、通信装置(C)の下に位置する他方の通信装置(G)は、9番及び10番のタイムスロットを有する。
タイムスロットを用いたデータ送信方法を説明する。まず、通信装置(D)は、1番のタイムスロット1311のタイミングで、通信装置(B)にデータを送信する。次に、通信装置(E)は、2番のタイムスロット1312のタイミングで、通信装置(B)にデータを送信する。
通信装置(D)は、3番のタイムスロットのタイミングで、通信装置(B)にデータを送信する。通信装置(B)は、4番のタイムスロット1304のタイミングで、自らのデータと、通信装置(D)及び(E)からそれぞれ受信したデータとを、通信装置(A)に送信する。
これにより、通信装置(D)及び(E)がセンサ等によって収集したデータを、データ収集装置である通信装置(A)に送信することができる。
なお、本実施例において、データを中継する通信装置は、自らが保持しているタイムスロットを実行する順番が来るまで、その中継すべきデータを一時的に保持しておく必要がある。例えば、上記の例では、通信装置(B)は、通信装置(D)及び(E)から受信したデータを一時的に保持しておく必要がある。
タイムスロットの番号を問わずに分け与える構成のメリットは、各通信装置での処理負荷を低減できることにある。各通信装置は、タイムスロットを分与する際、どのようにすれば連番で分与できるかを計算する必要がない。
一つのデメリットは、データを中継する通信装置は、データを一時的に保持するために、バッファメモリのサイズを大きくする必要があることである。他の一つのデメリットは、データ収集装置にデータが到達する時間が多少遅れることである。
タイムスロットの番号を連続で管理する方法と番号の順番を問わずに管理する方法とのいずれの方法が適切かは、適用するシステム及び通信装置の能力等に応じて異なる。従って、どちらか一方の方法を予め設定できるようしてもよいし、通信装置の状況に応じて前記2つの方法を自動的に切り替えるようにしてもよい。
上述した実施形態は、本発明の説明のための例示であり、本発明の範囲を実施形態に限定する趣旨ではない。当業者は、本発明の要旨を逸脱することなしに、他の様々な態様で本発明を実施することができる。
100、101…通信装置
113…通信部
114…記憶部
115…通信制御部
116…アドホックネットワーク通信制御部
117…送信タイミング管理制御部
118…アドホックネットワーク通信経路表
119…送信タイミング管理テーブル
120…自己情報管理テーブル
130、131…ネットワーク網
140、141…サーバ

Claims (10)

