JP4822350B2 - Method of introducing sample into drying medium for electrophoresis and instrument for the same - Google Patents

Method of introducing sample into drying medium for electrophoresis and instrument for the same Download PDF

Info

Publication number
JP4822350B2
JP4822350B2 JP2006350976A JP2006350976A JP4822350B2 JP 4822350 B2 JP4822350 B2 JP 4822350B2 JP 2006350976 A JP2006350976 A JP 2006350976A JP 2006350976 A JP2006350976 A JP 2006350976A JP 4822350 B2 JP4822350 B2 JP 4822350B2
Authority
JP
Japan
Prior art keywords
sample
sample introduction
drying medium
gel
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006350976A
Other languages
Japanese (ja)
Other versions
JP2008164319A (en
Inventor
淳典 平塚
英樹 木下
憲二 横山
幸司 坂入
祐二 丸尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Sharp Corp
Toppan Inc
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Sharp Corp
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Sharp Corp, Toppan Inc filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006350976A priority Critical patent/JP4822350B2/en
Publication of JP2008164319A publication Critical patent/JP2008164319A/en
Application granted granted Critical
Publication of JP4822350B2 publication Critical patent/JP4822350B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電気泳動用乾燥媒体への試料の導入方法及びそのための器具に関する。   The present invention relates to a method for introducing a sample into a drying medium for electrophoresis and a device therefor.

現在、タンパク質の解析によく利用されている技術として二次元電気泳動(2DE)法がある。タンパク質の機能を分析するためには発現量の比較や翻訳後修飾の解析が重要であり、2DEはタンパク質の発現量と翻訳後修飾量を同時に検出できるため、今後、臨床検査などの現場でも利用されるようになるだろうと期待されている。現在、広く行なわれている2DEとして、例えば、一次元目にpH勾配ゲルを用いた等電点電気泳動を行い、二次元目にSDS-PAGEを行なうものがある。一次元目の等電点電気泳動に用いられるpH勾配ゲルは、細長い短冊状のゲルであり、プラスチックフィルムにゲルを結合させた乾燥固定化pH勾配ゲル(IPG)が用いられている。   Currently, two-dimensional electrophoresis (2DE) is a technique that is often used for protein analysis. Comparison of expression levels and analysis of post-translational modifications are important for analyzing protein functions. Since 2DE can simultaneously detect the amount of protein expression and post-translational modification, it will be used in clinical laboratories in the future. It is expected that it will be. Currently, 2DE that is widely used includes, for example, isoelectric focusing using a pH gradient gel in the first dimension and SDS-PAGE in the second dimension. The pH gradient gel used for the first-dimensional isoelectric focusing is a long and narrow strip-like gel, and a dry immobilized pH gradient gel (IPG) in which a gel is bound to a plastic film is used.

従来、細長い短冊状のIPGへのタンパク質試料の導入は、タンパク質試料をゲルの膨潤液に溶解した試料含有膨潤液中にIPGを浸漬することにより行なわれている。すなわち、IPGよりも幅広の溝を有する器具を用い、上記溝に試料含有膨潤液を入れ、その中にIPGを浸漬する。ゲルは、乾燥部分が残らないようにする必要があり、このため、ゲル全体を膨潤させるのに十分な量の試料含有膨潤液中に通常一晩浸漬する。   Conventionally, a protein sample is introduced into an elongated strip-shaped IPG by immersing the IPG in a sample-containing swelling solution obtained by dissolving a protein sample in a gel swelling solution. That is, using a device having a groove wider than IPG, the sample-containing swelling liquid is placed in the groove, and IPG is immersed therein. The gel should be left free of dry portions and is therefore usually immersed overnight in a sufficient amount of sample-containing swelling solution to swell the entire gel.

しかしながら、この従来法では一晩浸漬しても、二次元電気泳動の結果の再現性が必ずしも満足できない。すなわち、同一の試料について、同一の市販のゲルを用い、同一の方法で二次元電気泳動を行なっても、しばしば異なった結果が得られる。   However, in this conventional method, even if it is immersed overnight, the reproducibility of the result of two-dimensional electrophoresis is not always satisfactory. That is, even if the same sample is subjected to two-dimensional electrophoresis using the same commercially available gel and the same method, different results are often obtained.

特許文献1には、IPGに試料を導入する際に、電圧をかけることにより、試料の導入に要する時間を短縮する方法が記載されている。しかしながら、特許文献1記載の方法では、再現性の問題は解決されず、また、試料タンパク質の電荷いかんによっては、試料の導入に要する時間を必ずしも短縮できないと考えられる。   Patent Document 1 describes a method for reducing the time required for introducing a sample by applying a voltage when the sample is introduced into the IPG. However, the method described in Patent Document 1 does not solve the problem of reproducibility, and it is considered that the time required for introducing the sample cannot necessarily be shortened depending on the charge of the sample protein.

特開2005-345334号公報JP 2005-345334 A 特開2006-258685号公報JP 2006-258685

本発明の目的は、電気泳動の結果の再現性を高めることができ、かつ乾燥ゲルへの試料の導入を迅速に行うことができる、電気泳動用乾燥媒体への試料の導入方法及びそのための器具を提供することである。   The object of the present invention is to improve the reproducibility of the result of electrophoresis and to rapidly introduce the sample into the dry gel, and a method for introducing the sample into the drying medium for electrophoresis and an apparatus therefor Is to provide.

本願発明者らは、従来法で再現性が高くない原因を研究した結果、市販の乾燥ゲルの大きさが同一商品であってもバラツキがあり、かつ、試料含有膨潤液は、ゲルを膨潤させるのに十分な量が用いられるために、その全量がゲルに吸収されるわけではなく、一部が残留するため、ゲルに導入されるタンパク質試料の量がゲルごとに異なってくることが原因ではないかと考えた。そして、これを解決すべく研究の結果、乾燥ゲルへの試料の導入とゲルの膨潤を2段階に分け、先ず、少量の試料溶液をゲルの長手方向の全長に渡る領域からその全量を吸収させ、次いで、膨潤液でゲル全体を膨潤させることにより、二次元電気泳動の再現性を向上させることができ、かつ、同時に試料の導入時間を短縮できることに想到し、これを実験的に確認して本発明を完成した。   The inventors of the present application have studied the cause that the reproducibility is not high by the conventional method, and as a result, even if the size of the commercially available dried gel is the same product, there is variation, and the sample-containing swelling liquid swells the gel The amount of protein sample introduced into the gel varies from gel to gel because the entire amount is not absorbed by the gel, but a part of it remains. I thought. As a result of research to solve this, the introduction of the sample into the dried gel and the swelling of the gel are divided into two stages. First, a small amount of sample solution is absorbed from the entire length of the gel in the longitudinal direction. Next, we sought to improve the reproducibility of two-dimensional electrophoresis by swelling the entire gel with the swelling solution and to shorten the sample introduction time, and confirm this experimentally. The present invention has been completed.

すなわち、本発明は、細長い短冊状の電気泳動用乾燥媒体に、電気泳動にかける試料を含む試料溶液を導入する方法であって、前記乾燥媒体の一方の面である試料導入面の少なくとも一部の領域である試料導入領域を前記試料溶液と直接接触させることを含み、前記試料導入領域は、前記試料導入面の長手方向の実質的に全長に渡る領域であり、前記試料溶液は、前記乾燥媒体の全体を膨潤させることができる量よりも少量であり、前記試料溶液の実質的に全量を前記乾燥媒体に吸収させて該乾燥媒体を部分的に膨潤させ、次いで、膨潤液で前記乾燥媒体の全体を膨潤させる、電気泳動用乾燥媒体への試料の導入方法を提供する。また、本発明は、上記本発明の方法を行なうための器具であって、器具本体と、該器具本体に設けられた前記試料導入溝を具備する、電気泳動用乾燥媒体に試料を導入するための器具を提供する。   That is, the present invention is a method of introducing a sample solution containing a sample to be subjected to electrophoresis into an elongated strip-shaped electrophoresis drying medium, and at least a part of a sample introduction surface that is one surface of the drying medium. The sample introduction region is a region that extends over substantially the entire length in the longitudinal direction of the sample introduction surface, and the sample solution is the dried solution. Less than the amount by which the entire medium can be swollen, and the drying medium is partially swollen by absorbing substantially the entire amount of the sample solution into the drying medium, and then the drying medium is swollen with the swelling liquid. A method for introducing a sample into an electrophoretic drying medium is provided. Further, the present invention is an instrument for performing the method of the present invention, for introducing a sample into an electrophoretic drying medium comprising an instrument body and the sample introduction groove provided in the instrument body. Providing equipment.

本発明の方法により、電気泳動の再現性が向上する。また、本発明の方法では、少量の試料溶液を乾燥媒体の長手方向の実質的に全長に亘る領域から吸収させるので、試料導入に要する時間が短縮される。   The method of the present invention improves the reproducibility of electrophoresis. Further, in the method of the present invention, a small amount of the sample solution is absorbed from a region over the substantially entire length in the longitudinal direction of the drying medium, so that the time required for introducing the sample is shortened.

本発明の方法に用いられる電気泳動用乾燥媒体は、通常、電気泳動用乾燥ゲルであり、好ましくは、二次元電気泳動の一次元目用の乾燥ゲル、例えば、IPGである。乾燥媒体は、細長い短冊状をしており、通常、幅が0.3mm〜3mm程度、長さが40mm〜200mm程度、厚さが0.05mm〜0.2mm程度である。また、電気泳動用乾燥ゲルは、通常、プラスチックフィルム上に結合された形態にあるものが用いられるが、本発明においても、このようなプラスチックフィルム上に結合された乾燥媒体を好ましく用いることができる。プラスチックフィルム上に結合された、IPGのような電気泳動用乾燥ゲルは、種々のものが市販されており、市販品をそのまま、又は市販品を所望の大きさに切断して用いることができる。   The electrophoresis drying medium used in the method of the present invention is usually an electrophoresis drying gel, and is preferably a first-dimensional drying gel for two-dimensional electrophoresis, such as IPG. The drying medium has an elongated strip shape, and generally has a width of about 0.3 mm to 3 mm, a length of about 40 mm to 200 mm, and a thickness of about 0.05 mm to 0.2 mm. In addition, the electrophoretic dry gel is usually used in a form bound on a plastic film. In the present invention, a dry medium bound on such a plastic film can be preferably used. . Various dry gels for electrophoresis such as IPG bonded on a plastic film are commercially available. The commercially available products can be used as they are or after being cut into a desired size.

