JP5513802B2 - Isoelectric focusing gel and isoelectric focusing method - Google Patents

Isoelectric focusing gel and isoelectric focusing method Download PDF

Info

Publication number
JP5513802B2
JP5513802B2 JP2009181808A JP2009181808A JP5513802B2 JP 5513802 B2 JP5513802 B2 JP 5513802B2 JP 2009181808 A JP2009181808 A JP 2009181808A JP 2009181808 A JP2009181808 A JP 2009181808A JP 5513802 B2 JP5513802 B2 JP 5513802B2
Authority
JP
Japan
Prior art keywords
gel
isoelectric focusing
electrophoresis
dimensional
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009181808A
Other languages
Japanese (ja)
Other versions
JP2011033544A (en
Inventor
政志 中村
宣宏 林
Original Assignee
ホーユー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ホーユー株式会社 filed Critical ホーユー株式会社
Priority to JP2009181808A priority Critical patent/JP5513802B2/en
Publication of JP2011033544A publication Critical patent/JP2011033544A/en
Application granted granted Critical
Publication of JP5513802B2 publication Critical patent/JP5513802B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Peptides Or Proteins (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

本発明は等電点電気泳動用ゲル及び等電点電気泳動方法に関する。更に詳しくは本発明は、等電点電気泳動に用いるゲルにおける特徴的なpH勾配の設定に関する。本発明は、単独で行う等電点電気泳動の他、2次元電気泳動における1次元目電気泳動として行う等電点電気泳動にも好ましく適用される。   The present invention relates to an isoelectric focusing gel and an isoelectric focusing method. More specifically, the present invention relates to setting a characteristic pH gradient in a gel used for isoelectric focusing. The present invention is preferably applied not only to isoelectric focusing performed alone but also to isoelectric focusing performed as first-dimensional electrophoresis in two-dimensional electrophoresis.

従来、細胞抽出物などから蛋白質や核酸を分離・精製する方法が種々に検討されてきている。塩濃度を利用した析出、遠心分離などはその一例であるといえる。   Conventionally, various methods for separating and purifying proteins and nucleic acids from cell extracts have been studied. Examples of precipitation and centrifugation using salt concentration are examples.

また、蛋白質や核酸の残基が有する電荷や、分子量の違いを利用した精製方法も多数検討されている。電荷を利用した精製方法としては、イオン交換樹脂を用いたカラムクロマトグラフィーや等電点電気泳動を例示できる。分子量の違いを利用した精製方法としては遠心分離、分子量篩によるカラムクロマトグラフィーやSDS−PAGEを例示できる。   In addition, a number of purification methods using the charge of proteins and nucleic acid residues and the difference in molecular weight have been studied. Examples of the purification method using charges include column chromatography using an ion exchange resin and isoelectric focusing. Examples of the purification method utilizing the difference in molecular weight include centrifugation, column chromatography using a molecular weight sieve, and SDS-PAGE.

近年、少量のサンプルから多様な蛋白質を分離精製する方法として、1次元目に等電点電気泳動を行い、2次元目にSDS−PAGEを行う2次元電気泳動法が用いられている。   In recent years, as a method for separating and purifying various proteins from a small amount of sample, a two-dimensional electrophoresis method in which isoelectric focusing is performed in the first dimension and SDS-PAGE is performed in the second dimension is used.

特表2002−503813号公報。 この特許文献1は、肝細胞性のガンの診断のために被験者の血清又は血漿について行う2次元電気泳動を開示している。JP-T-2002-503813. This patent document 1 discloses two-dimensional electrophoresis performed on the serum or plasma of a subject for diagnosis of hepatocellular cancer.

DavidR.M.Graham et al. 「Improvements in two-dimensional gelelectrophoresis by utilizing a low cost “in-house” neutral pH sodium dodecylsulfate-polyacrylamide gel electrophoresis system」 Proteomics2005,5,2309-2314。 この非特許文献1は、SDS−PAGEを含む2次元電気泳動における「イン−ハウス・システム」と称する一定の改良について開示している。David R. M. Graham et al. “Improvements in two-dimensional gel electrophoresis by utilizing a low cost“ in-house ”neutral pH sodium dodecylsulfate-polyacrylamide gel electrophoresis system” Proteomics 2005, 5, 2309-2314. This non-patent document 1 discloses a certain improvement called “in-house system” in two-dimensional electrophoresis including SDS-PAGE.

しかし、上記の特許文献1及び非特許文献1においては、1次元目の等電点電気泳動はゲル長18cm以上の大きなゲルを用いて行われている。通常、電気泳動においては泳動に用いるゲル長を長くするほど分離能が良くなる。したがって、サンプルの分離・精製がより確実になる。反面、ゲル長が長くなるとサンプルの移動距離が長くなるので、泳動に要する時間が長くなる。そのため、一定時間当たりの泳動回数(スループット)が落ちるという不具合がある。従って、特に蛋白質や核酸の網羅的解析においては、小型装置(短いゲル)を用いた、高分離能、高スループットの電気泳動方法が望まれている。   However, in Patent Document 1 and Non-Patent Document 1 described above, the first-dimensional isoelectric focusing is performed using a large gel having a gel length of 18 cm or more. Usually, in electrophoresis, the longer the gel length used for electrophoresis, the better the resolution. Therefore, the separation and purification of the sample becomes more reliable. On the other hand, the longer the gel length, the longer the sample travel distance, and the longer the time required for electrophoresis. For this reason, there is a problem in that the number of migrations (throughput) per fixed time decreases. Therefore, particularly in the comprehensive analysis of proteins and nucleic acids, an electrophoretic method with high resolution and high throughput using a small apparatus (short gel) is desired.

そこで本発明は、等電点電気泳動用ゲルのゲル長を高分離能を損なわずに短くし、ひいては泳動装置の小型化、泳動時間の短縮、高スループットを可能とすることを、解決すべき課題とする。   Therefore, the present invention should solve the problem of shortening the gel length of the gel for isoelectric focusing without impairing the high resolution, thereby enabling downsizing of the electrophoresis apparatus, shortening of the electrophoresis time, and high throughput. Let it be an issue.

(第1発明)
上記課題を解決するための本願第1発明の構成は、ゲル長が5〜10cmの範囲内であって、ゲルのpH範囲が3〜10であり、泳動方向に対するゲルのpH勾配が、pH5までのゲル長をa、pH5〜7のゲル長をb、pH7以上のゲル長をcとした場合において、「a<b」及び「b>c」の関係を満たす、等電点電気泳動用ゲルである。
(First invention)
The configuration of the first invention of the present application for solving the above problems is that the gel length is in the range of 5 to 10 cm, the pH range of the gel is 3 to 10, and the pH gradient of the gel with respect to the migration direction is up to pH 5. The gel for isoelectric focusing satisfies the relationship of “a <b” and “b> c”, where a is the gel length of b, b is the gel length of pH 5-7, and c is the gel length of pH 7 or higher. It is.

(第2発明)
上記課題を解決するための本願第2発明の構成は、前記第1発明に係る等電点電気泳動用ゲルの泳動方向に対するpH勾配が、ゲルの全長を1とした場合にaが0.15〜0.3の範囲内、bが0.4〜0.7の範囲内、cが0.15〜0.3の範囲内である、等電点電気泳動用ゲルである。
(Second invention)
The configuration of the second invention of the present application for solving the above problem is that the pH gradient with respect to the migration direction of the gel for isoelectric focusing according to the first invention is 0.15 when the total length of the gel is 1. It is a gel for isoelectric focusing, wherein b is in the range of 0.4 to 0.7, and c is in the range of 0.15 to 0.3.

(第3発明)
上記課題を解決するための本願第3発明の構成は、第1発明又は第2発明に記載した等電点電気泳動用ゲルを用いて等電点電気泳動を行う、等電点電気泳動方法である。
(Third invention)
The configuration of the third invention of the present application for solving the above problem is an isoelectric focusing method in which isoelectric focusing is performed using the gel for isoelectric focusing described in the first or second invention. is there.

(第4発明)
上記課題を解決するための本願第4発明の構成は、前記第3発明に係る等電点電気泳動方法を2次元電気泳動における1次元目の電気泳動として行う、等電点電気泳動方法である。
(Fourth invention)
The configuration of the fourth invention of the present application for solving the above problem is an isoelectric focusing method in which the isoelectric focusing method according to the third invention is performed as the first-dimensional electrophoresis in the two-dimensional electrophoresis. .

(第5発明)
上記課題を解決するための本願第5発明の構成は、前記第3発明又は第4発明に係る等電点電気泳動方法の検体が生物細胞の抽出物である、等電点電気泳動方法である。
(Fifth invention)
The configuration of the fifth invention of the present application for solving the above problem is an isoelectric focusing method in which the specimen of the isoelectric focusing method according to the third or fourth invention is an extract of a biological cell. .

(第1発明〜第3発明の効果)
等電点電気泳動用ゲルにおいて、泳動方向に対して一定の直線的なpH勾配を設定するという前提のもとでは、その分離能を高めるためには、一般的にゲル長を全体的に長くすることが考えられる。しかし、この場合、泳動時間も長くなり、装置の小型化、高スループットの実現は困難である。
(Effects of the first to third inventions)
In an isoelectric focusing gel, on the premise that a constant linear pH gradient is set with respect to the migration direction, in order to increase the resolution, the gel length is generally increased as a whole. It is possible to do. However, in this case, the migration time becomes long, and it is difficult to reduce the size of the apparatus and achieve high throughput.

一方、等電点電気泳動に供する検体中の多様な蛋白質の等電点が、必ずしも広いpH域に均等に分布しているとは限らない。例えば、これらの蛋白質の等電点が特定のpH域内にある程度集中している場合、ゲル長を全体的に長くすることは、その特定のpH域以外のpH域においてゲル長を無駄に長くしていることになる。   On the other hand, the isoelectric points of various proteins in a sample subjected to isoelectric focusing are not necessarily distributed evenly over a wide pH range. For example, when the isoelectric points of these proteins are concentrated to some extent within a specific pH range, increasing the overall gel length unnecessarily increases the gel length in a pH range other than the specific pH range. Will be.

そのような場合には、特定のpH域のみにおいて他のpH域よりもゲルのpH勾配を緩やかにすると、その特定のpH域に等電点を持つ蛋白質同士の効率的な分離が可能となり、かつ、全体的なゲル長を可及的に短くして泳動装置を小型化し、泳動時間の短縮に基く高スループットを可能とすることができる。   In such a case, if the pH gradient of the gel is made gentler than other pH ranges only in a specific pH range, it becomes possible to efficiently separate proteins having an isoelectric point in the specific pH range, In addition, the overall gel length can be shortened as much as possible to miniaturize the electrophoresis apparatus, and high throughput can be achieved based on shortening the migration time.

本願発明者が行った種々の検討結果によれば、ヒト細胞等の生物細胞から抽出した検体は、pH3〜10の範囲に等電点が分布する多様な蛋白質を含むと共に、pH5〜7のpH域内に等電点を持つ蛋白質が、他のpH域に等電点を持つ蛋白質に比べて、その種類も量も多い。従って、第1発明の等電点電気泳動用ゲルは高分離能を維持したもとで合理的にゲル長が短縮されており、泳動装置の小型化、泳動時間の短縮、高スループットが可能である。   According to the results of various studies conducted by the inventors of the present application, specimens extracted from biological cells such as human cells contain various proteins whose isoelectric points are distributed in the range of pH 3 to 10, and pH 5 to 7 Proteins having an isoelectric point in the region have more types and amounts than proteins having an isoelectric point in other pH regions. Accordingly, the gel for isoelectric focusing of the first invention has a reasonably shortened gel length while maintaining a high resolution, and the size of the electrophoresis apparatus can be reduced, the electrophoresis time can be shortened, and high throughput can be achieved. is there.

第1発明においては、等電点電気泳動用ゲルの泳動方向に対するpH勾配が、前記したように「a<b」及び「b>c」の関係を満たすので、上記の効果を得ることができる。   In the first invention, since the pH gradient with respect to the migration direction of the gel for isoelectric focusing satisfies the relationship of “a <b” and “b> c” as described above, the above effect can be obtained. .

第2発明においては、更に具体的に、ゲルの全長を1とした場合、aが0.15〜0.3の範囲内、bが0.4〜0.7の範囲内、cが0.15〜0.3の範囲内と限定されており、前記第1発明の効果をより好ましく実現することができる。   In the second invention, more specifically, when the total length of the gel is 1, a is in the range of 0.15 to 0.3, b is in the range of 0.4 to 0.7, and c is 0.00. It is limited to the range of 15 to 0.3, and the effect of the first invention can be realized more preferably.

第3発明によれば、上記の第1発明及び第2発明の効果を伴って、等電点電気泳動方法を行うことができる。   According to the third invention, the isoelectric focusing method can be performed with the effects of the first invention and the second invention.

(第4発明の効果)
第3発明の等電点電気泳動方法を2次元電気泳動における1次元目の電気泳動として行うことにより、第3発明の効果が確保されることに加えて、2次元目のSDS−PAGE等に用いる分離ゲルの幅も合理的に短くできるので、2次元電気泳動装置を、高分離能を損なうことなく小型化することができる。
(Effect of the fourth invention)
By performing the isoelectric focusing method of the third invention as the first-dimensional electrophoresis in the two-dimensional electrophoresis, in addition to ensuring the effect of the third invention, the second-dimensional SDS-PAGE, etc. Since the width of the separation gel to be used can be reasonably shortened, the two-dimensional electrophoresis apparatus can be downsized without impairing the high resolution.

(第5発明の効果)
第5発明に規定するように、第3発明又は第4発明に係る等電点電気泳動方法に供する検体としては、第1発明に関して前記した理由から生物細胞の抽出物が好ましい。特に動物細胞の抽出物が好ましく、とりわけヒト細胞の抽出物が好ましい。
(Effect of the fifth invention)
As specified in the fifth invention, the specimen used for the isoelectric focusing method according to the third or fourth invention is preferably a biological cell extract for the reason described above with respect to the first invention. Animal cell extracts are particularly preferable, and human cell extracts are particularly preferable.

第1実施例に係る2次元電気泳動の結果を示す。The result of the two-dimensional electrophoresis which concerns on 1st Example is shown.

第1実施例に対する比較例に係る2次元電気泳動の結果を示す。The result of the two-dimensional electrophoresis which concerns on the comparative example with respect to 1st Example is shown.

次に、本発明を実施するための形態を、その最良の形態を含めて説明する。   Next, modes for carrying out the present invention will be described including the best mode.

〔等電点電気泳動用ゲル〕
本発明の等電点電気泳動用ゲルは、ゲル長が5〜10cmの範囲内であり、更に好ましくは5〜8cmの範囲内である。ゲルのpHの範囲は3〜10にわたる。更に、泳動方向に対するゲルのpH勾配が、pH5までのゲル長をa、pH5〜7のゲル長をb、pH7以上のゲル長をcとした場合に「a<b」及び「b>c」の関係を満たすものであり、より好ましくは、ゲルの全長を1とした場合に、aが0.15〜0.3の範囲内、bが0.4〜0.7の範囲内、cが0.15〜0.3の範囲内であり、更に好ましくは、「a+c≦b」の関係を満たすものである。このようなゲルのpH勾配の設定は、前記した生物細胞の抽出物に含まれる各種蛋白質の等電点の分布に対応したものである。
[Isoelectric focusing gel]
The gel for isoelectric focusing of the present invention has a gel length in the range of 5 to 10 cm, more preferably in the range of 5 to 8 cm. The pH range of the gel ranges from 3-10. Furthermore, the pH gradient of the gel with respect to the migration direction is such that “a <b” and “b> c” when the gel length up to pH 5 is a, the gel length at pH 5-7 is b, and the gel length above pH 7 is c. More preferably, when the total length of the gel is 1, a is in the range of 0.15 to 0.3, b is in the range of 0.4 to 0.7, and c is It is within the range of 0.15 to 0.3, and more preferably satisfies the relationship of “a + c ≦ b”. Such setting of the pH gradient of the gel corresponds to the distribution of isoelectric points of various proteins contained in the aforementioned extract of biological cells.

本発明の等電点電気泳動方法において、泳動に用いられるゲルの種類は特に限定されない。例えば、両性担体(キャリアアンフォライト)をポリアクリルアミドゲルに添加して、電場をかけて所望のpH勾配を形成する手法や、種々の等電点の側鎖を持つアクリルアミド誘導体等のモノマー誘導体を用いてポリアクリルアミドゲル等のゲル作成と同時にpH勾配を固定的に形成する手法(IPG法)により作成したゲルが好ましく用いられる。ゲルの種類は、等電点電気泳動用ゲルとして利用できるものである限りにおいて限定されないが、例えば、ポリアクリルアミドゲルや、アガロースゲル等を好ましく例示することができる。   In the isoelectric focusing method of the present invention, the type of gel used for electrophoresis is not particularly limited. For example, amphoteric carrier (carrier ampholite) is added to polyacrylamide gel, and an electric field is applied to form a desired pH gradient, or monomer derivatives such as acrylamide derivatives having various isoelectric side chains are used. A gel prepared by a method (IPG method) for forming a pH gradient in a fixed manner simultaneously with the preparation of a gel such as a polyacrylamide gel is preferably used. The type of gel is not limited as long as it can be used as an isoelectric focusing gel, and for example, polyacrylamide gel, agarose gel and the like can be preferably exemplified.

