JP5512419B2 - Method for producing fixed abrasive saw wire and fixed abrasive saw wire - Google Patents

Method for producing fixed abrasive saw wire and fixed abrasive saw wire Download PDF

Info

Publication number
JP5512419B2
JP5512419B2 JP2010149019A JP2010149019A JP5512419B2 JP 5512419 B2 JP5512419 B2 JP 5512419B2 JP 2010149019 A JP2010149019 A JP 2010149019A JP 2010149019 A JP2010149019 A JP 2010149019A JP 5512419 B2 JP5512419 B2 JP 5512419B2
Authority
JP
Japan
Prior art keywords
steel wire
abrasive grains
nickel
wire
abrasive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010149019A
Other languages
Japanese (ja)
Other versions
JP2012011486A (en
Inventor
俊次 蜂須賀
精琢 呂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Rope Manufacturing Co Ltd
Original Assignee
Tokyo Rope Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Rope Manufacturing Co Ltd filed Critical Tokyo Rope Manufacturing Co Ltd
Priority to JP2010149019A priority Critical patent/JP5512419B2/en
Publication of JP2012011486A publication Critical patent/JP2012011486A/en
Application granted granted Critical
Publication of JP5512419B2 publication Critical patent/JP5512419B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

この発明は,固定砥粒ソーワイヤの製造方法および固定砥粒ワイヤに関する。   The present invention relates to a method of manufacturing a fixed abrasive saw wire and a fixed abrasive wire.

シリコン,サファイアなどの高硬度の脆性材料のインゴットを薄く切断してウエハを製作するために,固定砥粒ソーワイヤが用いられている。固定砥粒ソーワイヤは,電着,ロウ付け,レジンなどによってダイヤモンドなどの細かい粉砕物をワイヤの表面に固定したものである。走行する固定砥粒ソーワイヤにシリコンなどのインゴットを押しつけることによって,インゴットが薄く切断されてウエハが製作される。   Fixed abrasive saw wires are used to make wafers by thinly cutting ingots of brittle materials with high hardness such as silicon and sapphire. The fixed abrasive saw wire is obtained by fixing a finely pulverized material such as diamond to the surface of the wire by electrodeposition, brazing, resin, or the like. By pressing an ingot such as silicon against the traveling fixed abrasive saw wire, the ingot is cut into thin pieces to produce a wafer.

引用文献1,2には,ピアノ線を磁気コイルまたは磁石によって磁化し,磁力によって砥粒をピアノ線に吸着または付着させる方法が記載されている。しかしながら,磁気コイルまたは磁石によって単にピアノ線を磁化させることだけでは,ピアノ線に付着する砥粒の方向が安定しない。   References 1 and 2 describe a method in which a piano wire is magnetized by a magnetic coil or a magnet, and abrasive grains are attracted or adhered to the piano wire by a magnetic force. However, simply magnetizing the piano wire with a magnetic coil or magnet does not stabilize the direction of the abrasive grains adhering to the piano wire.

特開昭53−14489号公報JP-A-53-14489 特開2004−50301号公報JP 2004-50301 A

この発明は,尖端が外方を向くようにワイヤの表面に砥粒を付着させる方法を提供することを目的とする。   An object of the present invention is to provide a method of attaching abrasive grains to the surface of a wire so that the tip is directed outward.

この発明はまた,尖端が外方を向いて付着した砥粒を有する固定砥粒ソーワイヤを提供することを目的とする。   Another object of the present invention is to provide a fixed-abrasive saw wire having abrasive grains with tips attached outward.

この発明による固定砥粒ソーワイヤの製造方法は,表面に微細な凹部を有する乾燥状態の鋼線を,電流が通電されているソレノイドコイルの内部空間を走行させながら通過させることによって,上記鋼線の表面から外方を向く漏洩磁束を有するように上記鋼線を磁化し,上記磁化された鋼線を,多数の金属被膜砥粒が流動自在に堆積された砥粒付着装置を通過させて上記鋼線の表面に上記金属被膜砥粒を付着し,上記金属被覆砥粒が付着した鋼線の表面に固着材を被覆する。   The method of manufacturing a fixed abrasive saw wire according to the present invention allows a steel wire in a dry state having fine concave portions on its surface to pass through the inner space of a solenoid coil that is energized with current while passing through the steel wire. The steel wire is magnetized so as to have a leakage magnetic flux directed outward from the surface, and the magnetized steel wire is passed through an abrasive grain adhesion device in which a large number of metal-coated abrasive grains are flowably deposited. The metal-coated abrasive grains are adhered to the surface of the wire, and the fixing material is coated on the surface of the steel wire to which the metal-coated abrasive grains are adhered.

この発明による固定砥粒ソーワイヤは,電流が通電されているソレノイドコイルの内部空間に,表面に微細な凹部を有する乾燥状態の鋼線を走行させながら通過させて表面から外方を向く漏洩磁束を有するように磁化された鋼線を,多数の金属被覆砥粒が流動自在に堆積された砥粒付着装置を通過させて上記鋼線の表面に上記金属被覆砥粒を付着させ,上記金属被覆砥粒が付着した鋼線の表面に固着材を被覆させたものである。   The fixed abrasive saw wire according to the present invention allows a magnetic flux leaking outwardly from the surface by passing a dry steel wire having a fine recess on the surface while passing through the internal space of a solenoid coil to which a current is applied. The steel wire magnetized to have a metal-coated abrasive grain attached to the surface of the steel wire by passing it through an abrasive grain adhesion device in which a large number of metal-coated abrasive grains are flowably deposited. The surface of the steel wire to which the grains are attached is coated with a fixing material.

鋼線の表面には微細な凹部(または傷)が多数存在する。この微細な凹部は一般に鋼線を製造する過程(延伸工程等)において鋼線の表面に発生する。微細な凹部を表面に有する乾燥状態の鋼線を,電流が通電されているソレノイドコイルの内部空間を走行させながら通過させると鋼線は磁化(好ましくは飽和磁化)され,鋼線の表面の微細な凹部から磁束が漏洩する。漏洩磁束によって,砥粒付着装置において鋼線の表面には磁力で金属被覆砥粒が付着する。金属被覆砥粒は,たとえばダイヤモンド粉砕物をニッケルによって被覆したものである。金属被覆砥粒は磁束の方向にその長手方向を向けて付着しやすい。表面に微細な凹部を有する鋼線を磁化することで鋼線の表面の凹部の箇所において生じる漏洩磁束は,鋼線の表面から外方に向かう方向成分を含む。このため,鋼線の表面には,鋼線の外方にその長手方向を向けて金属被膜砥粒が付着しやすい。また,金属被膜砥粒は安定した姿勢で鋼線の表面に付着しやすいので,多数の金属被膜砥粒はその尖端を外方に向けて突出させた姿勢で鋼線の表面に付着しやすい。   There are many fine recesses (or scratches) on the surface of the steel wire. These fine recesses are generally generated on the surface of the steel wire in the process of producing the steel wire (e.g., drawing process). When a dry steel wire having a fine recess on its surface is passed through the inner space of a solenoid coil that is energized with current, the steel wire is magnetized (preferably saturation magnetization), and the surface of the steel wire becomes fine. Magnetic flux leaks from a concave part. Due to the leakage magnetic flux, the metal-coated abrasive grains adhere to the surface of the steel wire by the magnetic force in the abrasive grain adhesion apparatus. The metal-coated abrasive is, for example, a diamond crushed material coated with nickel. The metal-coated abrasive grains are likely to adhere with the longitudinal direction thereof in the direction of the magnetic flux. Leakage magnetic flux generated at the position of the concave portion on the surface of the steel wire by magnetizing the steel wire having a fine concave portion on the surface includes a directional component directed outward from the surface of the steel wire. For this reason, metal-coated abrasive grains are likely to adhere to the surface of the steel wire with its longitudinal direction facing outward of the steel wire. In addition, since the metal-coated abrasive grains tend to adhere to the surface of the steel wire in a stable posture, many metal-coated abrasive grains tend to adhere to the surface of the steel wire in a posture in which the tips are projected outward.

この発明によると,尖端が外方を向いた姿勢で多数の金属被覆砥粒が鋼線の表面に付着するので,切れ味のよい固定砥粒ソーワイヤが得られる。また,金属被覆砥粒は乾燥状態下で付着されるので,金属被覆砥粒の凝集が生じにくい。   According to the present invention, since a large number of metal-coated abrasive grains adhere to the surface of the steel wire with the tip pointed outward, a fixed-abrasive saw wire with good sharpness can be obtained. Further, since the metal-coated abrasive grains are attached in a dry state, the metal-coated abrasive grains are less likely to aggregate.

固着材は,磁力によって鋼線の表面に付着している金属被覆砥粒を,鋼線の表面に固定(固着)するためのものである。固着材としては,ニッケル等の金属,レジンなどが用いられる。たとえばニッケルめっき液が溜められためっき浴槽に金属被覆砥粒が付着した鋼線を浸し,上記めっき浴槽に電流を通電することによって,電着によりニッケルを鋼線の表面に被覆する。ニッケルによって金属被覆砥粒は鋼線の表面に強固に固定される。   The fixing material is for fixing (fixing) the metal-coated abrasive grains adhering to the surface of the steel wire to the surface of the steel wire by magnetic force. As the fixing material, a metal such as nickel or a resin is used. For example, by immersing a steel wire with metal-coated abrasive grains in a plating bath in which a nickel plating solution is stored and energizing the plating bath, nickel is coated on the surface of the steel wire by electrodeposition. The metal-coated abrasive grains are firmly fixed to the surface of the steel wire by nickel.

一実施態様では,上記ソレノイドコイルの内部空間の中心線方向と上記ソレノイドコイルの内部空間を走行する鋼線の走行方向とを異ならせることによって,上記漏洩磁束の密度が制御される。漏洩磁束密度が大きすぎると鋼線の表面において金属被覆砥粒の凝集が生じ,逆に小さすぎると付着する金属被覆砥粒の数が少なくなる。ソレノイドコイルの内部空間を走行する鋼線の走行方向を上記ソレノイドコイルの内部空間の中心線方向と一致させると鋼線は最も強く磁化され,走行方向を中心線方向からずらす(傾ける)と磁化の強さは弱まる。これを利用して漏洩磁束密度の大きさが制御される。たとえば,漏洩磁束密度は3〜5×10-4T(テスラ)に制御される。直径が0.18mmの鋼線の場合,150〜200個/mm程度の金属被覆砥粒が鋼線の表面に付着する。漏洩磁束密度はソレノイドコイルに通電する電流量を調整することによって制御してもよい。 In one embodiment, the density of the leakage magnetic flux is controlled by making the direction of the center line of the internal space of the solenoid coil different from the travel direction of the steel wire that travels in the internal space of the solenoid coil. If the leakage magnetic flux density is too large, agglomeration of the metal-coated abrasive grains occurs on the surface of the steel wire. When the traveling direction of the steel wire traveling in the inner space of the solenoid coil is matched with the center line direction of the inner space of the solenoid coil, the steel wire is most strongly magnetized, and when the traveling direction is shifted (tilted) from the center line direction, The strength is weakened. Using this, the magnitude of the leakage magnetic flux density is controlled. For example, the leakage magnetic flux density is controlled to 3 to 5 × 10 −4 T (Tesla). In the case of a steel wire with a diameter of 0.18 mm, metal-coated abrasive grains of about 150 to 200 pieces / mm adhere to the surface of the steel wire. The leakage magnetic flux density may be controlled by adjusting the amount of current supplied to the solenoid coil.

他の実施態様では,金属被覆砥粒が付着した鋼線を振動させることによって余剰の付着金属被覆砥粒がふるい落とされる。金属被覆砥粒が凝集した場合にその凝集を軽減することができる。均等に金属被覆砥粒が付着した固定砥粒ソーワイヤを得ることができる。   In another embodiment, surplus adhered metal coated abrasive is screened out by vibrating a steel wire to which the metal coated abrasive is adhered. When metal-coated abrasive grains are aggregated, the aggregation can be reduced. A fixed-abrasive saw wire with evenly coated metal-coated abrasive grains can be obtained.

固定砥粒ソーワイヤの製造装置を示すブロック図である。It is a block diagram which shows the manufacturing apparatus of a fixed abrasive saw wire. ソレノイドコイルの正面図である。It is a front view of a solenoid coil. (A)は鋼線の拡大正面図を,(B)は鋼線における磁束線の分布を,それぞれ示す。(A) is an enlarged front view of a steel wire, and (B) shows the distribution of magnetic flux lines in the steel wire. ソレノイドコイルの一部の拡大正面図である。It is a partial enlarged front view of a solenoid coil. 砥粒付着装置の構造を示す。The structure of an abrasive grain adhesion apparatus is shown. 固定砥粒ソーワイヤの一部の縦断面図である。It is a longitudinal cross-sectional view of a part of a fixed abrasive saw wire. 固定砥粒ソーワイヤの写真である。It is a photograph of a fixed abrasive saw wire. 他の態様の砥粒付着装置の構造を示す。The structure of the abrasive grain adhesion | attachment apparatus of another aspect is shown.

図1は固定砥粒ソーワイヤの製造装置を示すブロック図である。   FIG. 1 is a block diagram showing an apparatus for manufacturing a fixed abrasive saw wire.

繰出しボビン1にブラスめっきが施された鋼線3が巻き回されている。繰出しボビン1から一定の速度で鋼線3が繰出される。   A steel wire 3 on which a brass plating is applied is wound around the feeding bobbin 1. A steel wire 3 is fed from the feeding bobbin 1 at a constant speed.

繰出しボビン1から繰出された鋼線3は,希塩酸水溶液が溜められた希塩酸槽11に浸漬されてその表面の酸化物が除去された後,水が溜められた水洗槽12を通されて水洗いされる。水洗いされた鋼線3は乾燥装置13においてその水分が除去される。乾燥装置13においては,たとえば高温の熱風,ノズルからの送風などが鋼線3に吹付けられる。   The steel wire 3 fed out from the feeding bobbin 1 is immersed in a dilute hydrochloric acid tank 11 in which a dilute hydrochloric acid aqueous solution is stored to remove oxides on the surface thereof, and then passed through a water wash tank 12 in which water is stored and washed with water. The The water is removed from the steel wire 3 washed with water in the drying device 13. In the drying device 13, for example, hot hot air, air from a nozzle, or the like is blown onto the steel wire 3.

乾燥状態の鋼線3は磁化装置14に進む。   The dried steel wire 3 proceeds to the magnetizing device 14.

図2は磁化装置14が備えるソレノイドコイル21を示している。   FIG. 2 shows a solenoid coil 21 provided in the magnetizing device 14.

鋼線3は,磁化装置14においてソレノイドコイル21の内部空間(ソレノイドコイル21によっておおよそ仕切られる円筒状の空間)に通される。電流iをソレノイドコイル21に通電するとソレノイドコイル21の内部空間に磁場が発生する。鋼線3は,ソレノイドコイル21の内部空間を通過する間に,内部空間に発生している磁場によって磁化される。ソレノイドコイル21の内部空間における磁場の磁束方向(SN方向)と鋼線3の長手方向(走行方向)とはほぼ一致するので,鋼線3はその長手方向をSN方向にして磁化される。   The steel wire 3 is passed through the internal space of the solenoid coil 21 (cylindrical space roughly partitioned by the solenoid coil 21) in the magnetizing device 14. When the current i is applied to the solenoid coil 21, a magnetic field is generated in the internal space of the solenoid coil 21. The steel wire 3 is magnetized by the magnetic field generated in the internal space while passing through the internal space of the solenoid coil 21. Since the magnetic flux direction (SN direction) of the magnetic field in the internal space of the solenoid coil 21 substantially coincides with the longitudinal direction (traveling direction) of the steel wire 3, the steel wire 3 is magnetized with its longitudinal direction as the SN direction.

図3(A)は鋼線3の拡大正面図である。図3(B)は鋼線3の表面に近い部分の拡大縦断面を示すもので,磁化された鋼線3における磁束線の分布を示している。図3(B)の縦断面図においてブラスめっき層の図示は省略されている。また,ハッチングの図示も省略されている。   FIG. 3A is an enlarged front view of the steel wire 3. FIG. 3B shows an enlarged longitudinal section of a portion close to the surface of the steel wire 3, and shows the distribution of magnetic flux lines in the magnetized steel wire 3. The brass plating layer is not shown in the longitudinal sectional view of FIG. Also, hatching is not shown.

ソレノイドコイル21によって発生する磁場によって鋼線3を飽和磁化すると,ソレノイドコイル21の内部空間を抜け出た後の鋼線3に残留磁束が残る。図3(A)に示すように,鋼線3の表面には多数の細かい凹部ないし傷3aが存在する。図3(B)に示すように,この凹部3aの位置において残留磁束の漏洩が発生する。鋼線3の表面の凹部3aの位置における漏洩磁束の磁束線は,鋼線3の表面からほぼ垂直な方向に外方に向かい,弧を描いて再び鋼線3の表面に戻る軌跡を描く。   When the steel wire 3 is saturated and magnetized by the magnetic field generated by the solenoid coil 21, residual magnetic flux remains in the steel wire 3 after exiting the internal space of the solenoid coil 21. As shown in FIG. 3A, the surface of the steel wire 3 has many fine recesses or scratches 3a. As shown in FIG. 3B, leakage of residual magnetic flux occurs at the position of the recess 3a. The magnetic flux line of the leakage magnetic flux at the position of the concave portion 3a on the surface of the steel wire 3 is directed outward from the surface of the steel wire 3 in a substantially vertical direction, and draws a trajectory that returns to the surface of the steel wire 3 in an arc.

漏洩磁束は,上述のように鋼線3の表面の凹部3aの部分に発生し,後述するように,この漏洩磁束によって金属で被膜された砥粒が鋼線3の表面に付着する。鋼線3の表面の凹部3aは鋼線3の製造過程(延伸工程等)において生じる。もちろん,意図的に鋼線3の表面に凹部3aを形成してもよい。   As described above, the leakage magnetic flux is generated in the concave portion 3a on the surface of the steel wire 3, and the abrasive grains coated with the metal adhere to the surface of the steel wire 3 by the leakage magnetic flux as described later. The concave portion 3a on the surface of the steel wire 3 occurs in the manufacturing process (stretching process or the like) of the steel wire 3. Of course, you may form the recessed part 3a in the surface of the steel wire 3 intentionally.

漏洩磁束の大きさ(漏洩磁束密度)は,ソレノイドコイル21の内部空間の中心線方向と,鋼線3の走行方向とを異ならせることによって微調整することができる。図4は,鋼線3の走行方向(鋼線3の長手方向)を,ソレノイドコイル21の内部空間の中心線方向Sから10°傾けた状態を拡大して示している。鋼線3の走行方向をソレノイドコイル21の内部空間の中心線Sと一致させると,鋼線3は最も強く磁化されて最も大きな漏洩磁束密度となる。走行方向を中心線Sからずらす(傾ける)と漏洩磁束密度は小さくなる。たとえば,漏洩磁束密度は3〜5×10-4T(テスラ)となるように制御される。鋼線3の直径が0.18mmの場合,漏洩磁束密度を3〜5×10-4T(テスラ)にすると,150〜200個/mm程度の砥粒が鋼線3の表面に付着する。鋼線3の走行方向の調整に代えてまたは加えて,ソレノイドコイル21に通電する電流iの電流量を調整することによって,漏洩磁束密度を調整することもできる。 The magnitude of the leakage magnetic flux (leakage magnetic flux density) can be finely adjusted by making the direction of the center line of the internal space of the solenoid coil 21 different from the traveling direction of the steel wire 3. FIG. 4 shows an enlarged view in which the traveling direction of the steel wire 3 (longitudinal direction of the steel wire 3) is tilted by 10 ° from the center line direction S of the internal space of the solenoid coil 21. When the traveling direction of the steel wire 3 is matched with the center line S of the internal space of the solenoid coil 21, the steel wire 3 is most strongly magnetized and has the highest leakage magnetic flux density. When the traveling direction is shifted (tilted) from the center line S, the leakage magnetic flux density decreases. For example, the leakage magnetic flux density is controlled to be 3 to 5 × 10 −4 T (Tesla). When the diameter of the steel wire 3 is 0.18 mm and the leakage magnetic flux density is 3 to 5 × 10 −4 T (Tesla), about 150 to 200 pieces / mm of abrasive particles adhere to the surface of the steel wire 3. In place of or in addition to the adjustment of the traveling direction of the steel wire 3, the leakage magnetic flux density can be adjusted by adjusting the amount of current i that flows through the solenoid coil 21.

図1に戻って,磁化装置14において磁化された鋼線3は砥粒付着装置15に進む。   Returning to FIG. 1, the steel wire 3 magnetized in the magnetizing device 14 proceeds to the abrasive grain adhering device 15.

図5は砥粒付着装置15の構造を示している。   FIG. 5 shows the structure of the abrasive grain adhesion device 15.

砥粒付着装置15は円柱状の砥粒流動槽31を備えている。砥粒流動槽31は天板32,側壁33および底板34によって囲まれた内部空間を持つ。砥粒流動槽31の内部に,上記内部空間を上下方向にほぼ二分する仕切板35が設けられている。砥粒流動槽31の天板32,底板34,仕切板35のほぼ中央には,鋼線3の直径よりも少し大きな直径を有する通過穴32a,34a,35aがそれぞれあけられている。磁化された鋼線3は,ガイドロール51を経て砥粒流動槽31の底板34の通過穴34aを通されて砥粒流動槽31の内部空間に入り,仕切板35の通過穴35a,天板32の通過穴32aをこの順番に通されて砥粒流動槽31から外部に導き出され,ガイドロール52を経て次の工程(仮固定用めっき槽16(図1参照))に進む。   The abrasive grain adhesion device 15 is provided with a cylindrical abrasive grain flow tank 31. The abrasive fluid tank 31 has an internal space surrounded by a top plate 32, a side wall 33, and a bottom plate. A partition plate 35 that bisects the internal space in the vertical direction is provided inside the abrasive fluid tank 31. Passing holes 32a, 34a, and 35a having diameters slightly larger than the diameter of the steel wire 3 are formed at substantially the center of the top plate 32, the bottom plate 34, and the partition plate 35 of the abrasive fluid flow tank 31, respectively. The magnetized steel wire 3 passes through a guide roll 51 and passes through a passage hole 34a in the bottom plate 34 of the abrasive grain flow tank 31 and enters the internal space of the abrasive grain flow tank 31, and passes through a passage hole 35a in the partition plate 35 and a top plate. The 32 passage holes 32a are passed through in this order and led out from the abrasive fluid flow tank 31 to the outside through the guide roll 52 and proceed to the next step (temporary fixing plating tank 16 (see FIG. 1)).

仕切板35の上に,平均径が20μm の細かいニッケルプレコーティングダイヤモンド砥粒41が多数堆積されている。ニッケルプレコーティングダイヤモンド砥粒(以下,砥粒という)41は,ダイヤモンド粉砕物の表面にニッケルが被膜(被覆)されているものである。また,仕切板35には多数の通気孔35bがあけられている。多数の通気孔35bの径はいずれも砥粒41の径よりも小さい。   A large number of fine nickel precoated diamond abrasive grains 41 having an average diameter of 20 μm are deposited on the partition plate 35. Nickel pre-coated diamond abrasive grains (hereinafter referred to as abrasive grains) 41 are nickel-coated (coated) on the surface of a diamond pulverized product. The partition plate 35 has a large number of air holes 35b. The diameters of the large number of air holes 35 b are all smaller than the diameter of the abrasive grains 41.

砥粒流動槽31の側壁33の,仕切板35によって仕切られた下側の内部空間に連通する位置に吸気口33aが形成され,かつ上側の内部空間に連通する位置に排気口33bが形成されている。吸気口33aには,一端がブロア(送風機)61に接続された送風パイプ62の他端が接続されている。   An intake port 33a is formed at a position of the side wall 33 of the abrasive fluid flow tank 31 communicating with the lower internal space partitioned by the partition plate 35, and an exhaust port 33b is formed at a position communicating with the upper internal space. ing. The other end of a blow pipe 62 having one end connected to a blower (blower) 61 is connected to the intake port 33a.

ブロア61からの送風は,送風パイプ62を通して吸気口33aから砥粒流動槽31の内部空間に送られる。上述したように,仕切板35には多数の通気孔35bがあけられているので,ブロア61からの送風は仕切板35の通気孔35bを通って上方に向かい,その後排気口33bから外部に排気される。   The air blown from the blower 61 is sent to the internal space of the abrasive grain flow tank 31 from the air inlet 33a through the air blow pipe 62. As described above, since the partition plate 35 has a large number of vent holes 35b, the air blown from the blower 61 is directed upward through the vent holes 35b of the partition plate 35 and then exhausted to the outside from the exhaust port 33b. Is done.

仕切板35の上に堆積されている砥粒41は,仕切板35の下方から上方に向かう送風によって流動(移動)自在な状態となる。   The abrasive grains 41 deposited on the partition plate 35 are in a state of being freely flowable (movable) by air blowing upward from below the partition plate 35.

鋼線3は上述のように磁化されている。そして,砥粒41の表面にはニッケルが被膜されている。ニッケルは強磁性体であるので,鋼線3が仕切板35の穴35aを通過するときに,流動自在の多数の砥粒41が鋼線3の表面に磁力によって付着する。表面に多数の砥粒41が付着した状態の鋼線3が砥粒流動槽31から外部に導かれる。   The steel wire 3 is magnetized as described above. The surface of the abrasive grain 41 is coated with nickel. Since nickel is a ferromagnetic body, when the steel wire 3 passes through the hole 35a of the partition plate 35, a large number of free-flowing abrasive grains 41 adhere to the surface of the steel wire 3 by magnetic force. The steel wire 3 having a large number of abrasive grains 41 attached to the surface is guided to the outside from the abrasive grain flow tank 31.

図1に戻って,磁力によって表面に多数の砥粒41が付着している状態の鋼線3は,スルファミン酸ニッケル水溶液が溜められた仮固定用電気めっき槽16に浸漬されて電解ニッケルめっきが行われる。仮固定用電気めっき槽16には電流密度20A/dm2 の電流が通電され,鋼線3はここで約15秒間浸漬される。約0.5 〜1μmの層厚のニッケルめっき層が鋼線3の表面に積層される。ニッケルめっきによって,磁力により付着している多数の砥粒41がめっき固定される。 Returning to FIG. 1, the steel wire 3 having a large number of abrasive grains 41 adhered to the surface by magnetic force is immersed in a temporary fixing electroplating tank 16 in which a nickel sulfamate aqueous solution is stored, and electrolytic nickel plating is performed. Done. A current density of 20 A / dm 2 is passed through the electroplating tank 16 for temporary fixing, and the steel wire 3 is immersed here for about 15 seconds. A nickel plating layer having a thickness of about 0.5 to 1 μm is laminated on the surface of the steel wire 3. By the nickel plating, a large number of abrasive grains 41 adhered by magnetic force are fixed by plating.

仮固定用電気めっき槽16を経た後,厚めっき用電気めっき槽17において再度の電解ニッケルめっきが行われる。厚めっき用電気めっき槽17にもスルファミン酸ニッケル水溶液が溜められている。厚めっき用電気めっき槽17に電流密度20A/dm2 の電流が通電され,鋼線3はここで約75秒〜150 秒間浸漬される。約5μmのニッケルめっき層が鋼線3の表面に積層される。なお,仮固定用電気めっき槽16におけるニッケルめっき層の積層と,厚めっき用電気めっき槽17におけるニッケルめっき層の積層は,1つの共通のめっき槽を用いて連続的に実施してもよい。 After passing through the temporary fixing electroplating tank 16, electrolytic nickel plating is performed again in the electroplating tank 17 for thick plating. A nickel sulfamate aqueous solution is also stored in the electroplating tank 17 for thick plating. A current density of 20 A / dm 2 is applied to the electroplating tank 17 for thick plating, and the steel wire 3 is immersed here for about 75 seconds to 150 seconds. A nickel plating layer of about 5 μm is laminated on the surface of the steel wire 3. The nickel plating layer stacking in the temporary fixing electroplating bath 16 and the nickel plating layer stacking in the thick plating electroplating bath 17 may be continuously performed using one common plating bath.

ニッケルめっきされた鋼線3はその後水洗槽18によって水洗いされ,乾燥装置19において乾かされた後に巻取ボビン2によって巻取られる。巻取ボビン2によって巻取られる最終状態の鋼線3を,以下,固定砥粒ソーワイヤ4と呼ぶ。   The nickel-plated steel wire 3 is then washed in a water rinsing tank 18, dried in a drying device 19, and then wound up by a winding bobbin 2. The final steel wire 3 wound by the winding bobbin 2 is hereinafter referred to as a fixed abrasive saw wire 4.

図6は,上述の工程を経て製造される固定砥粒ソーワイヤ4の表面に近い部分の縦断面図である。   FIG. 6 is a longitudinal sectional view of a portion close to the surface of the fixed abrasive saw wire 4 manufactured through the above-described steps.

固定砥粒ソーワイヤ4は,鋼線3と,鋼線3の表面に積層されたブラス層71,およびニッケル層72,73を含む。ニッケル層72が仮固定用電気めっき槽16において積層されるめっき層であり,ニッケル層73が厚めっき用電気めっき槽17において積層されるめっき層である。   The fixed abrasive saw wire 4 includes a steel wire 3, a brass layer 71 laminated on the surface of the steel wire 3, and nickel layers 72 and 73. The nickel layer 72 is a plating layer laminated in the temporary fixing electroplating tank 16, and the nickel layer 73 is a plating layer laminated in the thick plating electroplating tank 17.

多数の砥粒41が,鋼線3の表面の微細な凹部3aの位置においてブラス層71に接するようにして固定されている。砥粒41は,上述のように,ダイヤモンド粉砕物42の表面にニッケル膜43を被膜したものである。上述した仮固定用電気めっき槽16および厚めっき用電気めっき槽17におけるめっき工程において,砥粒41の表面にもニッケル層72,73は積層される。多数の砥粒41はニッケル層72,73によって鋼線3(ブラス層71)の表面に強固に固定される。   A large number of abrasive grains 41 are fixed so as to be in contact with the brass layer 71 at the positions of the minute recesses 3 a on the surface of the steel wire 3. As described above, the abrasive grains 41 are formed by coating the surface of the crushed diamond 42 with the nickel film 43. In the plating process in the temporary fixing electroplating tank 16 and the thick plating electroplating tank 17, the nickel layers 72 and 73 are also laminated on the surface of the abrasive grains 41. A large number of abrasive grains 41 are firmly fixed to the surface of the steel wire 3 (brass layer 71) by nickel layers 72 and 73.

多数の砥粒41(ダイヤモンド粉砕物42)は規則的な外形(形状)を有していず,いずれも不規則な外形を持つ。しかしながら,多数の砥粒41はいずれもがその比較的尖端な形状を持つ部分を固定砥粒ソーワイヤ4の外方に向け,かつ比較的安定した(幅広の)部分がブラス層71に接するようにして固定されている。これは,上述のように鋼線3の凹部3aにおける漏洩磁束が鋼線3の表面から外方に向かう方向成分を有しており(図3(B)参照),砥粒41が磁力によって鋼線3(ブラス層71)の表面に付着するときに,砥粒41は鋼線3の表面の漏洩磁束の方向にその長手方向を向けて付着しやすく,かつ安定した姿勢で,すなわち比較的幅広の部分が鋼線3(ブラス層71)に接するようにして付着しやすいからである。この結果,多数の砥粒41はその尖端形状部分が固定砥粒ソーワイヤ4の外方を向いている。   The large number of abrasive grains 41 (diamond crushed material 42) does not have a regular outer shape (shape), and all of them have an irregular outer shape. However, each of the large number of abrasive grains 41 has a relatively pointed portion directed outward from the fixed abrasive saw wire 4 and a relatively stable (wide) portion is in contact with the brass layer 71. Is fixed. As described above, the leakage magnetic flux in the concave portion 3a of the steel wire 3 has a direction component that goes outward from the surface of the steel wire 3 (see FIG. 3B), and the abrasive grains 41 are made of steel by the magnetic force. When adhering to the surface of the wire 3 (brass layer 71), the abrasive grains 41 tend to adhere with the longitudinal direction in the direction of the leakage magnetic flux on the surface of the steel wire 3, and in a stable posture, that is, relatively wide. This is because these portions are likely to adhere so as to be in contact with the steel wire 3 (the brass layer 71). As a result, a large number of abrasive grains 41 have their tip-shaped portions facing outward from the fixed abrasive saw wire 4.

尖端形状部分が外方に向かって突出した状態の砥粒41が表面に固定されているので,固定砥粒ソーワイヤ4は切れ味がよい。シリコン,サファイアなどの高硬度の脆性材料のインゴットをスムーズかつ精度よく切断することができる。   Since the abrasive grains 41 with the pointed shape projecting outward are fixed to the surface, the fixed abrasive saw wire 4 is sharp. Ingots of brittle materials with high hardness such as silicon and sapphire can be cut smoothly and accurately.

図7は試作した固定砥粒ソーワイヤ4の拡大写真である。   FIG. 7 is an enlarged photograph of the prototype fixed abrasive saw wire 4.

図8は他の態様の砥粒付着装置15Aを示している。図5に示す砥粒付着装置15とは,砥粒流動槽31の天板32Aにあけられた通過穴(開口)32bの径が大きい点,およびガイドロール52に振動装置63から振動が与えられる点が異なる。   FIG. 8 shows an abrasive grain adhering device 15A of another embodiment. The abrasive grain adhesion device 15 shown in FIG. 5 is such that the diameter of the passage hole (opening) 32b formed in the top plate 32A of the abrasive fluid flow tank 31 is large, and the guide roll 52 is vibrated from the vibration device 63. The point is different.

振動装置63からの細かい振動がガイドロール52に与えられることによってガイドロール52に掛けられた鋼線3も振動する。振動によって余剰の砥粒41が鋼線3の表面からふるい落とされる。ガイドロール52は天板32Aの通過穴32bの上方に位置しており,このため,ふるい落とされた砥粒41は,砥粒流動槽31の天板32Aにあけられた通過穴32aを通って仕切板35の上に再び堆積される。余剰の砥粒41を鋼線3の表面から取除くことができる。   When the fine vibration from the vibration device 63 is applied to the guide roll 52, the steel wire 3 hung on the guide roll 52 also vibrates. Excess abrasive grains 41 are screened off from the surface of the steel wire 3 by vibration. The guide roll 52 is located above the passage hole 32b of the top plate 32A. Therefore, the screened abrasive grains 41 pass through the passage hole 32a formed in the top plate 32A of the abrasive fluid flow tank 31. It is deposited again on the partition plate 35. Excess abrasive grains 41 can be removed from the surface of the steel wire 3.

3 鋼線
3a 凹部
4 固定砥粒ソーワイヤ
14 磁化装置
15 砥粒付着装置
16 仮固定用電気めっき層
17 厚めっき用電気めっき層
21 ソレノイドコイル
41 砥粒
3 Steel wire 3a Recess 4 Fixed abrasive saw wire
14 Magnetizer
15 Abrasive adhesion device
16 Temporary fixing electroplating layer
17 Electroplating layer for thick plating
21 Solenoid coil
41 abrasive

Claims (2)

表面に微細な凹部を有する乾燥状態の鋼線を,電流が通電されているソレノイドコイルの内部空間を走行させながら通過させることによって,上記鋼線の表面から外方を向く漏洩磁束を有するように上記鋼線を磁化し,
上記磁化された鋼線を,多数のニッケル被膜ダイヤモンド砥粒が流動自在に堆積された砥粒付着装置を上向きに縦方向に通過させて上記鋼線の表面に上記ニッケル被膜ダイヤモンド砥粒を付着し,
上記ニッケル膜ダイヤモンド砥粒が付着した鋼線の表面に固着材を被覆する,
固定砥粒ソーワイヤの製造方法。
By passing a dry steel wire having fine concaves on the surface while running through the internal space of the solenoid coil to which current is applied, the magnetic flux leaks outward from the surface of the steel wire. Magnetize the steel wire,
The magnetized steel wire is passed in a longitudinal direction upward through an abrasive grain depositing device on which a large number of nickel- coated diamond abrasive grains are flowably deposited to adhere the nickel- coated diamond abrasive grains to the surface of the steel wire. ,
Coating the adhesive material on the surface of the steel wire the nickel target film diamond abrasive grains are adhered,
A method of manufacturing a fixed abrasive saw wire.
電流が通電されているソレノイドコイルの内部空間に,表面に微細な凹部を有する乾燥状態の鋼線を走行させながら通過させることによって得られる,表面から外方を向く漏洩磁束を有するように磁化された鋼線を,多数のニッケル膜ダイヤモンド砥粒が流動自在に堆積された砥粒付着装置を上向きに縦方向に通過させて上記鋼線の表面に上記ニッケル膜ダイヤモンド砥粒を付着させ,上記ニッケル膜ダイヤモンド砥粒が付着した鋼線の表面に固着材を被覆させた,固定砥粒ソーワイヤ。 It is magnetized so as to have a leakage magnetic flux that is obtained by running a dry steel wire with fine concaves on the surface while running through the internal space of the solenoid coil that is energized. and the steel wire, causes a number of nickel the layer diamond abrasive grains attaching the nickel target film diamond abrasive grains on the surface of the is passed through a upward vertical direction abrasive grains adhering device which is freely deposited flow above steel wire, the nickel target film diamond abrasive grains were coated with adhesive material on the surface of the steel wire adhesion, fixed-abrasive saw wire.
JP2010149019A 2010-06-30 2010-06-30 Method for producing fixed abrasive saw wire and fixed abrasive saw wire Expired - Fee Related JP5512419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010149019A JP5512419B2 (en) 2010-06-30 2010-06-30 Method for producing fixed abrasive saw wire and fixed abrasive saw wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010149019A JP5512419B2 (en) 2010-06-30 2010-06-30 Method for producing fixed abrasive saw wire and fixed abrasive saw wire

Publications (2)

Publication Number Publication Date
JP2012011486A JP2012011486A (en) 2012-01-19
JP5512419B2 true JP5512419B2 (en) 2014-06-04

Family

ID=45598529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010149019A Expired - Fee Related JP5512419B2 (en) 2010-06-30 2010-06-30 Method for producing fixed abrasive saw wire and fixed abrasive saw wire

Country Status (1)

Country Link
JP (1) JP5512419B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2988628B1 (en) * 2012-04-02 2015-02-27 Commissariat Energie Atomique METHOD AND APPARATUS FOR MANUFACTURING A CUTTING WIRE

Also Published As

Publication number Publication date
JP2012011486A (en) 2012-01-19

Similar Documents

Publication Publication Date Title
TWI503213B (en) Method and jig assembly for manufacturing outer blade cutting wheel
JP3333025B2 (en) Electro-composite plating method and apparatus for metal material
JP6140805B2 (en) Abrasive wire, manufacturing method thereof, and manufacturing apparatus thereof
US2184348A (en) Coating apparatus
US9481069B2 (en) Chemical mechanical polishing apparatus and polishing method using the same
JP2010123843A (en) Electrostatic chuck
JP5512419B2 (en) Method for producing fixed abrasive saw wire and fixed abrasive saw wire
TW201011885A (en) Lead frame and method for manufacturing the same
TWI636841B (en) Line tool with diamond abrasive grain and wire tools
JP2007309935A (en) Method and system for measuring thickness of thin layer by measuring probe
JP2016514819A (en) Balance weight with ferromagnetic inlay
JP2013185241A (en) Plating apparatus and method for producing plated object
JP4126761B2 (en) Component feeder and component mounter using it
JP2000109993A (en) Device and method for producing metallic foil and metallic foil piece
JP6451006B2 (en) Fixed abrasive saw wire and manufacturing method thereof
KR20150048622A (en) Charged powder supply device
US20170271401A1 (en) Semiconductor device and method of manufacturing the same
JP2004009238A (en) Saw wire manufacturing method and saw wire
US8816809B2 (en) Reactor
Vorobyova et al. Nickel/alumina nanocomposites by AC electrochemical processing
TWI655044B (en) Abrasive wire and method and system for forming abrasive wire
JP2009200325A (en) Dust core and iron-based powder for the same
CN109850569A (en) A kind of centering mechanism and mechanical device
TW202000373A (en) Abrasive wheel and method and system for forming the same
JP6698682B2 (en) Method for manufacturing fixed abrasive saw wire having metal alloy fixing layer and wire obtained thereby

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140326

R150 Certificate of patent or registration of utility model

Ref document number: 5512419

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees