JP5512712B2 - Joint structure of concrete floor slab edge in bridge - Google Patents

Joint structure of concrete floor slab edge in bridge Download PDF

Info

Publication number
JP5512712B2
JP5512712B2 JP2012022564A JP2012022564A JP5512712B2 JP 5512712 B2 JP5512712 B2 JP 5512712B2 JP 2012022564 A JP2012022564 A JP 2012022564A JP 2012022564 A JP2012022564 A JP 2012022564A JP 5512712 B2 JP5512712 B2 JP 5512712B2
Authority
JP
Japan
Prior art keywords
joint
cement mortar
concrete
concrete floor
rigid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012022564A
Other languages
Japanese (ja)
Other versions
JP2013159953A (en
Inventor
直治 森井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bild Land Co Ltd
Original Assignee
Bild Land Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bild Land Co Ltd filed Critical Bild Land Co Ltd
Priority to JP2012022564A priority Critical patent/JP5512712B2/en
Publication of JP2013159953A publication Critical patent/JP2013159953A/en
Application granted granted Critical
Publication of JP5512712B2 publication Critical patent/JP5512712B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Road Paving Structures (AREA)
  • Bridges Or Land Bridges (AREA)

Description

本発明は例えば河川橋、陸橋、高架橋等の橋梁におけるコンクリート床版端の継手構造に関する。   The present invention relates to a joint structure of a concrete slab end in a bridge such as a river bridge, an overpass, a viaduct or the like.

一般に、図1に示すように、コンクリート床版1,2端間に形成された遊間3、又はコンクリート床版1端と橋台2´間に形成された遊間3の上部にはフィンガージョイントと称する、波形板4aを噛み合わせる非連結継手4を配設し、該波形板4aの噛合間隔の範囲内で上記遊間3における伸縮を自在にする構造が主流となっている。   In general, as shown in FIG. 1, the gap 3 formed between the ends of the concrete slabs 1 and 2, or the upper part of the gap 3 formed between the ends of the concrete slab 1 and the abutment 2 ′ is referred to as a finger joint. A structure in which a non-joint joint 4 for meshing the corrugated plate 4a is provided and the expansion and contraction in the gap 3 is freely made within the range of the meshing interval of the corrugated plate 4a is mainly used.

しかし、上記フィンガージョイントでは周囲のコンクリートの磨耗が著しく、該フィンガージョイントが路面に突出してしまい、走行車両による騒音や振動を誘発する問題点を有している。   However, the above-mentioned finger joint has a problem in that the surrounding concrete is significantly worn, and the finger joint protrudes on the road surface, thereby inducing noise and vibration caused by the traveling vehicle.

近年、この問題点に対処する手段として、下記特許文献1,2は、コンクリート床版端間に形成された遊間、又はコンクリート床版端と橋台間に形成された遊間の上部に段落ち部を形成し、該段落ち部に高伸縮性の充填材を打設して弾性継手を形成する構造を提案している。   In recent years, as means for coping with this problem, Patent Documents 1 and 2 below describe a stepped portion at the upper part of the gap formed between the ends of the concrete slab or between the edge of the concrete slab and the abutment. A structure in which an elastic joint is formed by forming and placing a highly stretchable filler in the stepped portion is proposed.

下記特許文献1は高伸縮性舗装材を上記段落ち部に充填して弾性継手部を形成し、同様に下記特許文献2は高弾性セメントモルタルを上記段落ち部に充填して弾性継手部を形成し、上記弾性継手部で曲げ応力を吸収する継手構造としているが、現実には何れも車両走行による繰り返し荷重によって上記高伸縮性舗装材又は高弾性セメントモルタルが圧壊してしまう問題を内在している。   The following Patent Document 1 fills the stepped portion with a highly stretchable pavement material to form an elastic joint portion. Similarly, Patent Document 2 below fills the stepped portion with a highly elastic cement mortar and forms an elastic joint portion. The joint structure is formed and absorbs bending stress at the elastic joint part. However, in reality, there is a problem that the high elastic pavement material or the high elastic cement mortar is crushed due to repeated load caused by running the vehicle. ing.

前者は高伸縮性舗装材を補強筋で補強してコンクリート床版と一体化する構造であるが、舗装材であるために既設床版コンクリートと同等の強度が得られず、上記繰り返し走行荷重による圧壊を有効に防止することができない。   The former is a structure that reinforces a highly elastic pavement material with a reinforcing bar and integrates it with the concrete floor slab, but because it is a pavement material, it cannot obtain the same strength as the existing floor slab concrete, and is due to the above repeated running load Crushing cannot be effectively prevented.

同様に、後者は高弾性セメントモルタル内にひび割れ防止シートを埋設しているが、高弾性セメントモルタルであるために既設床版コンクリートと同等の強度が得られず、上記圧壊を有効に防止することができない。   Similarly, the latter has an anti-cracking sheet embedded in the high-elastic cement mortar, but because it is a high-elastic cement mortar, it cannot provide the same strength as existing floor slab concrete, and effectively prevents the above crushing. I can't.

又上記した特許文献1,2の問題を解消するために、下記特許文献3は伸縮性又は弾性のないコンクリートを上記段落ち部に打設し、該コンクリート内に遊間を跨ぐ連結鉄筋を埋設してコンクリート床版間又はコンクリート床版と橋台間を一体的に変位挙動可能な連動構造とする案を提示している。   In order to solve the problems of Patent Documents 1 and 2, the following Patent Document 3 places concrete that is not stretchable or elastic on the stepped portion, and embeds a connecting rebar straddling the gap in the concrete. Presents a proposal for an interlocking structure that can be displaced integrally between concrete slabs or between concrete slabs and abutments.

然し乍ら上記鉄筋コンクリートで剛結する構造では、曲げ応力が上記連結鉄筋に集中し上記コンクリートのひび割れを禁じえず、遊間による伸縮吸収能に逆行する結果となっている。   However, in the structure that is rigidly connected with the reinforced concrete, bending stress concentrates on the connecting rebar, and cracks of the concrete cannot be forbidden, and the result is a reversal of the ability to absorb expansion and contraction due to play.

尚下記特許文献1は高伸縮性舗装材で弾性継手部を構成することによりひび割れを発生させないこと、下記特許文献2は高弾性セメントモルタルで弾性継手部を構成し且つ該弾性継手部内にひび割れ防止シートを埋設することによりひび割れを抑止すること、下記特許文献3は短繊維補強材でひび割れ分散や靭性向上を図ることとしているが、ここでひび割れとは継手自身に発生するひび割れ、即ち割れ幅が大きく継手の深部に達する亀裂を意味する。   In addition, the following Patent Document 1 does not generate cracks by configuring an elastic joint portion with a highly stretchable pavement material, and the following Patent Document 2 configures an elastic joint portion with a high elastic cement mortar and prevents cracks in the elastic joint portion. In order to suppress cracking by embedding a sheet, Patent Document 3 below aims to disperse cracks and improve toughness with a short fiber reinforcing material. Here, cracks are cracks generated in the joint itself, that is, crack width. It means a crack that reaches the deep part of the joint.

これに対して、後記する本発明はこれら亀裂を発生させずに、連結継手の表層部に限定した微細ひび割れを無数に発生させ、該無数の微細ひび割れ内を補強繊維で架橋接続して曲げ応力を吸収する継手構造であり、亀裂の発生を懸念する各特許文献とは技術的思想が全く異なる。   On the other hand, the present invention to be described later does not generate these cracks, generates innumerable fine cracks limited to the surface layer portion of the joint joint, and connects the inside of the infinite number of fine cracks with reinforcing fibers to cause bending stress. This is a joint structure that absorbs odor and has a completely different technical idea from each patent document that is concerned about the occurrence of cracks.

特許第2923586号公報Japanese Patent No. 2923586 特開2011−162981号公報JP 2011-162981 A 特開2012−1979号公報JP 2012-1979

前記のように、上記特許文献1,2の継手構造は既設床版コンクリートと同等の強度が得られず、上記圧壊を有効に防止することができない。   As described above, the joint structures of Patent Documents 1 and 2 cannot obtain the same strength as the existing floor slab concrete and cannot effectively prevent the collapse.

又上記特許文献3の継手構造は上記特許文献1,2の問題を解消するために、上記鉄筋コンクリートで剛結する構造としているが、曲げ応力が上記連結鉄筋に集中し上記コンクリートのひび割れを禁じえず、遊間による伸縮吸収能に逆行する結果となっている。   The joint structure of Patent Document 3 is structured to be rigidly connected with the reinforced concrete in order to solve the problems of Patent Documents 1 and 2, but the bending stress is concentrated on the connecting reinforcing bars and the cracking of the concrete is prohibited. In other words, the result is a reversal of the expansion and contraction absorption capacity due to play.

以上のように、各先行例はフィンガージョイントの如く、コンクリート床版間又はコンクリート床版と橋台間を物理的に連結せずに伸縮を吸収する非連結継手を排する目的を有効に達成することが困難である。   As described above, each of the preceding examples effectively achieves the purpose of eliminating unconnected joints that absorb expansion and contraction without physically connecting between concrete slabs or between concrete slabs and abutments, such as finger joints. Is difficult.

本発明は上記フィンガージョイントに代表される非連結継手を排し、補強繊維を富配合したセメントモルタルの適用にて、圧壊を有効に防止しつつ曲げ応力を適切に吸収する連結継手構造を提供するものである。   The present invention provides a connection joint structure that absorbs bending stress appropriately while effectively preventing crushing by eliminating cemented mortar represented by the above finger joint and applying cement mortar rich in reinforcing fibers. Is.

要述すると、コンクリート床版端間に形成された遊間、又はコンクリート床版端と橋台間に形成された遊間の上部に遊間に沿う幅広の段落ち部を形成し、該落ち部に補強繊維入りのセメントモルタルを打設して剛結合継手を形成し、該剛結合継手に曲げ応力が加わると、同剛結合継手を構成する補強繊維入りのセメントモルタルの表面層に無数の微細ひび割れを誘起し且つ該微細ひび割れ内を補強繊維で架橋接続して上記曲げ応力を吸収する構造を有するコンクリート床版端の継手構造であって、上記遊間内に間込材を挿入し該間込材の上端を上記段落ち部内に突出させて突出部を形成し、該突出部を上記補強繊維入りのセメントモルタルから成る剛結合継手の下層部に埋設し、該剛結合継手を上記間込材の上端突出部を埋設した部位において薄肉化し、該薄肉化した部位に対応する上記表面層において上記曲げ応力による微細ひび割れを積極的に誘起する構造とし、高強度でありながら曲げ応力を適切に吸収する、橋梁におけるコンクリート床版端の連結継手構造を提供する。 When Yojutsu, Joint Gap formed between concrete slab edge, or wider stepped portion is formed along the Joint Gap on top of Joint Gap formed between concrete slab edge and abutment, the reinforcing fibers in the stepped portion Cast cement mortar to form a rigid joint, and when bending stress is applied to the rigid joint , innumerable microcracks are induced in the surface layer of the cement mortar containing reinforcing fibers And a joint structure of a concrete floor slab end having a structure for absorbing the bending stress by bridging and connecting the inside of the fine crack with a reinforcing fiber, and inserting an interstitial material into the gap, and an upper end of the interstitial material Projecting into the stepped-down portion, forming a projecting portion, and embedding the projecting portion in a lower layer portion of a rigid coupling joint made of cement mortar containing the reinforcing fiber, and projecting the rigid coupling joint to the upper end of the interposing material In the part where the part is buried Thinning Te, a structure to actively induce fine cracks due to the bending stress in the surface layer corresponding to the site where the thin Nikuka, appropriately absorb bending stresses yet high strength concrete slab end in the bridge The coupling joint structure is provided.

上記セメントモルタルとはポリマー樹脂を配合したセメントモルタル又はポリマー樹脂を配合しないセメントモルタルの双方を包含し、補強繊維入りのセメントモルタルとはこれら両セメントモルタルに補強繊維を富配合したセメントモルタルである。   The cement mortar includes both a cement mortar containing a polymer resin or a cement mortar not containing a polymer resin, and a cement mortar containing reinforcing fibers is a cement mortar rich in reinforcing fibers in both cement mortars.

好ましくは、上記補強繊維は長さが15mm以下の短繊維であり、上記セメントモルタル中に1.0〜3.0vol%配合する富配合にして上記架橋接続構造を構成し、確実に上記曲げ応力を吸収する。   Preferably, the reinforcing fiber is a short fiber having a length of 15 mm or less, and the above-mentioned cross-linking structure is constituted by a rich blend of 1.0 to 3.0 vol% in the cement mortar, and the bending stress is surely To absorb.

又上記段落ち部の底面から立ち上がるアンカー筋を設け、該アンカー筋を上記補強繊維入りのセメントモルタルから成る剛結合継手内に埋設し、該アンカー筋上部の上記表面層で上記微細ひび割れを誘起する微細ひび割れ誘起層を形成し、上記剛結合継手を強固にコンクリート床版又は橋台に係留しつつ効果的に微細ひび割れを誘起することができる。   Also, an anchor bar rising from the bottom surface of the stepped portion is provided, the anchor bar is embedded in a rigid joint made of cement mortar containing the reinforcing fiber, and the fine crack is induced in the surface layer above the anchor bar. A fine crack-inducing layer is formed, and fine cracks can be effectively induced while the rigid joint is firmly anchored to a concrete slab or an abutment.

又上記遊間を形成するコンクリート床版端の立ち上がり面又は橋台の立ち上がり面を削って削り部を形成し、該削り部を補強繊維入りのセメントモルタルで修復して修復部を形成し、該修復部上記剛結合継手を形成する補強繊維入りのセメントモルタル一体化することにより、該剛結合継手をより強固にコンクリート床版又は橋台に係留することができる。 In addition, the raised surface of the concrete floor slab end or the abutment surface of the abutment forming the clearance is cut to form a shaved portion, and the shaved portion is repaired with cement mortar containing reinforcing fibers to form a repaired portion. the rigid connection joints by integrating the cement mortar reinforcing fiber-containing to form, it is possible to anchor the rigid fittings to more firmly concrete slab or abutments on.