蛋白質の合成は細胞内で行われる。そして通常、細胞内と細胞外ではpHを初めとした種々の生化学的環境が異なるため、細胞内にとどまる蛋白質と細胞外に分泌される蛋白質では性質が違う。その原因は、アミノ酸配列であったり翻訳後修飾であったりすると推定される。このように検体中の蛋白質の特質に注目することで、等電点電気泳動用ゲルのpH勾配を合目的的に変更することができる。   Protein synthesis takes place intracellularly. In general, since various biochemical environments such as pH are different between the inside and outside of a cell, the properties of a protein remaining in the cell and a protein secreted outside the cell are different. The cause is presumed to be an amino acid sequence or post-translational modification. Thus, by paying attention to the characteristics of the protein in the specimen, the pH gradient of the gel for isoelectric focusing can be changed in a purposeful manner.

〔等電点電気泳動方法〕
本発明の等電点電気泳動方法において、泳動に用いられる機器は特に限定されない。しかし、小型装置・高分解能・高スループットを実現するためには、ゲル長5〜10cmのゲルの使用に合致した電気泳動用機器が好ましい。
[Isoelectric focusing method]
In the isoelectric focusing method of the present invention, the instrument used for electrophoresis is not particularly limited. However, in order to realize a small apparatus, high resolution, and high throughput, an electrophoresis apparatus that matches the use of a gel having a gel length of 5 to 10 cm is preferable.

等電点電気泳動のプロトコルは特に限定されないが、高分解能、高スループットを実現するためには、電気泳動のプロトコルにも留意する必要がある。検体溶液を調製する段階において、分離・精製の対象とならない荷電性の物質である粗雑物はできるだけ除くことが好ましい。例えば、分離・精製の対象が蛋白質である場合は、リン脂質、ゲノムDNAやRNAを含む核酸、脂肪酸、金属イオン、抽出用の界面活性剤等が粗雑物に含まれる。しかし、検体中に当該粗雑物が少量残存することがあるので、等電点電気泳動において機器に大きな負荷を与えることなく除くことが好ましい。粗雑物はゲル中の移動速度が速い。よって、等電点電気泳動のプロトコルの早い段階に、比較的弱い電圧を1時間半〜3時間半ほどかける定電圧工程を行うことで、粗雑物を機器に負荷をかけることなく除くことができる。仮に、この工程において高い電圧を使用すると、粗雑物が急速に電極側に移動し、強い電流が流れることになるので機器に負荷がかかるとともに、蛋白質ごとの分離が悪くなる(ゲル中のスポットの詰まりが生じる)おそれがある。   The protocol for isoelectric focusing is not particularly limited, but it is necessary to pay attention to the electrophoresis protocol in order to achieve high resolution and high throughput. In the stage of preparing the specimen solution, it is preferable to remove as much as possible the coarse substances which are charged substances that are not subject to separation / purification. For example, when the target of separation / purification is a protein, phospholipids, nucleic acids including genomic DNA and RNA, fatty acids, metal ions, surfactants for extraction, and the like are included in the rough matter. However, since a small amount of the rough matter may remain in the sample, it is preferable to remove the sample without applying a large load to the instrument in isoelectric focusing. The coarse substance has a high moving speed in the gel. Therefore, by performing a constant voltage process in which a relatively weak voltage is applied for about one and a half hours to three and a half hours at an early stage of the isoelectric focusing protocol, it is possible to remove coarse substances without applying a load to the apparatus. . If a high voltage is used in this step, the coarse substance moves rapidly to the electrode side, and a strong current flows, so the load is applied to the instrument and the separation of each protein becomes worse (the spots in the gel There is a risk of clogging).

等電点電気泳動では、検体を含むゲル1本につき100V〜600Vの範囲内の値の定電圧の印加による定電圧工程を行い、泳動30分間あたりの電流変化幅が5μAの範囲内となった後に前記定電圧から電圧を上昇させる電圧上昇工程を始め、当該電圧上昇工程の最終電圧が3000V〜6000Vの範囲内とすることが好ましい。また、分離対象物質の等電点がずれないように、ゲルの温度を一定に保つことが好ましい。   In isoelectric focusing, a constant voltage step was performed by applying a constant voltage with a value in the range of 100 V to 600 V per gel containing the specimen, and the current change width per 30 minutes of electrophoresis was within the range of 5 μA. It is preferable that a voltage raising step for raising the voltage from the constant voltage later is started, and the final voltage in the voltage raising step is within a range of 3000V to 6000V. Further, it is preferable to keep the gel temperature constant so that the isoelectric point of the substance to be separated does not shift.

上記の実施形態により、以下の効果を期待できる。即ち、電圧が上昇し始める前に100V〜600Vという低い定電圧で定電圧工程を行うことで、正に荷電した粗雑物は陰極に素早く移動させ、負に荷電した粗雑物は陽極に素早く移動させる。このことにより、機器や検体中の分離対象物質に負荷をかけずにゲルから粗雑物を除くことができる。又、単位時間当たりの電流変化の測定により粗雑物の除去を判断できるので、不十分な定電圧工程となることはなく、かつ、長すぎる定電圧工程となることもない。更に、最終電圧を3000V〜6000Vという高い値に設定することで、より短い泳動時間で高いVhr値を得ることができ、等電点電気泳動の高スループットを実現できる。   According to the above embodiment, the following effects can be expected. That is, the positively charged rough matter is quickly moved to the cathode, and the negatively charged rough matter is quickly moved to the anode by performing the constant voltage process at a low constant voltage of 100V to 600V before the voltage starts to rise. . As a result, it is possible to remove coarse substances from the gel without imposing a load on the separation target substance in the device or specimen. Further, since it is possible to determine the removal of the rough matter by measuring the current change per unit time, the constant voltage process is not insufficient and the constant voltage process is not too long. Furthermore, by setting the final voltage to a high value of 3000 V to 6000 V, a high Vhr value can be obtained in a shorter electrophoresis time, and high throughput of isoelectric focusing can be realized.

電圧上昇工程における電圧上昇の態様は特に限定されないが、電圧の上昇を徐々に行うことが好ましい。具体的には、電気泳動装置の電流値の上限をゲル1本につき40〜80μAの範囲内の値に設定する。そして、ゲル温度が一定に保たれるようにして、最終電圧まで電圧を上昇させることが好ましい。
〔2次元電気泳動〕
本発明の等電点電気泳動方法は、2次元電気泳動における1次元目の電気泳動として行うこともできる。この場合、2次元目の電気泳動は、必ずしも限定されないが、SDS−PAGEであることが好ましい。1次元目の等電点電気泳動が小型装置で行われ、高分解能を有し、高スループットを実現している場合、2次元目の電気泳動も装置を小型化でき、高分解能、高スループットを実現できる。よって、本発明は単独に行う等電点電気泳動のみならず、2次元電気泳動における1次元目の電気泳動にも適用できる。2次元電気泳動を行う場合、等電点電気泳動に続いて、好ましくはSDS−PAGEが行われるので、以下、2次元目のSDS−PAGEについて説明する。
〔2次元目のSDS−PAGE〕
1次元目電気泳動の完了後、その1次元目電気泳動ゲルを2次元目電気泳動用ゲル上へ設置するプロセスでは、接着用(封入用)アガロースとしてゲル化温度が35〜40℃である高融点アガロースを用い、かつ、この接着用アガロースを予め2次元目電気泳動用ゲル上へ流し込んだ後に前記1次元目電気泳動ゲルを設置することが好ましい。
The mode of voltage increase in the voltage increase step is not particularly limited, but it is preferable to gradually increase the voltage. Specifically, the upper limit of the current value of the electrophoresis apparatus is set to a value within the range of 40 to 80 μA per gel. Then, it is preferable to increase the voltage to the final voltage so that the gel temperature is kept constant.
[Two-dimensional electrophoresis]
The isoelectric focusing method of the present invention can also be carried out as first-dimensional electrophoresis in two-dimensional electrophoresis. In this case, the second-dimensional electrophoresis is not necessarily limited, but SDS-PAGE is preferable. If the first-dimension isoelectric focusing is performed with a small device, and has high resolution and high throughput, the second-dimension electrophoresis can also reduce the size of the device and achieve high resolution and high throughput. realizable. Therefore, the present invention can be applied not only to isoelectric focusing performed independently but also to the first-dimensional electrophoresis in two-dimensional electrophoresis. When performing two-dimensional electrophoresis, SDS-PAGE is preferably performed following isoelectric focusing, so the second-dimensional SDS-PAGE will be described below.
[Second-dimensional SDS-PAGE]
In the process of setting the first-dimensional electrophoresis gel on the second-dimensional electrophoresis gel after the completion of the first-dimensional electrophoresis, the gelation temperature is 35 to 40 ° C. as an agarose for adhesion (encapsulation). It is preferable to use a melting point agarose and install the first-dimensional electrophoresis gel after pouring the adhesion agarose onto the second-dimensional electrophoresis gel in advance.