電気泳動用乾燥媒体は、本発明の方法においてそのまま用いることができるが、好ましくは、その一方の面が堅固な支持体に直接的又は間接的に支持されている。堅固な支持体上に乾燥媒体を支持することにより、後述する試料溶液との接触工程において、乾燥媒体が歪むことを防止することができ、取扱い性も向上する。さらに、試料溶液との接触工程において、後述する、細溝から成る試料導入溝に乾燥媒体を浸漬する際に、その自重により常に一定の圧力をかけることができる。乾燥媒体は、支持体上に直接支持してもよいし、乾燥媒体が上記のようにプラスチックフィルム上に結合されている場合には、該プラスチックフィルムを介して間接的に支持してもよい。上記の通り、乾燥媒体は、通常、プラスチックフィルム上に結合された形態にあるので後者が好ましい。支持体の、乾燥媒体を支持する面は、乾燥媒体と同じ寸法を有するか、又は、乾燥媒体の寸法よりも大きく、乾燥媒体の全面を支持するものであることが、乾燥媒体の歪みを防止する上で好ましい。また、支持体の厚みは、特に限定されないが、指で容易につまめる厚さが好ましく、0.3mm〜10 mm程度が好ましい。支持体の材質は、特に限定されず、プラスチックやセラミックスやガラス等を利用することができ、プラスチックで構成することが、製造の容易さ及び価格面から有利である。すなわち、好ましい態様では、支持体は、角棒状のプラスチックブロックの形態にある。   The electrophoretic drying medium can be used as it is in the method of the present invention, but preferably, one surface thereof is directly or indirectly supported on a rigid support. By supporting the drying medium on a solid support, it is possible to prevent the drying medium from being distorted in the contact step with the sample solution described later, and the handleability is also improved. Furthermore, in the step of contacting with the sample solution, when the drying medium is immersed in a sample introduction groove composed of a narrow groove, which will be described later, a constant pressure can always be applied by its own weight. The drying medium may be supported directly on the support, or may be indirectly supported via the plastic film when the drying medium is bonded onto the plastic film as described above. As described above, since the drying medium is usually in a form bonded on a plastic film, the latter is preferable. The surface of the support that supports the drying medium has the same dimensions as the drying medium or is larger than the drying medium and supports the entire surface of the drying medium to prevent distortion of the drying medium. This is preferable. The thickness of the support is not particularly limited, but is preferably a thickness that can be easily pinched with a finger, and is preferably about 0.3 mm to 10 mm. The material of the support is not particularly limited, and plastic, ceramics, glass, or the like can be used, and it is advantageous from the viewpoint of ease of manufacture and price that it is made of plastic. That is, in a preferred embodiment, the support is in the form of a square bar-shaped plastic block.

本発明の方法では、上記した乾燥媒体を、先ず、乾燥媒体の全体を膨潤させることができる量よりも少量の試料溶液と接触させて、その実質的に全量を乾燥媒体に吸収させ、しかる後、乾燥媒体を膨潤液と接触させて、乾燥状態の部分が残らないようにその全体を膨潤させる。ここで、「実質的に全量」とは、全量又はほとんど全量という意味であり、試料溶液を収容する溝(後述する試料導入溝)の表面が濡れている程度はよいが、液面を持つ液状の状態では残存しないという意味である。試料は、電気泳動にかけて分析しようとするいずれの物質であってもよく、多くの場合、タンパク質、ペプチド、核酸等であるが、これらに限定されるものではない。また、試料溶液の溶媒は、特に限定されないが、通常、水系の緩衝液であり、ゲルの膨潤液を溶媒としてもよい。なお、ゲルの膨潤液としては、通常、例えば8M 尿素、2% 3-[3-(クロロアミドプロピル) ジメチルアンモニオ]-1-プロパンスルホネート (CHAPS)、50mM ジチオスレイトール、及び0.2% 両性電解質を含む水溶液等が用いられており、これらは市販の二次元電気泳動用キットに付属している。   In the method of the present invention, the above-mentioned drying medium is first brought into contact with a sample solution having a smaller amount than the amount capable of swelling the entire drying medium, so that substantially the entire amount is absorbed by the drying medium, and thereafter Then, the drying medium is brought into contact with the swelling liquid, and the whole is swollen so that no dried portion remains. Here, “substantially the entire amount” means the entire amount or almost the entire amount, and the degree of wetness of the surface of the groove for storing the sample solution (sample introduction groove to be described later) is good, but it is a liquid having a liquid surface. This means that it does not remain in this state. The sample may be any substance to be analyzed by electrophoresis, and is often a protein, peptide, nucleic acid or the like, but is not limited thereto. The solvent of the sample solution is not particularly limited, but is usually an aqueous buffer solution, and a gel swelling solution may be used as the solvent. As the gel swelling solution, usually, for example, 8M urea, 2% 3- [3- (chloroamidopropyl) dimethylammonio] -1-propanesulfonate (CHAPS), 50 mM dithiothreitol, and 0.2% amphoteric electrolyte. Aqueous solutions containing water are used, and these are attached to commercially available two-dimensional electrophoresis kits.

乾燥媒体の一方の面である試料導入面の少なくとも一部の領域である試料導入領域を、試料溶液と直接接触させることにより試料導入領域に試料溶液を導入する。試料導入領域は、乾燥媒体の長手方向の実質的に全長に亘る領域である。ここで、「実質的に全長」とは、全長又はほとんど全長という意味であり、両端部に電極を接続するための領域等、両端からそれぞれ数mm程度の領域は、試料溶液と接触させなくてもよい。   The sample solution is introduced into the sample introduction region by bringing the sample introduction region, which is at least a part of the sample introduction surface, which is one surface of the drying medium, into direct contact with the sample solution. The sample introduction region is a region extending over substantially the entire length in the longitudinal direction of the drying medium. Here, “substantially full length” means the full length or almost the full length, and the areas about several millimeters from both ends, such as the area for connecting the electrodes to both ends, are not in contact with the sample solution. Also good.

以下、試料導入方法の好ましい1具体例について図面を参照して説明する。図1は、試料導入に特に適した器具を用いる方法を説明するものである。器具10は、細長い直方体状の器具本体12を具備し、器具本体12の上面には、溝14が形成されている。この溝14は、後述のように、支持体に支持された乾燥媒体をガイドする役割を果たすので、「ガイド溝」と呼ぶ。ガイド溝14の底面には、さらに細い溝16が形成されており、この細溝16には試料溶液を収容してその試料溶液を乾燥媒体に導入するので、「試料導入溝」と呼ぶ。器具10を構成する材料は特に限定されないが、成形の容易さや価格の点から、通常、プラスチックが用いられる。図1中、参照番号18は、プラスチックフィルム上に結合された乾燥ゲルを示し、20は、プラスチックフィルムを介して乾燥ゲル18を支持する、角棒状のプラスチックブロックから成る支持体を示す。なお、図1には、プラスチックフィルム付乾燥ゲル18を支持した支持体20が2本描かれているが、これは、試料溶液と接触する前の状態のプラスチックフィルム付乾燥ゲル18と、試料溶液と接触した後の状態のプラスチックフィルム付乾燥ゲル18を示すために、試料溶液との接触前後のプラスチックフィルム付乾燥ゲル18がそれぞれ描かれているのであり、プラスチックフィルム付乾燥ゲル18及び支持体20は1本しか存在しない。 Hereinafter, a preferred specific example of the sample introduction method will be described with reference to the drawings. FIG. 1 illustrates a method using an instrument particularly suitable for sample introduction. The instrument 10 includes an instrument body 12 having an elongated rectangular parallelepiped shape, and a groove 14 is formed on the upper surface of the instrument body 12. As will be described later, the groove 14 serves as a guide for the drying medium supported by the support, and hence is referred to as a “guide groove”. A narrower groove 16 is formed on the bottom surface of the guide groove 14, and this thin groove 16 accommodates a sample solution and introduces the sample solution into the drying medium, and is therefore referred to as a “sample introduction groove”. Although the material which comprises the instrument 10 is not specifically limited, Plastic is normally used from the point of the ease of shaping | molding and a price. In FIG. 1, reference numeral 18 denotes a dry gel bonded on a plastic film, and 20 denotes a support made of a square-bar plastic block that supports the dry gel 18 through the plastic film. In FIG. 1, two supports 20 supporting the dry gel 18 with plastic film are drawn. This is because the dry gel 18 with plastic film 18 and the sample solution before contact with the sample solution are shown. In order to show the dried gel 18 with plastic film in a state after contact with the sample film, the dried gel 18 with plastic film before and after the contact with the sample solution is drawn respectively. There is only one.