尚上記特許文献2は高弾性セメントモルタルに繊維を配合することを開示しているが(特許文献2の段落0037,0038)、該特許文献のセメントモルタルは弾性付与材としてアルファーゾル(商品名)を主材とし、この弾性付与材にセメントと繊維等を貧配合した高弾性セメントモルタルであり、上記繊維は上記圧壊防止に殆ど寄与せず、高弾性によって曲げ応力を吸収する発明であり、本発明の如く、補強繊維入りのセメントモルタル(補強繊維入りのポリマーセメントモルタル)から成る剛結合継手の表面層に浅い無数の微細ひび割れを誘起し該微細ひび割れ内を補強繊維で架橋接続する機能は全く有せず、想定していない。   In addition, although the said patent document 2 is disclosing mixing | blending a fiber with a highly elastic cement mortar (paragraph 0037,0038 of patent document 2), the cement mortar of this patent document is alpha-sol (brand name) as an elasticity imparting material. Is a high-elasticity cement mortar in which cement and fibers are poorly blended in this elasticity-imparting material, and the fibers hardly contribute to the prevention of crushing and are inventions that absorb bending stress by high elasticity. As in the invention, the function of inducing a myriad of shallow microcracks in the surface layer of a rigid joint made of cement mortar containing reinforcing fibers (polymer cement mortar containing reinforcing fibers) and bridging the inside of the microcracks with reinforcing fibers is completely We do not have and do not assume.

本発明は補強繊維入りのセメントモルタルから成る剛結合継手によりコンクリート床版間又はコンクリート床版と橋台間を剛結合して一体化する構成と、該剛結合継手の表面層に多数の微細ひび割れを誘起し且つ該微細ひび割れ内を補強繊維で架橋接続して上記曲げ応力を吸収する構成との協働により、簡易構造でありながら高強度且つ高靱性の連結継手構造を実現することができる。   The present invention has a structure in which a concrete floor slab or a concrete floor slab and an abutment are rigidly connected and integrated with a rigid joint made of cement mortar containing reinforcing fibers, and a number of fine cracks are formed on the surface layer of the rigid joint. A joint structure with high strength and high toughness can be realized with a simple structure by cooperating with the structure that induces and bridges the inside of the fine crack with a reinforcing fiber to absorb the bending stress.

Aは既設の橋梁における遊間を介して隣接する一対のコンクリート床版、又は遊間を介して隣接するコンクリート床版と橋台を一部切欠して概示する斜視図、Bは上記遊間上部に段落ち部を形成した状態を示す断面図。A is a pair of concrete floor slabs adjacent to each other through a gap in an existing bridge, or a perspective view schematically showing a part of a concrete floor slab and an abutment that are adjacent via a gap, and B is stepped down above the gap. Sectional drawing which shows the state which formed the part. 上記段落ち部に補強繊維入りのセメントモルタルを打設して剛結合継手を形成した状態を示す断面図及び微細ひび割れの拡大断面図。Sectional drawing and the expanded sectional view of a fine crack which show the state which formed the cement mortar containing a reinforcement fiber in the said step-down part, and formed the rigid coupling joint. コンクリート床版端又は橋台の立ち上がり面に削り部を形成し、該削り部を補強繊維入りのセメントモルタルで修復して修復部を形成し、該修復部を上記剛結合継手を形成する補強繊維入りのセメントモルタルと一体化した状態を示す断面図及び微細ひび割れの拡大断面図。A cut-out part is formed at the end of the concrete floor slab or the abutment, and the cut-out part is repaired with a cement mortar containing reinforcing fibers to form a repaired part , and the repaired part contains reinforcing fibers that form the rigid joint Sectional drawing which shows the state integrated with the cement mortar, and an expanded sectional view of a fine crack. A乃至Eは係止部を設けたアンカー筋の構造例を示し、Aはアンカー筋の上端にナットを螺合し係止部とした例を示す側面図、Bは同アンカー筋の上端を鉤状に成形し係止部を形成した例を示す側面図、Cは同アンカー筋を逆U字状に曲成して係止部を形成した例を示す側面図、Dは同アンカー筋の上端に横方向に延びる板材から成る係止部を設けた例を示す斜視図、Eは同アンカー筋の上端に横方向に延びる棒材から成る係止部を設けた例を示す斜視図。A to E show examples of the structure of an anchor bar provided with a locking part, A is a side view showing an example in which a nut is screwed onto the upper end of the anchor bar to form a locking part, and B shows the upper end of the anchor bar. The side view which shows the example which shape | molded in the shape and formed the latching | locking part, C is a side view which shows the example which bent the anchor muscle in the reverse U shape, and formed the latching | locking part, D is the upper end of the anchor muscle The perspective view which shows the example which provided the latching | locking part which consists of a board | plate material extended to a horizontal direction in E, and E is a perspective view which shows the example which provided the latching | locking part which extends in the horizontal direction at the upper end of the anchor muscle.

以下本発明に係る橋梁におけるコンクリート床版端の継手構造の最良の形態を図1乃至図4に基づいて説明する。   The best mode of a joint structure of a concrete floor slab end in a bridge according to the present invention will be described below with reference to FIGS.

図1Aは既設の橋梁において、コンクリート床版1,2端間に形成された遊間3、又はコンクリート床版1端と橋台2´間に形成された遊間3の上部に非連結継手であるフィンガージョイント4が配置されている状態を一部切欠して概示した斜視図である。図中15は上記コンクリート床版1,2又は橋台2´上にアスファルト等の舗装材で形成した舗装部である。   FIG. 1A shows a finger joint which is an unconnected joint at an upper part of a gap 3 formed between the ends of the concrete floor slabs 1 and 2 or a concrete floor slab 1 and an abutment 2 ′ in an existing bridge. FIG. 4 is a perspective view schematically showing a state in which 4 is arranged with a part cut away. In the figure, reference numeral 15 denotes a pavement formed by a pavement material such as asphalt on the concrete floor slabs 1 and 2 or the abutment 2 '.

上記既設の橋梁に本発明に係る継手構造を実施する場合には、まず上記フィンガージョイント4をその周囲の取付部コンクリートと一緒に除去し、図1Bに示すように、上記遊間3の上部に段落ち部5を形成する。   When the joint structure according to the present invention is applied to the existing bridge, the finger joint 4 is first removed together with the surrounding mounting concrete, and a step is formed above the gap 3 as shown in FIG. 1B. The drop part 5 is formed.

又新設の橋梁に本発明に係る継手構造を実施する場合には、図1Bに示すように、コンクリート床版1,2端上部、又はコンクリート床版1の床版端及び橋台2´のそれぞれの上部に予め段落ち部5を形成するか、若しくは現場でコンクリート床版1,2端上部、又はコンクリート床版1の床版端及び橋台2´のそれぞれの上部を削って段落ち部5を形成する。   When the joint structure according to the present invention is applied to a new bridge, as shown in FIG. 1B, each of the concrete floor slabs 1, 2 upper ends, or the floor slab end of the concrete floor slab 1 and the abutment 2 ', respectively. A stepped portion 5 is formed in the upper portion in advance, or the stepped portion 5 is formed by scraping the upper ends of the concrete slabs 1 and 2 or the upper ends of the concrete slab 1 and the abutment 2 'on the spot. To do.

図1中6はコンクリート床版1,2又は橋台2´内に埋設の補強鉄筋であり、該鉄筋6は上記段落ち部5の底面5aから立ち上がる状態で該段落ち部5内に露出している。該鉄筋6を後記する剛結合継手9内に埋設することにより、該剛結合継手9をコンクリート床版1,2又は橋台2´に強固に係留する。   In FIG. 1, 6 is a reinforcing reinforcing bar embedded in the concrete floor slabs 1 and 2 or the abutment 2 ′, and the reinforcing bar 6 is exposed in the stepped portion 5 in a state of rising from the bottom surface 5 a of the stepped portion 5. Yes. By embedding the reinforcing bar 6 in a rigid coupling 9 described later, the rigid coupling 9 is firmly anchored to the concrete floor slabs 1 and 2 or the abutment 2 ′.

尚本願においてコンクリート床版1,2とは現場打ちコンクリートにて成形されるコンクリート床版、又は工場で成形されるPCコンクリート床版、又は鋼桁(H形鋼桁等)と打設コンクリート床版又はPCコンクリート床版で形成した複合橋等におけるコンクリート製の床版を全て包含する。   In the present application, the concrete floor slabs 1 and 2 are concrete floor slabs formed with cast-in-place concrete, PC concrete floor slabs formed at a factory, or steel girders (H-shaped steel girders, etc.) and cast concrete floor slabs. Or all the concrete slabs in the composite bridge etc. which were formed with PC concrete slabs are included.

次に図2に示すように、上記遊間3内に発泡スチロール又はウレタン樹脂等から成る圧縮弾性を有する間込材7を圧入し、上方から上記段落ち部5内に補強繊維入りのセメントモルタル8を打設し、該補強繊維入りのセメントモルタル8から成る剛結合継手9を形成して両コンクリート床版1,2端上部、又はコンクリート床版1端上部及び橋台2´上部を剛結合する。   Next, as shown in FIG. 2, an interstitial material 7 having compression elasticity made of foamed polystyrene or urethane resin or the like is press-fitted into the gap 3, and cement mortar 8 containing reinforcing fibers is inserted into the stepped-down portion 5 from above. It casts and forms the rigid coupling joint 9 which consists of the cement mortar 8 containing this reinforcing fiber, and rigidly couples both concrete floor slabs 1 and 2 end upper part, or concrete floor slab 1 end upper part, and abutment 2 'upper part.

上記間込材7は下端側を上記遊間3内に挿入し該遊間3の上部開口を隙間なく塞ぐと共に、上端7aを上記遊間3から突出させて突出部を形成し、該上端突出部7aを上記補強繊維入りのセメントモルタル8から成る剛結合継手9の下層部に埋設し、該剛結合継手9を上記間込材7の上端突出部7aを埋設した部位において薄肉化する。 The inter-write member 7 is lower-side with closing without gaps an upper opening of the inserted said free between 3 within the Joint Gap 3, the upper end 7a to form the protrusions are protruded from the Joint Gap 3, the upper end projecting portion 7a The rigid joint 9 is embedded in the lower layer portion of the cemented mortar 8 containing the reinforcing fiber, and the rigid joint 9 is thinned at the portion where the upper end protruding portion 7a of the interposing material 7 is embedded.

換言すると、図中Tで示す厚みを有する上記剛結合継手9の下層部に上記間込材7の上端突出部7aを埋設し、該上端突出部7aを埋設した部位において、図中T´で示すように薄肉化し、該薄肉化した部位に対応する上記補強繊維入りのセメントモルタル8の表面層8aにおいて曲げ応力による微細ひび割れ10を積極的に誘起する。   In other words, in the portion where the upper end protruding portion 7a of the interposing material 7 is embedded in the lower layer portion of the rigid joint 9 having the thickness indicated by T in the drawing, the upper end protruding portion 7a is embedded at T ′ in the drawing. As shown in the drawing, a fine crack 10 due to bending stress is positively induced in the surface layer 8a of the cement mortar 8 containing the reinforcing fiber corresponding to the thinned portion.

従って上記微細ひび割れ10は上記薄肉化した部位の表面層8a(後記する微細ひび割れ誘起層9a)において密に発生し、他の部位(厚みTを有する部位)の表面層8aにおいて租に発生するか又は殆ど発生しない。   Therefore, whether the fine cracks 10 are densely generated in the surface layer 8a at the thinned portion (the fine crack inducing layer 9a described later) and are generated in the surface layer 8a at other portions (the portion having the thickness T). Or hardly occurs.

又図1で図示する上記段落ち部5の底面5aには上記鉄筋6に加えて、図2に示すように、複数のアンカー筋6´を橋幅方向に沿い等間隔を置いて立ち上げて設け、上記鉄筋6及びアンカー筋6´を上記剛結合継手9内に埋設し該剛結合継手9をコンクリート床版1,2又は橋台2´に強固に係止する。該アンカー筋6´は上記段落ち部5の底面5aに穿設した孔17に充填した接着剤18により強固に立設する。   Further, in addition to the reinforcing bars 6, a plurality of anchor bars 6 'are set up at equal intervals along the bridge width direction on the bottom surface 5a of the stepped portion 5 shown in FIG. 1 as shown in FIG. The reinforcing bar 6 and the anchor bar 6 'are embedded in the rigid coupling joint 9, and the rigid coupling joint 9 is firmly locked to the concrete slabs 1 and 2 or the abutment 2'. The anchor bar 6 'is erected firmly by an adhesive 18 filled in a hole 17 drilled in the bottom surface 5a of the stepped portion 5.

これにより両コンクリート床版1,2、又はコンクリート床版1及び橋台2´を確実に剛結合して一体化すると共に、上記アンカー筋6´の上部の上記補強繊維入りのセメントモルタル8の表面層8a、即ち上記剛結合継手9の表面層9aを微細ひび割れ誘起層9aとして、該微細ひび割れ誘起層9aに微細ひび割れ10を敢えて誘起し且つ該微細ひび割れ10内を補強繊維11で架橋接続して上記剛結合継手9に加わる曲げ応力を吸収する構成とする。   As a result, both the concrete floor slabs 1 and 2 or the concrete floor slab 1 and the abutment 2 'are securely joined and integrated, and the surface layer of the cement mortar 8 containing the reinforcing fibers above the anchor bars 6'. 8a, that is, the surface layer 9a of the rigid joint 9 is used as a microcrack inducing layer 9a. A microcrack 10 is intentionally induced in the microcrack inducing layer 9a, and the inside of the microcrack 10 is cross-linked with reinforcing fibers 11 to The bending stress applied to the rigid joint 9 is absorbed.

詳述すると、図中Tで示す厚みを有する上記剛結合継手9の下層部に上記アンカー筋6´の係止部16を図中T1で示す高さに限定して立設し、該アンカー筋6´の係止部16の上部、即ち図中T2で示す厚みの上記剛結合継手9の表面層9aを微細ひび割れ誘起層9aとして、該微細ひび割れ誘起層9aに積極的に微細ひび割れ10を誘起し且つ該微細ひび割れ10の内面10aを補強繊維11で架橋接続し上記曲げ応力を吸収する。尚各アンカー筋6´の上記係止部16はそれぞれ高さを揃えて配設し、上記微細ひび割れ誘起層9aを形成する。   More specifically, the anchoring portion 16 of the anchor bar 6 'is erected in the lower layer of the rigid joint 9 having the thickness indicated by T in the figure, limited to the height indicated by T1 in the figure. The surface layer 9a of the rigid joint 9 having a thickness indicated by T2 in the drawing, that is, T2 in the drawing is used as a microcrack inducing layer 9a, and microcracks 10 are positively induced in the microcrack inducing layer 9a. In addition, the inner surface 10a of the fine crack 10 is cross-linked with the reinforcing fiber 11 to absorb the bending stress. In addition, the said locking part 16 of each anchor reinforcement 6 'is arrange | positioned by arrange | equalizing height, respectively, and forms the said fine crack induction layer 9a.

