JP5507715B2 - Liquid crystal display - Google Patents

Liquid crystal display Download PDF

Info

Publication number
JP5507715B2
JP5507715B2 JP2013017980A JP2013017980A JP5507715B2 JP 5507715 B2 JP5507715 B2 JP 5507715B2 JP 2013017980 A JP2013017980 A JP 2013017980A JP 2013017980 A JP2013017980 A JP 2013017980A JP 5507715 B2 JP5507715 B2 JP 5507715B2
Authority
JP
Japan
Prior art keywords
ultraviolet
liquid crystal
transmittance
film
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013017980A
Other languages
Japanese (ja)
Other versions
JP2013127639A (en
Inventor
登 國松
優子 松本
冨岡  安
正輝 森本
貴裕 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Display Inc
Original Assignee
Japan Display Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Display Inc filed Critical Japan Display Inc
Priority to JP2013017980A priority Critical patent/JP5507715B2/en
Publication of JP2013127639A publication Critical patent/JP2013127639A/en
Application granted granted Critical
Publication of JP5507715B2 publication Critical patent/JP5507715B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Description

本発明は,液晶表示装置に係り,特に配向膜に光の照射で配向制御能を付与した液晶表示パネルを具備した液晶表示装置に関する。   The present invention relates to a liquid crystal display device, and more particularly to a liquid crystal display device provided with a liquid crystal display panel in which an alignment film is provided with an alignment control ability by light irradiation.

液晶表示装置では画素電極および薄膜トランジスタ(TFT)等がマトリクス状に形成されたTFT基板と、TFT基板に対向して、ブラックマトリクスあるいはオーバーコート膜等が形成された対向基板が設置され、TFT基板と対向基板の間に液晶が挟持されている。そして液晶分子による光の透過率を画素毎に制御することによって画像を形成している。   In a liquid crystal display device, a TFT substrate in which pixel electrodes and thin film transistors (TFTs) are formed in a matrix, and a counter substrate in which a black matrix or an overcoat film is formed are installed opposite to the TFT substrate. Liquid crystal is sandwiched between the counter substrates. An image is formed by controlling the light transmittance of the liquid crystal molecules for each pixel.

液晶表示装置はフラットで軽量であることから、TV等の大型表示装置から、携帯電話やDSC(Digital Still Camera)等、色々な分野で用途が広がっている。一方、液晶表示装置では視野角特性が問題である。視野角特性は、画面を正面から見た場合と、斜め方向から見た場合に、輝度が変化したり、色度が変化したりする現象である。視野角特性は、液晶分子を水平方向の電界によって動作させるIPS(In Plane Switching)方式が優れた特性を有している。   Since the liquid crystal display device is flat and lightweight, the application is expanding in various fields such as a large display device such as a TV, a mobile phone, and a DSC (Digital Still Camera). On the other hand, viewing angle characteristics are a problem in liquid crystal display devices. The viewing angle characteristic is a phenomenon in which luminance changes or chromaticity changes when the screen is viewed from the front and when viewed from an oblique direction. The viewing angle characteristic is excellent in an IPS (In Plane Switching) system in which liquid crystal molecules are operated by a horizontal electric field.

液晶表示装置に使用する配向膜を配向処理すなわち配向制御能を付与する方法として,従来技術としてラビングで処理する方法がある。このラビングによる配向処理は,配向膜を布で擦ることで配向処理を行うものであるが、一方、配向膜に非接触で配向制御能を付与する光配向法という手法がある。IPS方式はプレティルト角が小さいほうが性能的には優れているので、プレティルト角が原理的に発生しない光配向法が有利である。   As a method for imparting an alignment treatment, that is, an alignment control ability, to an alignment film used in a liquid crystal display device, there is a conventional method of rubbing. The alignment treatment by rubbing is performed by rubbing the alignment film with a cloth. On the other hand, there is a technique called a photo-alignment method that imparts alignment control ability to the alignment film in a non-contact manner. Since the IPS method is superior in performance when the pretilt angle is small, the photo-alignment method in which the pretilt angle does not occur in principle is advantageous.

TFT基板と対向基板とは周辺でシール材を用いて接着するが、このシール材は紫外線硬化樹脂を用いることが多い。シール材を硬化するための紫外線が、配向膜が形成されている表示領域に照射されると、紫外線によって配向膜が劣化するという問題がある。従来は、シール材に紫外線を照射する際、紫外線が表示領域に照射されないよう遮光マスクを使用していた。   The TFT substrate and the counter substrate are bonded using a sealing material at the periphery, and this sealing material often uses an ultraviolet curable resin. When the display area where the alignment film is formed is irradiated with ultraviolet rays for curing the sealing material, the alignment film is deteriorated by the ultraviolet rays. Conventionally, when the sealing material is irradiated with ultraviolet rays, a light shielding mask is used so that the ultraviolet rays are not irradiated onto the display area.

しかし、このようなマスクを使用しても、紫外線が回り込み、表示領域周辺の配向膜を劣化させるという問題があった。「特許文献1」には、対向基板において、表示領域の外側を囲むように、紫外線をカットするバンドパスフィルタを形成し、前記遮光マスクとバンドフィルタを組み合わせて表示領域における配向膜や液晶を紫外線から保護する構成が記載されている。   However, even when such a mask is used, there is a problem in that ultraviolet rays circulate and deteriorate the alignment film around the display area. In “Patent Document 1”, a bandpass filter that cuts ultraviolet rays is formed on the counter substrate so as to surround the outside of the display region, and the alignment film and liquid crystal in the display region are combined with ultraviolet rays by combining the light shielding mask and the band filter. A configuration that protects against the above is described.

特開平10−221700号公報JP-A-10-221700

従来のように、シール材を紫外線硬化させる際に、表示領域を覆うように遮光マスクを配置する構成は、露光における遮光マスクを所定の位置に合わせる必要があり、その分工程が増える。また、遮光マスクを種々の大きさの品種毎に準備しておく必要がある。   As in the prior art, when the sealing material is UV-cured, the configuration in which the light shielding mask is disposed so as to cover the display area needs to be adjusted to a predetermined position in the exposure, and the number of processes increases accordingly. Moreover, it is necessary to prepare a light shielding mask for each variety of various sizes.

さらに、「特許文献1」のように、対向基板において、表示領域の周辺にバンドパスフィルタを形成する構成は、バンドパスフィルタとシール材の重なりの問題を生じ、バンドパスフィルタによるシール材の硬化への影響を考慮する必要がある。あるいは、バンドパスフィルタとシール材または周辺のブラックマトリクス等との接着性等についての注意が必要になる。また、バンドパスフィルタを形成するにしても、遮光マスクは必要である。   Furthermore, as in “Patent Document 1”, the configuration in which the band-pass filter is formed around the display area in the counter substrate causes a problem of overlap between the band-pass filter and the sealing material, and the sealing material is cured by the band-pass filter. It is necessary to consider the impact on Alternatively, it is necessary to pay attention to the adhesiveness between the bandpass filter and the sealing material or the surrounding black matrix. Further, even if a band pass filter is formed, a light shielding mask is necessary.

本発明の課題は、光配向による配向膜と、シール材に紫外線硬化樹脂を用いた液晶表示装置において、シール材を紫外線硬化する際に、紫外線の遮光マスクを使用する必要の無い液晶表示装置の構成を実現することである。   An object of the present invention is to provide a liquid crystal display device using an alignment film formed by photo-alignment and an ultraviolet curable resin as a sealing material, and a liquid crystal display device that does not need to use an ultraviolet light shielding mask when the sealing material is cured with ultraviolet light. It is to realize the configuration.

本発明は上記課題を克服するものであり、主な手段は次のとおりである。すなわち、主な手段の第1は、配向膜を有するTFT基板と、配向膜を有する対向基板がシール材によって貼り付けられ、内部に液晶を封入した液晶表示装置であって、前記対向基板は、ブラックマトリクスとブラックマトリクスの間に紫外線吸収層が形成され、前記ブラックマトリクスと前記紫外線吸収層はオーバーコート膜で覆われ、前記オーバーコート膜は前記配向膜で覆われており、前記シール材は紫外線硬化樹脂であり、波長300nmの紫外線に対する前記紫外線吸収層の透過率は前記オーバーコート膜の透過率よりも小さく、波長340nmの紫外線に対する前記紫外線吸収層の透過率は、前記オーバーコート膜の透過率よりも大きいことを特徴とする液晶表示装置である。   The present invention overcomes the above-mentioned problems, and main means are as follows. That is, the first of the main means is a liquid crystal display device in which a TFT substrate having an alignment film and a counter substrate having an alignment film are attached by a sealing material and liquid crystal is enclosed therein, and the counter substrate includes: An ultraviolet absorbing layer is formed between the black matrix and the black matrix, the black matrix and the ultraviolet absorbing layer are covered with an overcoat film, the overcoat film is covered with the alignment film, and the sealing material is an ultraviolet ray The transmittance of the ultraviolet absorbing layer with respect to ultraviolet rays having a wavelength of 300 nm is smaller than the transmittance of the overcoat film, and the transmittance of the ultraviolet absorbing layer with respect to ultraviolet rays having a wavelength of 340 nm is the transmittance of the overcoat film. It is a liquid crystal display device characterized by being larger than the above.

主な手段の第2は、配向膜を有するTFT基板と、配向膜を有する対向基板がシール材によって貼り付けられ、内部に液晶を封入した液晶表示装置であって、前記対向基板は、ブラックマトリクスとブラックマトリクスの間および前記ブラックマトリクスの上に紫外線吸収層が形成され、前記紫外線吸収層の上に配向膜が形成され、前記TFT基板は、TFT回路とこれを覆う有機パッシベーション膜によって覆われており、前記有機パッシベーション膜の上に対向電極、層間絶縁膜、画素電極がこの順で形成され、または、前記有機パッシベーション膜の上に画素電極、層間絶縁膜、対向電極がこの順で形成され、前記画素電極または前記対向基板の上に前記配向膜が形成され、前記シール材は紫外線硬化樹脂であり、波長300nmの紫外線に対する前記紫外線吸収層の透過率は前記有機パッシベーション膜の透過率よりも小さく、波長340nmの紫外線に対する前記紫外線吸収層の透過率は、前記有機パッシベーション膜の透過率よりも大きいことを特徴とする液晶表示装置である。   The second of the main means is a liquid crystal display device in which a TFT substrate having an alignment film and a counter substrate having an alignment film are attached by a sealing material and liquid crystal is enclosed therein, and the counter substrate has a black matrix. An ultraviolet absorption layer is formed between and on the black matrix, and an alignment film is formed on the ultraviolet absorption layer. The TFT substrate is covered with a TFT circuit and an organic passivation film covering the TFT circuit. A counter electrode, an interlayer insulating film and a pixel electrode are formed in this order on the organic passivation film, or a pixel electrode, an interlayer insulating film and a counter electrode are formed in this order on the organic passivation film, The alignment film is formed on the pixel electrode or the counter substrate, the sealing material is an ultraviolet curable resin, and has a wavelength of 300 nm. The transmittance of the ultraviolet absorbing layer with respect to a line is smaller than the transmittance of the organic passivation film, and the transmittance of the ultraviolet absorbing layer with respect to ultraviolet rays having a wavelength of 340 nm is larger than the transmittance of the organic passivation film. It is a liquid crystal display device.

主な手段の第3は、配向膜を有するTFT基板と、配向膜を有する対向基板がシール材によって貼り付けられ、内部に液晶を封入した液晶表示装置であって、前記対向基板は、ブラックマトリクスとブラックマトリクスの間にカラーフィルタが形成され、前記ブラックマトリクスと前記カラーフィルタはオーバーコート膜で覆われ、前記オーバーコート膜は前記配向膜で覆われており、前記TFT基板は、TFT回路とこれを覆う紫外線吸収層によって覆われており、前記紫外線吸収層の上に対向電極、層間絶縁膜、画素電極がこの順で形成され、または、前記紫外線吸収層の上に画素電極、層間絶縁膜、対向電極がこの順で形成され、前記画素電極または前記対向基板の上に前記配向膜が形成され、前記シール材は紫外線硬化樹脂であり、波長300nmの紫外線に対する前記紫外線吸収層の透過率は前記オーバーコート膜の透過率よりも小さく、波長340nmの紫外線に対する前記紫外線吸収層の透過率は、前記オーバーコート膜の透過率よりも大きいことを特徴とする液晶表示装置である。   The third of the main means is a liquid crystal display device in which a TFT substrate having an alignment film and a counter substrate having an alignment film are attached with a sealing material and liquid crystal is enclosed therein, and the counter substrate is a black matrix. A color filter is formed between the black matrix and the black matrix, the black matrix and the color filter are covered with an overcoat film, the overcoat film is covered with the alignment film, and the TFT substrate is connected to the TFT circuit. A counter electrode, an interlayer insulation film, and a pixel electrode are formed in this order on the ultraviolet absorption layer, or a pixel electrode, an interlayer insulation film on the ultraviolet absorption layer, A counter electrode is formed in this order, the alignment film is formed on the pixel electrode or the counter substrate, and the sealing material is an ultraviolet curable resin, The transmittance of the ultraviolet absorbing layer for ultraviolet rays having a length of 300 nm is smaller than the transmittance of the overcoat film, and the transmittance of the ultraviolet absorbing layer for ultraviolet rays having a wavelength of 340 nm is larger than the transmittance of the overcoat film. This is a liquid crystal display device.

主な手段の第4は、配向膜を有するTFT基板と、配向膜を有する対向基板がシール材によって貼り付けられ、内部に液晶を封入した液晶表示装置であって、前記対向基板は、ブラックマトリクスとブラックマトリクスの間に紫外線吸収層が形成され、前記ブラックマトリクスと前記紫外線吸収層はオーバーコート膜で覆われ、前記オーバーコート膜は前記配向膜で覆われており、前記TFT基板は、TFT回路とこれを覆う紫外線吸収層によって覆われており、前記紫外線吸収層の上に対向電極、層間絶縁膜、画素電極がこの順で形成され、または、前記紫外線吸収層の上に画素電極、層間絶縁膜、対向電極がこの順で形成され、前記画素電極または前記対向基板の上に前記配向膜が形成され、前記シール材は紫外線硬化樹脂であり、波長300nmの紫外線に対する前記紫外線吸収層の透過率は前記オーバーコート膜および前記有機パッシベーション膜の透過率よりも小さく、波長340nmの紫外線に対する前記紫外線吸収層の透過率は、前記オーバーコート膜および前記有機パッシベーション膜の透過率よりも大きいことを特徴とする液晶表示装置である。   The fourth of the main means is a liquid crystal display device in which a TFT substrate having an alignment film and a counter substrate having an alignment film are attached with a sealing material and liquid crystal is enclosed therein, and the counter substrate is a black matrix. An ultraviolet absorbing layer is formed between the black matrix and the black matrix, the black matrix and the ultraviolet absorbing layer are covered with an overcoat film, the overcoat film is covered with the alignment film, and the TFT substrate is a TFT circuit. And a counter electrode, an interlayer insulating film, and a pixel electrode are formed in this order on the ultraviolet absorbing layer, or a pixel electrode and an interlayer insulating layer are formed on the ultraviolet absorbing layer. A film and a counter electrode are formed in this order, the alignment film is formed on the pixel electrode or the counter substrate, the sealing material is an ultraviolet curable resin, The transmittance of the ultraviolet absorbing layer with respect to 00 nm ultraviolet light is smaller than the transmittance of the overcoat film and the organic passivation film, and the transmittance of the ultraviolet absorbing layer with respect to ultraviolet light with a wavelength of 340 nm is lower than that of the overcoat film and the organic passivation film. The liquid crystal display device is characterized by being larger than the transmittance of the film.

本発明によれば、配向膜を有するTFT基板と対向基板を紫外線硬化型シール材によって封止するために、紫外線を照射する際、表示領域には、300nm以下の波長の紫外線を吸収する紫外線吸収層が形成されているので、配向膜が紫外線によってダメージを受けることを防止することが出来る。したがって、紫外線照射工程において、表示領域を紫外線から保護するための遮光マスクを省略することが出来るので、液晶表示装置の製造コストを低減することが出来る。   According to the present invention, in order to seal a TFT substrate having an alignment film and a counter substrate with an ultraviolet curable sealant, when the ultraviolet ray is irradiated, the display region absorbs an ultraviolet ray having a wavelength of 300 nm or less. Since the layer is formed, the alignment film can be prevented from being damaged by ultraviolet rays. Therefore, in the ultraviolet irradiation process, a light shielding mask for protecting the display region from ultraviolet rays can be omitted, and thus the manufacturing cost of the liquid crystal display device can be reduced.

実施例1の液晶表示装置の断面図である。1 is a cross-sectional view of a liquid crystal display device of Example 1. FIG. 本発明の液晶表示装置の製造プロセスである。It is a manufacturing process of the liquid crystal display device of this invention. 紫外線吸収層の波長に対する紫外線透過特性である。It is an ultraviolet-ray transmission characteristic with respect to the wavelength of an ultraviolet absorption layer. 実施例1と従来例の液晶表示装置の紫外線透過特性の比較である。It is a comparison of the ultraviolet-ray transmission characteristic of the liquid crystal display device of Example 1 and a prior art example. 実施例2の液晶表示装置の断面図である。6 is a cross-sectional view of a liquid crystal display device of Example 2. FIG. 実施例2および実施例1と従来例の液晶表示装置の紫外線透過特性の比較である。It is a comparison of the ultraviolet-ray transmission characteristic of the liquid crystal display device of Example 2 and Example 1 and a prior art example. 実施例3の液晶表示装置の断面図である。6 is a cross-sectional view of a liquid crystal display device of Example 3. FIG. 実施例4の液晶表示装置の断面図である。6 is a cross-sectional view of a liquid crystal display device of Example 4. FIG. IPS方式液晶表示装置の表示領域の断面図である。It is sectional drawing of the display area | region of an IPS system liquid crystal display device. IPS方式液晶表示装置の画素電極の例を示す平面図である。It is a top view which shows the example of the pixel electrode of an IPS system liquid crystal display device. IPS方式液晶表示装置の表示領域およびシール部の断面図である。It is sectional drawing of the display area and seal | sticker part of an IPS system liquid crystal display device.

本発明の実施例を説明する前に、本発明が適用されるIPS方式の液晶表示装置の構成について説明する。図9はIPS方式の液晶表示装置の表示領域における構造を示す断面図である。図9の構造は、現在広く使用されている構造であって、簡単に言えば、平面ベタで形成された対向電極108の上に絶縁膜109を挟んで櫛歯状の画素電極110が形成されている。そして、画素電極110と対向電極108の間の電圧によって液晶分子301を回転させ、画素毎に液晶層300の光の透過率を制御することにより画像を形成するものである。   Before describing embodiments of the present invention, the configuration of an IPS liquid crystal display device to which the present invention is applied will be described. FIG. 9 is a cross-sectional view showing a structure in a display region of an IPS liquid crystal display device. The structure shown in FIG. 9 is a structure that is widely used at present. To put it simply, a comb-like pixel electrode 110 is formed on a counter electrode 108 formed of a flat solid with an insulating film 109 interposed therebetween. ing. Then, the liquid crystal molecules 301 are rotated by the voltage between the pixel electrode 110 and the counter electrode 108, and an image is formed by controlling the light transmittance of the liquid crystal layer 300 for each pixel.

図9において、ガラスで形成されるTFT基板100の上に、ゲート電極101が形成されている。ゲート電極101は走査線と同層で形成されている。ゲート電極101はAlNd合金の上にMoCr合金が積層されている。   In FIG. 9, a gate electrode 101 is formed on a TFT substrate 100 made of glass. The gate electrode 101 is formed in the same layer as the scanning line. The gate electrode 101 has a MoCr alloy laminated on an AlNd alloy.

ゲート電極101を覆ってゲート絶縁膜102がSiNによって形成されている。ゲート絶縁膜102の上に、ゲート電極101と対向する位置に半導体層103がa−Si膜によって形成されている。a−Si膜はTFTのチャネル部を形成するが、チャネル部を挟んでa−Si膜上にドレイン電極104とソース電極105が形成される。なお、a−Si膜とドレイン電極104あるいはソース電極105との間には図示しないn+Si層が形成される。半導体層103とドレイン電極104あるいはソース電極105とのオーミックコンタクトを取るためである。   A gate insulating film 102 is formed of SiN so as to cover the gate electrode 101. A semiconductor layer 103 is formed of an a-Si film on the gate insulating film 102 at a position facing the gate electrode 101. The a-Si film forms the channel portion of the TFT, and the drain electrode 104 and the source electrode 105 are formed on the a-Si film with the channel portion interposed therebetween. Note that an n + Si layer (not shown) is formed between the a-Si film and the drain electrode 104 or the source electrode 105. This is to make an ohmic contact between the semiconductor layer 103 and the drain electrode 104 or the source electrode 105.

ドレイン電極104は映像信号線が兼用し、ソース電極105は画素電極110と接続される。ドレイン電極104もソース電極105も同層で同時に形成される。本実施例では、ドレイン電極104あるいはソース電極105はMoCr合金で形成される。ドレイン電極104あるいはソース電極105の電気抵抗を下げたい場合は、例えば、AlNd合金をMoCr合金でサンドイッチした電極構造が用いられる。   The drain electrode 104 is also used as a video signal line, and the source electrode 105 is connected to the pixel electrode 110. The drain electrode 104 and the source electrode 105 are simultaneously formed in the same layer. In this embodiment, the drain electrode 104 or the source electrode 105 is made of a MoCr alloy. In order to lower the electrical resistance of the drain electrode 104 or the source electrode 105, for example, an electrode structure in which an AlNd alloy is sandwiched between MoCr alloys is used.

TFTを覆って無機パッシベーション膜106がSiNによって形成される。無機パッシベーション膜106はTFTの、特にチャネル部を不純物401から保護する。無機パッシベーション膜106の上には有機パッシベーション膜107が形成される。有機パッシベーション膜107はTFTの保護と同時に表面を平坦化する役割も有するので、厚く形成される。厚さは1μmから4μmである。   An inorganic passivation film 106 is formed of SiN so as to cover the TFT. The inorganic passivation film 106 protects the TFT, particularly the channel portion, from the impurities 401. An organic passivation film 107 is formed on the inorganic passivation film 106. The organic passivation film 107 has a role of flattening the surface at the same time as protecting the TFT, and thus is formed thick. The thickness is 1 μm to 4 μm.

有機パッシベーション膜107の上には対向電極108が形成される。対向電極108は透明導電膜であるITO(Indium Tin Oxide)を表示領域全体にスパッタリングすることによって形成される。すなわち、対向電極108は面状に形成される。対向電極108を全面にスパッタリングによって形成した後、画素電極110とソース電極105を導通するためのスルーホール111部だけは対向電極108をエッチングによって除去する。   A counter electrode 108 is formed on the organic passivation film 107. The counter electrode 108 is formed by sputtering ITO (Indium Tin Oxide), which is a transparent conductive film, over the entire display region. That is, the counter electrode 108 is formed in a planar shape. After the counter electrode 108 is formed on the entire surface by sputtering, the counter electrode 108 is removed by etching only in the through hole 111 portion for conducting the pixel electrode 110 and the source electrode 105.

対向電極108を覆って層間絶縁膜109がSiNによって形成される。層間絶縁膜109が形成された後、エッチングによってスルーホール111を形成する。この層間絶縁膜109をレジストにして無機パッシベーション膜106をエッチングしてスルーホール111を形成する。その後、層間絶縁膜109およびスルーホール111を覆って画素電極110となるITOをスパッタリングによって形成する。スパッタリングしたITOをパターニングして画素電極110を形成する。画素電極110となるITOはスルーホール111にも被着される。スルーホール111において、TFTから延在してきたソース電極105と画素電極110が導通し、映像信号が画素電極110に供給されることになる。   An interlayer insulating film 109 is formed of SiN so as to cover the counter electrode 108. After the interlayer insulating film 109 is formed, a through hole 111 is formed by etching. The through hole 111 is formed by etching the inorganic passivation film 106 using the interlayer insulating film 109 as a resist. Thereafter, an ITO film that covers the interlayer insulating film 109 and the through hole 111 and becomes the pixel electrode 110 is formed by sputtering. The pixel electrode 110 is formed by patterning the sputtered ITO. ITO serving as the pixel electrode 110 is also deposited on the through hole 111. In the through hole 111, the source electrode 105 extending from the TFT and the pixel electrode 110 become conductive, and a video signal is supplied to the pixel electrode 110.

図10に画素電極110の1例を示す。画素電極110は、櫛歯状の電極である。櫛歯と櫛歯の間にスリット112が形成されている。図示しない層間絶縁膜109を挟んで、画素電極110の下方には、平面状の対向電極108が形成されている。画素電極110に映像信号が印加されると、スリット112を通して対向電極108との間に生ずる電気力線によって液晶分子301が回転する。これによって液晶層300を通過する光を制御して画像を形成する。   FIG. 10 shows an example of the pixel electrode 110. The pixel electrode 110 is a comb-like electrode. A slit 112 is formed between the comb teeth. A planar counter electrode 108 is formed below the pixel electrode 110 with an interlayer insulating film 109 (not shown) interposed therebetween. When a video signal is applied to the pixel electrode 110, the liquid crystal molecules 301 are rotated by electric lines of force generated between the counter electrode 108 through the slit 112. As a result, light passing through the liquid crystal layer 300 is controlled to form an image.

図9に戻り、画素電極110の上には液晶分子301を配向させるための配向膜113が形成されている。図9において、液晶層300を挟んで対向基板200が設置されている。図9はモノクロタイプの液晶表示装置なので、対向基板200の内側には、ブラックマトリクス201およびこれを覆うオーバーコート膜202が形成されている。ブラックマトリクス201はコントラストを向上させるためであるが、TFTに対する遮光膜としての役割も有している。オーバーコート膜202は表面の凹凸を緩和させるためである。オーバーコート膜202の上には、液晶の初期配向を決めるための配向膜113が形成されている。対向基板側の配向膜113もTFT基板側の配向膜113と同様に、光配向による配向処理が施されている。   Returning to FIG. 9, an alignment film 113 for aligning the liquid crystal molecules 301 is formed on the pixel electrode 110. In FIG. 9, the counter substrate 200 is provided with the liquid crystal layer 300 interposed therebetween. Since FIG. 9 is a monochrome type liquid crystal display device, a black matrix 201 and an overcoat film 202 covering the black matrix 201 are formed inside the counter substrate 200. The black matrix 201 is for improving the contrast, but also has a role as a light shielding film for the TFT. This is because the overcoat film 202 relaxes unevenness on the surface. On the overcoat film 202, an alignment film 113 for determining the initial alignment of the liquid crystal is formed. Similar to the alignment film 113 on the TFT substrate side, the alignment film 113 on the counter substrate side is subjected to an alignment process by photo-alignment.

図9では図示していないが、TFT基板100と対向基板200との間隔を規定するための、樹脂で形成された柱状スペーサが対向基板側に形成される。なお、図9はモノクロ液晶表示装置なので、カラーフィルタは存在しない。カラー液晶表示装置の場合は、図9におけるブラックマトリクス201の両側に赤、緑、青等のカラーフィルタが形成される。   Although not shown in FIG. 9, columnar spacers made of resin for defining the distance between the TFT substrate 100 and the counter substrate 200 are formed on the counter substrate side. Since FIG. 9 is a monochrome liquid crystal display device, there is no color filter. In the case of a color liquid crystal display device, color filters such as red, green, and blue are formed on both sides of the black matrix 201 in FIG.

図9は有機パッシベーション膜107の上に対向電極108が形成され、その上に層間絶縁膜109を挟んで櫛歯状の画素電極110が配置される構成であるが、この逆に、有機パッシベーション膜107の上に画素電極110を形成し、その上に層間絶縁膜109を挟んで櫛歯状の対向電極108が配置される構成のIPSも存在する。本発明はいずれのタイプのIPSに対しても適用することが出来る。   FIG. 9 shows a configuration in which a counter electrode 108 is formed on an organic passivation film 107 and a comb-like pixel electrode 110 is disposed on the counter electrode 108 with an interlayer insulating film 109 interposed therebetween. There is also an IPS having a configuration in which a pixel electrode 110 is formed on 107, and a comb-like counter electrode 108 is disposed thereon with an interlayer insulating film 109 interposed therebetween. The present invention can be applied to any type of IPS.

図11は、図9で説明した光配向を用いたIPS方式の液晶表示装置の表示領域およびシール部の断面図である。図11は、図9におけるゲート電極101から無機パッシベーション膜106までを一括してTFT回路120として表現している。図11において、TFT基板100の上にTFT回路120が形成され、その上に有機パッシベーション膜107が形成され、有機パッシベーション膜107の上に平面ベタで形成されたコモン電極108が形成されている。コモン電極108の上に層間絶縁膜109を挟んで櫛歯状の画素電極110が形成され、画素電極110は配向膜113によって覆われている。   FIG. 11 is a cross-sectional view of the display region and the seal portion of the IPS liquid crystal display device using the photo-alignment described in FIG. FIG. 11 collectively represents the TFT circuit 120 from the gate electrode 101 to the inorganic passivation film 106 in FIG. In FIG. 11, a TFT circuit 120 is formed on a TFT substrate 100, an organic passivation film 107 is formed on the TFT circuit 120, and a common electrode 108 is formed on the organic passivation film 107 with a flat solid surface. A comb-like pixel electrode 110 is formed on the common electrode 108 with an interlayer insulating film 109 interposed therebetween, and the pixel electrode 110 is covered with an alignment film 113.

図11において、対向基板200にはブラックマトリクス201が形成され、ブラックマトリクス201を覆ってオーバーコート膜202が形成され、オーバーコート膜202の上には配向膜113が形成されている。また、対向基板200とTFT基板100との間には柱状スペーサ130が形成されている。   In FIG. 11, a black matrix 201 is formed on the counter substrate 200, an overcoat film 202 is formed to cover the black matrix 201, and an alignment film 113 is formed on the overcoat film 202. A columnar spacer 130 is formed between the counter substrate 200 and the TFT substrate 100.

図11において、対向基板200とTFT基板100の周辺部にはシール材150が形成され、シール材150の内側に液晶層300が封止されている。図11において、シール材150はTFT基板100の層間絶縁膜109と対向基板200のオーバーコート膜202の間に形成されており、シール材150が形成された部分には配向膜113は存在しない。配向膜113はシール材150の接着性を低下させる性質があるからである。   In FIG. 11, a sealing material 150 is formed around the counter substrate 200 and the TFT substrate 100, and the liquid crystal layer 300 is sealed inside the sealing material 150. In FIG. 11, the sealing material 150 is formed between the interlayer insulating film 109 of the TFT substrate 100 and the overcoat film 202 of the counter substrate 200, and the alignment film 113 does not exist in the portion where the sealing material 150 is formed. This is because the alignment film 113 has a property of reducing the adhesiveness of the sealing material 150.

図11において、配向膜113は300nm以下の紫外線によって光配向され、シール材150は、340nm以上の紫外線によって硬化する。シール材150を硬化させるときは、すでに配向膜113の光配向処理は終わっている。配向処理の終わった配向膜113に対して再び300nm以下の紫外線を加えると配向膜113が劣化する。   In FIG. 11, the alignment film 113 is photo-aligned by ultraviolet rays of 300 nm or less, and the sealing material 150 is cured by ultraviolet rays of 340 nm or more. When the sealing material 150 is cured, the photo-alignment treatment of the alignment film 113 has already been completed. When ultraviolet rays of 300 nm or less are applied again to the alignment film 113 after the alignment treatment, the alignment film 113 deteriorates.

これを防止するには、シール材150の紫外線硬化をする紫外線に対してフィルタをかけ、300nm以下の波長をカットした紫外線を用いるか、紫外線遮光マスクを用いて、配向膜113に紫外線が照射されることを防止すればよい。しかし、紫外線に対してフィルタを形成することは製造コストがかかるし、フィルタは紫外線によって劣化するので、フィルタの頻繁な交換が必要となる。一方、遮光マスクを用いる方法は、「本発明の課題」で述べたような問題がある。   In order to prevent this, the alignment film 113 is irradiated with ultraviolet rays by filtering ultraviolet rays that cure the ultraviolet rays of the sealing material 150 and using ultraviolet rays with a wavelength of 300 nm or less cut or using an ultraviolet light shielding mask. What is necessary is just to prevent it. However, forming a filter with respect to ultraviolet rays is expensive to manufacture, and the filter is deteriorated by ultraviolet rays. Therefore, frequent replacement of the filter is necessary. On the other hand, the method using a light-shielding mask has the problems described in “Problems of the present invention”.

以下に述べる実施例で説明する本発明は、紫外線の光源に対してフィルタを用いる必要がなく、また、シール材150の紫外線硬化の際、遮光マスクを用いることなく、配向膜113の紫外線による劣化を防止する構成を与えるものである。   In the present invention described in the embodiments described below, it is not necessary to use a filter with respect to an ultraviolet light source, and when the sealing material 150 is cured with ultraviolet light, the alignment film 113 is deteriorated by ultraviolet light without using a light shielding mask. The structure which prevents this is given.

図1は実施例1における液晶表示装置の構造を示す断面図であり、左側は表示領域の断面図で右側がシール部の断面図である。図1において、TFT基板100の上にTFT回路120が形成されている。TFT回路120は、図9におけるゲート電極101から無機パッシベーション膜106までの構成を一括して表現したものである。以下の図面も同様である。なお、図1はモノクロ液晶表示装置である。図1の構成は、ブラックマトリクス201とブラックマトリクス201の間に、本発明の特徴である紫外線吸収層210が形成されている他は図11と同様であるので、構造の詳細な説明は省略する。なお、図1における矢印UVはシール材150を硬化させるための紫外線のことである。   FIG. 1 is a cross-sectional view showing the structure of the liquid crystal display device according to the first embodiment. The left side is a cross-sectional view of a display region, and the right side is a cross-sectional view of a seal portion. In FIG. 1, a TFT circuit 120 is formed on a TFT substrate 100. The TFT circuit 120 is a collective representation of the configuration from the gate electrode 101 to the inorganic passivation film 106 in FIG. The same applies to the following drawings. FIG. 1 shows a monochrome liquid crystal display device. The configuration of FIG. 1 is the same as that of FIG. 11 except that an ultraviolet absorption layer 210 that is a feature of the present invention is formed between the black matrix 201 and the black matrix 201, and thus a detailed description of the structure is omitted. . Note that an arrow UV in FIG. 1 indicates an ultraviolet ray for curing the sealing material 150.

図2は実施例1の液晶表示装置を製作するためのフローである。図2において、左側は、TFT基板100の製造フローである。TFT基板100の製造プロセスは図9において説明したので詳細は省略する。TFT基板100に対し、配向膜113を塗布し、焼成した後、配向膜113に対して紫外線を用いて配向処理を行う。この時、配向処理に有効な紫外線の波長は300nm以下である。   FIG. 2 is a flow for manufacturing the liquid crystal display device of the first embodiment. In FIG. 2, the left side is a manufacturing flow of the TFT substrate 100. Since the manufacturing process of the TFT substrate 100 has been described with reference to FIG. After the alignment film 113 is applied to the TFT substrate 100 and baked, the alignment film 113 is subjected to alignment treatment using ultraviolet rays. At this time, the wavelength of ultraviolet rays effective for the alignment treatment is 300 nm or less.

図2の右側において、対向基板200の製造プロセスは図9で説明したので詳細は省略する。対向基板200に対し、配向膜113を塗布し、焼成した後、配向膜113に対して300nm以下の紫外線を用いて配向処理を行う。その後、対向基板200にシール材150を形成し、シール材150で囲まれた領域に液晶を滴下する。   On the right side of FIG. 2, the manufacturing process of the counter substrate 200 has been described with reference to FIG. After the alignment film 113 is applied to the counter substrate 200 and baked, the alignment film 113 is subjected to an alignment process using ultraviolet rays of 300 nm or less. After that, a sealing material 150 is formed on the counter substrate 200, and liquid crystal is dropped on a region surrounded by the sealing material 150.

その後、TFT基板100と対向基板200をシール材150によって貼り合わせ、図1に示すように、対向基板側から紫外線を照射し、シール材150を硬化させる。この時、遮光マスクは使用しない。シール材150は340nm以上の紫外線に反応して硬化するが、用いられる紫外線は、340nm以上の波長のみでなく、300nm以下の波長の紫外線も含まれている。従来構成では、シール材150を硬化させるときに、遮光マスクを用いなければ、紫外線に300nm以下の波長が含まれると、配向膜113を劣化させる。   Thereafter, the TFT substrate 100 and the counter substrate 200 are bonded together with a sealant 150, and as shown in FIG. 1, the sealant 150 is cured by irradiating ultraviolet rays from the counter substrate side. At this time, a light shielding mask is not used. Although the sealing material 150 is cured in response to ultraviolet rays of 340 nm or more, the ultraviolet rays used include not only wavelengths of 340 nm or more but also ultraviolet rays of wavelengths of 300 nm or less. In the conventional configuration, if the light shielding mask is not used when the sealing material 150 is cured, the alignment film 113 is deteriorated if the ultraviolet ray includes a wavelength of 300 nm or less.

ブラックマトリクス201が形成されている部分は、ブラックマトリクス201が紫外線に対して遮光効果を有する。しかし、従来例ではブラックマトリクス201が存在しない部分は、オーバーコート膜202のみであり、波長300nm以下の紫外線が透過する。本実施例においては、ブラックマトリクス201とブラックマトリクス201の間に紫外線吸収層210を形成し、特に300nm以下の紫外線を遮光する。これによって遮光マスクを配置しなくとも、配向膜の劣化を防止することが出来る。   In the portion where the black matrix 201 is formed, the black matrix 201 has a light shielding effect against ultraviolet rays. However, in the conventional example, the portion where the black matrix 201 does not exist is only the overcoat film 202, and ultraviolet rays having a wavelength of 300 nm or less are transmitted. In this embodiment, an ultraviolet absorption layer 210 is formed between the black matrix 201 and the black matrix 201, and in particular, ultraviolet rays of 300 nm or less are shielded. Accordingly, it is possible to prevent the alignment film from deteriorating without arranging a light shielding mask.

図3は本発明で使用されている有機材料である、オーバーコート膜202(OC用材料)、有機パッシベーション膜107(有機PAS材料)、および、本発明にかかわる紫外線吸収層210(UV吸収層)の紫外線透過率を示すグラフである。図3に示すように紫外線吸収層210は、波長300nm以下の紫外線に対しては透過率が非常に小さくなっている。一方、波長340nm以上の紫外線に対しては、透過率が大きい。   FIG. 3 shows an overcoat film 202 (OC material), an organic passivation film 107 (organic PAS material), and an ultraviolet absorption layer 210 (UV absorption layer) according to the present invention, which are organic materials used in the present invention. It is a graph which shows the ultraviolet-ray transmittance of. As shown in FIG. 3, the ultraviolet absorption layer 210 has a very low transmittance for ultraviolet rays having a wavelength of 300 nm or less. On the other hand, the transmittance is high for ultraviolet rays having a wavelength of 340 nm or more.

図3において、波長300nmにおける紫外線吸収層210の透過率は10%であり、波長340nmにおける紫外線吸収層210の透過率は90%である。この値は、紫外線吸収層210の厚さが1μmの場合である。このような紫外線吸収層210を用いることによって、図1に示す液晶表示装置の表示領域とシール部における波長300nmと波長340nmの紫外線に対する透過率を、従来例と本実施例による紫外線吸収層210を使用した例について評価した結果を図4の表に示す。図4は図1のように、対向基板200の側から紫外線を照射した場合に、液晶表示装置を紫外線が通り抜けてTFT基板100の側において測定される紫外線強度である。   In FIG. 3, the transmittance of the ultraviolet absorbing layer 210 at a wavelength of 300 nm is 10%, and the transmittance of the ultraviolet absorbing layer 210 at a wavelength of 340 nm is 90%. This value is when the thickness of the ultraviolet absorbing layer 210 is 1 μm. By using such an ultraviolet absorption layer 210, the transmittance for ultraviolet rays having a wavelength of 300 nm and a wavelength of 340 nm in the display region and the seal portion of the liquid crystal display device shown in FIG. The results of evaluating the used examples are shown in the table of FIG. FIG. 4 shows the intensity of ultraviolet rays measured on the TFT substrate 100 side when ultraviolet rays pass through the liquid crystal display device when ultraviolet rays are irradiated from the counter substrate 200 side as shown in FIG.

図4において、シール部150は、従来例と本実施例とでは同じ構成なので、紫外線に対する透過率は同じである。一方、表示部においては、本実施例では紫外線吸収層210が存在しているので、300nmの紫外線に対する透過率は、従来例では2.7%であるのに対し、本実施例では、0.6%に低下している。図3からわかるように、300nm以下の紫外線に対しては、透過率はさらに低下することになる。したがって、本実施例によれば、配向膜113に対して影響を与える300nm以下の紫外線は、表示領域においては殆ど透過しないことになり、遮光マスクを用いなくとも、配向膜113に対する紫外線によるダメージは阻止することが出来る。   In FIG. 4, since the seal part 150 has the same configuration in the conventional example and the present example, the transmittance for ultraviolet rays is the same. On the other hand, in the present embodiment, since the ultraviolet absorbing layer 210 is present in the present embodiment, the transmittance for 300 nm ultraviolet light is 2.7% in the conventional example, whereas in the present embodiment, the transmittance is 0.2%. It has fallen to 6%. As can be seen from FIG. 3, the transmittance is further lowered for ultraviolet rays of 300 nm or less. Therefore, according to this embodiment, ultraviolet rays of 300 nm or less that affect the alignment film 113 are hardly transmitted in the display region, and damage to the alignment film 113 is not caused even if a light shielding mask is not used. Can be blocked.

ただし、波長が340nmの紫外線に対しては、従来例における透過率は13、6%であるのに対し、本実施例では19、9%に上昇している。これは図3に示すように紫外線吸収層は340nm以上の波長に対しては、オーバーコート膜202の場合よりも透過率が高いからである。しかし、340nm以上の紫外線は配向膜113に対してはダメージを与えないので、実効的には問題は生じない。   However, for ultraviolet rays having a wavelength of 340 nm, the transmittance in the conventional example is 13 and 6%, whereas in this embodiment, the transmittance is increased to 19 and 9%. This is because, as shown in FIG. 3, the ultraviolet absorbing layer has a higher transmittance than the overcoat film 202 for wavelengths of 340 nm or more. However, since ultraviolet rays having a wavelength of 340 nm or more do not damage the alignment film 113, no problem arises effectively.

図4の表は例である。実際には、紫外線吸収層210等は膜厚にばらつきが生ずる。紫外線吸収層210等にばらつきが生じた場合であっても、図1の構成において、表示領域における300nmに対する透過率が1%以下で、シール部における340nmに対する透過率が20%以上であれば、本発明の効果を得ることが出来る。   The table in FIG. 4 is an example. Actually, the ultraviolet absorption layer 210 and the like vary in film thickness. Even when variations occur in the ultraviolet absorption layer 210 and the like, if the transmittance for 300 nm in the display region is 1% or less and the transmittance for 340 nm in the seal portion is 20% or more in the configuration of FIG. The effects of the present invention can be obtained.

図5は実施例2における液晶表示装置の構造を示す断面図であり、左側は表示領域の断面図で右側がシール部の断面図である。図5が実施例1の図1と異なる点は、オーバーコート膜の代わりに紫外線吸収層210が形成されていることである。図5において、紫外線吸収層210は表示領域のみでなく、シール部においても、オーバーコート膜の代わりに形成されている。   FIG. 5 is a cross-sectional view showing the structure of the liquid crystal display device according to the second embodiment. The left side is a cross-sectional view of the display area, and the right side is a cross-sectional view of the seal portion. 5 differs from FIG. 1 of the first embodiment in that an ultraviolet absorbing layer 210 is formed instead of the overcoat film. In FIG. 5, the ultraviolet absorbing layer 210 is formed not only in the display area but also in the seal portion instead of the overcoat film.

図5において、TFT基板100と対向基板200を、シール材150を介して貼り合わせた後、対向基板200の側から紫外線を照射してシール材150を硬化させることは実施例1と同じである。また、本実施例においても、表示領域に紫外線を照射させないための遮光マスクを使用しないことは実施例1と同様である。   In FIG. 5, the TFT substrate 100 and the counter substrate 200 are bonded together via the sealing material 150, and then the ultraviolet light is irradiated from the counter substrate 200 side to cure the sealing material 150 as in the first embodiment. . Also in this embodiment, as in the first embodiment, no light shielding mask for preventing the display area from being irradiated with ultraviolet rays is used.

紫外線吸収層210およびオーバーコート膜202の紫外線に対する透過率は図3に示すとおりである。すなわち、紫外線吸収層210はオーバーコート膜202に比較して波長が300nm以下の紫外線に対しては透過率が低く、波長が340nm以上の紫外線に対しては透過率が大きい。したがって、遮光マスクを使用しないで紫外線を照射しても表示領域における配向膜113には300nm以下の紫外線は極めて僅かしか到達しない。つまり、表示領域に存在する配向膜に対する紫外線の影響は極めて小さくすることが出来る。   The transmittance of the ultraviolet absorbing layer 210 and the overcoat film 202 with respect to ultraviolet rays is as shown in FIG. That is, the ultraviolet absorbing layer 210 has a low transmittance for ultraviolet rays having a wavelength of 300 nm or less and a high transmittance for ultraviolet rays having a wavelength of 340 nm or more, compared to the overcoat film 202. Therefore, even if ultraviolet rays are irradiated without using a light-shielding mask, very little ultraviolet rays of 300 nm or less reach the alignment film 113 in the display region. That is, the influence of ultraviolet rays on the alignment film existing in the display region can be extremely reduced.

図6に示す表は、本実施例における表示部およびシール部での波長300nmおよび340nmの紫外線の透過率を、実施例1および従来例と比較したものである。測定方法は、図4と同様、対向基板200の側から紫外線を照射し、TFT基板100側において、どの程度その紫外線が透過するかを比較したものである。   The table shown in FIG. 6 compares the transmittance of ultraviolet rays having wavelengths of 300 nm and 340 nm at the display portion and the seal portion in this example with those of Example 1 and the conventional example. As in FIG. 4, the measurement method is to compare the degree to which ultraviolet rays are transmitted on the TFT substrate 100 side by irradiating ultraviolet rays from the counter substrate 200 side.

シール部150においては、本実施例は従来例および実施例1と異なり、オーバーコート膜202の代わりに紫外線吸収層210が形成されているので、300nmの紫外線の透過率2.7%と、低い代わりに、340nmの紫外線の透過率は49.2%と、大きい。すなわち、シール材150を硬化させる340nmの紫外線は紫外線吸収層210による吸収は小さいので、シール材150に効率良く照射される。したがって、本実施例では、シール材150は紫外線によって効率よく硬化されるということが出来る。   In the seal portion 150, the present embodiment is different from the conventional example and the first embodiment, and the ultraviolet absorption layer 210 is formed instead of the overcoat film 202. Therefore, the transmittance of 300 nm ultraviolet rays is as low as 2.7%. Instead, the transmittance of ultraviolet rays at 340 nm is as large as 49.2%. That is, the ultraviolet ray of 340 nm that cures the sealing material 150 is less absorbed by the ultraviolet absorption layer 210 and is therefore efficiently irradiated onto the sealing material 150. Therefore, in this embodiment, it can be said that the sealing material 150 is efficiently cured by ultraviolet rays.

表示領域においては、300nmの紫外線に対してはオーバーコート膜202全てが紫外線吸収層210によって置き換えられているので、実施例1の場合よりもさらに透過率が小さくなっており、0.2%である。したがって、本実施例では、より効率よく、300nmの紫外線をカットするので、配向膜113へのダメージをより効率的に防止することが出来る。表示領域における340nmの紫外線に対する透過率は49.2%と大きいが、340nmの紫外線は配向膜に対して影響は少ないので、配向膜113にダメージを与えることはない。   In the display region, since all of the overcoat film 202 is replaced by the ultraviolet absorption layer 210 for 300 nm ultraviolet rays, the transmittance is further smaller than that in the case of Example 1, and is 0.2%. is there. Therefore, in this embodiment, since the ultraviolet ray of 300 nm is cut more efficiently, damage to the alignment film 113 can be prevented more efficiently. Although the transmittance of the display region with respect to the ultraviolet ray of 340 nm is as large as 49.2%, the ultraviolet ray of 340 nm has little influence on the alignment film, so that the alignment film 113 is not damaged.

このように、本実施例においても、遮光マスクを使用しないでも、配向膜113にダメージを与えることなく、シール材150を紫外線硬化することが出来る。   Thus, also in this embodiment, the sealing material 150 can be cured with ultraviolet rays without damaging the alignment film 113 without using a light shielding mask.

図5に示すように、本実施例では、紫外線吸収層210の上に柱状スペーサ130が形成されている。柱状スペーサ130として、紫外線吸収層210と同じ材料を使用することによって、紫外線吸収層210と柱状スペーサ130を同時に形成することが出来る。このプロセスとして、例えば、図5における紫外線吸収層210と柱状スペーサ130を合わせた厚さの紫外線吸収層を対向基板200にコーティングする。その後、フォトリソグラフィにおいて、露光量を調整して、柱状スペーサ130以外の部分のみを所定の厚さまでエッチングによって除去する。これによって、柱状スペーサ130を形成するプロセスにおいて、柱状スペーサ130と紫外線吸収層210を同時に形成することが出来、製造コストの低減を図ることができる。   As shown in FIG. 5, in this embodiment, columnar spacers 130 are formed on the ultraviolet absorption layer 210. By using the same material as the ultraviolet absorbing layer 210 as the columnar spacer 130, the ultraviolet absorbing layer 210 and the columnar spacer 130 can be formed simultaneously. As this process, for example, the counter substrate 200 is coated with an ultraviolet absorption layer having a thickness obtained by combining the ultraviolet absorption layer 210 and the columnar spacer 130 in FIG. Thereafter, in photolithography, the exposure amount is adjusted, and only portions other than the columnar spacers 130 are removed by etching to a predetermined thickness. Accordingly, in the process of forming the columnar spacer 130, the columnar spacer 130 and the ultraviolet absorbing layer 210 can be formed at the same time, and the manufacturing cost can be reduced.

図7は本発明の第3の実施例を示す液晶表示装置の断面図である。図7は実施例1および実施例2と異なり、カラー液晶表示装置である。したがって、対向基板200において、ブラックマトリクス201とブラックマトリクス201の間には、カラーフィルタ220が形成されている。一方、TFT基板100において、有機パッシベーション膜107の代わりに紫外線吸収層210が形成されている。その他は実施例1の図1と同じ構成なので説明を省略する。   FIG. 7 is a cross-sectional view of a liquid crystal display device showing a third embodiment of the present invention. FIG. 7 is a color liquid crystal display device unlike the first and second embodiments. Therefore, in the counter substrate 200, the color filter 220 is formed between the black matrix 201 and the black matrix 201. On the other hand, in the TFT substrate 100, an ultraviolet absorption layer 210 is formed instead of the organic passivation film 107. The rest of the configuration is the same as that of the first embodiment shown in FIG.

本実施例では、光配向された配向膜113を有する対向基板200と、光配向された配向膜113を有するTFT基板100を周辺において、紫外線硬化性のシール材150を用いてシールするが、図7に示すように、シール材150を硬化するための紫外線はTFT基板100の側から照射される。有機パッシベーション膜107と紫外線吸収層210の紫外線透過率の関係は図3に記載されているとおりである。すなわち、紫外線吸収層210は有機パッシベーション膜107に比較して、300nm以下の紫外線は効率よくカットするのに対し、340nm以上の紫外線は効率よく透過する。   In this embodiment, the counter substrate 200 having the photo-aligned alignment film 113 and the TFT substrate 100 having the photo-aligned alignment film 113 are sealed using an ultraviolet curable sealant 150 around the periphery. As shown in FIG. 7, ultraviolet rays for curing the sealing material 150 are irradiated from the TFT substrate 100 side. The relationship between the ultraviolet transmittance of the organic passivation film 107 and the ultraviolet absorbing layer 210 is as shown in FIG. That is, the ultraviolet absorbing layer 210 efficiently cuts UV light of 300 nm or less compared to the organic passivation film 107, while efficiently transmitting UV light of 340 nm or more.

図7に示す構成において、TFT基板100側から紫外線を照射すると、TFT基板100の側には有機パッシベーション膜107の代わりに紫外線吸収層210が形成されているので、表示領域においては、配向膜113に対してダメージを与える波長300nm以下の紫外線は効率よくカットされる。なお、表示領域おける波長340nm以上の紫外線は紫外線吸収層210をより多く透過するが、340nm以上の紫外線は配向膜113にダメージを与えないので、問題は無い。   In the configuration shown in FIG. 7, when ultraviolet rays are irradiated from the TFT substrate 100 side, an ultraviolet absorption layer 210 is formed on the TFT substrate 100 side instead of the organic passivation film 107, and therefore the alignment film 113 is formed in the display region. Ultraviolet rays having a wavelength of 300 nm or less that cause damage are efficiently cut. Note that ultraviolet rays having a wavelength of 340 nm or more in the display region pass through the ultraviolet absorbing layer 210 more, but ultraviolet rays having a wavelength of 340 nm or more do not damage the alignment film 113, so there is no problem.

一方、シール部のシール材150に対しては、TFT基板100に形成されている紫外線吸収層210は、340nm以上の紫外線への透過率は高いので、シール材150の硬化を効率よく行うことが出来る。なお、シール材150に対する300nm以下の紫外線の照射も少ないが、この範囲の紫外線はシール材150の硬化には影響が小さいので、問題は無い。   On the other hand, since the ultraviolet absorbing layer 210 formed on the TFT substrate 100 has a high transmittance to ultraviolet rays of 340 nm or more with respect to the sealing material 150 of the sealing portion, the sealing material 150 can be cured efficiently. I can do it. In addition, although irradiation with ultraviolet rays of 300 nm or less to the sealing material 150 is small, there is no problem because the ultraviolet rays in this range have little influence on the curing of the sealing material 150.

このように、本実施例においても、遮光マスクを用いなくとも、紫外線照射によって、配向膜113にダメージを与えることなく、シール材150を紫外線硬化することが出来る。   Thus, also in this embodiment, the sealing material 150 can be cured with ultraviolet rays without damaging the alignment film 113 by ultraviolet irradiation without using a light shielding mask.

図8は本発明の第4の実施例を示す液晶表示装置の断面図である。図8も実施例1および実施例2と同様、モノクロ液晶表示装置である。図8において、実施例1と同様、ブラックマトリクス201とブラックマトリクス201の間に紫外線吸収層210が形成されている。一方、TFT基板100側には、実施例3と同様、有機パッシベーション膜107の代わりに紫外線吸収層210が形成されている。すなわち、本実施例では、対向基板200側もTFT基板100側も波長が300nm以下の紫外線を効率よくカットするが、波長が340nm以上の紫外線の透過率は大きくする構成となっている。   FIG. 8 is a cross-sectional view of a liquid crystal display device showing a fourth embodiment of the present invention. FIG. 8 is also a monochrome liquid crystal display device as in the first and second embodiments. In FIG. 8, as in the first embodiment, an ultraviolet absorbing layer 210 is formed between the black matrix 201 and the black matrix 201. On the other hand, an ultraviolet absorption layer 210 is formed on the TFT substrate 100 side instead of the organic passivation film 107 as in the third embodiment. That is, in this embodiment, both the counter substrate 200 side and the TFT substrate 100 side efficiently cut ultraviolet rays having a wavelength of 300 nm or less, but increase the transmittance of ultraviolet rays having a wavelength of 340 nm or more.

本実施例では、図8に示すように、対向基板200側とTFT基板100の両側から紫外線を照射することができる。対向基板200側およびTFT基板100側のいずれも、300nm以下の紫外線を効率よくカットする構成となっているので、配向膜113にダメージを与えることは無い。一方、特に、TFT基板100側においては、340nm以上の紫外線を効率よく透過する。また、対向基板200側においても、シール部では、340nm以上の紫外線に対しては従来と同様の透過率を維持している。したがって、本実施例によれば、シール材150に対する340nm以上の紫外線の照射量を大幅に上げることが出来るので、紫外線によるシール材150の硬化をより短時間で行うことが出来る。また、遮光マスクを使用しなくとも、配向膜113に対するダメージを防止しつつシール材150を紫外線硬化することが出来る点は実施例1〜3と同様である。   In this embodiment, as shown in FIG. 8, ultraviolet rays can be irradiated from the opposite substrate 200 side and both sides of the TFT substrate 100. Since both the counter substrate 200 side and the TFT substrate 100 side are configured to efficiently cut ultraviolet rays of 300 nm or less, the alignment film 113 is not damaged. On the other hand, particularly on the TFT substrate 100 side, ultraviolet rays of 340 nm or more are efficiently transmitted. Also on the counter substrate 200 side, the same transmittance as in the past is maintained for ultraviolet rays of 340 nm or more in the seal portion. Therefore, according to the present embodiment, since the irradiation amount of ultraviolet rays of 340 nm or more to the sealing material 150 can be significantly increased, the curing of the sealing material 150 with ultraviolet rays can be performed in a shorter time. Further, the sealing material 150 can be cured with ultraviolet rays while preventing damage to the alignment film 113 without using a light shielding mask, as in the first to third embodiments.

100…TFT基板、 101…ゲート電極、 102…ゲート絶縁膜、 103…半導体層、 104…ドレイン電極、 105…ソース電極、 106…無機パッシベーション膜、 107…有機パッシベーション膜、 108…対向電極、 109…層間絶縁膜、 110…画素電極、 111…スルーホール、 112…スリット、 113…配向膜、 120…TFT回路、 130…柱状スペーサ、 150…シール材、 200…対向基板、 201…ブラックマトリクス、 202…オーバーコート膜、 210…紫外線吸収層、 220…カラーフィルタ、 300…液晶層、 301…液晶分子   DESCRIPTION OF SYMBOLS 100 ... TFT substrate 101 ... Gate electrode 102 ... Gate insulating film 103 ... Semiconductor layer 104 ... Drain electrode 105 ... Source electrode 106 ... Inorganic passivation film 107 ... Organic passivation film 108 ... Counter electrode 109 ... Interlayer insulating film, 110 ... pixel electrode, 111 ... through hole, 112 ... slit, 113 ... alignment film, 120 ... TFT circuit, 130 ... columnar spacer, 150 ... sealing material, 200 ... counter substrate, 201 ... black matrix, 202 ... Overcoat film, 210 ... UV absorbing layer, 220 ... Color filter, 300 ... Liquid crystal layer, 301 ... Liquid crystal molecule

Claims (8)

第1の配向膜を有するTFT基板と、第2の配向膜を有する対向基板がシール材によって貼り付けられ、内部に液晶を封入した液晶表示装置であって、
前記対向基板は、ブラックマトリクスとブラックマトリクスの間に紫外線吸収層が形成され、
前記第2の配向膜は、紫外線によって光配向されたものであり、前記ブラックマトリクスと前記液晶との間および前記紫外線吸収層と前記液晶との間に形成されており、
前記シール材は紫外線硬化樹脂であり、
前記紫外線吸収層は、波長300nmの紫外線に対する透過率が波長340nmの紫外線に対する透過率よりも小さく、
前記シール材は、波長340nm以上の紫外線によって硬化する紫外線硬化樹脂であり、
前記配向膜は波長300nm以下の紫外線によって光配向されていることを特徴とする液晶表示装置。
A liquid crystal display device in which a TFT substrate having a first alignment film and a counter substrate having a second alignment film are attached with a sealing material, and liquid crystal is sealed inside,
The counter substrate has an ultraviolet absorbing layer formed between a black matrix and a black matrix,
The second alignment film is photo-aligned by ultraviolet rays, and is formed between the black matrix and the liquid crystal and between the ultraviolet absorption layer and the liquid crystal,
The sealing material is an ultraviolet curable resin,
The ultraviolet absorbing layer, transmittance of ultraviolet light at a wavelength of 300nm is rather smaller than the transmittance for ultraviolet rays having a wavelength 340 nm,
The sealing material is an ultraviolet curable resin that is cured by ultraviolet rays having a wavelength of 340 nm or more,
The liquid crystal display device, wherein the alignment film is photo-aligned by ultraviolet rays having a wavelength of 300 nm or less .
前記紫外線吸収層と前記第2の配向膜との間には、オーバーコート膜が形成されており、
波長300nmの紫外線に対する前記紫外線吸収層の透過率は前記オーバーコート膜の透過率よりも小さく、波長340nmの紫外線に対する前記紫外線吸収層の透過率は、前記オーバーコート膜の透過率よりも大きいことを特徴とする請求項1に記載の液晶表示装置。
An overcoat film is formed between the ultraviolet absorbing layer and the second alignment film,
The transmittance of the ultraviolet absorbing layer with respect to an ultraviolet ray having a wavelength of 300 nm is smaller than the transmittance of the overcoat film, and the transmittance of the ultraviolet absorbing layer with respect to an ultraviolet ray having a wavelength of 340 nm is larger than the transmittance of the overcoat film. The liquid crystal display device according to claim 1.
前記TFT基板は、前記第1の配向膜と前記TFT基板との間に有機パッシベーション膜が形成されており、
前記第1の配向膜は、紫外線によって光配向されたものであり、
波長300nmの紫外線に対する前記紫外線吸収層の透過率は前記有機パッシベーション膜の透過率よりも小さく、波長340nmの紫外線に対する前記紫外線吸収層の透過率は、前記有機パッシベーション膜の透過率よりも大きいことを特徴とする請求項1又は2に記載の液晶表示装置。
The TFT substrate has an organic passivation film formed between the first alignment film and the TFT substrate,
The first alignment film is photo-aligned by ultraviolet rays,
The transmittance of the ultraviolet absorbing layer with respect to ultraviolet light having a wavelength of 300 nm is smaller than the transmittance of the organic passivation film, and the transmittance of the ultraviolet absorbing layer with respect to ultraviolet light having a wavelength of 340 nm is larger than the transmittance of the organic passivation film. 3. The liquid crystal display device according to claim 1, wherein the liquid crystal display device is a liquid crystal display device.
前記液晶表示装置は、モノクロ液晶表示装置であることを特徴とする請求項1乃至3の何れか1項に記載の液晶表示装置。   The liquid crystal display device according to any one of claims 1 to 3, wherein the liquid crystal display device is a monochrome liquid crystal display device. 第1の配向膜を有するTFT基板と、第2の配向膜を有する対向基板がシール材によって貼り付けられ、内部に液晶を封入した液晶表示装置であって、  A liquid crystal display device in which a TFT substrate having a first alignment film and a counter substrate having a second alignment film are attached with a sealing material, and liquid crystal is sealed inside,
前記対向基板は、前記対向基板と前記第2の配向膜との間にオーバーコート膜が形成され、  The counter substrate has an overcoat film formed between the counter substrate and the second alignment film,
前記TFT基板は、前記TFT基板と前記第1の配向膜との間に紫外線吸収層が形成され、  The TFT substrate has an ultraviolet absorbing layer formed between the TFT substrate and the first alignment film,
前記第1の配向膜と前記第2の配向膜とは、紫外線によって光配向されたものであり、  The first alignment film and the second alignment film are photo-aligned by ultraviolet rays,
前記シール材は紫外線硬化樹脂であり、  The sealing material is an ultraviolet curable resin,
前記紫外線吸収層は、波長300nmの紫外線に対する透過率が波長340nmの紫外線に対する透過率よりも小さく、  The ultraviolet absorbing layer has a transmittance for ultraviolet rays having a wavelength of 300 nm smaller than a transmittance for ultraviolet rays having a wavelength of 340 nm,
前記シール材は、波長340nm以上の紫外線によって硬化する紫外線硬化樹脂であり、  The sealing material is an ultraviolet curable resin that is cured by ultraviolet rays having a wavelength of 340 nm or more,
前記配向膜は波長300nm以下の紫外線によって光配向されていることを特徴とする液晶表示装置。  The liquid crystal display device, wherein the alignment film is photo-aligned by ultraviolet rays having a wavelength of 300 nm or less.
前記紫外線吸収層は、波長300nmの紫外線に対する透過率が前記オーバーコート膜の透過率よりも小さく、波長340nmの紫外線に対する透過率が前記オーバーコート膜の透過率よりも大きいことを特徴とする請求項5に記載の液晶表示装置。  The transmittance of ultraviolet light having a wavelength of 300 nm is smaller than the transmittance of the overcoat film, and the transmittance of ultraviolet light having a wavelength of 340 nm is larger than the transmittance of the overcoat film. 5. A liquid crystal display device according to 5. 前記対向基板と前記オーバーコート膜との間にカラ―フィルタが形成されていることを特徴とする請求項5又は6に記載の液晶表示装置。  7. A liquid crystal display device according to claim 5, wherein a color filter is formed between the counter substrate and the overcoat film. 前記TFT基板は、前記紫外線吸収層と前記TFT基板との間に形成されたTFTと、前記紫外線吸収層と前記第1の配向膜との間に形成された対向電極、層間絶縁膜、画素電極とを有していることを特徴とする請求項5乃至7の何れか1項に記載の液晶表示装置。  The TFT substrate includes a TFT formed between the ultraviolet absorbing layer and the TFT substrate, a counter electrode formed between the ultraviolet absorbing layer and the first alignment film, an interlayer insulating film, and a pixel electrode. The liquid crystal display device according to claim 5, wherein the liquid crystal display device is provided.
JP2013017980A 2013-02-01 2013-02-01 Liquid crystal display Active JP5507715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013017980A JP5507715B2 (en) 2013-02-01 2013-02-01 Liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013017980A JP5507715B2 (en) 2013-02-01 2013-02-01 Liquid crystal display

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011045502A Division JP5193328B2 (en) 2011-03-02 2011-03-02 Liquid crystal display

Publications (2)

Publication Number Publication Date
JP2013127639A JP2013127639A (en) 2013-06-27
JP5507715B2 true JP5507715B2 (en) 2014-05-28

Family

ID=48778159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013017980A Active JP5507715B2 (en) 2013-02-01 2013-02-01 Liquid crystal display

Country Status (1)

Country Link
JP (1) JP5507715B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6416668B2 (en) 2014-08-20 2018-10-31 株式会社ジャパンディスプレイ Display device
KR102282997B1 (en) 2014-09-05 2021-07-29 삼성디스플레이 주식회사 Organic light emitting display device and method of manufacturing the same
CN105045006B (en) * 2015-08-17 2017-10-24 武汉华星光电技术有限公司 A kind of liquid crystal display panel
US10988973B2 (en) 2015-09-29 2021-04-27 Panasonic Intellectual Property Management Co., Ltd. Glass panel unit, glass window provided with same, and method for manufacturing glass panel unit
EP3611143B1 (en) 2015-09-29 2022-01-26 Panasonic Intellectual Property Management Co., Ltd. Glass panel unit and glass window
US11187933B2 (en) * 2018-08-08 2021-11-30 Omnivision Technologies, Inc. LCOS display panel having UV cut filter
JP2022068694A (en) * 2020-10-22 2022-05-10 株式会社ジャパンディスプレイ Liquid crystal optical element

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3874871B2 (en) * 1997-02-10 2007-01-31 シャープ株式会社 Manufacturing method of liquid crystal display device
JP2002098976A (en) * 2000-09-21 2002-04-05 Seiko Epson Corp Liquid crystal device and method of manufacture, and electronic device
JP2002116448A (en) * 2000-10-05 2002-04-19 Hitachi Ltd Liquid crystal display device and method for manufacturing the same
JP2008070508A (en) * 2006-09-13 2008-03-27 Seiko Epson Corp Liquid crystal device and electronic equipment
JP5293084B2 (en) * 2008-10-27 2013-09-18 大日本印刷株式会社 UV filter containing color filter
JP2010250058A (en) * 2009-04-15 2010-11-04 Sharp Corp Liquid crystal display panel

Also Published As

Publication number Publication date
JP2013127639A (en) 2013-06-27

Similar Documents

Publication Publication Date Title
JP5193328B2 (en) Liquid crystal display
JP5507715B2 (en) Liquid crystal display
US10712619B2 (en) Liquid crystal display device
US9417485B2 (en) Liquid crystal display device
US20150153621A1 (en) Liquid crystal display panel and liquid crystal display device
JP5457321B2 (en) Liquid crystal display
TW201621431A (en) Display panel
JP2005275144A (en) Liquid crystal display device
JP5276996B2 (en) Liquid crystal display
JP2016015404A (en) Liquid crystal display device
JP5731023B2 (en) Liquid crystal display
JP2016224112A (en) Liquid crystal display device
JP2010266711A (en) Liquid crystal display device and method for manufacturing the same
US9995969B2 (en) Liquid crystal display device
KR102271231B1 (en) Liquid crystal display device and fabricating method of the same
KR102272422B1 (en) Thin film transistor substrate and method of fabricating the same
JP6367415B2 (en) Liquid crystal display
JP5492326B2 (en) Manufacturing method of liquid crystal display device
JP5714676B2 (en) Liquid crystal display device and manufacturing method thereof
JP2020134558A (en) Array substrate, liquid crystal display device and method for manufacturing array substrate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140319

R150 Certificate of patent or registration of utility model

Ref document number: 5507715

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250