図1に示す器具10を、その長手方向に直行する方向で切断した断面図を図2に模式的に示す。なお、図2は、器具及びその使用方法を説明するための模式図であり、寸法比率は必ずしも正確ではない。図2によく示されるように、器具本体12の上面にガイド溝14が形成され、その底部に試料導入溝16が形成されている。図2中、参照番号18aは乾燥ゲル、18bは、乾燥ゲル18aを結合しているプラスチックフィルムであり、図示の例では、乾燥ゲル18a、プラスチックフィルム18b、支持体20は、上から見た平面的寸法及び形状が同じである。ガイド溝14の幅は、支持体20の幅よりも若干(通常、0.2mm〜1.0mm程度)広い程度である。また、ガイド溝14の深さは、プラスチックフィルム付乾燥ゲル18と支持体20(以下、便宜的に「乾燥ゲル付支持体」)をガイド溝14の底面に載置した際に、支持体20の頂部が指でつまめる程度にガイド溝14から突出する程度に、乾燥ゲル付支持体の高さよりも浅いことが好ましい。また、ガイド溝14の長さは、乾燥ゲル付支持体の長さよりも長ければよく、通常は、乾燥ゲル付支持体の長さよりも1mm〜数mm長い程度である。試料導入溝16の幅は、特に限定されないが、乾燥ゲルの幅の20%〜80%程度であり、図示の例では1/3程度である。試料導入溝16を設ける位置は、特に限定されないが、図2に示すように、試料導入溝16の底面の長手方向に直行する方向の中央近傍が好ましい。また、試料導入溝16の深さは、試料導入溝16の上端部まで試料溶液が充填され、その試料溶液の全量が乾燥ゲル18aに吸収された場合でも乾燥ゲル18aの全体を膨潤させることができない量となる深さであり、特に限定されないが、通常、乾燥ゲル18aの厚さの2倍〜4倍程度が好ましい。なお、図2に示す例では、ガイド溝14の底面と側面の角度が90度に描かれているが、この部分は丸みを帯びていてもよく、また、ガイド溝14の底部はすり鉢状になっていてもよい。同様に、試料導入溝16の底面と側面の角度も90度に描かれているが、この部分は丸みを帯びていてもよく、また、試料導入溝16の断面形状は、矩形に限らず半円状や半楕円状等であってもよい。 FIG. 2 schematically shows a cross-sectional view of the instrument 10 shown in FIG. 1 cut in a direction perpendicular to the longitudinal direction. Note that FIG. 2 is a schematic diagram for explaining the instrument and how to use it, and the dimensional ratio is not necessarily accurate. As well shown in FIG. 2, a guide groove 14 is formed on the upper surface of the instrument body 12, and a sample introduction groove 16 is formed on the bottom thereof. In FIG. 2, reference numeral 18a is a dry gel, 18b is a plastic film to which the dry gel 18a is bonded, and in the illustrated example, the dry gel 18a, the plastic film 18b, and the support 20 are planes viewed from above. The same dimensions and shape. The width of the guide groove 14 is slightly larger (usually about 0.2 mm to 1.0 mm) than the width of the support 20. The depth of the guide groove 14 is determined when the dry gel 18 with plastic film and the support 20 (hereinafter referred to as “support with dry gel” for convenience) are placed on the bottom surface of the guide groove 14. It is preferable that the height of the support with dry gel is shallower than the height of the support with dry gel so that the top of the support protrudes from the guide groove 14 to such an extent that it can be pinched with a finger. The length of the guide groove 14 only needs to be longer than the length of the support with dry gel, and is usually about 1 mm to several mm longer than the length of the support with dry gel. The width of the sample introduction groove 16 is not particularly limited, but is about 20% to 80% of the width of the dry gel, and is about 1/3 in the illustrated example. The position where the sample introduction groove 16 is provided is not particularly limited, but is preferably near the center in the direction perpendicular to the longitudinal direction of the bottom surface of the sample introduction groove 16 as shown in FIG. Further, the depth of the sample introduction groove 16 is such that the sample solution is filled up to the upper end of the sample introduction groove 16, and the entire dry gel 18a is swollen even when the entire amount of the sample solution is absorbed by the dry gel 18a. Although it is the depth which becomes the amount which cannot be performed and it does not specifically limit, About 2 to 4 times the thickness of the dry gel 18a is preferable normally. In the example shown in FIG. 2, the angle between the bottom surface and the side surface of the guide groove 14 is depicted as 90 degrees, but this portion may be rounded, and the bottom of the guide groove 14 is shaped like a mortar. It may be. Similarly, the angle between the bottom surface and the side surface of the sample introduction groove 16 is also drawn at 90 degrees. However, this portion may be rounded, and the cross-sectional shape of the sample introduction groove 16 is not limited to a rectangle but is half. It may be circular or semi-elliptical.

乾燥ゲル18aに試料を導入する際には、先ず、試料導入溝16に試料溶液を入れる。試料溶液は、試料導入溝16の上端部ぎりぎりの所まで入れることが好ましい。このようにすることにより、試料溶液の液面は、表面張力のためにガイド溝14の底面よりも弓なりに少しだけ持ち上がる。この状態で、乾燥ゲル付支持体をガイド溝14に挿入して(図2中の下向き矢印)、ガイド溝14の底面上に載置する。この際、ガイド溝14の幅は、支持体20の幅より僅かに広いだけであるので、支持体20はガイド溝14によりガイドされる。特に、ガイド溝14の下部がすり鉢状になっている場合には、より的確に定位置にガイドされる。ガイド溝14の底面上に乾燥ゲル付支持体を載置すると、試料導入溝16の開口部と当接する、乾燥ゲル18aの領域(本発明でいう「試料導入領域」)は、表面張力で若干盛り上がった、試料導入溝16内に収容された試料溶液と直接接触し、試料溶液が乾燥ゲル18aに吸収され、乾燥ゲル18aの試料導入領域が膨潤する。このように、試料導入溝16は、その二次元形状(上から見た平面形状)が、試料導入領域と実質的に同じ寸法及び形状を有する。ここで、「実質的に同じ寸法及び形状」とは、完全に同じか又はほとんど同じ寸法及び形状を意味し、乾燥ゲルが試料溶液と接触した際に少量の試料溶液が試料導入溝16の上端部から側方へ漏れ出すことによって試料導入領域の幅が試料導入溝16より広くなる程度の差異は許容される。なお、後述のように、試料導入溝16の底面に親水化処理を施す場合には、親水化処理を施した部分以外の、疎水性の表面を有する部分には試料溶液は行き渡らないので、親水化処理を施した領域のみで試料導入溝16が構成されていると考える。すなわち、この場合には、親水化処理を施した領域が試料導入領域と実質的に同じ寸法及び形状を有する。乾燥ゲル付支持体をガイド溝14の底面上に載置すると、支持体20の自重により、同じ支持体を用いれば、乾燥ゲル18aには同じ圧力がかかり、試料導入の条件を常に一定にすることに役立つ。乾燥ゲル18aがこのように試料溶液と接触すると、乾燥ゲル18aは、プラスチックフィルム18bに結合されているため、図2の横方向(水平方向)にはほとんど全く膨潤せず、図2の上下方向に膨潤し、膨潤したゲルは、試料導入溝16内に突出する。この様子が図1に模式的に示されている。すなわち、図1中、「膨潤前IPGゲル」と記載されている方が試料溶液との接触前の状態、「膨潤後IPGゲル」と記載されている方が試料溶液との接触後の状態を示す。図1中の湾曲した矢印は、乾燥ゲル付支持体をガイド溝14に挿入した後、取り出す動作を示している。図1に模式的に示すように、試料溶液と接触後の乾燥ゲルは、試料導入溝16の開口部と当接する部分、すなわち、試料溶液と接触した試料導入領域が上下方向に膨潤する。なお、乾燥ゲル18aと試料溶液の接触時間は、特に限定されないが、通常、1分間〜20分間程度、特に2分間〜10分間程度である。また、試料導入は、通常、常温で行なわれる。   When introducing a sample into the dry gel 18a, first, the sample solution is put into the sample introduction groove 16. It is preferable to put the sample solution up to the edge of the upper end of the sample introduction groove 16. By doing so, the liquid level of the sample solution is slightly lifted in a bow shape from the bottom surface of the guide groove 14 due to surface tension. In this state, the support with dry gel is inserted into the guide groove 14 (downward arrow in FIG. 2) and placed on the bottom surface of the guide groove 14. At this time, since the width of the guide groove 14 is only slightly wider than the width of the support body 20, the support body 20 is guided by the guide groove 14. In particular, when the lower portion of the guide groove 14 has a mortar shape, the guide groove 14 is more accurately guided to a fixed position. When a support with a dry gel is placed on the bottom surface of the guide groove 14, the region of the dry gel 18a that contacts the opening of the sample introduction groove 16 (the “sample introduction region” in the present invention) is slightly affected by the surface tension. The raised sample solution is in direct contact with the sample solution accommodated in the sample introduction groove 16, and the sample solution is absorbed by the dry gel 18a, so that the sample introduction region of the dry gel 18a swells. Thus, the sample introduction groove 16 has a two-dimensional shape (planar shape seen from above) having substantially the same size and shape as the sample introduction region. Here, “substantially the same size and shape” means completely the same or almost the same size and shape. When the dried gel comes into contact with the sample solution, a small amount of the sample solution is at the upper end of the sample introduction groove 16. A difference that allows the width of the sample introduction region to be wider than the sample introduction groove 16 by leaking from the portion to the side is allowed. As will be described later, in the case where the bottom surface of the sample introduction groove 16 is subjected to a hydrophilic treatment, the sample solution does not spread to a portion having a hydrophobic surface other than the portion subjected to the hydrophilic treatment. It is considered that the sample introduction groove 16 is constituted only by the region subjected to the crystallization treatment. That is, in this case, the region subjected to the hydrophilic treatment has substantially the same size and shape as the sample introduction region. When the support with the dried gel is placed on the bottom surface of the guide groove 14, if the same support is used due to the weight of the support 20, the same pressure is applied to the dried gel 18a, and the sample introduction conditions are always constant. It ’s useful. When the dried gel 18a comes into contact with the sample solution in this way, the dried gel 18a is bonded to the plastic film 18b, and therefore hardly swells in the horizontal direction (horizontal direction) in FIG. The swollen gel protrudes into the sample introduction groove 16. This is schematically illustrated in FIG. That is, in FIG. 1, the state described as “IPG gel before swelling” is the state before contact with the sample solution, and the state described as “IPG gel after swelling” is the state after contact with the sample solution. Show. The curved arrows in FIG. 1 indicate the operation of taking out the support with dry gel after inserting it into the guide groove 14. As schematically shown in FIG. 1, in the dried gel after contact with the sample solution, the portion in contact with the opening of the sample introduction groove 16, that is, the sample introduction region in contact with the sample solution swells in the vertical direction. The contact time between the dried gel 18a and the sample solution is not particularly limited, but is usually about 1 minute to 20 minutes, particularly about 2 minutes to 10 minutes. The sample introduction is usually performed at room temperature.

ゲルが試料溶液の実質的に全量を吸収した後、ゲル付支持体をガイド溝14から取り出し、次に、ゲルを膨潤液に浸漬して完全に膨潤させる。本発明の方法では、試料導入後に用いる膨潤液は、貴重な試料を含まず、市販されている比較的安価なものであるから、通常、前記したガイド溝14よりも幅広の溝状容器に膨潤液を十分量満たし、その中にゲル付支持体を浸漬することにより行なわれる。   After the gel has absorbed substantially the entire amount of the sample solution, the support with gel is removed from the guide groove 14, and then the gel is immersed in a swelling solution to completely swell. In the method of the present invention, the swelling liquid used after the sample introduction does not include a valuable sample and is a relatively inexpensive one that is commercially available. Therefore, the swelling liquid is usually swollen in a groove-shaped container wider than the guide groove 14 described above. It is carried out by filling a sufficient amount of the liquid and immersing the support with gel in it.

膨潤液で膨潤させたゲルは、次いで、二次元電気泳動に供される。二次元電気泳動の方法は、従来と全く同じでよく、一次元方向(ゲルの長手方向)に電圧をかけて等電点電気泳動等を行なった後、平板状のSDS含有ポリアクリルアミドゲルと接触させた状態で二次元方向(前記一次元方向に直行する方向)に電圧をかけて二次元目の電気泳動を行なうことができる。   The gel swollen with the swelling liquid is then subjected to two-dimensional electrophoresis. The method of two-dimensional electrophoresis may be exactly the same as the conventional method. After applying isoelectric focusing by applying voltage in the one-dimensional direction (longitudinal direction of the gel), contact with the flat polyacrylamide gel containing SDS. In this state, the second-dimensional electrophoresis can be performed by applying a voltage in a two-dimensional direction (a direction perpendicular to the one-dimensional direction).

上記の通り、乾燥ゲルの幅は通常1mm〜3mm程度であり、試料導入溝の幅は通常その20%〜80%程度であるから、試料導入溝の幅は、通常、0.2mm〜2.4mm程度の細いものである。再現性よく、短時間で試料導入を行なうためには、上記した試料導入領域の全面から均一に試料溶液が吸収される必要があり、このため、試料溶液が試料導入溝の全体に均一に行き渡っている必要がある。上記の通り、試料導入溝は細いものであるので、試料導入溝の全体に均一に試料溶液を行き渡らせるためには、試料導入溝の底面の実質的に全面が親水化処理されていることが好ましい。試料導入溝の底面の実質的に全面に親水化処理を施しておくと、試料導入溝の一部に試料溶液を滴下すれば、試料導入溝の全体に試料溶液が均一に行き渡るので、簡便であり、好ましい。ここで、「実質的に全面」とは、全面又はほとんど全面を意味し、親水化処理の処理ムラ等のために、親水化処理が施されなかった部分が僅かに存在しても、試料溶液が均一に行き渡るのであれば、「実質的に全面」に親水化処理が行なわれたことに含まれる。   As described above, the width of the dried gel is usually about 1 mm to 3 mm, and the width of the sample introduction groove is usually about 20% to 80%. Therefore, the width of the sample introduction groove is usually about 0.2 mm to 2.4 mm. It is a thin thing. In order to perform sample introduction in a short time with good reproducibility, the sample solution needs to be uniformly absorbed from the entire surface of the sample introduction region described above. For this reason, the sample solution uniformly spreads over the entire sample introduction groove. Need to be. As described above, since the sample introduction groove is thin, in order to spread the sample solution uniformly over the entire sample introduction groove, substantially the entire bottom surface of the sample introduction groove must be hydrophilized. preferable. If the entire surface of the bottom surface of the sample introduction groove is hydrophilized, if the sample solution is dropped onto a part of the sample introduction groove, the sample solution is uniformly distributed over the entire sample introduction groove. Yes, it is preferable. Here, “substantially the entire surface” means the entire surface or almost the entire surface, and even if there is a slight portion that has not been subjected to the hydrophilic treatment due to unevenness of the hydrophilic treatment, the sample solution Is uniformly distributed, it is included in the fact that “substantially the entire surface” has been subjected to the hydrophilic treatment.

親水化処理は、例えば、親水性のポリマーをコーティングすることにより行うことができる。親水化処理の方法は特に限定されないが、親水性コーティング層は試料溶液を均一に試料導入溝全体に行き渡らせるために、均一な厚みを有していることが好ましく、しかも、試料導入溝の幅は狭いことから、各種の周知のコーターで親水化ポリマーを塗布することは容易ではない。しかしながら、プラズマ重合を駆使してその場でモノマーを重合させ、さらに必要に応じて酸素プラズマ等で処理することにより、幅の狭い溝の底面を、均一な層厚の薄い親水性ポリマーのコーティング層で被覆できる(特許文献2参照)。プラズマ重合に用いることができるモノマーとしては、エーテルのような親水性の主鎖を有するモノマーや、水酸基、アミノ基、カルボキシル基等の親水性基を主鎖又は側鎖に有するモノマーであって、プラズマ重合により重合可能なものであれば何ら限定されるものではなく、好ましいモノマーの例として、アクリル酸、プロパギルアルコールのような含酸素有機化合物、アセトニトリル、アミノアセトアルデヒドジメチルアセタール、プロピルアミン、アリルアミン、ピリジンのような含窒素有機化合物等を例示することができるがこれらに限定されるものではない。また、ヘキサメチルジシロキサンのような疎水性層をプラズマ重合させた後にプラズマ処理で親水化を行ってもよい。さらにヘキサメチルジシロキサンと酸素を同時に供給してプラズマ重合して酸化ケイ素膜を被膜することで、親水化を行ってもよい。この酸化ケイ素膜は、プラズマ重合法以外にも種々の薄膜形成手段、例えば蒸着法、スパッタ法、CVD法などによって形成できる。また、試料導入溝の底面自体を酸素プラズマ等で処理することによっても親水性層を形成することができる。すなわち、親水性層は、好ましくは、
(a)水素プラズマ、酸素プラズマ及び窒素プラズマからなる群から選ばれる少なくとも一種のプラズマによる処理、
(b)ヘキサメチルジシロキサン及びヘキサジエンからなる群から選ばれる少なくとも一種をプラズマ重合して形成したコーティング層に上記(a)のプラズマ処理を施す、又は
(c)アクリル酸、プロパギルアルコール、アセトニトリル、アミノアセトアルデヒドジメチルアセタール、プロピルアミン、アリルアミン、ピリジンからなる群から選ばれる少なくとも一種をプラズマ重合する、ことにより形成することができる。
(d)酸化ケイ素膜を被膜することにより形成することができる。
The hydrophilization treatment can be performed, for example, by coating a hydrophilic polymer. The method of hydrophilization treatment is not particularly limited, but the hydrophilic coating layer preferably has a uniform thickness in order to spread the sample solution uniformly over the entire sample introduction groove, and the width of the sample introduction groove. Since it is narrow, it is not easy to apply the hydrophilic polymer with various known coaters. However, the polymer is polymerized in situ using plasma polymerization, and the bottom of the narrow groove is coated with a thin hydrophilic polymer layer with a uniform layer thickness by further processing with oxygen plasma or the like as necessary. (See Patent Document 2). Monomers that can be used for plasma polymerization include monomers having a hydrophilic main chain such as ether, and monomers having a hydrophilic group such as a hydroxyl group, amino group, and carboxyl group in the main chain or side chain, The polymer is not particularly limited as long as it can be polymerized by plasma polymerization. Examples of preferable monomers include oxygen-containing organic compounds such as acrylic acid and propargyl alcohol, acetonitrile, aminoacetaldehyde dimethyl acetal, propylamine, allylamine, Examples include nitrogen-containing organic compounds such as pyridine, but are not limited thereto. Alternatively, hydrophilic treatment may be performed by plasma treatment after plasma polymerization of a hydrophobic layer such as hexamethyldisiloxane. Furthermore, hydrophilization may be performed by simultaneously supplying hexamethyldisiloxane and oxygen and plasma-polymerizing to coat a silicon oxide film. This silicon oxide film can be formed by various thin film forming means other than the plasma polymerization method, for example, vapor deposition, sputtering, CVD, or the like. The hydrophilic layer can also be formed by treating the bottom surface of the sample introduction groove with oxygen plasma or the like. That is, the hydrophilic layer is preferably
(A) treatment with at least one plasma selected from the group consisting of hydrogen plasma, oxygen plasma and nitrogen plasma;
(B) The coating layer formed by plasma polymerization of at least one selected from the group consisting of hexamethyldisiloxane and hexadiene is subjected to the plasma treatment of (a) above, or (c) acrylic acid, propargyl alcohol, acetonitrile, It can be formed by plasma polymerizing at least one selected from the group consisting of aminoacetaldehyde dimethyl acetal, propylamine, allylamine, and pyridine.
(D) It can be formed by coating a silicon oxide film.

また、親水性層の層厚は、特に限定されないが、50nm〜200 nm程度が好ましい。プラズマ重合及びプラズマ処理の手法自体は周知であり、そのための装置も市販されているので、市販の装置を用いて容易に実施することができる(特許文献2)。試料導入溝は、その底面が少なくとも親水化処理されていればよい。側面も親水化処理されていてもよいが、底面のみを親水化処理することにより、試料導入溝に吸着する試料溶液の量を減少させることができるので、再現性をより高めることができ、好ましい。   The layer thickness of the hydrophilic layer is not particularly limited, but is preferably about 50 nm to 200 nm. The plasma polymerization and plasma processing techniques are well known, and devices for this are also commercially available, and can be easily implemented using commercially available devices (Patent Document 2). The sample introduction groove only needs to have at least a hydrophilic treatment on the bottom surface. Although the side surface may also be hydrophilized, the amount of the sample solution adsorbed in the sample introduction groove can be reduced by hydrophilizing only the bottom surface, so that the reproducibility can be further improved, which is preferable. .

試料導入溝の長さは、乾燥ゲルの長さと同じか、それよりも両端部がそれぞれ数mm程度以下短くなっていてもよいが、これらの場合には、乾燥ゲル付支持体をガイド溝の底面に載置した際に、試料溶液と乾燥ゲルとの間に気泡が入る恐れがある。このため、試料導入溝の長さを乾燥ゲルよりも若干長くすることにより、乾燥ゲル付支持体をガイド溝14の底面上に載置した際に、乾燥ゲルの両端部の外側にそれぞれ空気孔が形成されるようにしてもよい。この場合、試料導入溝を乾燥ゲルよりもあまりに長くすると、必要な試料溶液の量が増大すると共に、試料溶液の実質的に全量が乾燥ゲルに吸収されなくなる恐れがあるため好ましくない。試料導入溝の長さは、乾燥ゲル付支持体をガイド溝の底面に載置した際に、乾燥ゲルの両端の外側に長さ数mm以下、好ましくは長さ0.2mm〜1mm程度の小さな空気孔が形成される長さであることが好ましい。なお、空気孔となる部分の底面には親水化処理を施してもよいが、この部分には親水化処理を施さずに疎水性領域としておくことにより、試料溶液がこの部分にまで到達しないようにすることも可能である(なお、この場合には、試料導入溝の長さは、上記の通り、親水化処理を施した部分の長さと解釈する)。こうすることにより、気泡を排気する目的は達成され、かつ、試料溶液の量も増やす必要がなくなる。   The length of the sample introduction groove may be the same as the length of the dry gel, or both ends may be shorter than each by several millimeters or less. In these cases, the support with the dry gel is attached to the guide groove. When placed on the bottom surface, there is a risk of bubbles entering between the sample solution and the dried gel. Therefore, by making the length of the sample introduction groove slightly longer than that of the dried gel, when the support with the dried gel is placed on the bottom surface of the guide groove 14, air holes are respectively formed outside the both ends of the dried gel. May be formed. In this case, if the sample introduction groove is too long than the dry gel, the amount of the required sample solution is increased, and substantially the entire amount of the sample solution may not be absorbed by the dry gel. The length of the sample introduction groove is small air of several mm or less, preferably about 0.2 mm to 1 mm in length outside the ends of the dry gel when the dry gel support is placed on the bottom surface of the guide groove. The length is preferably such that the holes are formed. In addition, the bottom surface of the part that becomes the air hole may be subjected to a hydrophilic treatment, but this part is not subjected to the hydrophilic treatment and is made a hydrophobic region so that the sample solution does not reach this part. (In this case, the length of the sample introduction groove is interpreted as the length of the portion subjected to the hydrophilization treatment as described above). In this way, the purpose of exhausting the bubbles is achieved, and it is not necessary to increase the amount of the sample solution.

なお、図1及び図2に示す器具を用いる上記した方法は、特に好ましい方法であるが、本発明の方法は、上記器具を用いる場合に限定されるものではなく、より単純な器具を用いても実施することが可能である。例えば、上記具体例では、ガイド溝と試料導入溝との2段構造になっているが、ガイド溝は特に必要ではなく、基板表面に試料導入溝だけを形成したものも用いることも可能である。この場合、ガイド溝がないので、試料導入溝と乾燥ゲル付支持体との位置合わせは、操作者が目視に基づいて行なう。この場合も、上記と同様、試料導入溝の少なくとも底面に親水化処理を施すことが好ましい。さらには、試料導入溝を設けることなく、疎水性の平面上に、試料導入領域と実質的に同一の寸法及び形状の親水化処理領域を設けただけのものも試料導入溝と同様に用いることができる。この場合には、親水化処理領域上に試料溶液を滴下すると、試料溶液は、親水化処理領域の全体に行き渡るが、疎水性表面には出て行かない。このため、試料溶液は、親水化処理領域上で、断面が半円形ないしは半楕円形に盛り上がった状態で保持されるので、このように保持されている試料溶液と乾燥ゲルを接触させることによっても本発明の方法を実施することができる。   The above-described method using the instrument shown in FIG. 1 and FIG. 2 is a particularly preferable method, but the method of the present invention is not limited to the use of the instrument, and a simpler instrument is used. Can also be implemented. For example, in the above specific example, the guide groove and the sample introduction groove have a two-stage structure, but the guide groove is not particularly necessary, and it is also possible to use a substrate in which only the sample introduction groove is formed on the substrate surface. . In this case, since there is no guide groove, the operator aligns the sample introduction groove with the dry gel-supported body based on visual observation. In this case as well, it is preferable to perform a hydrophilization treatment on at least the bottom surface of the sample introduction groove as described above. Furthermore, a sample provided with a hydrophilic treatment region having substantially the same size and shape as the sample introduction region on a hydrophobic plane without using a sample introduction groove should be used in the same manner as the sample introduction groove. Can do. In this case, when the sample solution is dropped on the hydrophilic treatment region, the sample solution spreads over the entire hydrophilic treatment region, but does not exit on the hydrophobic surface. For this reason, since the sample solution is held in a state where the cross-section is raised in a semicircular or semi-elliptical shape on the hydrophilization treatment region, the sample solution thus held can be brought into contact with the dried gel. The method of the invention can be carried out.

以下、本発明を実施例及び比較例に基づきより具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically based on examples and comparative examples. However, the present invention is not limited to the following examples.

各例の記述に先立ち、各例に共通する実験手法について説明する。   Prior to describing each example, an experimental technique common to each example will be described.

1. マウス肝臓溶解液の調製
-80℃に保存されているマウスの肝臓組織をメスの刃先などで細かく砕いた後、0.4 g をテフロンホモジナイザー(テフロンは登録商標)に入れた。2 mlのLysis buffer (50 mM Tris-HCl(pH 7.6)、 20% Glycerol, 0.3 M NaCl, Protease inhibitor cocktail)を添加して、氷冷下でホモジナイズした。1000×g 4℃で10 分間遠心分離を行い上清を回収してさらに15,000×g、4℃で30分間遠心分離を行った。上清分画を回収してφ0.45μmフィルターでろ過した。
1. Preparation of mouse liver lysate
The mouse liver tissue stored at −80 ° C. was finely crushed with a scalpel blade or the like, and 0.4 g was placed in a Teflon homogenizer (Teflon is a registered trademark). 2 ml of Lysis buffer (50 mM Tris-HCl (pH 7.6), 20% Glycerol, 0.3 M NaCl, Protease inhibitor cocktail) was added and homogenized under ice cooling. Centrifugation was performed at 1000 × g at 4 ° C. for 10 minutes, and the supernatant was recovered and further centrifuged at 15,000 × g at 4 ° C. for 30 minutes. The supernatant fraction was collected and filtered through a φ0.45 μm filter.

2. タンパク質試料の脱塩および精製
上記1により得られたマウス肝臓溶解液中には二次元電気泳動の妨げになる塩や染色体DNAなどが混入している。そこでそれらを除去するために2-D Clean-Up Kit (商品名、GEヘルスケア バイオサイエンス(株))を用いた。サンプル(<100 μg, <100 μL)に300μLの沈殿剤(precipitant)を添加して撹拌した後、氷上で15分間静置した。300μL の共沈殿剤(co-precipitant)をさらに添加して、14,000×gで5 min、 0℃で遠心分離をした。沈殿に40μL の共沈殿剤を添加して氷上で15分間静置後に14,000×gで5分、 0℃で遠心分離をして沈殿を回収した。25μLの純水を添加し後、14,000×gで5分間、0℃で遠心分離をして沈殿を洗浄した。1 mLの洗浄バッファー及び5μLの洗浄添加剤(wash additive)を添加後、撹拌して2hr、−20℃で静置した。14,000×gで 5分間、0℃で遠心分離をして沈殿を回収後、室温で約5分間風乾させた。得た沈殿を膨潤液に溶解して二次元電気泳動用(乾燥IPGゲルへの試料導入検討用)試料とした。
2. Desalting and purification of protein samples The mouse liver lysate obtained in 1 above contains salts and chromosomal DNA that interfere with two-dimensional electrophoresis. In order to remove them, 2-D Clean-Up Kit (trade name, GE Healthcare Bioscience Co., Ltd.) was used. A sample (<100 μg, <100 μL) was added with 300 μL of a precipitant and stirred, and then allowed to stand on ice for 15 minutes. An additional 300 μL of co-precipitant was added and centrifuged at 14,000 × g for 5 min at 0 ° C. To the precipitate, 40 μL of a coprecipitation agent was added and allowed to stand on ice for 15 minutes, and then centrifuged at 14,000 × g for 5 minutes at 0 ° C. to collect the precipitate. After adding 25 μL of pure water, the precipitate was washed by centrifugation at 14,000 × g for 5 minutes at 0 ° C. After adding 1 mL of wash buffer and 5 μL of wash additive, the mixture was stirred and allowed to stand at −20 ° C. for 2 hours. The precipitate was collected by centrifugation at 14,000 × g for 5 minutes at 0 ° C., and then air-dried at room temperature for about 5 minutes. The obtained precipitate was dissolved in a swelling solution to obtain a sample for two-dimensional electrophoresis (for sample introduction into a dry IPG gel).

3. タンパク質定量
タンパク質定量は2-D Quant Kit(商品名、GEヘルスケア バイオサイエンス(株))を用いて行った。まず、下記表1のように標準ウシ血清アルブミン(BSA)を希釈した。サンプルを約0.5〜50μgになるように1〜50μlずつ2本のチューブに入れた。500μlの共沈殿剤を加えて簡単によくボルテックスした。10,000×gで5分間遠心分離した後、上清を除いた。100μlの銅溶液を加え、さらに400 μlの蒸留水を加えた。さらに、1 mlの呈色試薬(working color reagent)を加えて、瞬時に混合した。15〜20分間室温でインキュベートして、480 nmで吸光度を測定した。標準BSAの吸光度もとに標準曲線を書いてサンプルの定量を行った。
3. Protein quantification Protein quantification was performed using 2-D Quant Kit (trade name, GE Healthcare Biosciences). First, standard bovine serum albumin (BSA) was diluted as shown in Table 1 below. Samples were placed in two tubes at 1 to 50 μl each so as to be about 0.5 to 50 μg. Vortexed simply and well by adding 500 μl of coprecipitant. After centrifugation at 10,000 × g for 5 minutes, the supernatant was removed. 100 μl of copper solution was added followed by 400 μl of distilled water. Furthermore, 1 ml of a working color reagent was added and mixed instantaneously. Incubated for 15-20 minutes at room temperature and absorbance was measured at 480 nm. Samples were quantified by writing a standard curve based on the absorbance of standard BSA.

Figure 0004822350
Figure 0004822350

4. Sypro Ruby(商品名、インビトロジェン(株))染色方法
ゲルを電気泳動後に10%メタノール/7%酢酸水溶液(約100mL)中で1 時間振とうした。溶液をSyproRuby 染色液(商品名、約50mL)に置換して、4 時間以上振とうした。高感度で見たい場合には一晩染色した。染色後、10%メタノール/7%酢酸水溶液(約100mL)中で30分間振とう後、ProXPRESS(商品名、パーキンエルマー(株))にて蛍光検出(em.480 nm/ex.680 nm)した。
4. Sypro Ruby (trade name, Invitrogen Co., Ltd.) staining method After electrophoresis, the gel was shaken in 10% methanol / 7% acetic acid aqueous solution (about 100 mL) for 1 hour. The solution was replaced with SyproRuby staining solution (trade name, about 50 mL) and shaken for 4 hours or more. When it was desired to view with high sensitivity, it was stained overnight. After staining, after shaking in 10% methanol / 7% acetic acid aqueous solution (about 100 mL) for 30 minutes, fluorescence detection (em. 480 nm / ex. 680 nm) was performed with ProXPRESS (trade name, PerkinElmer Co., Ltd.) .

5. サンプル導入溝の再現性評価
サンプル導入溝の再現性評価は1.2mm×52mmのIPGおよび48mm×52mmのSDS-PAGEゲルを用いて評価した。検出および解析は方法5と同様に行った。
5. Reproducibility evaluation of sample introduction groove The reproducibility evaluation of the sample introduction groove was evaluated using 1.2 mm × 52 mm IPG and 48 mm × 52 mm SDS-PAGE gel. Detection and analysis were performed as in Method 5.

6. 二次元電気泳動
二次元電気泳動はプロティアンIEFセルおよびcriterion Dodecaセル(共に商品名、バイオ・ラッドラボラトリーズ(株))を用い、これらの製品の使用説明書に記載された標準プロトコールに沿って行った。一次元目の等電点ゲルおよび二次元目のSDS-PAGEゲルはバイオ・ラッドラボラトリーズ(株)の7cm IPG ReadyStrip pH 3-10(商品名)および12% アクリルアミドのレディーゲルJ(商品名)を使用した。二次元電気泳動後のタンパク質染色はSYPRO Ruby(商品名、インビトロジェン(株))を用いた。マーカーはMark12(商品名、インビトロジェン(株))を用いた。
6. Two-dimensional electrophoresis Two-dimensional electrophoresis uses Protian IEF cell and criterion Dodeca cell (both trade names, Bio-Rad Laboratories, Inc.) and follows the standard protocols described in the instructions for use of these products. I went. The first dimension isoelectric point gel and the second dimension SDS-PAGE gel are Bio-Rad Laboratories 7cm IPG ReadyStrip pH 3-10 (trade name) and 12% acrylamide ready gel J (trade name). used. For protein staining after two-dimensional electrophoresis, SYPRO Ruby (trade name, Invitrogen) was used. Mark 12 (trade name, Invitrogen) was used as a marker.

7. 二次元電気泳動画像上のタンパク質スポットの蛍光強度の再現性比較
二次元電気泳動のスポットの検出および解析はProFINDER(商品名、パーキンエルマー(株))解析ソフトを用いて行った。ProXPRESS(商品名、パーキンエルマー(株))で得られたスポットの蛍光強度から変動係数を求めて、その変動係数を比較することによりスポットの再現性を比較した。
7. Comparison of reproducibility of fluorescence intensity of protein spots on 2D electrophoresis images Detection and analysis of 2D electrophoresis spots were performed using ProFINDER (trade name, PerkinElmer Co., Ltd.) analysis software. The coefficient of variation was obtained from the fluorescence intensity of the spot obtained with ProXPRESS (trade name, Perkin Elmer Co., Ltd.), and the reproducibility of the spots was compared by comparing the coefficient of variation.

8. サンプル導入溝作製
器具は切削加工機を用いて作製した。また、基板はアクリル材を使用した。
8. Sample introduction groove preparation The tool was prepared using a cutting machine. An acrylic material was used for the substrate.

9. 親水膜コーティング
親水膜(SiOx膜)の成膜はプラズマ重合装置を用いて行った。プラスチック基板を、プラズマ重合装置の重合室に設置し、重合室の到達真空度が1.5×10-3パスカルになるまで減圧を行った。次にヘキサメチルジシロキサン(HMDS)と酸素を同時に、重合室内に導入した。HMDSおよび酸素の流量はそれぞれ5 sccmおよび100 sccmとし、プラズマ出力300Wで120秒間プラズマを発生させ成膜を行った。
9. Hydrophilic film coating The hydrophilic film (SiOx film) was formed using a plasma polymerization apparatus. The plastic substrate was placed in the polymerization chamber of the plasma polymerization apparatus, and the pressure was reduced until the ultimate vacuum in the polymerization chamber reached 1.5 × 10 −3 Pascal. Next, hexamethyldisiloxane (HMDS) and oxygen were simultaneously introduced into the polymerization chamber. The flow rates of HMDS and oxygen were 5 sccm and 100 sccm, respectively, and plasma was generated at a plasma output of 300 W for 120 seconds to form a film.

実施例1
1. 器具の作製
アクリル板から成る器具本体に、図1及び図2に示したのと同様なガイド溝及び試料導入溝を形成した。ガイド溝の開口部の幅(長手方向に直行する方向の幅)は1.8mm、底面の幅は1.4mm、深さは1.0mm、長さは53mmであり、ややすり鉢状であり、底面の幅方向の両側の角は丸くしてある。試料導入溝は、ガイド溝の幅方向の中央部に形成され、幅が0.6mm、長さが52mm、深さが0.3mmであった。試料導入溝の底面の幅方向の両側の角は約90度であった。
Example 1
1. Manufacture of instrument A guide groove and a sample introduction groove similar to those shown in FIGS. 1 and 2 were formed in an instrument body made of an acrylic plate. The width of the guide groove opening (in the direction perpendicular to the longitudinal direction) is 1.8 mm, the bottom width is 1.4 mm, the depth is 1.0 mm, and the length is 53 mm. The corners on both sides of the direction are rounded. The sample introduction groove was formed at the center in the width direction of the guide groove, and had a width of 0.6 mm, a length of 52 mm, and a depth of 0.3 mm. The angle on both sides in the width direction of the bottom surface of the sample introduction groove was about 90 degrees.

上記器具は複数個作製し、その一部には、上記した方法により、試料導入溝の底面及び側面に親水膜コーティングを施した。このときの膜厚は約70 nmと推定され、このとき得られたSiOx膜の接触角を接触角計で測定した結果、6.9°であり、高親水性になった。   A plurality of the above devices were prepared, and a hydrophilic film coating was applied to a part of the bottom and side surfaces of the sample introduction groove by the method described above. The film thickness at this time was estimated to be about 70 nm, and the contact angle of the SiOx film obtained at this time was measured with a contact angle meter. As a result, it was 6.9 ° and became highly hydrophilic.

2. 試料の導入
プラスチックフィルム付乾燥ゲルは、長さ52mm、幅3mm、厚さ0.1mmの市販のIPGを長手方向に沿って切断して幅を1mmとしたものを用いた(従って、プラスチックフィルム付乾燥ゲルのサイズは52mm x 1mm x 0.1mm)。このプラスチックフィルム付乾燥ゲルのプラスチックフィルムに、長さと幅がプラスチックフィルム付乾燥ゲルと同じで、高さが14mmのプラスチックブロックから成る支持体を接着した。
2. Introduction of sample The dry gel with plastic film used was a commercial IPG with a length of 52 mm, a width of 3 mm, and a thickness of 0.1 mm cut along the longitudinal direction to a width of 1 mm. The size of the dried gel is 52mm x 1mm x 0.1mm). A support made of a plastic block having the same length and width as the dried gel with a plastic film and a height of 14 mm was bonded to the plastic film of the dried gel with a plastic film.

上記した試料溶液10μLを、試料導入溝の中央近傍1箇所に滴下した。試料導入溝に親水化処理を施していない場合には、試料溶液が液滴を形成して均一に広がらなかったが、親水化処理を施したものでは、試料導入溝全体に試料溶液が均一に広がった。以下の実験は、試料導入溝に親水化処理を施したものを用いて行なった。上記10μLの試料溶液により、試料導入溝の上端部まで試料溶液が満たされた。なお、試料導入及びそれ以降の操作は特に記載がない限り室温下で行った。   10 μL of the sample solution described above was dropped at one location near the center of the sample introduction groove. When the sample introduction groove was not hydrophilized, the sample solution formed droplets and did not spread evenly. However, when the sample introduction groove was hydrophilized, the sample solution was uniformly distributed throughout the sample introduction groove. Spread. The following experiment was performed using a sample introduction groove subjected to a hydrophilic treatment. The sample solution was filled to the upper end of the sample introduction groove with the 10 μL of the sample solution. The sample introduction and subsequent operations were performed at room temperature unless otherwise specified.

上記した乾燥ゲル付支持体を、ガイド溝に挿入し、ガイド溝底面に載置した。乾燥ゲルの形状及び寸法と、試料導入溝の形状及び寸法が同じであるので、試料導入溝を乾燥ゲルで塞ぐ形となり、これにより乾燥ゲルが試料溶液と直接接触した。この状態で5分間放置した。その結果、試料溶液と接触している乾燥ゲルの領域が膨潤し、試料導入溝内部に入り込んだ。乾燥ゲル付支持体をガイド溝から取り出したところ、試料導入溝内には試料溶液が残っておらず、試料溶液の実質的に全量がゲルに吸収された。次に、溝(寸法55mm x 29 mm x 1.15mm)の中に膨潤液(組成:8M尿素、2Mチオ尿素、4% CHAPS, 20mM DTT, 0.5%両性電解質)を充填し、この溝の中にゲル付支持体を挿入し5分間放置してゲルを完全に膨潤させた。   The above-mentioned support with dry gel was inserted into the guide groove and placed on the bottom surface of the guide groove. Since the shape and size of the dry gel and the shape and size of the sample introduction groove were the same, the sample introduction groove was closed with the dry gel, whereby the dry gel was in direct contact with the sample solution. This state was left for 5 minutes. As a result, the area of the dry gel in contact with the sample solution swelled and entered the sample introduction groove. When the support with dry gel was taken out from the guide groove, no sample solution remained in the sample introduction groove, and substantially all of the sample solution was absorbed by the gel. Next, the groove (dimension 55mm x 29mm x 1.15mm) is filled with swelling liquid (composition: 8M urea, 2M thiourea, 4% CHAPS, 20mM DTT, 0.5% amphoteric electrolyte), and into this groove The support with gel was inserted and left for 5 minutes to completely swell the gel.

3. 二次元目電気泳動
上記のようにして2μgのマウス肝臓溶解性タンパク質試料を導入したゲルをSDS平衡化し、SDS-PAGEゲルで4分間電気泳動を行なった。得られたタンパク質バンドの総蛍光強度をQuantity one (商品名、バイオ・ラッドラボラトリーズ(株))で測定した。
3. Second Dimensional Electrophoresis As described above, the gel into which 2 μg of the mouse liver lytic protein sample was introduced was equilibrated with SDS and electrophoresed on an SDS-PAGE gel for 4 minutes. The total fluorescence intensity of the obtained protein band was measured with Quantity one (trade name, Bio-Rad Laboratories Co., Ltd.).

4. 再現性の評価
上記操作を4回繰返し、総蛍光強度の平均値、標準偏差及び変動係数を算出した。その結果、総蛍光強度(x1013)の平均は9.89、標準偏差(x1012)は6.71、変動係数(%)は6.79であった。
4. Evaluation of reproducibility The above operation was repeated 4 times, and the average value, standard deviation and coefficient of variation of the total fluorescence intensity were calculated. As a result, the average of the total fluorescence intensity (x10 13 ) was 9.89, the standard deviation (x10 12 ) was 6.71, and the coefficient of variation (%) was 6.79.

比較例1及び2
A社から市販されている、プラスチックフィルム付IPG(比較例1)およびB社のプラスチックフィルム付IPG(比較例2)はそれぞれの標準方法に沿ってIPGゲル膨潤(タンパク質試料導入)を行った。上記したタンパク質試料を膨潤液に溶解した溶液を用いてゲルの膨潤を行なった。いずれのIPGもサイズは、70mm x 3 mm x 0.1mmであった。
Comparative Examples 1 and 2
The IPG with plastic film (Comparative Example 1) and the IPG with plastic film (Comparative Example 2) of Company B, both commercially available from Company A, were subjected to IPG gel swelling (protein sample introduction) according to the respective standard methods. The gel was swollen using a solution obtained by dissolving the above protein sample in a swelling solution. All IPGs were 70 mm x 3 mm x 0.1 mm in size.

A社装置(比較例1)では、2μgのマウス肝臓溶解性タンパク質を含む指定の155μlの膨潤液を膨潤カセット(A社)に添加して、70mmの3-10LのIPG(A社)ゲルを投入して室温で8時間放置した(比較例1)。なお、この膨潤カセットは、基板の中に、断面が矩形の溝を設けたものであり、溝の寸法は、幅5.4mm x 長さ82.2mm x 深さ6.38mmであり、溝の幅はゲルの幅の1.8倍である。   In Company A's device (Comparative Example 1), add 155 μl of the specified swelling solution containing 2 μg of mouse liver soluble protein to the swelling cassette (Company A) and add 70 mm 3-10 L IPG (Company A) gel. The sample was charged and allowed to stand at room temperature for 8 hours (Comparative Example 1). This swelling cassette is a substrate with a groove having a rectangular cross section. The groove dimensions are width 5.4 mm x length 82.2 mm x depth 6.38 mm, and the groove width is gel. It is 1.8 times the width.

B社装置(比較例2)でも同様に、2μgのマウス肝臓溶解性タンパク質を含む125μlの膨潤液をフォーカシングトレイ(B社)に添加した後、70mmの3-10LのIPG(B社)ゲルを挿入して20℃で16時間放置した(比較例2)。なお、このフォーカシングトレイも基板の中に、断面が矩形の溝を設けたものであり、溝の寸法は、幅3.7mm x 長さ79.5mm x 深さ1.15mmであり、溝の幅はゲルの幅の1.2倍である。   Similarly, in the Company B apparatus (Comparative Example 2), 125 μl of a swelling solution containing 2 μg of mouse liver soluble protein was added to the focusing tray (Company B), and then a 70 mm 3-10 L IPG (Company B) gel was added. It was inserted and left at 20 ° C. for 16 hours (Comparative Example 2). This focusing tray also has a groove with a rectangular cross section in the substrate, the groove dimensions are 3.7 mm wide x 79.5 mm long x 1.15 mm deep, and the groove width is the same as that of the gel. It is 1.2 times the width.

膨潤処理後、ゲルを溝から取り出すと、なお、膨潤液は溝内に残留していた。続いて、実施例1と同様に二次元目電気泳動を行い、総蛍光強度を測定した。   When the gel was removed from the groove after the swelling treatment, the swelling liquid remained in the groove. Subsequently, second-dimensional electrophoresis was performed in the same manner as in Example 1, and the total fluorescence intensity was measured.

実施例1と同様、上記操作を4回繰返し、それぞれ総蛍光強度を測定し、平均値、標準偏差及び変動係数を算出した。結果を下記表2に示す。   As in Example 1, the above operation was repeated four times, and the total fluorescence intensity was measured, and the average value, standard deviation, and coefficient of variation were calculated. The results are shown in Table 2 below.

Figure 0004822350
Figure 0004822350

表2に示されるように、市販品を用いた比較例1及び2では、いずれも総蛍光強度の変動係数が20%を超えている。これに対し、上記の通り、本発明の実施例1では、変動係数が6.79%であり、比較例1及び2よりも再現性が高いことがわかる。   As shown in Table 2, in Comparative Examples 1 and 2 using commercially available products, the coefficient of variation of the total fluorescence intensity exceeds 20%. On the other hand, as described above, in Example 1 of the present invention, the variation coefficient is 6.79%, which indicates that the reproducibility is higher than those of Comparative Examples 1 and 2.

実施例2
実施例1の方法では、乾燥ゲル付支持体をガイド溝の底面に載置する際に、乾燥ゲルと試料溶液の間に気泡が入ることがあった。そこで、気泡が入ることを防止すべく、試料導入溝の長さを54mmにし、それ以外の条件は全て実施例1と同様にして試料導入を行なった。なお、乾燥ゲル付支持体を載置する際には、試料導入溝の両端部に、乾燥ゲルで被覆されない部分がそれぞれ生じる位置に乾燥ゲル付支持体を載置した。その結果、ゲルと試料溶液の間に気泡は全く入らなくなった。
Example 2
In the method of Example 1, when the support with dry gel was placed on the bottom surface of the guide groove, air bubbles sometimes entered between the dry gel and the sample solution. Therefore, in order to prevent bubbles from entering, the length of the sample introduction groove was set to 54 mm, and the sample was introduced in the same manner as in Example 1 except for the other conditions. In addition, when mounting a support body with a dry gel, the support body with a dry gel was mounted in the position where the part which is not coat | covered with a dry gel each arises in the both ends of a sample introduction groove | channel. As a result, no bubbles entered between the gel and the sample solution.

実施例3
実施例3は、20μgのマウス肝臓可溶性タンパク質を含む10μlの試料溶液を実施例1と同様の方法でゲルに導入して二次元電気泳動を行った。比較例3は、20μgのマウス肝臓可溶性タンパク質を含む125μlの試料溶液を上述の方法で二次元電気泳動を行った。二次元目の電気泳動ゲル上のタンパク質スポットを検出し、主なタンパク質スポット7個を選び、それぞれの蛍光強度を測定した。
Example 3
In Example 3, 10 μl of a sample solution containing 20 μg of mouse liver soluble protein was introduced into a gel in the same manner as in Example 1, and two-dimensional electrophoresis was performed. In Comparative Example 3, 125 μl of sample solution containing 20 μg of mouse liver soluble protein was subjected to two-dimensional electrophoresis by the method described above. Protein spots on the second-dimensional electrophoresis gel were detected, seven main protein spots were selected, and the fluorescence intensity of each was measured.

上記操作を4回繰返し、各スポットについてそれぞれ蛍光強度を測定し、平均値、標準偏差及び変動係数を算出した。結果を下記表3に示す。   The above operation was repeated four times, the fluorescence intensity was measured for each spot, and the average value, standard deviation, and coefficient of variation were calculated. The results are shown in Table 3 below.

Figure 0004822350
Figure 0004822350

表3から明らかなように、ほとんどのスポットにおいて本発明の実施例3の方法が、市販品を用いた比較例3よりも変動係数が小さく、全体として再現性に優れていることがわかる。   As is apparent from Table 3, it can be seen that in most spots, the method of Example 3 of the present invention has a smaller coefficient of variation than Comparative Example 3 using a commercially available product, and is excellent in reproducibility as a whole.

実施例4
IPGゲルに短時間で均一にサンプルを導入できていることを確認するために、5本の細溝を持つ器具を作製して(図3−1)、4本の細溝に0.01%のCoomassie Brilliant Blue R-250色素を混合した試料溶液を添加した。37mm×5mmの乾燥IPGゲルシートを貼り付けたプラスチックブロックを細溝に接触させ5分間後の結果が図3−2である。5本のうち4本の溝にサンプル溶液を添加した結果、サンプル溶液は溝の形状のままIPGゲル中に導入された。溝の端面間の距離は狭く0.3mmで、サンプルが導入されたIPGゲルのその距離は約0.2mmであった。但し、隙間には僅かに色素が確認できたために、溶液が多少は漏れていると思われた。しかし、サンプル溶液を入れない溝を間に挟むことによって溶液の漏れを防ぐことができた。IPGゲルとサンプル溶液の接触面は保持されたままサンプル溶液が浸透することを確認できた。
Example 4
In order to confirm that the sample can be uniformly introduced into the IPG gel in a short time, an instrument with 5 narrow grooves was prepared (Fig. 3-1), and 0.01% Coomassie was placed in the 4 narrow grooves. A sample solution mixed with Brilliant Blue R-250 dye was added. A plastic block with a 37 mm × 5 mm dry IPG gel sheet attached is brought into contact with the narrow groove, and the result after 5 minutes is shown in FIG. As a result of adding the sample solution to four of the five grooves, the sample solution was introduced into the IPG gel in the shape of the groove. The distance between the end faces of the groove was narrow 0.3 mm, and the distance of the IPG gel into which the sample was introduced was about 0.2 mm. However, since the pigment | dye was able to be confirmed slightly in the clearance gap, it seemed that the solution leaked a little. However, the leakage of the solution could be prevented by sandwiching a groove in which the sample solution was not placed. It was confirmed that the sample solution penetrated while the contact surface between the IPG gel and the sample solution was maintained.

さらに、細溝が矩形でも同様のサンプル導入が可能であるか確認するために、図3−3のような矩形の細溝を作製してIPGゲルへのサンプル導入実験を行った。矩形溝の横の直線溝には0.01%の オレンジG色素(商品名、ナカライテスク(株))を含むサンプル溶液を添加した。その結果、サンプル溶液は矩形の細溝と同じ形状のままIPGゲルに導入された(図3−4)。矩形溝でも同様に、IPGゲルとサンプル溶液の接触面が保持されたままサンプル溶液を浸透できた。   Furthermore, in order to confirm whether the same sample introduction is possible even if the narrow groove is rectangular, a rectangular narrow groove as shown in FIG. 3-3 was prepared and a sample introduction experiment into the IPG gel was performed. A sample solution containing 0.01% Orange G dye (trade name, Nacalai Tesque) was added to the linear groove next to the rectangular groove. As a result, the sample solution was introduced into the IPG gel with the same shape as the rectangular narrow groove (FIGS. 3-4). Similarly, the rectangular groove was able to penetrate the sample solution while maintaining the contact surface between the IPG gel and the sample solution.

器具を用いる、本発明の方法の好ましい1具体例を説明するための模式的斜視図である。It is a typical perspective view for demonstrating one preferable specific example of the method of this invention using an instrument. 実施例1に示す器具を、長手方向に直行する方向で切断した模式断面図である。It is the schematic cross section which cut | disconnected the instrument shown in Example 1 in the direction orthogonal to a longitudinal direction. 5本の試料導入溝を持つ器具の平面図である。It is a top view of an instrument having five sample introduction grooves. 図1に示す器具の上から3本と5番目の試料導入溝に0.01% のCoomassie Brilliant Blue R-250色素を添加した試料溶液を導入した後のIPGゲルの写真である。FIG. 2 is a photograph of an IPG gel after introducing a sample solution with 0.01% Coomassie Brilliant Blue R-250 dye added to the third and fifth sample introduction grooves from the top of the instrument shown in FIG. 1. 矩形と直線の試料導入溝を持つ器具の平面図である。It is a top view of the instrument with a rectangular and straight sample introduction groove. 図3−3に示す矩形の溝には0.01% のCoomassie Brilliant Blue R-250色素を、直線の溝には0.01% のオレンジG色素を添加した試料溶液を導入した後のIPGゲルの写真である。試料溶液と乾燥IPGゲルとの接触時間は5分間である。Fig. 3-3 is a photograph of an IPG gel after introducing a sample solution containing 0.01% Coomassie Brilliant Blue R-250 dye in the rectangular groove and 0.01% Orange G dye in the straight groove. . The contact time between the sample solution and the dried IPG gel is 5 minutes.

Claims (15)

細長い短冊状の電気泳動用乾燥媒体に、電気泳動にかける試料を含む試料溶液を導入する方法であって、前記乾燥媒体の一方の面である試料導入面の少なくとも一部の領域である試料導入領域を前記試料溶液と直接接触させることを含み、前記試料導入領域は、前記試料導入面の長手方向の実質的に全長に渡る領域であり、前記試料溶液は、前記乾燥媒体の全体を膨潤させることができる量よりも少量であり、前記試料溶液の実質的に全量を前記乾燥媒体に吸収させて該乾燥媒体を部分的に膨潤させ、次いで、膨潤液で前記乾燥媒体の全体を膨潤させる、電気泳動用乾燥媒体への試料の導入方法。   A method for introducing a sample solution containing a sample to be electrophoresed into an elongate strip-shaped electrophoresis drying medium, wherein the sample introduction is at least a part of a sample introduction surface which is one surface of the drying medium. Including directly contacting the region with the sample solution, wherein the sample introduction region is a region extending over substantially the entire length of the sample introduction surface, and the sample solution swells the entire drying medium. Less than the amount that can be absorbed, causing the drying medium to absorb substantially all of the sample solution to partially swell the drying medium, and then swelling the entire drying medium with a swelling liquid; A method for introducing a sample into a drying medium for electrophoresis. 前記乾燥媒体は、その一方の面が堅固な支持体に直接的又は間接的に支持されている請求項1記載の方法。   The method according to claim 1, wherein the drying medium is directly or indirectly supported on a rigid support on one side. 前記乾燥媒体の長手方向の両端部は前記試料溶液と接触しない請求項1又は2記載の方法。   The method according to claim 1 or 2, wherein both ends of the drying medium in the longitudinal direction are not in contact with the sample solution. 前記支持体は、角棒状のプラスチックブロックである請求項1ないし3のいずれか1項に記載の方法。   The method according to any one of claims 1 to 3, wherein the support is a square bar-shaped plastic block. 前記乾燥媒体は、乾燥ゲルである請求項1ないし4のいずれか1項に記載の方法。   The method according to claim 1, wherein the drying medium is a dry gel. 前記乾燥媒体は、その一方の面がプラスチックフィルムに結合され、該プラスチックフィルムが前記支持体に支持される請求項1ないし5のいずれか1項に記載の方法。   The method according to any one of claims 1 to 5, wherein one side of the drying medium is bonded to a plastic film, and the plastic film is supported on the support. 前記乾燥媒体は、二次元電気泳動の一次元目用の乾燥ゲルである請求項1ないし6のいずれか1項に記載の方法。   The method according to claim 1, wherein the drying medium is a first-dimensional dry gel for two-dimensional electrophoresis. 前記乾燥ゲルは、等電点電気泳動用のpH勾配ゲルである請求項7記載の方法。   The method according to claim 7, wherein the dry gel is a pH gradient gel for isoelectric focusing. 前記試料溶液は、上から見た平面形状が前記試料導入領域と実質的に同じ寸法及び形状を有する試料導入溝内に収容され、該試料導入溝内に収容された試料溶液を前記試料導入領域と接触させる請求項1ないし8のいずれか1項に記載の方法。 The sample solution is accommodated in a sample introduction groove having a planar shape viewed from above having substantially the same size and shape as the sample introduction region, and the sample solution accommodated in the sample introduction groove is stored in the sample introduction region. 9. The method according to any one of claims 1 to 8, wherein the method is brought into contact with. 前記試料導入溝は、少なくともその底面の実質的に全面が親水化処理されている請求項9記載の方法。   10. The method according to claim 9, wherein at least substantially the entire bottom surface of the sample introduction groove is hydrophilized. 前記試料導入溝は、前記支持体を挿入するガイド溝の底面内に設けられ、前記支持体が該ガイド溝に挿入された状態で、前記試料溶液を前記試料導入領域と接触させる請求項9ないし10のいずれか1項に記載の方法。   The sample introduction groove is provided in a bottom surface of a guide groove into which the support is inserted, and the sample solution is brought into contact with the sample introduction region in a state where the support is inserted into the guide groove. 11. The method according to any one of items 10. 請求項9記載の方法を行なうための器具であって、器具本体と、該器具本体に設けられた前記試料導入溝を具備する、電気泳動用乾燥媒体に試料を導入するための器具。   An instrument for carrying out the method according to claim 9, comprising an instrument main body and the sample introduction groove provided in the instrument main body, for introducing a sample into a drying medium for electrophoresis. 前記試料導入溝は、少なくともその底面の実質的に全面が親水化処理されている請求項12記載の器具。   The instrument according to claim 12, wherein at least substantially the entire bottom surface of the sample introduction groove is subjected to a hydrophilic treatment. 前記試料導入溝は、その長手方向の両端部が親水化処理されていない請求項13記載の器具。   The instrument according to claim 13, wherein both ends of the sample introduction groove are not hydrophilized. 前記試料導入溝は、前記乾燥媒体を支持する支持体を挿入するガイド溝の底面内に設けられている請求項12ないし14のいずれか1項に記載の器具。   The instrument according to any one of claims 12 to 14, wherein the sample introduction groove is provided in a bottom surface of a guide groove into which a support body that supports the drying medium is inserted.
JP2006350976A 2006-12-27 2006-12-27 Method of introducing sample into drying medium for electrophoresis and instrument for the same Active JP4822350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006350976A JP4822350B2 (en) 2006-12-27 2006-12-27 Method of introducing sample into drying medium for electrophoresis and instrument for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006350976A JP4822350B2 (en) 2006-12-27 2006-12-27 Method of introducing sample into drying medium for electrophoresis and instrument for the same

Publications (2)

Publication Number Publication Date
JP2008164319A JP2008164319A (en) 2008-07-17
JP4822350B2 true JP4822350B2 (en) 2011-11-24

Family

ID=39694032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006350976A Active JP4822350B2 (en) 2006-12-27 2006-12-27 Method of introducing sample into drying medium for electrophoresis and instrument for the same

Country Status (1)

Country Link
JP (1) JP4822350B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104412103A (en) * 2012-06-29 2015-03-11 夏普株式会社 Electrophoresis instrument, electrophoresis device, sample introduction method, and sample separation method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5240080B2 (en) * 2009-06-09 2013-07-17 凸版印刷株式会社 Electrophoresis cassette and method for producing electrophoresis cassette
JP5513802B2 (en) * 2009-08-04 2014-06-04 ホーユー株式会社 Isoelectric focusing gel and isoelectric focusing method
JP2013181785A (en) * 2012-02-29 2013-09-12 Sharp Corp Test tool for isoelectric point electrophoresis, and manufacturing method of the same
JP2013181786A (en) * 2012-02-29 2013-09-12 Sharp Corp Test tool for isoelectric point electrophoresis, and manufacturing method of the same
JP2013181787A (en) * 2012-02-29 2013-09-12 Sharp Corp Test tool for isoelectric point electrophoresis, and manufacturing method of the same
JP2013205192A (en) * 2012-03-28 2013-10-07 Sharp Corp Test tool for isoelectric focusing and manufacturing method thereof
JP5502150B2 (en) * 2012-06-29 2014-05-28 シャープ株式会社 Sample introduction method, sample separation method, and electrophoresis apparatus
JP5502151B2 (en) * 2012-06-29 2014-05-28 シャープ株式会社 Electrophoresis device, electrophoresis apparatus, sample introduction method and sample separation method
JPWO2015064736A1 (en) * 2013-11-01 2017-03-09 シャープ株式会社 First-dimensional electrophoresis medium for two-dimensional electrophoresis, holder with medium for holding the medium, two-dimensional electrophoresis apparatus using the medium, two-dimensional electrophoresis method and jig using the medium

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4599577B2 (en) * 2004-12-07 2010-12-15 独立行政法人産業技術総合研究所 Two-dimensional electrophoresis method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104412103A (en) * 2012-06-29 2015-03-11 夏普株式会社 Electrophoresis instrument, electrophoresis device, sample introduction method, and sample separation method

Also Published As

Publication number Publication date
JP2008164319A (en) 2008-07-17

Similar Documents

Publication Publication Date Title
JP4822350B2 (en) Method of introducing sample into drying medium for electrophoresis and instrument for the same
JP4586179B2 (en) Sample injection instrument for two-dimensional electrophoresis, two-dimensional electrophoresis apparatus including the same, and two-dimensional electrophoresis using the apparatus
Hoving et al. Towards high performance two‐dimensional gel electrophoresis using ultrazoom gels
US4997537A (en) High performance microcapillary gel electrophoresis
US4865706A (en) High performance microcapillary gel electrophoresis
EP0324539A2 (en) Improved capillary gel electrophoresis columns
US5112460A (en) High performance microcapillary gel electrophoresis
EP0139471B1 (en) Medium for electrophoresis
JP5236609B2 (en) Sample separation adsorption device
JP2010025584A (en) Electrophoresis apparatus and electrophoresis method
JP2964162B2 (en) High performance microcapillary gel electrophoresis
US20040256233A1 (en) Two dimensional electrophoresis cassette
JPS59136648A (en) Gel medium for electrophoresis
CA2752349A1 (en) Aqueous transfer buffer
JP4599577B2 (en) Two-dimensional electrophoresis method
WO2014003103A1 (en) Electrophoresis instrument, electrophoresis device, sample introduction method, and sample separation method
JP4590615B2 (en) Two-dimensional electrophoresis method
Görg et al. Two-dimensional electrophoresis with immobilized pH gradients
NL9101775A (en) CAPILLARY GELS FORMED BY SPATIAL PROGRESSIVE POLYMERIZATION USING A MOVING INITIATOR.
Pflug et al. High resolution ultrathin‐layer isoelectric focusing of PGM1‐subgroups in forensic blood typing
JPS631964A (en) Medium material for electrophoresis
JP5502150B2 (en) Sample introduction method, sample separation method, and electrophoresis apparatus
JP5502151B2 (en) Electrophoresis device, electrophoresis apparatus, sample introduction method and sample separation method
JPS58140634A (en) Method for simple two-dimentional electrophoresis
JP5744211B2 (en) Isoelectric focusing cell and isoelectric focusing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110901

R150 Certificate of patent or registration of utility model

Ref document number: 4822350

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350