又本発明に係る継手構造は上記したコンクリート床版1,2又は橋台2´の収縮により発生する引張力に対しても上記微細ひび割れ誘起層9aに微細ひび割れ10を生起し該微細ひび割れ10内を架橋接続して耐えることができる。   In the joint structure according to the present invention, the microcrack 10 is generated in the microcrack-inducing layer 9a against the tensile force generated by the shrinkage of the concrete slabs 1 and 2 or the abutment 2 '. Can withstand cross-linking.

好ましくは、図4Aに示すように、上記アンカー筋6´の上端に雄ネジ部6´aを形成して該雄ネジ部6´aにナット14を螺合し、該ナット14を係止部16とし、該係止部16を有するアンカー筋6´を上記剛結合継手9内に埋設し、該剛結合継手9の浮きを防止する。   Preferably, as shown in FIG. 4A, a male screw portion 6'a is formed at the upper end of the anchor bar 6 ', and a nut 14 is screwed into the male screw portion 6'a. 16, anchor bars 6 ′ having the locking portions 16 are embedded in the rigid coupling joint 9 to prevent the rigid coupling joint 9 from floating.

尚上記係止部16(ナット14)は上記雄ネジ部6´aが形成されている範囲内で自在に調整できる。   In addition, the said latching | locking part 16 (nut 14) can be freely adjusted within the range in which the said external thread part 6'a is formed.

加えて、図4Dに示すように、上記ナット14に横方向に延びる板材から成る係止部16を単数又は複数形成し、又は図4Eに示すように、上記ナット14に横方向に延びる棒材から成る係止部16を単数又は複数形成し、確実に上記剛結合継手9の浮きを防止する。   In addition, as shown in FIG. 4D, one or more locking portions 16 made of a plate material extending in the lateral direction are formed on the nut 14, or a bar material extending in the lateral direction on the nut 14 as shown in FIG. 4E. One or a plurality of locking portions 16 are formed to reliably prevent the rigid coupling joint 9 from floating.

上記アンカー筋6´の他例として、図4Bに示すように、上記アンカー筋6´の上端を鉤状に成形して係止部16を形成し、又は図4Cに示すように、上記アンカー筋6´を逆U字状に曲成して係止部16を形成し、上記剛結合継手9の浮きを防止する構成とすることも実施に応じ任意である。これら図4B,図4Cに示す構造例のアンカー筋6´にあっては立設高さを調整し、係止部16の高さを調整できる。   As another example of the anchor bar 6 ', as shown in FIG. 4B, the upper end of the anchor bar 6' is formed into a hook shape to form a locking portion 16, or as shown in FIG. It is optional depending on the implementation to bend the 6 'in an inverted U shape to form the locking portion 16 and prevent the rigid coupling joint 9 from floating. In the anchor bar 6 'of the structural example shown in FIGS. 4B and 4C, the standing height can be adjusted, and the height of the locking portion 16 can be adjusted.

上記のように、本発明に係る継手構造は上記アンカー筋6´の係止部16による引き留め効果によって上記剛結合継手9をコンクリート床版1,2又は橋台2´に強固に係留するため、繰り返し走行荷重による上記剛結合継手9の圧壊を有効に防止する。   As described above, the joint structure according to the present invention repeatedly anchors the rigid joint 9 to the concrete floor slabs 1, 2 or the abutment 2 ′ by the retention effect of the locking portion 16 of the anchor bar 6 ′. The crushing of the rigid coupling joint 9 due to traveling load is effectively prevented.

加えて上記剛結合継手9を構成する上記セメントモルタル8中の補強繊維11が上記係止部16に絡み合い、上記剛結合継手9をコンクリート床版1,2又は橋台2´に係留する効果を増大する。   In addition, the reinforcing fiber 11 in the cement mortar 8 constituting the rigid coupling joint 9 is entangled with the locking portion 16, and the effect of mooring the rigid coupling joint 9 to the concrete floor slabs 1, 2 or the abutment 2 'is increased. To do.

又本発明は図3に示すように、図2で図示する上記遊間3を形成するコンクリート床版1,2端の立ち上がり面1a,2a又は橋台2´の立ち上がり面2´aに削り部12を形成し、該削り部12を補強繊維入りのセメントモルタル8で修復して修復部13を形成し、該修復部13上記剛結合継手9を構成する補強繊維入りのセメントモルタル8一体化して、両コンクリート床版1,2、又はコンクリート床版1及び橋台2´を剛結合し、上記補強繊維入りのセメントモルタル8の表面層8a、即ち上記剛結合継手9の表面層9aに無数の微細ひび割れ10を生じて上記曲げ応力を吸収する構成とすることができる。
Further, as shown in FIG. 3, in the present invention, the shaving portion 12 is provided on the rising surfaces 1a, 2a of the ends of the concrete floor slabs 1 and 2 or the rising surface 2'a of the abutment 2 'forming the clearance 3 shown in FIG. formed, to repair該削Ri portion 12 in the reinforcing fiber filled cement mortar 8 to form a repair part 13, by integrating cement mortar 8 of reinforcing fiber-containing constituting the rigid connection fitting 9 to the restoration unit 13 The concrete floor slabs 1 and 2 or the concrete floor slab 1 and the abutment 2 'are rigidly connected, and the surface layer 8a of the cement mortar 8 containing the reinforcing fibers, that is, the surface layer 9a of the rigid joint 9 is infinitely fine. It can be set as the structure which produces the crack 10 and absorbs the said bending stress.

即ち、まず上記削り部12に型枠を介して補強繊維入りのセメントモルタル8を充填し修復して修復部13を形成し、該修復部13の内端面間に上記間込材7を圧入し、次いで上記段落ち部5内に補強繊維入りのセメントモルタル8を打設して上記修復部13と一体化して上記剛結合継手9を形成する。上記修復部13により確実に上記剛結合継手9を両コンクリート床版1,2又はコンクリート床版1と橋台2´に係止する。   That is, first, the cut portion 12 is filled with a cement mortar 8 containing reinforcing fibers through a mold and repaired to form a repair portion 13, and the interstitial material 7 is press-fitted between the inner end surfaces of the repair portion 13. Then, cement mortar 8 containing reinforcing fibers is placed in the stepped portion 5 and integrated with the repaired portion 13 to form the rigid joint 9. The rigid coupling joint 9 is securely locked to both the concrete floor slabs 1 and 2 or the concrete floor slab 1 and the abutment 2 'by the repairing part 13.

この場合にも上記段落ち部5の底面5aには上記鉄筋6に加えて、上記アンカー筋6´を立ち上げて設け、上記鉄筋6及びアンカー筋6´を上記剛結合継手9内に埋設し該剛結合継手9を両コンクリート床版1,2又はコンクリート床版1と橋台2´に強固に係止すると共に、上記アンカー筋6´の上部を上記微細ひび割れ誘起層9aとする。   Also in this case, in addition to the reinforcing bar 6, the anchor bar 6 ′ is raised and provided on the bottom surface 5 a of the stepped portion 5, and the reinforcing bar 6 and the anchor bar 6 ′ are embedded in the rigid joint 9. The rigid joint 9 is firmly locked to both the concrete floor slabs 1 and 2 or the concrete floor slab 1 and the abutment 2 ', and the upper part of the anchor bar 6' is used as the fine crack inducing layer 9a.