上記の実施形態によって、2次元目電気泳動中に発生する熱により接着用アガロースのゲル化が弱くなる(ゲルがゆるくなる)ことが防止される。従って、そのような不具合に起因する2次元目電気泳動での検出スポットの広がり、検出限界の上昇、検出蛋白質の減少等の不具合を抑制できる。又、接着用アガロースの先入れにより、高融点アガロースが2次元目電気泳動用ゲルと接触して迅速に冷却されるため、SDS平衡化緩衝液に尿素を加えていた場合でも、その熱分解が起こりにくい。   According to the above embodiment, the gelation of the agarose for adhesion is prevented from being weakened (the gel is loosened) by the heat generated during the second-dimensional electrophoresis. Accordingly, it is possible to suppress problems such as detection spot spread, detection limit increase, and detection protein decrease due to such problems in the second-dimensional electrophoresis. In addition, since the high melting point agarose comes into contact with the gel for the second dimensional electrophoresis by pre-inserting the adhesive agarose, it is rapidly cooled, so even when urea is added to the SDS equilibration buffer, the thermal decomposition is not caused. Hard to happen.

SDS−PAGEを行う機器は特に限定されない。また、SDS−PAGEを行うPAG(ポリアクリルアミドゲル)に関し、モノマーであるアクリルアミドと架橋剤の総濃度(T%)や、アクリルアミドと架橋剤の総重量中で架橋剤が占める割合(C%)等は特に限定されない。
〔2次元目電気泳動用ゲル基端部のゲル濃度〕
1次元目電気泳動用ゲルのゲル長が短く設定されている場合には、2次元目として行うSDS−PAGEでは、その電気泳動用ゲルにおける泳動方向基端部のゲル濃度が3〜6%程度の低濃度であることが好ましい。ゲル濃度とは、直接的には当該ゲルの重合反応時のモノマー濃度を意味するが、重合反応時のモノマー濃度が高い程ゲルの網目構造は密になるので、実質的にはゲルの網目構造の密度を意味する。
The apparatus which performs SDS-PAGE is not specifically limited. Moreover, regarding PAG (polyacrylamide gel) for performing SDS-PAGE, the total concentration (T%) of acrylamide as a monomer and a crosslinking agent, the ratio of the crosslinking agent in the total weight of acrylamide and the crosslinking agent (C%), etc. Is not particularly limited.
[Gel concentration at the base end of the gel for the second dimensional electrophoresis]
When the gel length of the gel for the first dimension electrophoresis is set short, SDS-PAGE performed as the second dimension has a gel concentration of about 3 to 6% at the proximal end in the electrophoresis direction in the electrophoresis gel. It is preferable that the concentration is low. The gel concentration directly means the monomer concentration at the time of the polymerization reaction of the gel. However, the higher the monomer concentration at the time of the polymerization reaction, the denser the network structure of the gel. Means density.

上記の実施形態によれば、次の効果を期待できる。即ち、1次元目等電点電気泳動用ゲルのゲル長を、例えば5〜10cm程度と短くすると、1次元目の電気泳動時間を短縮してハイスループット化等が可能となる一方、蛋白質のスポットの相互間隔がコンパクトになり、スポット中の蛋白質濃度も高くなる。これに対して2次元目電気泳動用ゲルの泳動方向基端部のゲル濃度が高い(ゲルの網目が密である)と、スポット中に濃縮された蛋白質の2次元目電気泳動用ゲルへの移行に対して高いバリア性を示し、蛋白質の移行漏れが顕著になったり、スポットが泳動方向に対して横向きにブロードしてしまう。上記の実施形態により、このような不具合が解消される。   According to the above embodiment, the following effects can be expected. That is, if the gel length of the first-dimension isoelectric focusing gel is shortened to about 5 to 10 cm, for example, the first-dimension electrophoresis time can be shortened and high throughput can be achieved. The distance between each other becomes compact, and the protein concentration in the spot increases. On the other hand, if the gel concentration at the base end of the migration direction of the second-dimensional electrophoresis gel is high (the gel network is dense), the protein concentrated in the spot is transferred to the second-dimensional electrophoresis gel. High barrier property against migration, protein migration leakage becomes remarkable, and spots broaden laterally with respect to the migration direction. Such a problem is solved by the above embodiment.

SDS−PAGEは、検体に界面活性剤であるSDS(ドデシル硫酸ナトリウム)を加え、検体に含まれる蛋白質の高次構造を解くと共に、蛋白質のアミノ酸残基の荷電もSDSによって相対的に減少させたもとで、分子篩い効果を利用して電気泳動を行うものである。   In SDS-PAGE, SDS (sodium dodecyl sulfate), which is a surfactant, is added to a sample to unravel the higher-order structure of the protein contained in the sample, and the charge of amino acid residues of the protein is also relatively reduced by SDS. Thus, electrophoresis is performed using the molecular sieving effect.

〔検体の調製〕
本発明である等電点電気泳動に適用される検体は特に限定されないが、動物、植物、微生物由来の抽出物や、化学、生化学的に合成された化合物、蛋白質、核酸等を含む種々の検体が適用できる。
[Sample preparation]
The specimen applied to the isoelectric focusing of the present invention is not particularly limited, but various samples including extracts derived from animals, plants, microorganisms, chemically and biochemically synthesized compounds, proteins, nucleic acids and the like. Samples can be applied.

前記した第3発明又は第4発明の等電点電気泳動あるいは2次元電気泳動において、検体が生物細胞、特に動物細胞、とりわけヒト細胞の抽出物であることが好ましい
等電点電気泳動においては、検体中の蛋白質等の分離対象物質が有する等電点を利用して分離を行う。正に荷電した分離対象物質は陰極側に移動し、他方、負に荷電した分離対象物質は陽極側に移動する。そして、等電点(pI)と等しいpHのゲルの位置で分離対象物質の正味の電荷がゼロとなり、泳動を止める。よって泳動開始後は荷電状態の化合物が移動するので、電流が流れることとなる。
In the isoelectric focusing or two-dimensional electrophoresis of the third invention or the fourth invention described above, it is preferable that the specimen is an extract of a biological cell, particularly an animal cell, particularly a human cell. In isoelectric focusing, Separation is performed using the isoelectric point of the substance to be separated such as protein in the sample. The positively charged separation target substance moves to the cathode side, while the negatively charged separation target substance moves to the anode side. Then, at the position of the gel having a pH equal to the isoelectric point (pI), the net charge of the substance to be separated becomes zero, and the migration is stopped. Therefore, since the charged compound moves after the start of electrophoresis, a current flows.

泳動用ゲルにおいては分子量により泳動の速度が異なるが、ナトリウムイオン等の分子量の小さい物質は篩にかからないので素早くゲル中を移動する。また、ゲノムDNAは分子量が大きいが、大きく負に荷電しているため、陽極に素早く移動する。よって、検体の調製においては、機器への負荷を軽減し、また、ゲル中のスポットの詰まりを抑制するために、分離・精製の対象とならない粗雑物を除くことが好ましい。そのために、透析、沈殿、遠心分離、クロマトグラフィー、親水−疎水相互作用を利用した分画等、種々の前処理を適用することができる。蛋白質が分離・精製の対象となる場合は、酸による沈殿及び有機溶媒による沈殿を好ましく例示できる。TCA(トリクロロ酢酸)による沈殿及びアセトンによる沈殿を更に好ましい手法として例示できる。   In the gel for electrophoresis, the speed of electrophoresis varies depending on the molecular weight, but a substance having a low molecular weight such as sodium ion does not touch the sieve, so it moves quickly in the gel. In addition, genomic DNA has a large molecular weight, but since it is highly negatively charged, it moves quickly to the anode. Therefore, in the preparation of the specimen, it is preferable to remove coarse substances that are not subject to separation / purification in order to reduce the load on the instrument and suppress clogging of spots in the gel. For this purpose, various pretreatments such as dialysis, precipitation, centrifugation, chromatography, and fractionation utilizing hydrophilic-hydrophobic interaction can be applied. When proteins are to be separated and purified, precipitation with an acid and precipitation with an organic solvent can be preferably exemplified. Precipitation with TCA (trichloroacetic acid) and precipitation with acetone can be exemplified as further preferred methods.

分離・精製に供される検体は、等電点電気泳動に使用するゲルの膨潤用の緩衝液に溶解して膨潤用検体溶液とし、ゲルの膨潤とともにゲル中に検体を取り込ませることができる。また、検体を適当な溶液に溶解し、膨潤後のゲルに適用することもできる。   A specimen to be subjected to separation / purification can be dissolved in a swelling buffer solution for gel used for isoelectric focusing, to obtain a swelling specimen solution, and the specimen can be taken into the gel as the gel swells. Alternatively, the specimen can be dissolved in an appropriate solution and applied to the gel after swelling.

このような等電点電気泳動用膨潤ゲルの作成においては、ゲル全体に膨潤用検体溶液を適用した後、当該ゲルにオイルを流し込むことが行われるが、その際、従来のようにゲル表面に油性成分を流し込むのではなく、ゲルの長手方向の側端部から、とりわけゲルの長手方向の両側の側端部から同時に、油性成分を流し込むという方法が特に好ましい。油性成分としては、シリコンオイル又はミネラルオイル、とりわけ前者が好ましい。   In the preparation of such a swelling gel for isoelectric focusing, oil is poured into the gel after applying the swelling sample solution to the entire gel. A method in which the oil component is poured from the side end portions in the longitudinal direction of the gel, particularly from the side end portions on both sides in the longitudinal direction of the gel, instead of pouring the oil component is particularly preferable. As the oil component, silicone oil or mineral oil, particularly the former is preferred.

上記の実施形態により、油性成分はゲルの側端部から中央部に向かって広がりゲルを覆う。油性成分がゲルを覆った状態でしばらく放置すると、検体は効率的にゲルに取り込まれる。その際、ゲルの側端部から中央部に向かって広がる油性成分によって膨潤用検体溶液がはじかれるため、膨潤用検体溶液のゲルへの染み込みが促進され、検体のゲル全体への染み込みが迅速かつ良好に完了する。従来のようにゲル表面に油性成分を流し込んだ場合、油性成分がゲルから広がるので、その流れに押されてはじかれた、染み込みきれていない膨潤用検体溶液の一部がゲルから拡散してしまい、検出できる蛋白質等の減少及びゲルの膨潤不足につながっていたと考えられるが、上記の実施形態によれば、このような検体成分の脱落を生じない。   According to the above embodiment, the oily component spreads from the side end portion of the gel toward the center portion and covers the gel. If the oil component covers the gel for a while, the specimen is efficiently taken into the gel. At this time, since the swelling sample solution is repelled by the oily component spreading from the side end portion of the gel toward the center portion, the penetration of the swelling sample solution into the gel is promoted, and the penetration of the sample into the entire gel is quick and easy. Complete well. When an oily component is poured into the gel surface as in the past, the oily component spreads from the gel, so that part of the unstained sample solution for swelling that is pushed by the flow diffuses from the gel. Although it is thought that this has led to a decrease in detectable proteins and the like and insufficient swelling of the gel, according to the above-described embodiment, such drop-out of the analyte component does not occur.

以下に本発明の実施例と比較例を説明する。本発明の技術的範囲は、これらの実施例、比較例によって限定されない。   Examples of the present invention and comparative examples will be described below. The technical scope of the present invention is not limited by these examples and comparative examples.

〔第1実施例〕
(蛋白質の抽出)
ヒトケラチノサイトからなる再構成3次元培養皮膚(株式会社ジャパン・ティッシュ・エンジニアリング製の商品名LabCyte EPI-MODEL 12)の培養物1枚(約1cm)を、蛋白質抽出液であるmammalian cell lysis kit;MCL1(SIGMA−ALDRICH社製)500μlに浸漬し、4℃で2時間、voltexを使用して振とう破砕した。この振とう破砕の後、蛋白質抽出液を回収した。上記のmammalian cell lysis kit;MCL1の組成は下記の通りである。
50mM Tris−HCl pH7.5
1mM EDTA
250mM NaCl
0.1%(w/v) SDS
0.5%(w/v) Deoxycholic acid sodium salt
1%(v/v) Igepal CA-630(SIGMA−ALDRICH社製の界面活性剤(Octylphenoxy)polyethoxyethanol)
適量のProtease Inhibitor
その後、2D-CleanUPキット〔GEヘルスケアバイオサイエンス株式会社(以下、GE社と省略する)製〕を使用して2回の沈殿操作を行った。第1回目の沈殿操作は、回収した上記蛋白質抽出液にTCAを加えて沈殿を行い、当該操作で生じた沈殿(TCA沈殿)を回収した。第2回目の沈殿操作は、回収した前記TCA沈殿にアセトンを加えて沈殿を行い、当該操作で得られた沈殿(検体)を回収した。回収した当該検体は全量500μgであった。
[First embodiment]
(Extraction of protein)
A mammalian cell lysis kit, which is a protein extract, from one culture (about 1 cm 2 ) of reconstituted three-dimensional cultured skin consisting of human keratinocytes (trade name LabCyte EPI-MODEL 12 manufactured by Japan Tissue Engineering Co., Ltd.); It was immersed in 500 μl of MCL1 (manufactured by SIGMA-ALDRICH) and crushed by shaking using voltex at 4 ° C. for 2 hours. After this shaking crushing, the protein extract was recovered. The composition of the above mammalian cell lysis kit; MCL1 is as follows.
50 mM Tris-HCl pH 7.5
1 mM EDTA
250 mM NaCl
0.1% (w / v) SDS
0.5% (w / v) Deoxycholic acid sodium salt
1% (v / v) Igepal CA-630 (surfactant (Octylphenoxy) polyethoxyethanol manufactured by SIGMA-ALDRICH)
Appropriate amount of Protease Inhibitor
Then, precipitation operation was performed twice using a 2D-CleanUP kit [manufactured by GE Healthcare Bioscience Co., Ltd. (hereinafter abbreviated as GE)]. In the first precipitation operation, TCA was added to the recovered protein extract to perform precipitation, and the precipitate generated by the operation (TCA precipitation) was recovered. In the second precipitation operation, acetone was added to the recovered TCA precipitate to perform precipitation, and the precipitate (specimen) obtained by the operation was recovered. The collected sample was a total amount of 500 μg.

(検体溶液の調製)
得られた検体の一部30μgを、1次元目等電点電気泳動用ゲルの膨潤用緩衝液であるDeStreak Rehydration Solution(GE社製)130μlに溶解し、1次元目等電点電気泳動用の検体溶液(膨潤用検体溶液)とした。DeStreak Rehydration Solutionの組成は以下の通りである。
7M Thiourea
2M Urea
4%(w/v) CHAPS:
3-[(3-Cholamidopropyl)dimethylammonio]propanesulfonate
0.5%(v/v) IPGbuffer;GE社製
適量のDeStreakReagent;GE社製
適量のBPB(ブロモフェノールブルー)
(1次元目等電点電気泳動用ゲルの調製)
前記したIPG法により、本実施例で用いる1次元目の等電点電気泳動用ゲル(ポリアクリルアミドゲル)を調製した。このゲルは長さが7cmで径が約0.3cmの棒状ゲルであり、T=4%、C=3%であって、次のpH勾配上の特徴を備えている。
pHの範囲:3〜10
pH3〜5のゲル長:1.7cm
pH5〜7のゲル長:3.6cm
pH7〜10のゲル長:1.7cm
(1次元目等電点電気泳動用ゲルへの検体の浸透)
上記の1次元目等電点電気泳動用ゲルを前記した1次元目等電点電気泳動用の検体溶液(膨潤用検体溶液)130μlに浸漬した後、当該ゲルの両端部側からシリコンオイルを流し込んだ。両端部側から流し込んだシリコンオイルは、ゲルの内側に向かって広がった。シリコンオイルがゲルを覆った状態で、一晩、室温にて検体溶液をゲルに浸透させた。その後シリコンオイルは廃棄した。
(Preparation of sample solution)
A 30 μg portion of the obtained specimen was dissolved in 130 μl of DeStreak Rehydration Solution (GE), which is a swelling buffer for the gel for first-dimensional isoelectric focusing, and used for first-dimensional isoelectric focusing. A sample solution (a sample solution for swelling) was used. The composition of DeStreak Rehydration Solution is as follows.
7M Thiorea
2M Urea
4% (w / v) CHAPS:
3-[(3-Cholamidopropyl) dimethylammonio] propanesulfonate
0.5% (v / v) IPGbuffer; appropriate amount of DeStreak Reagent manufactured by GE; appropriate amount of BPB (bromophenol blue) manufactured by GE
(Preparation of gel for 1D isoelectric focusing)
A first-dimensional isoelectric focusing gel (polyacrylamide gel) used in this example was prepared by the IPG method described above. This gel is a rod-like gel having a length of 7 cm and a diameter of about 0.3 cm, T = 4%, C = 3%, and has the following pH gradient characteristics.
pH range: 3-10
Gel length at pH 3-5: 1.7 cm
Gel length at pH 5-7: 3.6 cm
Gel length at pH 7-10: 1.7 cm
(Penetration of specimen into gel for 1D isoelectric focusing)
After immersing the above-mentioned first-dimensional isoelectric focusing gel in 130 μl of the first-dimensional isoelectric focusing sample solution (swelling sample solution), silicon oil is poured from both ends of the gel. It is. Silicon oil poured from both ends spread toward the inside of the gel. With the silicone oil covering the gel, the specimen solution was allowed to penetrate the gel overnight at room temperature. After that, the silicon oil was discarded.

(一次元目の等電点電気泳動)
本実施例においては、電気泳動機器としてGE社製のIPGphorと Cup Loading Manifold Light Kitを使用した。
(First-dimensional isoelectric focusing)
In this example, IPGphor manufactured by GE and Cup Loading Manifold Light Kit were used as the electrophoresis apparatus.

検体を浸透させたゲルの両端に水で湿らせた濾紙を設け、電極はゲルとの間に当該濾紙を挟んだ状態でセットした。その後、ゲル及び濾紙の全体をシリコンオイルで浸漬した。   A filter paper moistened with water was provided at both ends of the gel infiltrated with the specimen, and the electrode was set with the filter paper sandwiched between the gel and the gel. Thereafter, the entire gel and filter paper were immersed in silicon oil.

等電点電気泳動機器の電流値の上限をゲル1本当たり75μAに設定し、電圧プログラムを、(1)300V定電圧で750Vhrまで定電圧工程を行い(当該工程終了前の泳動30分間の電流変化幅が5μAであった)、(2)300Vhrかけて1000Vまで徐々に電圧を上昇させ、(3)更に4500Vhrかけて5000Vまで徐々に電圧を上昇させ、(4)その後5000V定電圧で総Vhrが12000になるまで、1次元目の等電点電気泳動を行った。   The upper limit of the current value of the isoelectric focusing device is set to 75 μA per gel, and the voltage program is set to (1) a constant voltage step to 750 Vhr at a constant voltage of 300 V (current for 30 minutes before the end of the step (2) The voltage was gradually increased to 1000V over 300Vhr), (3) the voltage was gradually increased to 5000V over 4500Vhr, and (4) the total Vhr at 5000V constant voltage thereafter. The first-dimension isoelectric focusing was performed until the value reached 12000.

(等電点電気泳動ゲルのSDS平衡化)
上記の1次元目の等電点電気泳動を行った後、等電点電気泳動機器からゲルを取り外し、還元剤を含む平衡化緩衝液に当該ゲルを浸漬して、15分・室温にて振とうした。上記還元剤を含む平衡化緩衝液の組成は以下の通りである。
100mM Tris−HCl(pH8.0)
6M Urea
30%(v/v) Glycerol
2%(w/v) SDS
1%(w/v) DTT
次に、上記還元剤を含む平衡化緩衝液を除き、ゲルをアルキル化剤を含む平衡化緩衝液に浸漬して、15分・室温にて振とうし、SDS平衡化したゲルを得た。上記アルキル化剤を含む平衡化緩衝液の組成は以下の通りである。
100mM Tris−HCl(pH8.0)
6M Urea
30%(v/v) Glycerol
2%(w/v) SDS
2.5%(w/v) Iodoacetamide
(2次元目のSDS−PAGE)
本実施例においては、電気泳動機器としてInvitrogen社製のXCell SureLock Mini-Cellを使用した。2次元目泳動用ゲルはInvitrogen社製NuPAGE 4-12% Bis-Tris Gelsを使用した。また、以下の組成の泳動用緩衝液を調製し、使用した。
50mM MOPS
50mM Tris base
0.1%(w/v) SDS
1mM EDTA
又、本実施例においては泳動用緩衝液に0.5%(w/v)のアガロースS(ニッポンジーン社製:融解温度≦90℃、ゲル化温度37℃〜39℃のいわゆる高融点アガロース)と適量のBPB(ブロモフェノールブルー)を溶解させた接着用アガロース溶液を使用した。
(SDS equilibration of isoelectric focusing gel)
After performing the first-dimension isoelectric focusing, remove the gel from the isoelectric focusing device, immerse the gel in an equilibration buffer containing a reducing agent, and shake at room temperature for 15 minutes. That ’s it. The composition of the equilibration buffer containing the reducing agent is as follows.
100 mM Tris-HCl (pH 8.0)
6M Urea
30% (v / v) Glycerol
2% (w / v) SDS
1% (w / v) DTT
Next, the equilibration buffer containing the reducing agent was removed, the gel was immersed in an equilibration buffer containing an alkylating agent, and shaken at room temperature for 15 minutes to obtain an SDS equilibrated gel. The composition of the equilibration buffer containing the alkylating agent is as follows.
100 mM Tris-HCl (pH 8.0)
6M Urea
30% (v / v) Glycerol
2% (w / v) SDS
2.5% (w / v) Iodoacetamide
(Second-dimensional SDS-PAGE)
In this example, XCell SureLock Mini-Cell manufactured by Invitrogen was used as an electrophoresis apparatus. As the gel for the second dimension electrophoresis, NuPAGE 4-12% Bis-Tris Gels manufactured by Invitrogen was used. In addition, an electrophoresis buffer having the following composition was prepared and used.
50 mM MOPS
50 mM Tris base
0.1% (w / v) SDS
1 mM EDTA
In this example, 0.5% (w / v) agarose S (manufactured by Nippon Gene: melting temperature ≦ 90 ° C., so-called high melting point agarose having a gelation temperature of 37 ° C. to 39 ° C.) is used in the electrophoresis buffer. An agarose solution for adhesion in which an appropriate amount of BPB (bromophenol blue) was dissolved was used.

SDS−PAGEのwell中を十分に上記泳動用緩衝液で洗浄した後、当該洗浄に用いた緩衝液を取り除いた。次に、wellの中に充分に溶解させた接着用アガロース溶液を添加した。次に、SDS平衡化したゲルをアガロース中に浸漬させ、ピンセットでSDS平衡化したゲルと2次元目泳動用ゲルを密着させた。当該両ゲルが密着した状態でアガロースが充分に固まったのを確認し、200V定電圧で約45分間泳動を行った。   After the SDS-PAGE well was thoroughly washed with the above-mentioned electrophoresis buffer, the buffer used for the washing was removed. Next, an agarose solution for adhesion sufficiently dissolved in the well was added. Next, the SDS-equilibrated gel was immersed in agarose, and the SDS-equilibrated gel and tweezers gel were brought into close contact with each other. After confirming that the agarose was sufficiently hardened with the two gels in close contact, electrophoresis was performed at a constant voltage of 200 V for about 45 minutes.

(ゲルの蛍光染色)
SyproRuby(Invitrogen社製)を用いてゲルの蛍光染色を行った。
(Fluorescent staining of gel)
The gel was fluorescently stained using SyproRuby (Invitrogen).

まず、使用するタッパーを事前に98%(v/v)のエタノールで十分に洗浄した。SDS−PAGE機器から泳動後の2次元目泳動用ゲルを取り外して、洗浄したタッパーにおき、50%(v/v)メタノール及び7%(v/v)酢酸含有水溶液に30分間浸漬する処理を2回行った。その後、当該水溶液を水に置換し、10分間浸漬した。次に、2次元目泳動用ゲルを40ccのSyproRuby(Invitrogen社製)に浸漬し、室温で一晩振とうした。次に、SyproRubyを除き、2次元目泳動用ゲルを水で洗浄した後、10%(v/v)メタノール及び7%(v/v)酢酸含有水溶液で30分間振とうした。更に当該水溶液を水に置換し、30分以上振とうした。   First, the tapper to be used was thoroughly washed with 98% (v / v) ethanol in advance. Remove the gel for the second dimensional electrophoresis after electrophoresis from the SDS-PAGE instrument, place it on a washed tapper, and immerse it in an aqueous solution containing 50% (v / v) methanol and 7% (v / v) acetic acid for 30 minutes. We went twice. Thereafter, the aqueous solution was replaced with water and immersed for 10 minutes. Next, the 2D gel was immersed in 40 cc SyproRuby (Invitrogen) and shaken overnight at room temperature. Next, SyproRuby was removed, and the gel for 2D electrophoresis was washed with water, and then shaken with an aqueous solution containing 10% (v / v) methanol and 7% (v / v) acetic acid for 30 minutes. Further, the aqueous solution was replaced with water and shaken for 30 minutes or more.

(解析)
上記一連の処理を施した2次元目泳動用ゲルをTyphoon9400(GE社製)を使用した蛍光イメージのスキャンに供した。2次元電気泳動の結果を図1に示す。図1の上端には1次元目に用いた等電点電気泳動用ゲルのpH勾配を目盛りによって示し、図1の左端にはマーカーの分子量(KDa)を示す。
(analysis)
The gel for two-dimensional eye electrophoresis subjected to the above-described series of treatments was subjected to fluorescence image scanning using Typhoon 9400 (manufactured by GE). The result of two-dimensional electrophoresis is shown in FIG. In the upper end of FIG. 1, the pH gradient of the isoelectric focusing gel used in the first dimension is shown by a scale, and the molecular weight (KDa) of the marker is shown in the left end of FIG.

〔第2実施例〕
第2実施例では、2D−DIGEを行った。第2実施例においては、第1実施例に記載した手順の内、「(検体溶液の調製)」の項の手順を下記「(2D−DIGEにおける検体溶液の調製)」の項の手順に変更し、又、「(ゲルの蛍光染色)」のプロセスを省略した以外は、第1実施例と同様の手順の操作を行った。
[Second Embodiment]
In the second example, 2D-DIGE was performed. In the second embodiment, among the procedures described in the first embodiment, the procedure in the section “(Preparation of specimen solution)” is changed to the procedure in the section “(Preparation of specimen solution in 2D-DIGE)” below. In addition, the same procedure as in the first example was performed except that the process of “(fluorescence staining of gel)” was omitted.

(2D−DIGEにおける検体溶液の調製)
得られた検体の全量を下記の組成の溶液100μlに溶解した。
30mM Tris−HCl(pH8.5)
2M ThioUrea
7M Urea
4%(w/v) CHAPS
溶解したサンプル20μgに対しCydye(GE社製)160pmolを添加し、その溶液の入った容器を氷上で30分間静置した。その後10mMリジン水溶液を0.5μl添加して更に10分間、容器を氷上で静置した。このような処理を行った後、溶液を等電点電気泳動に適した量である130μlまでDeStreak Rehydration Solutionでメスアップした。メスアップ後充分に攪拌し、氷上で10分以上静置して、1次元目の等電点電気泳動用の検体溶液とした。
(Preparation of specimen solution in 2D-DIGE)
The total amount of the obtained specimen was dissolved in 100 μl of a solution having the following composition.
30 mM Tris-HCl (pH 8.5)
2M ThioUrea
7M Urea
4% (w / v) CHAPS
160 pmol of Cydye (manufactured by GE) was added to 20 μg of the dissolved sample, and the container containing the solution was allowed to stand on ice for 30 minutes. Thereafter, 0.5 μl of a 10 mM lysine aqueous solution was added, and the container was allowed to stand on ice for an additional 10 minutes. After such treatment, the solution was diluted with DeStreak Rehydration Solution to a volume of 130 μl suitable for isoelectric focusing. After the measurement, the sample was sufficiently stirred and allowed to stand on ice for 10 minutes or more to prepare a sample solution for first-dimension isoelectric focusing.

〔第1実施例に対する比較例〕
長さ7cmの1次元目等電点電気泳動用ゲルを、前記第1実施例の「(1次元目等電点電気泳動用ゲルの調製)」の項と同じ手法により調製した。但しこのゲルは、pH勾配が下記のように全体としてほぼ直線的である点が、第1実施例の場合とは異なる。
pHの範囲:3〜10
pH3〜5のゲル長:2.1cm
pH5〜7のゲル長:2.45cm
pH7〜11のゲル長:2.45cm
本比較例では、1次元目等電点電気泳動用ゲルとして上記のゲルを用いた点以外は、検体の調製からゲルの蛍光染色及び解析に至る全てのステップを第1実施例と全く同様に行った。
[Comparative example to the first embodiment]
A 7-cm long 1-dimensional isoelectric focusing gel was prepared in the same manner as in the section “(Preparation of 1-dimensional isoelectric focusing gel)” in the first example. However, this gel differs from the first embodiment in that the pH gradient is almost linear as a whole as described below.
pH range: 3-10
Gel length at pH 3-5: 2.1 cm
Gel length at pH 5-7: 2.45 cm
Gel length at pH 7-11: 2.45 cm
In this comparative example, all steps from the preparation of the specimen to the fluorescent staining and analysis of the gel are the same as in the first embodiment, except that the gel is used as the first-dimensional isoelectric focusing gel. went.

本比較例における2次元電気泳動の結果を図2に示す。図2の上端には1次元目に用いた等電点電気泳動用ゲルのpH勾配を目盛りによって示し、図2の左端にはマーカーの分子量(KDa)を示す。   The results of two-dimensional electrophoresis in this comparative example are shown in FIG. At the upper end of FIG. 2, the pH gradient of the isoelectric focusing gel used in the first dimension is shown by a scale, and the molecular weight (KDa) of the marker is shown at the left end of FIG.

図2を図1と対比すると、以下の点を認めることができる。
(1)全体として図2に見られるpH5〜7領域(酸性〜中性領域)のスポットの詰まりが、図1では良好に分離されている。例えば、70KDa前後の分子量でpH5〜5.5辺りの領域において、図1ではスポットの細かな分離が見られるが、図2ではスポットの分離が不十分である。又、45KDa前後の分子量でpH5.5辺りの領域においても、同様の指摘をすることが可能である。
(2)全体として図2ではpH7〜10領域(中性〜塩基性領域)での過剰な分離能が認められ、このpH領域においては図1に示される程度の分離能で必要にして十分である。この点は、具体的には、例えば45KDa〜70KDaの分子量でpH7〜10辺りの領域、又は15KDa〜30KDaの分子量でpH7〜10辺りの領域における図1と図2とのスポット分離能の対比から確認できる。
When FIG. 2 is compared with FIG. 1, the following points can be recognized.
(1) The clogging of spots in the pH 5 to 7 region (acid to neutral region) seen in FIG. 2 as a whole is well separated in FIG. For example, in the region where the molecular weight is around 70 KDa and the pH is around 5 to 5.5, fine spot separation is seen in FIG. 1, but spot separation is insufficient in FIG. The same indication can be made in the region of a molecular weight of around 45 KDa and a pH of around 5.5.
(2) As a whole, in FIG. 2, excessive separation ability is recognized in the pH 7 to 10 region (neutral to basic region), and in this pH region, the separation ability of the degree shown in FIG. is there. Specifically, for example, this is based on the comparison of the spot separation ability of FIG. 1 and FIG. I can confirm.

本発明によって、高分離能を損なわずにゲル長を短くした等電点電気泳動用ゲルと、これを用いた等電点電気泳動方法が提供される。
The present invention provides an isoelectric focusing gel in which the gel length is shortened without impairing high resolution, and an isoelectric focusing method using the same.

Claims (4)

下記(1)の条件を満たす1次元目の等電点電気泳動を行い、下記(2)の条件を満たす平衡化緩衝液処理を行い、下記(3)の条件を満たす2次元目のSDS−PAGEを行うことを特徴とする2次元電気泳動方法。
(1)検体がヒトケラチノサイトの抽出物であり、
ゲル長が5〜10cmの範囲内であって、ゲルのpH範囲が3〜10であり、泳動方向に対するゲルのpH勾配が、pH5までのゲル長をa、pH5〜7のゲル長をb、pH7以上のゲル長をcとし、ゲルの全長を1とした場合にaが0.15〜0.3の範囲内、bが0.4〜0.7の範囲内、cが0.15〜0.3の範囲内である等電点電気泳動用ゲルを用いて行う。
(2)上記等電点電気泳動を行ったゲルを、還元剤を含む平衡化緩衝液で処理し、次いでアルキル化剤を含む平衡化緩衝液で処理する。
(3)Bis−Tris Gelを用いて行う。
First-dimension isoelectric focusing that satisfies the following condition (1) is performed, equilibration buffer treatment that satisfies the following condition (2) is performed, and the second-dimensional SDS- that satisfies the following condition (3): A two-dimensional electrophoresis method characterized by performing PAGE.
(1) The specimen is an extract of human keratinocytes,
The gel length is in the range of 5 to 10 cm, the pH range of the gel is 3 to 10, the pH gradient of the gel with respect to the migration direction is a, the gel length up to pH 5 is b, the gel length of pH 5-7 is b, When the gel length of pH 7 or higher is c and the total length of the gel is 1, a is in the range of 0.15 to 0.3, b is in the range of 0.4 to 0.7, and c is 0.15 to 0.15. This is carried out using an isoelectric focusing gel within the range of 0.3.
(2) The gel subjected to the isoelectric focusing is treated with an equilibration buffer containing a reducing agent, and then treated with an equilibration buffer containing an alkylating agent.
(3) Perform using Bis-Tris Gel.
前記還元剤がDTTであり、前記アルキル化剤がヨードアセトアミドであることを特徴とする請求項1に記載の2次元電気泳動方法。 The two-dimensional electrophoresis method according to claim 1, wherein the reducing agent is DTT and the alkylating agent is iodoacetamide. 前記Bis−Tris Gelの泳動方向基端部のゲル濃度が3〜6%であることを特徴とする請求項1又は請求項2に記載の2次元電気泳動方法。 3. The two-dimensional electrophoresis method according to claim 1, wherein a gel concentration at a base end portion in the migration direction of the Bis-Tris Gel is 3 to 6%. 前記Bis−Tris Gelのゲル濃度が4〜12%であることを特徴とする請求項1又は請求項2に記載の2次元電気泳動方法。 The two-dimensional electrophoresis method according to claim 1 or 2 , wherein the gel concentration of the Bis-Tris Gel is 4 to 12%.
JP2009181808A 2009-08-04 2009-08-04 Isoelectric focusing gel and isoelectric focusing method Active JP5513802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009181808A JP5513802B2 (en) 2009-08-04 2009-08-04 Isoelectric focusing gel and isoelectric focusing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009181808A JP5513802B2 (en) 2009-08-04 2009-08-04 Isoelectric focusing gel and isoelectric focusing method

Publications (2)

Publication Number Publication Date
JP2011033544A JP2011033544A (en) 2011-02-17
JP5513802B2 true JP5513802B2 (en) 2014-06-04

Family

ID=43762744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009181808A Active JP5513802B2 (en) 2009-08-04 2009-08-04 Isoelectric focusing gel and isoelectric focusing method

Country Status (1)

Country Link
JP (1) JP5513802B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5894695B1 (en) 2015-05-25 2016-03-30 ホーユー株式会社 Antigens for quail egg allergy
WO2018158985A1 (en) 2017-03-03 2018-09-07 学校法人藤田学園 Allergy antigen and epitope thereof
KR102472388B1 (en) 2016-03-03 2022-11-30 호유 가부시키가이샤 Soybean allergy antigen
EP3467499A4 (en) 2016-06-02 2020-02-19 Hoyu Co., Ltd. Egg allergy antigen
EP3474013A4 (en) 2016-06-16 2020-02-26 Hoyu Co., Ltd. Fish allergy antigen
CN110799646A (en) 2017-04-28 2020-02-14 朋友股份有限公司 Antigens and epitopes of allergy
JP6568193B2 (en) 2017-12-19 2019-08-28 ホーユー株式会社 Epitope
JP7420330B2 (en) 2019-06-13 2024-01-23 学校法人藤田学園 Allergic antigens and their epitopes
KR20210095986A (en) 2020-01-27 2021-08-04 호유 가부시키가이샤 Allergy antigen and epitope thereof
JP2022157411A (en) 2021-03-31 2022-10-14 学校法人藤田学園 New antigen of milk allergy

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1268417A (en) * 1984-10-11 1990-05-01 Gere S. Dizerega Intragonadal regulatory protein
JPS63129993A (en) * 1986-11-21 1988-06-02 Agency Of Ind Science & Technol Production of human-originated physiologically active substance
JPS63129994A (en) * 1986-11-21 1988-06-02 Agency Of Ind Science & Technol Production of human-originated physiologically active substance
JPH01100448A (en) * 1987-10-13 1989-04-18 Shimadzu Corp Gel medium for isoelectric point electrophoresis
US4966667A (en) * 1989-04-18 1990-10-30 Millipore Corporation Gel transfer process and composite
AUPO403496A0 (en) * 1996-12-05 1997-01-02 Macquarie Research Limited Electrophoresis separation methods
AU1702902A (en) * 2000-11-16 2002-05-27 Basf Ag Method for separating and detecting proteins by means of electrophoresis
US6655649B2 (en) * 2002-03-11 2003-12-02 Bio-Rad Laboratories, Inc. Assembly for casting and use of an isoelectric focusing strip
JP4025867B2 (en) * 2002-11-05 2007-12-26 独立行政法人森林総合研究所 Protein elution method by isoelectric focusing.
JPWO2004077042A1 (en) * 2003-02-25 2006-06-08 三井製糖株式会社 Electrophoresis gel and method for producing the same
JP4586179B2 (en) * 2005-03-18 2010-11-24 独立行政法人産業技術総合研究所 Sample injection instrument for two-dimensional electrophoresis, two-dimensional electrophoresis apparatus including the same, and two-dimensional electrophoresis using the apparatus
JPWO2008029836A1 (en) * 2006-09-06 2010-01-21 日本臓器製薬株式会社 Research, judgment or evaluation method
JP4822350B2 (en) * 2006-12-27 2011-11-24 独立行政法人産業技術総合研究所 Method of introducing sample into drying medium for electrophoresis and instrument for the same
JP2010534318A (en) * 2007-07-20 2010-11-04 ナショナル インスティテュート フォー バイオプロセッシング リサーチ アンド トレーニング リミテッド Glycosylation markers for cancer and chronic inflammation
JP2009148222A (en) * 2007-12-21 2009-07-09 Research Institute Of Innovative Technology For The Earth Method for producing l-glutamic acid

Also Published As

Publication number Publication date
JP2011033544A (en) 2011-02-17

Similar Documents

Publication Publication Date Title
JP5513802B2 (en) Isoelectric focusing gel and isoelectric focusing method
JP5190423B2 (en) Two-dimensional electrophoresis method
JP5433341B2 (en) Isoelectric focusing method and determination method for removal of coarse substances
JP5475358B2 (en) Two-dimensional electrophoresis method
Roy et al. A practical approach on SDS PAGE for separation of protein
Kirkland et al. Trizol-based method for sample preparation and isoelectric focusing of halophilic proteins
Willard et al. Analytical techniques for cell fractions: XXVI. A two-dimensional electrophoretic analysis of basic proteins using phosphatidyl choline/urea solubilization
JP2009522554A (en) Compositions and methods for improving the resolution of biomolecules separated on polyacrylamide gels
Westermeier et al. Two-dimensional electrophoresis in proteomics
US5534121A (en) Preparative two dimensional gel electrophoresis system
JP5190422B2 (en) Method for making swollen gel for isoelectric focusing
US20140114053A1 (en) Electrophoresis Separation Methods
Busnel et al. Evaluation of capillary isoelectric focusing in glycerol‐water media with a view to hydrophobic protein applications
WO2006062222A1 (en) Method of separating protein, method of staining protein and liquid protein-staining agent and protein-staining kit to be used in these methods
JP5847213B2 (en) Two-dimensional electrophoresis method
Schlesier et al. Protein isolation and second-dimension electrophoretic separation
RAMAGOPAL Accumulation of Free Ribosomal PrÖteins S1, L7, and L12 in Escherichia coli
Paton et al. Two-dimensional gel electrophoresis of wool intermediate filament proteins
Chen et al. An innovative ring-shaped electroeluter for high concentration preparative isolation of protein from polyacrylamide gel
Kalidas et al. Gel Electrophoresis and its Applications to Biochemical Analysis
US20040108209A1 (en) Electrophoresis separation methods
Singh et al. Proteomics Protocols for Characterization of Xeno-immunogens in Decellularized Organs
AU715845B2 (en) Electrophoresis separation methods
Kaur et al. A Conceptual Understanding
Kaur et al. Electrophoresis: A Conceptual Understanding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20121126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140328

R150 Certificate of patent or registration of utility model

Ref document number: 5513802

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250