  1. 複数の通信装置が無線通信によって相互に接続されているアドホックネットワークに属する通信装置であって、
    データの送受信を行う通信部と、
    タイムスロットを管理するためのタイムスロット管理部であって、前記アドホックネットワークに属する他の通信装置に前記データを送信するタイミングに関する情報を示す前記タイムスロットを管理するタイムスロット管理部と、
    前記通信部を通じて前記タイムスロットを前記他の通信装置から取得したり、前記他の通信装置に分与したり、又は、前記他の通信装置に分与した前記タイムスロットを回収したりする送信タイミング管理制御部であって、前記他の通信装置に接続されているか否かの確認を行い、前記他の通信装置との接続が確認できる場合は、前記取得又は分与したタイムスロットを前記タイムスロット管理部に管理させ、前記タイムスロット管理部で管理された前記タイムスロットに記載のタイミングに基づき、前記通信部を通じて前記データを前記他の通信装置に送信し、前記他の通信装置との接続が確認できない場合は、前記他の通信装置に分与したタイムスロットを回収する送信タイミング管理制御部と、
    を備えたアドホックネットワーク通信装置。
  2. 前記送信タイミング管理制御部は、所定の条件に基づき、前記他の通信装置から取得又は前記他の通信装置に分与する、タイムスロットの数を決定する、
    請求項1のアドホックネットワーク通信装置。
  3. 前記アドホックネットワークはツリー型のネットワークであり、
    前記アドホックネットワークの大には前記データを収集するための所定の通信装置が設けられており、
    前記送信タイミング管理制御部は、前記所定の条件として、前記所定の通信装置との間の論理的なネットワークの距離に基づいて、前記他の通信装置から取得又は前記他の通信装置に分与する、前記タイムスロットの数を決定する、
    請求項2記載のアドホックネットワーク通信装置。
  4. 前記送信タイミング管理制御部は、前記所定の条件として、前記タイムスロットを取得又は分与する前記他の通信装置との間の通信帯域の広さに基づいて、前記他の通信装置から取得又は前記他の通信装置に分与する、前記タイムスロットの数を決定する、
    請求項2記載のアドホックネットワーク通信装置。
  5. 前記送信タイミング管理制御部は、前記通信帯域が狭い場合は、前記通信帯域が広い場合よりも多くのタイムスロットを前記他の通信装置に分与する、
    請求項4記載のアドホックネットワーク通信装置。
  6. 前記通信装置は、自装置の優先度を表すランク値を保持し、
    前記送信タイミング管理制御部は、前記所定の条件として、自装置が保持するランク値と、前記タイムスロットを取得又は分与する前記他の通信装置が保持するランク値との差分に基づいて、前記他の通信装置から取得又は前記他の通信装置に分与する、前記タイムスロットの数を決定する、
    請求項2記載のアドホックネットワーク通信装置。
  7. 前記送信タイミング管理制御部は、前記タイムスロットを連続番号で管理し、連続した複数の前記タイムスロットを前記他の通信装置に分与もしくは前記他の通信装置から取得できる、
    請求項1記載のアドホックネットワーク通信装置。
  8. 前記送信タイミング管理制御部は、前記他の通信装置に分与すべきタイムスロットが不足している場合は、前記アドホックネットワークに属する第3の通信装置にタイムスロットの取得を要求する、
    請求項1記載のアドホックネットワーク通信装置。
  9. 複数の通信装置が無線通信によって相互に接続されているアドホックネットワークに属する通信装置の通信方法であって、
    前記複数の通信装置の各々が
    他の通信装置に接続されているか否かの確認を行い、
    前記他の通信装置との接続が確認できる場合は、前記他の通信装置に所定のデータを送信するタイミングに関する情報を示すタイムスロットを、前記他の通信装置から取得又は前記他の通信装置に分与し、自装置が保持している前記タイムスロットに記載のタイミングに基づいて、自装置が保持しているデータを前記他の通信装置に送信
    前記他の通信装置との接続が確認できない場合は、前記他の通信装置に分与した前記タイムスロットを回収する
    アドホックネットワーク通信方法。
  10. 複数の通信装置が無線通信によって相互に接続されているアドホックネットワークシステムであって、
    前記複数の通信装置の各々は、
    データの送受信を行う通信部と、
    タイムスロットを管理するためのタイムスロット管理部であって、前記アドホックネットワークに属する他の通信装置に前記データを送信するタイミングに関する情報を示す前記タイムスロットを管理するタイムスロット管理部と、
    前記通信部を通じて前記タイムスロットを前記他の通信装置から取得したり、前記他の通信装置に分与したり、又は、前記他の通信装置に分与した前記タイムスロットを回収したりする送信タイミング管理制御部であって、、前記他の通信装置に接続されているか否かの確認を行い、前記他の通信装置との接続が確認できる場合は、前記取得又は分与したタイムスロットを前記タイムスロット管理部に管理させ、前記タイムスロット管理部で管理された前記タイムスロットに記載のタイミングに基づき、前記通信部を通じて前記データを前記他の通信装置に送信し、前記他の通信装置との接続が確認できない場合は、前記他の通信装置に分与したタイムスロットを回収する送信タイミング管理制御部と、
    を備えるアドホックネットワークシステム。


JP2012540637A 2010-10-29 2010-10-29 アドホックネットワーク通信装置、通信システム及び通信方法 Active JP5514323B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/069374 WO2012056584A1 (ja) 2010-10-29 2010-10-29 アドホックネットワーク通信装置、通信システム及び通信方法

Publications (2)

Publication Number Publication Date
JPWO2012056584A1 JPWO2012056584A1 (ja) 2014-03-20
JP5514323B2 true JP5514323B2 (ja) 2014-06-04

Family

ID=45993337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012540637A Active JP5514323B2 (ja) 2010-10-29 2010-10-29 アドホックネットワーク通信装置、通信システム及び通信方法

Country Status (2)

Country Link
JP (1) JP5514323B2 (ja)
WO (1) WO2012056584A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5718860B2 (ja) * 2012-06-18 2015-05-13 株式会社日立製作所 通信ネットワークシステム、ノード装置、および通信ネットワーク構築方法
JP6124636B2 (ja) * 2013-03-19 2017-05-10 三菱電機株式会社 無線通信装置および無線通信システム
CN104581953B (zh) * 2013-10-28 2018-04-03 富士通株式会社 分段式时隙分配方法和装置
US9510347B2 (en) * 2014-05-08 2016-11-29 Cisco Technology, Inc. Timeslot distribution in a distributed routing protocol for deterministic wireless networks

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005094529A (ja) * 2003-09-19 2005-04-07 Nec Corp 無線ネットワーク及び通信の衝突回避方法並びにそのプログラムを記録した記録媒体
JP2006287469A (ja) * 2005-03-31 2006-10-19 Sony Corp 無線通信システム、無線通信装置、これらの装置の処理方法およびその方法をコンピュータに実行させるプログラム
US8005020B2 (en) * 2006-09-29 2011-08-23 Rosemount Inc. Wireless mesh network with multisized timeslots for TDMA communication
JP2008228179A (ja) * 2007-03-15 2008-09-25 Japan Radio Co Ltd 無線装置
JP5294676B2 (ja) * 2008-04-02 2013-09-18 三菱電機株式会社 通信制御方法、通信装置およびマルチホップアドホックネットワーク

Also Published As

Publication number Publication date
JPWO2012056584A1 (ja) 2014-03-20
WO2012056584A1 (ja) 2012-05-03

Similar Documents

Publication Publication Date Title
JP6312497B2 (ja) ネットワーク内のノードをクラスタリングする方法
US7468954B2 (en) Mobile ad-hoc network providing expedited conglomerated broadcast message reply features and related methods
US8005054B2 (en) Communication system, communication method, communication terminal device, control method thereof, and program
CN103119887B (zh) 用于对无线网络中的数据分组传输进行调度的设备和方法
Xie et al. A network layer protocol for UANs to address propagation delay induced performance limitations
EP3203689B1 (en) Peer-to-peer communications in ami with source-tree routing
JP2006311495A (ja) 無線通信装置、通信経路制御装置、通信経路制御方法及び通信システム
JP2009060663A (ja) パケット転送システム、無線基地局、およびパケット転送経路最適化方法
WO2005091576A1 (ja) 無線通信装置および経路探索方法
JP2007129542A (ja) 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
JP2013232963A (ja) 無線ノード装置
CN104735743B (zh) 嵌入式无线自组织网络的路由优化方法
JP5514323B2 (ja) アドホックネットワーク通信装置、通信システム及び通信方法
JP2014155133A (ja) ネットワークシステム及びネットワークシステムの通信方法
CN108476579B (zh) 用于操作通信装置的方法和通信装置
JP5897699B2 (ja) 端末、経路生成方法および経路生成プログラム
WO2015048995A1 (en) Integration of cellular and ieee 802.11 networks in vanets
JP2007243932A (ja) 無線データ通信システム
JP2013162423A (ja) 無線通信システム、無線通信制御方法および無線通信装置
US9144007B2 (en) Wireless infrastructure access network and method for communication on such network
JP7326230B2 (ja) 通信システム、ノード、通信方法及びプログラム
JP6254840B2 (ja) 集約装置、配信方法、配信プログラム、及び、ネットワークシステム
Mukti et al. A Comprehensive Performance Evaluation of Proactive, Reactive and Hybrid Routing in Wireless Sensor Network for Real Time Monitoring System
JP2006005653A (ja) 無線アクセス制御方法およびシステム
WO2013114465A1 (ja) 無線マルチホップ通信装置及び通信制御方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140328

R150 Certificate of patent or registration of utility model

Ref document number: 5514323

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150