尚本発明は上記遊間3を形成する一方の立ち上がり面に上記削り部12を形成し、該削り部12を補強繊維入りのセメントモルタル8で修復して上記修復部13を形成し、該修復部13を構成する補強繊維入りのセメントモルタル8を上記剛結合継手9を構成する補強繊維入りのセメントモルタル8と一体化する場合を排除しない。   In the present invention, the scraped portion 12 is formed on one rising surface forming the clearance 3, the scraped portion 12 is repaired with cement mortar 8 containing reinforcing fibers, and the repaired portion 13 is formed. The case where the cement mortar 8 including the reinforcing fiber constituting the reinforcing fiber 13 is integrated with the cement mortar 8 including the reinforcing fiber constituting the rigid joint 9 is not excluded.

前記したように、本発明に係る連結継手構造は、コンクリート床版1,2端間又はコンクリート床版1と橋台2´間に形成された遊間3の上部に該遊間3に沿う幅広の段落ち部5を形成し、一対のコンクリート床版1,2端上部間、又はコンクリート床版1及び橋台2´の上部間を上記落ち部5に打設した補強繊維入りのセメントモルタル8から成る剛結合継手9で剛結合し、該剛結合継手9の表面層を微細ひび割れ誘起層9aとし、該微細ひび割れ誘起層9aに積極的に微細ひび割れ10を誘起し且つ該微細ひび割れ10内を補強繊維11で架橋接続して曲げ応力を吸収する構成とする。
As described above, the connecting joint structure according to the present invention has a wide step along the gap 3 at the upper part of the gap 3 formed between the ends of the concrete decks 1 and 2 or between the concrete deck 1 and the abutment 2 '. A rigid portion comprising a cement mortar 8 with reinforcing fibers formed in the stepped portion 5 between the pair of concrete floor slabs 1 and 2 or between the upper ends of the concrete floor slab 1 and the abutment 2 '. The joint 9 is rigidly coupled, and the surface layer of the rigid joint 9 is used as a microcrack inducing layer 9a. The microcrack 10 is positively induced in the microcrack inducing layer 9a and the inside of the microcrack 10 is reinforced fiber 11 It is set as the structure which bridge | crosslinks and absorbs bending stress.

上記微細ひび割れ10は幅0・05mm〜0.1mm、深さ10mm〜20mmの微細なひび割れであり、上記剛結合継手9にコンクリート床版1,2、橋台2´の収縮又は曲げ応力による引張力が加わると、該剛結合継手9の表面層9a、即ち微細ひび割れ誘起層9aに多数発生し、上記引張力を吸収して上記剛結合継手9の破壊を有効に防止する。   The fine crack 10 is a fine crack having a width of 0.05 mm to 0.1 mm and a depth of 10 mm to 20 mm, and a tensile force due to contraction or bending stress of the concrete floor slabs 1 and 2 and the abutment 2 'is applied to the rigid joint 9. Is applied to the surface layer 9a of the rigid joint 9, that is, the fine crack induction layer 9a, absorbs the tensile force and effectively prevents the rigid joint 9 from being broken.

図2,図3に示すように、上記微細ひび割れ10内には上記セメントモルタル8に配合された補強繊維11が上記微細ひび割れ10の対向する内面10a間を架橋接続し、上記コンクリート収縮及び曲げ応力を効果的に吸収する。   As shown in FIGS. 2 and 3, the reinforcing fibers 11 blended in the cement mortar 8 in the fine cracks 10 bridge and connect the opposing inner surfaces 10 a of the fine cracks 10, and the concrete shrinkage and bending stress. Absorbs effectively.

又上記微細ひび割れ10の内面10aには上記補強繊維11がランダムに突出して現れ、上記架橋接続する補強繊維11と共に上記微細ひび割れ10内への雨水の浸入を効果的に防止する。   The reinforcing fibers 11 appear at random on the inner surface 10a of the microcrack 10 and effectively prevent rainwater from entering the microcrack 10 together with the reinforcing fibers 11 to be bridged and connected.

再述すると、上記微細ひび割れ10は上記剛結合継手9の表面層たる微細ひび割れ誘起層9aに限定して発生する。依って、図2,図3に示すように、上記アンカー筋6´はその係止部16をT1に示す高さに限定して設け、T2の厚みを有する微細ひび割れ誘起層9aを形成して上記微細ひび割れ10の発生を保障すると共に、既述したように剛結合継手9を強固にコンクリート床版1,2又は橋台2´に係留する。   In other words, the fine crack 10 is generated only in the fine crack inducing layer 9a which is the surface layer of the rigid joint 9. Accordingly, as shown in FIGS. 2 and 3, the anchor bar 6 'is provided with its locking portion 16 limited to the height indicated by T1, and a fine crack inducing layer 9a having a thickness of T2 is formed. The generation of the fine crack 10 is ensured, and the rigid joint 9 is firmly anchored to the concrete floor slabs 1 and 2 or the abutment 2 'as described above.

又上記間込材7の上端突出部7aを上記剛結合継手9の下層部に埋設することにより該剛結合継手9を薄肉化し、該薄肉化した部位(図中T´の厚みを有する部位)における微細ひび割れ誘起層9aに積極的に微細ひび割れ10を誘起する。   Further, by embedding the upper end protruding portion 7a of the interposing material 7 in the lower layer portion of the rigid coupling joint 9, the rigid coupling joint 9 is thinned, and the thinned portion (the portion having a thickness T 'in the figure). The microcrack 10 is positively induced in the microcrack induction layer 9a.

<配合例1>
本発明に係る上記補強繊維入りのセメントモルタル8は、好ましい例示として、
水 250〜450kg/m
ポリマー樹脂 10〜100kg/m
セメント(ポルトランドセメント) 800〜1600kg/m
シリカフューム 20〜350kg/m
細骨材(最大粒径が1mm以下) 100〜700kg/m
高性能AE減水剤又は高性能減水剤 セメント重量の5%以下
補強繊維11(短繊維) 10〜40kg/m
消泡剤(粉体として) 0.2〜15kg/m
の配合から成る。
<Formulation example 1>
The cement mortar 8 containing the reinforcing fiber according to the present invention is preferably exemplified as follows:
Water 250-450kg / m 3
Polymer resin 10-100 kg / m 3
Cement (Portland cement) 800-1600kg / m 3
Silica fume 20-350kg / m 3
Fine aggregate (maximum particle size is 1 mm or less) 100-700 kg / m 3
High performance AE water reducing agent or high performance water reducing agent 5% or less of cement weight Reinforcing fiber 11 (short fiber) 10-40 kg / m 3
Antifoaming agent (as powder) 0.2-15 kg / m 3
Consists of.

<配合例2>
又短期間で本発明に係る継手構造を形成する場合の上記補強繊維入りのセメントモルタル8は以下の配合が好ましい。
水 250〜450kg/m
セメント(超速硬セメント) 700〜1500kg/m
シリカフューム 10〜150kg/m
細骨材(最大粒径が1mm以下) 350〜750kg/m
高性能AE減水剤又は高性能減水剤 セメント重量の5%以下
補強繊維11(短繊維) 10〜40kg/m
消泡剤(粉体として) 0.2〜15kg/m
<Formulation example 2>
The cement mortar 8 with reinforcing fibers in the case of forming the joint structure according to the present invention in a short period of time is preferably blended as follows.
Water 250-450kg / m 3
Cement (ultrafast cement) 700-1500 kg / m 3
Silica fume 10 to 150 kg / m 3
Fine aggregate (maximum particle size is 1mm or less) 350-750kg / m 3
High performance AE water reducing agent or high performance water reducing agent 5% or less of cement weight Reinforcing fiber 11 (short fiber) 10-40 kg / m 3
Antifoaming agent (as powder) 0.2-15 kg / m 3

上記ポリマー樹脂としては、例えばスチレンブタジエン樹脂系、ポリアクリル酸エステル樹脂系(アクリル樹脂系)、エチレン酢ビ樹脂系、酢ビ・ベオバ樹脂系等のポリマー樹脂を使用する。   As said polymer resin, polymer resins, such as a styrene butadiene resin type | system | group, a polyacrylic acid ester resin type | system | group (acrylic resin type | system | group), an ethylene vinyl acetate resin type | system | group, a vinyl acetate / veova resin type, are used, for example.

上記補強繊維11としては、高強度ポリエチレン繊維又はポリビニルアルコール繊維又は高強度ポリエチレン繊維とポリビニルアルコール繊維の混合繊維を使用し、好ましくは上記セメントモルタル中に1.0〜3.0vol%配合し、確実に上記微細ひび割れ10内を架橋接続する。   As the reinforcing fiber 11, a high-strength polyethylene fiber, a polyvinyl alcohol fiber, or a mixed fiber of high-strength polyethylene fiber and polyvinyl alcohol fiber is used, and preferably 1.0 to 3.0 vol% is blended in the cement mortar. The inside of the fine crack 10 is cross-linked.

上記補強繊維11の長さは15mm以下、好ましくは6〜12mmとし、同直径は0.006〜0.05mmの範囲で夫々選択しばらの状態で配合する。又はばらの補強繊維11を200〜5000本の範囲で収束し、長さ6〜25mm、同直径0.5〜3mmの収束繊維として配合する。又は上記ばらの補強繊維11と上記収束した補強繊維11を混合して配合することも実施に応じ任意である。   The length of the reinforcing fiber 11 is 15 mm or less, preferably 6 to 12 mm, and the same diameter is selected in the range of 0.006 to 0.05 mm. Alternatively, the bulky reinforcing fibers 11 are converged in the range of 200 to 5000, and blended as convergent fibers having a length of 6 to 25 mm and a diameter of 0.5 to 3 mm. Alternatively, it is optional depending on the practice to mix and mix the above-mentioned loose reinforcing fibers 11 and the converged reinforcing fibers 11.

上記配合例1,配合例2の配合による上記補強繊維入りのセメントモルタル8は性能試験の結果、弾性係数が20〜40GPA、引張強度が6〜15N/mm、圧縮強度が30N/mm以上であった。特に上記配合例2の配合による上記補強繊維入りのセメントモルタル8は打設後3時間で圧縮強度が24N/mm以上であった。 As a result of the performance test, the cement mortar 8 containing the reinforcing fibers according to the blending examples 1 and 2 has a modulus of elasticity of 20 to 40 GPA, a tensile strength of 6 to 15 N / mm 2 , and a compressive strength of 30 N / mm 2 or more. Met. In particular, the cement mortar 8 containing the reinforcing fibers according to the blending example 2 had a compressive strength of 24 N / mm 2 or more in 3 hours after placing.

以上のように、本発明に係る連結継手構造は簡易な構造で高強度と高靱性の双方を達成できる。又配設作業や補修作業において複雑な作業を伴わず、費用と時間を効果的に削減できる。   As described above, the joint structure according to the present invention can achieve both high strength and high toughness with a simple structure. In addition, it is possible to effectively reduce costs and time without complicated work in arrangement work and repair work.

又上記剛結合継手9の上面を両コンクリート床版1,2又は橋台2´上の舗装部15の上面と面一にすれば、車両走行による騒音の発生を有効に防止することができる。   Further, if the upper surface of the rigid joint 9 is flush with the upper surface of the pavement 15 on the two concrete floor slabs 1 or 2 or the abutment 2 ', it is possible to effectively prevent the generation of noise due to vehicle running.

尚本発明は上記剛結合継手9の上面に舗装部15を形成することを排除しない。   The present invention does not exclude the formation of the pavement 15 on the upper surface of the rigid coupling 9.

又本願において、下限値と上限値間を「〜」で示した数値範囲は、該下限値と上限値間の全ての数値(整数値と小数値)を表したものである。   In the present application, the numerical range indicated by “˜” between the lower limit value and the upper limit value represents all the numerical values (integer value and decimal value) between the lower limit value and the upper limit value.

1,2…コンクリート床版、2´…橋台、1a,2a,2´a…立ち上がり面、3…遊間、4…非連結継手(フィンガージョイント)、5…段落ち部、5a…底面、6…鉄筋、6´…アンカー筋、6´a…雄ネジ部、7…間込材、7a…上端(上端突出部)、8…補強繊維入りのセメントモルタル、8a…表面層、9…剛結合継手、9a…微細ひび割れ誘起層(表面層)、10…微細ひび割れ、10a…内面、11…補強繊維、12…削り部、13…修復部、14…ナット、15…舗装部、16…係止部、17…孔、18…接着剤、T…剛結合継手の厚み、T1…アンカー筋の係止部の高さ、T2…微細ひび割れ誘起層の厚み、T´…薄肉化した部位の厚み。   DESCRIPTION OF SYMBOLS 1, 2 ... Concrete floor slab, 2 '... Abutment, 1a, 2a, 2'a ... Rising surface, 3 ... Free space, 4 ... Non-coupling joint (finger joint), 5 ... Stepped part, 5a ... Bottom surface, 6 ... Reinforcing bar, 6 '... Anchor bar, 6'a ... Male thread part, 7 ... Interstitial material, 7a ... Upper end (upper end protruding part), 8 ... Cement mortar with reinforcing fiber, 8a ... Surface layer, 9 ... Rigid coupling joint , 9a ... fine crack inducing layer (surface layer), 10 ... fine crack, 10a ... inner surface, 11 ... reinforcing fiber, 12 ... shaving part, 13 ... restoration part, 14 ... nut, 15 ... pavement part, 16 ... locking part , 17 ... hole, 18 ... adhesive, T ... thickness of rigid joint, T1 ... height of anchoring portion of anchor muscle, T2 ... thickness of fine crack-inducing layer, T '... thickness of thinned portion.

Claims (4)

コンクリート床版端間に形成された遊間、又はコンクリート床版端と橋台間に形成された遊間の上部に段落ち部を形成し、該落ち部に補強繊維入りのセメントモルタルを打設して剛結合継手を形成し、該剛結合継手に曲げ応力が加わると、同剛結合継手を構成する補強繊維入りのセメントモルタルの表面層に無数の微細ひび割れを誘起し且つ該微細ひび割れ内を補強繊維で架橋接続して上記曲げ応力を吸収する構造を有するコンクリート床版端の継手構造であって、上記遊間内に間込材を挿入し該間込材の上端を上記段落ち部内に突出させて突出部を形成し、該突出部を上記補強繊維入りのセメントモルタルから成る剛結合継手の下層部に埋設し、該剛結合継手を上記間込材の上端突出部を埋設した部位において薄肉化し、該薄肉化した部位に対応する上記表面層において上記曲げ応力による微細ひび割れを積極的に誘起する構造としたことを特徴とする橋梁におけるコンクリート床版端の継手構造。 Joint Gap formed between concrete slab edge, or the top of the Joint Gap formed between concrete slab edge and the abutment to form a stepped portion, and Da設cement mortar reinforcing fiber-containing to the stepped portion When a rigid coupling joint is formed and bending stress is applied to the rigid coupling joint , innumerable fine cracks are induced in the surface layer of the cement mortar containing the reinforcing fibers constituting the rigid coupling joint and the inside of the fine cracks is reinforced fiber. A joint structure of a concrete floor slab end having a structure that absorbs the bending stress by bridging and connecting, and inserting an interstitial material into the gap and projecting the upper end of the interstitial material into the stepped-down portion Forming a protruding portion, burying the protruding portion in a lower layer portion of a rigid coupling joint made of cement mortar containing the reinforcing fiber, and thinning the rigid coupling joint at a portion where the upper end protruding portion of the interposing material is embedded; Thinned part Joint structure of the concrete slab end in the bridge, characterized in that it has a structure to actively induce fine cracks due to the bending stress in the surface layer corresponding to. 上記補強繊維は長さが15mm以下の短繊維であり、上記セメントモルタル中に1.0〜3.0vol%配合する富配合にし上記架橋接続構造を構成することを特徴とする請求項1記載の橋梁におけるコンクリート床版端の継手構造。   2. The reinforcing fiber according to claim 1, wherein the reinforcing fiber is a short fiber having a length of 15 mm or less, and the cross-linked structure is constituted by a rich blend of 1.0 to 3.0 vol% in the cement mortar. Joint structure of concrete floor slab edge in bridge. 上記段落ち部の底面から立ち上がるアンカー筋を設け、該アンカー筋を上記補強繊維入りのセメントモルタルから成る剛結合継手内に埋設し、該アンカー筋上部の上記表面層で上記微細ひび割れを誘起する微細ひび割れ誘起層を形成したことを特徴とする請求項1又は請求項2のいずれかに記載の橋梁におけるコンクリート床版端の継手構造。   An anchor bar that rises from the bottom surface of the stepped portion is provided, the anchor bar is embedded in a rigid joint made of cement mortar containing the reinforcing fiber, and a fine crack is induced in the surface layer above the anchor bar. The joint structure at the end of a concrete floor slab in a bridge according to claim 1, wherein a crack-inducing layer is formed. 上記遊間を形成するコンクリート床版端の立ち上がり面又は橋台の立ち上がり面を削って削り部を形成し、該削り部を補強繊維入りのセメントモルタルで修復して修復部を形成し、該修復部上記剛結合継手を形成する補強繊維入りのセメントモルタル一体化したことを特徴とする請求項1〜3のいずれかに記載の橋梁におけるコンクリート床版端の継手構造。 The raised surface of the concrete slab edge forming the gap or the rising surface of the abutment is shaved to form a shaved part, and the shaved part is repaired with cement mortar containing reinforcing fibers to form a repaired part . joint structure of the concrete slab end in the bridge according to any one of claims 1-3, characterized in that integrated cement mortar reinforcing fiber-containing forming the rigid connection joints.
JP2012022564A 2012-02-03 2012-02-03 Joint structure of concrete floor slab edge in bridge Expired - Fee Related JP5512712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012022564A JP5512712B2 (en) 2012-02-03 2012-02-03 Joint structure of concrete floor slab edge in bridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012022564A JP5512712B2 (en) 2012-02-03 2012-02-03 Joint structure of concrete floor slab edge in bridge

Publications (2)

Publication Number Publication Date
JP2013159953A JP2013159953A (en) 2013-08-19
JP5512712B2 true JP5512712B2 (en) 2014-06-04

Family

ID=49172456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012022564A Expired - Fee Related JP5512712B2 (en) 2012-02-03 2012-02-03 Joint structure of concrete floor slab edge in bridge

Country Status (1)

Country Link
JP (1) JP5512712B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104711922B (en) * 2015-03-24 2017-01-04 深圳市市政设计研究院有限公司 A kind of Large-span Precast bridge structure
CN105113406A (en) * 2015-08-25 2015-12-02 王宗林 Crack-proof bridge floor continuous structure for simple support system beam bridge
CN109024262B (en) * 2018-10-16 2023-05-23 长安大学 Modulus type seamless telescoping device and construction method thereof
CN112267344B (en) * 2020-10-16 2022-05-06 长沙理工大学 Crack-inducing member and crack-inducing structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4517697B2 (en) * 2004-03-26 2010-08-04 鹿島建設株式会社 Continuous structure of the expansion joint of the bridge
JP5330118B2 (en) * 2009-06-24 2013-10-30 三井住友建設株式会社 Main girder connection structure
JP5185978B2 (en) * 2010-06-17 2013-04-17 中日本ハイウェイ・エンジニアリング名古屋株式会社 Bridge joint structure

Also Published As

Publication number Publication date
JP2013159953A (en) 2013-08-19

Similar Documents

Publication Publication Date Title
CN110700420A (en) Prefabricated wall body and assembly structure of assembly type building and construction method of prefabricated wall body and assembly structure
JP4675915B2 (en) Continuous structure of bridge joints
JP5512712B2 (en) Joint structure of concrete floor slab edge in bridge
CN103046478B (en) Strengthening and pulling device of hinge gap of compositional plate girder bridge
JP2007309032A (en) Serial structure of bridge joint part
JP3762787B1 (en) Reinforcing structure of existing floor slab and method of reinforcing existing floor slab
JP2001234504A (en) Bridge expansion joint
JP2009041272A (en) Construction method for bridge
JP2013060710A (en) Bridge joint structure
KR20120029625A (en) Construction method of steel composite girder bridge applying precast deck
JP2009041271A (en) Construction method for bridge
JP7332309B2 (en) CONCRETE STRUCTURE CONNECTION AND CONSTRUCTION METHOD OF CONCRETE STRUCTURE CONNECTION
JP2008144459A (en) Slab form and method of constructing composite floor slab
KR101327873B1 (en) Flatness remaining unit fot repairing precast panel of concrete pavement, and repairing method
JP4020918B2 (en) Bridge structure of girder bridge
CN211714180U (en) Assembled concrete frame structure
JP2021143486A (en) Connection structure
JP7016106B2 (en) Lightweight embankment structure and how to build a lightweight embankment
JP5948091B2 (en) Ground subsidence countermeasure structure and method
CN206784168U (en) A kind of new-type ECC structure seam
JP6860381B2 (en) Reinforcement method and structure of steel pipe pile using multiple fine crack type fiber reinforced cement composite material
JP3789412B2 (en) Buried joints for road bridge buried joints and buried bridge joints for road bridges
JP3678290B2 (en) High earthquake resistance foundation
KR20070058290A (en) Method of continual concrete pavement and structure produced using the same
KR102463636B1 (en) External Reinforcement Structure of Head Cutting PC Pile

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140326

R150 Certificate of patent or registration of utility model

Ref document number: 5512712

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees