JP3874871B2 - A method of manufacturing a liquid crystal display device - Google Patents

A method of manufacturing a liquid crystal display device Download PDF

Info

Publication number
JP3874871B2
JP3874871B2 JP02640697A JP2640697A JP3874871B2 JP 3874871 B2 JP3874871 B2 JP 3874871B2 JP 02640697 A JP02640697 A JP 02640697A JP 2640697 A JP2640697 A JP 2640697A JP 3874871 B2 JP3874871 B2 JP 3874871B2
Authority
JP
Japan
Prior art keywords
liquid crystal
substrate
band
display device
sealing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02640697A
Other languages
Japanese (ja)
Other versions
JPH10221700A (en
Inventor
有広 武田
国広 田代
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP02640697A priority Critical patent/JP3874871B2/en
Publication of JPH10221700A publication Critical patent/JPH10221700A/en
Application granted granted Critical
Publication of JP3874871B2 publication Critical patent/JP3874871B2/en
Anticipated expiration legal-status Critical
Application status is Expired - Fee Related legal-status Critical

Links

Images

Description

【0001】 [0001]
【発明の属する技術分野】 BACKGROUND OF THE INVENTION
本発明は、一対の透明基板間に液晶を封入した液晶表示装置の製造方法に関し、特に一対の基板を接合するシール材として紫外線硬化型樹脂を用いた液晶表示装置の製造方法に関する。 The present invention relates to a method of manufacturing a liquid crystal display device in which liquid crystal is sealed between a pair of transparent substrates, a method of manufacturing a liquid crystal display device using the ultraviolet curing resin as a sealing material in particular joining the pair of substrates.
【0002】 [0002]
【従来の技術】 BACKGROUND OF THE INVENTION
液晶表示装置は、薄くて軽量であるとともに低電圧で駆動できて消費電力が少ないという長所があり、各種電子機器に広く使用されている。 The liquid crystal display device, has advantages that the power consumption can be driven at a low voltage as well as a light weight less thin and are widely used in various electronic devices.
特に、近年、TFT(Thin Film Transistor:薄膜トランジスタ)等の能動素子が画素毎に設けられたアクティブマトリクス方式の液晶表示装置は、表示品質の点でもCRT(Cathode-Ray Tube)に匹敵するほど優れたものが得られるようになり、携帯テレビやパーソナルコンピュータ等のディスプレイにも使用されている。 In particular, in recent years, TFT (Thin Film Transistor: TFT) liquid crystal display device of active matrix type active element is provided for each pixel, such as is in terms of display quality was good as comparable to CRT (Cathode-Ray Tube) what is to be obtained, it has also been used in displays such as mobile television or a personal computer.
【0003】 [0003]
一般的に、液晶表示装置は2枚の透明基板の間に液晶を封入した構造を有している。 Generally, a liquid crystal display device has a structure in which liquid crystal is sealed between two transparent substrates. それらの透明基板の相互に対向する2つの面(対向面)のうち、一方の面側には対向電極、カラーフィルタ及び配向膜等が形成され、また他方の面側にはアクティブマトリクス回路、画素電極及び配向膜等が形成されている。 Of the two surfaces facing each other of their transparent substrate (opposing surface), the counter electrode is on one surface side, a color filter and an alignment film or the like is formed, also the active matrix circuit on the other surface side, the pixel electrode and an alignment film, etc. are formed. 更に、各透明基板の対向面と反対側の面には、それぞれ偏光板が貼り付けられている。 Furthermore, the opposing surface opposite to the surface of the transparent substrate, and polarizing plates are attached. これらの2枚の偏光板は、例えば偏光板の偏光軸が互いに直交するように配置され、これによれば、電界をかけない状態では光を透過し、電界を印加した状態では遮光するモード、すなわちノーマリーホワイトモードとなる。 These two polarizing plates, for example, the polarization axis of the polarizing plate is arranged so as to be perpendicular to each other, according to this, transmits light in the state without applying an electric field, shielded in a state of applying an electric field mode, that is, the normally white mode. また、2枚の偏光板の偏光軸が平行な場合には、ノーマリーブラックモードとなる。 Further, the polarization axes of two polarizing plates is a parallel case is a normally black mode.
【0004】 [0004]
通常、液晶表示装置の製造工程では、対向電極、カラーフィルタ及び配向膜等が形成された基板(以下、CF基板という)と、アクティブマトリクス回路、画素電極及び配向膜等が形成された基板(以下、TFT基板という)とを接合するシール材として、紫外線硬化型樹脂が使用されている。 Normally, the manufacturing steps of the liquid crystal display device, the counter electrode, the substrate on which the color filter and an alignment film, etc. are formed (hereinafter, CF referred substrate) and an active matrix circuit substrate on which the pixel electrode and an alignment film, etc. are formed (hereinafter , as a sealing material for bonding the called TFT substrate), an ultraviolet curable resin is used.
図10(a)は従来の液晶表示装置の製造方法を示す断面図、図10(b)は同じくその基板接合部の近傍を詳細に示す拡大図である。 10 (a) is a cross-sectional view illustrating the manufacturing method of the conventional liquid crystal display device, FIG. 10 (b) is likewise enlarged view showing the vicinity of the substrate bonding unit in detail. 但し、図10(a)では、対向電極64及び配向膜54,65の図示を省略している。 However, in FIG. 10 (a), the are not shown of the counter electrode 64 and an alignment layer 54 and 65.
【0005】 [0005]
TFT基板50は、ガラス基板51と、このガラス基板51の一方の面上にマトリクス状に配置された複数の画素電極52と、各画素電極52にそれぞれ接続されたTFT(図示せず)と、これらの画素電極52及びTFTを覆う配向膜54とにより構成されている。 TFT substrate 50 includes a glass substrate 51, and one plurality of pixel electrodes 52 arranged in a matrix on the surface of the glass substrate 51, respectively connected to TFT in each pixel electrode 52 (not shown), It is constituted by the alignment film 54 covering these pixel electrodes 52 and the TFT.
また、CF基板60は、ガラス基板61と、このガラス基板61の一方の面上に形成され、TFT基板50の画素電極52に対応する開口部が設けられたブラックマトリクス62と、ブラックマトリクス62の各開口部に対応して設けられ、開口部毎にR(赤)・G(緑)・B(青)のいずれか一色を有するカラーフィルタ63と、ブラックマトリクス62及びカラーフィルタ63上の全面を覆う対向電極64と、この対向電極64を覆う配向膜65とにより構成されている。 Further, CF substrate 60 includes a glass substrate 61, is formed on one surface of the glass substrate 61, a black matrix 62 which is provided with an opening corresponding to the pixel electrode 52 of the TFT substrate 50, the black matrix 62 provided corresponding to each opening, each opening and the color filter 63 having any one color of R (red) · G (green) · B (blue), the entire surface of the black matrix 62 and the color filter 63 a counter electrode 64 covering is constituted by the alignment film 65 covering the counter electrode 64. なお、画素電極52及び対向電極64は、いずれも透明なITO(インジウム酸化スズ)膜により形成されている。 Note that the pixel electrode 52 and the counter electrode 64 is formed by any transparent ITO (indium tin oxide) film.
【0006】 [0006]
これらのTFT基板50及びCF基板60を接合する際には、まず、CF基板60の内面の表示領域(画素電極がマトリクス状に配置された領域)を囲むように額縁状にシール材(紫外線硬化型樹脂)58を塗布する。 The time of joining these TFT substrate 50 and the CF substrate 60, firstly, a frame-shaped sealing material so as to surround the display area of ​​the inner surface of the CF substrate 60 (a region where the pixel electrodes are arranged in a matrix) (UV-curable applying the mold resin) 58. このとき、後工程で基板間に液晶を注入するための液晶注入口として、一部分樹脂を塗布しない部分を設けておく。 At this time, as the liquid crystal injection port for injecting the liquid crystal between the substrates in a later step, preferably provided a portion not coated with the partially resin.
【0007】 [0007]
次に、基板50,60間にスペーサ57を散布し、TFT基板50とCF基板60とを対向させてシール材58により接合する。 Next, the spacer 57 is sprayed between the substrates 50 and 60, joined by a sealing member 58 is opposed to the TFT substrate 50 and the CF substrate 60.
次に、CF基板60上に表示領域を覆う遮光マスク67を配置し、CF基板60側から紫外線を照射してシール材58を硬化させ、TFT基板50及びCF基板60が接合されてなる液晶パネル(空パネル)を形成する。 Next, place the light shielding mask 67 covering the display region on the CF substrate 60 to cure the sealing material 58 is irradiated with ultraviolet rays from the CF substrate 60 side, TFT substrate 50 and the CF substrate 60 is formed by bonding the liquid crystal panel to form an (empty panel). このとき、配向膜54,65は、遮光マスク67により紫外線に照射されることが防止される。 At this time, the alignment film 54, 65 is to be irradiated to the ultraviolet light is prevented by the light shielding mask 67.
【0008】 [0008]
次いで、遮光マスク67を取り外し、液晶パネルを真空チャンバ内に入れる。 Then, remove the light shielding mask 67, put the liquid crystal panel in a vacuum chamber. そして、チャンバ内を真空にして液晶注入口を液晶が入った容器中に浸漬した後、チャンバ内を大気圧に戻す。 Then, after immersing the liquid crystal inlet by the vacuum inside the chamber into a vessel containing liquid crystal, back in the chamber to atmospheric pressure. そうすると、圧力差により液晶がパネル内に充填される。 Then, liquid crystal is filled in the panel due to the pressure difference. その後、液晶注入口に封止材として紫外線硬化型樹脂を充填し、紫外線を照射して樹脂を硬化させる。 Thereafter, an ultraviolet curable resin was packed as a sealing material in the liquid crystal injection port, by irradiating ultraviolet rays to cure the resin. このようにして、液晶表示装置が形成される。 Thus, the liquid crystal display device is formed.
【0009】 [0009]
ところで、配向膜54,65や液晶に紫外線が照射されると、配向膜54,65や液晶が劣化し、焼き付きや表示むらが発生して表示性能が低下してしまう。 Meanwhile, when ultraviolet rays are irradiated on the alignment film 54, 65 and the liquid crystal, the alignment film 54, 65 and the liquid crystal deteriorates and display performance and seizure and display unevenness occurs decreases. このため、上述の如く、CF基板60の外面側に遮光マスク67を設け、紫外線硬化樹脂を硬化させる際に配向膜54,65や液晶に紫外線が照射されることを防止している。 Therefore, as described above, so as to prevent the ultraviolet rays are irradiated on the alignment film 54, 65 and the liquid crystal in the provided light shielding mask 67 on the outer surface side of the CF substrate 60 to cure the ultraviolet curing resin.
【0010】 [0010]
なお、特開昭52−73757号には、金属酸化物の皮膜により、波長が450nm以下の可視光及び紫外線をカットする技術が提案されている。 Note that JP 52-73757, the film of the metal oxides, techniques wavelength is cut below the visible light and ultraviolet 450nm has been proposed. また、特開平8−176549号には、紫外線吸収材を液晶中に添加し、液晶の劣化及び異性化を防止する技術が提案されており、特開平5−150223号には、紫外線硬化型樹脂に替えて可視光線硬化型樹脂を使用する技術が提案されている。 Further, Japanese Unexamined Patent Publication No. 8-176549, to add an ultraviolet absorber in the liquid crystal has been proposed a technique for preventing deterioration and isomerization of the liquid crystal, Japanese Unexamined Patent Publication No. 5-150223, an ultraviolet curable resin technology using visible light curable resin has been proposed instead.
【0011】 [0011]
【発明が解決しようとする課題】 [Problems that the Invention is to Solve
しかしながら、上述した従来の技術では、図11に示すように、遮光マスク67の縁部から回り込んだ紫外線により配向膜54,65や液晶が劣化してしまうという欠点がある。 However, in the conventional technique described above, as shown in FIG. 11, there is a disadvantage that the alignment layer 54 and 65 and liquid crystal by ultraviolet wrapping around the edge of the light shielding mask 67 is deteriorated. 例えば、配向膜54,65の縁部の部分が紫外線に照射された場合であっても、配向膜54,65に液晶中の不純物が付着しやすくなって、長時間使用するとこれらの不純物が配向膜54,65の端部から画素電極側に拡散し、焼き付きや色むら等の原因になる。 For example, even when the part of the edge portion of the alignment film 54, 65 is irradiated on the ultraviolet, making it easier to adhere impurities in the liquid crystal alignment film 54, 65, these impurities orientation prolonged use diffused into the pixel electrode side from an end portion of the film 54, 65, cause such sticking or uneven color.
【0012】 [0012]
また、特開昭52−73757号に開示された技術では、金属酸化物の被膜を形成するときに高温(500〜600℃)を要し、本発明のように特定領域のみに被膜を形成する場合、そのエッチング工程はかなり煩雑なものになる。 Further, in the technique disclosed in JP-A-52-73757, it requires a high temperature (500 to 600 ° C.) when forming a film of metal oxide, to form a coating only a specific area as in the present invention case the etching process becomes quite complicated ones.
特開平8−176549号に開示された技術では、液晶に添加する紫外線吸収材により液晶の電気的特性が変化するという問題点がある。 The disclosed in JP-A-8-176549 technology, there is a problem that the electrical characteristics of the liquid crystal is changed by ultraviolet absorber to be added to the liquid crystal. また、紫外線吸収材の添加により液晶の色づきや配向膜の劣化が発生するという問題点もある。 Further, there is a problem of deterioration of the liquid crystal of the coloring and the alignment film is produced by the addition of UV absorber.
【0013】 [0013]
特開平5−150223号に開示された技術では、一般的に可視光線硬化型樹脂の強度が紫外線硬化型樹脂に比べて劣ることから、用途が限定され、高強度が要求される部分に使用するシール材として適用することは難しい。 The disclosed in JP-A-5-150223 technique, since the strength of the generally visible light curable resin is inferior to the UV-curable resin, application is limited to use in a portion where high strength is required it is difficult to apply as a sealing material.
紫外線硬化樹脂をメインシール及び封止材に用いた液晶表示装置では、樹脂部に硬化に必要な紫外線を当て、且つ樹脂境界部の液晶劣化を最小限に食い止めるため、上記の紫外線カットフィルタや吸収材ではなく、樹脂硬化に必要な紫外線の特定波長域を透過し、それ以外の波長をカットするバンドパスフィルタ機能が必要になる。 In the liquid crystal display device using the ultraviolet curing resin to the main seal and the sealing material is irradiated with ultraviolet rays necessary for curing the resin portion, and to halt the liquid crystal deterioration of the resin boundary to a minimum, the above-mentioned UV cut filter and the absorption rather than wood, and transmits the specific wavelength range of ultraviolet required resin curing, the band-pass filter function is necessary to cut the other wavelengths. また、プロセス的にも、パネル基板上の特定領域に容易に形成可能であることが条件になる。 Further, also process basis, it is a condition can be easily formed in a specific area of ​​the panel on the substrate.
【0014】 [0014]
【課題を解決するための手段】 In order to solve the problems]
上記した課題は、 一対の基板のいずれか一方の基板の表示領域に画素電極を形成する工程と、他方の基板に、前記画素電極に対応する部分が開口されたブラックマトリクスを形成する工程と、前記他方の基板の前記画素電極に対応する位置に赤、緑及び青の各カラーフィルタを形成する工程と、前記他方の基板の表示領域とシール材塗布領域との間に、 前記ブラックマトリクスの外側の縁部及び前記シール材塗布領域の前記表示領域側の縁部に重なるように、波長が330nm以下の紫外線に対する透過率が50%以下であり且つ波長が380nm以上の紫外線に対する透過率が50%以上のバンドパスフィルタを形成する工程と、 前記他方の基板の全面にITOからなる対向電極を形成する工程と、前記バンドパスフィルタを形成した面を Problems described above, a step of forming a step of forming a pixel electrode in the display area of one of the pair of substrates, the other substrate, a black matrix portion corresponding to the pixel electrode is opened, red at a position corresponding to the pixel electrode of the other substrate, and forming each color filter of green and blue, between the display region and the sealing material application region of the other substrate, outside of the black matrix so as to overlap the edge of the display area side of the edge and the sealing material application region of a wavelength of not more than 50% transmittance to UV light below 330nm and the wavelength transmittance to more UV 380nm 50% forming a band-pass filter described above, a step of forming a counter electrode made of ITO on the entire surface of the other substrate, the surface on which the formation of the band-pass filter 側にして、前記一対の基板を前記シール材塗布領域に塗布したシール材により接合する工程と、 前記他方の基板側から紫外線を照射して前記シール材を硬化させる工程とを有することを特徴とする液晶表示装置の製造方法により解決する。 In the side, and comprising: the step of joining the coated sealing material the pair of substrates in the sealing material application region, and curing the sealing material by irradiating ultraviolet rays from the other substrate side It is solved by a method of manufacturing a liquid crystal display device which.
【0016】 [0016]
以下、本発明の作用について説明する。 Hereinafter, functions of the present invention will be described.
本発明においては、一方の透明基板の表示領域の外側にバンドパスフィルタを形成する。 In the present invention, to form a band-pass filter outside the display area of ​​the one transparent substrate. 従って、遮光マスクの縁部から紫外線が配向膜又は液晶側に回り込んだとしても、バンドパスフィルタにより有害な紫外線短波長はカットされ、配向膜及び液晶の光劣化は最小限に抑えられる。 Therefore, even if the wrapping around the ultraviolet light alignment film or the liquid crystal side from the edge of the light shielding mask, harmful UV short wavelength by the band-pass filter is cut, photodegradation of the alignment film and the liquid crystal is minimized.
【0017】 [0017]
カラー液晶表示装置の場合、バンドパスフィルタは、例えば青のカラーフィルタと同一の材料により同時に形成することができる。 For a color liquid crystal display device, a band-pass filter can be formed simultaneously by the same material as for example the blue color filter. 通常使用されている青のカラーフィルタは、一般的な紫外線硬化型樹脂の反応波長域(約330〜380nm)の光を透過し、反応波長域よりも短い波長(250〜330nm)の光を殆ど透過しない。 Normal color filters and blue being used to transmit light of reactions wavelength range of typical UV-curable resin (about 330~380Nm), light of shorter wavelength than the reaction wave zone (250~330Nm) most It does not pass through. 従って、青のカラーフィルタは、本発明において使用するバンドパスフィルタとして、極めて好適である。 Therefore, the color filter of blue as a band-pass filter used in the present invention, is very suitable. また、バンドパスフィルタを、青のカラーフィルタと同一の材料により形成することにより、製造工程数の増加が回避される。 Further, the band-pass filter, by forming the same material as the color filter of blue, is avoided an increase in the number of manufacturing steps.
【0018】 [0018]
この場合に、通常、青のカラーフィルタは、色純度を確保するために1.0〜2.5μmの厚さに形成される。 In this case, typically, the color filter of blue is formed to a thickness of 1.0~2.5μm to ensure color purity. しかし、前記バンドパスフィルの厚さをカラーフィルタと同じにすると、バンドパスフィルタ下のシール材に十分な紫外線を照射することが困難になる。 However, when the thickness of the band-pass fill the same as the color filter, it is difficult to irradiate sufficient ultraviolet sealant under the bandpass filter. 従って、青のカラーフィルタと同一材料によりバンドパスフィルタを形成するときは、バンドパスフィルタの厚さをカラーフィルタの厚さよりも薄くすることが好ましい。 Therefore, when forming a band-pass filter is a color filter of the same material of blue, it is preferable thinner than the thickness of the color filter thickness of the band-pass filter.
【0019】 [0019]
また、一方の透明基板に画素電極及びTFTとともにブラックマトリクスを形成し、他方の基板にカラーフィルタを形成するいわゆるBMオンTFT方式の液晶表示装置の場合、他方の透明基板のバンドパスフィルタをブラックマトリクスの縁部よりも内側に配置することが可能になる。 Also, one of the transparent substrate together with the pixel electrode and the TFT to form a black matrix, in the case of the liquid crystal display device of the so-called BM on TFT method of forming a color filter on the other substrate, a black band-pass filter of the other transparent substrate matrix it is possible to arrange inside the edge portion. これにより、表示領域のサイズを変えることなく、基板サイズを縮小することが可能になる。 Thus, without changing the size of the display area, it is possible to reduce the substrate size. 更に、このとき、基板上に液晶を滴下した後、液晶を一対の基板で挟み込んで封入するいわゆる滴下注入法を用いることにより、製造に要する時間が著しく短縮される。 Further, at this time, after dropping a liquid crystal on a substrate, by using a so-called drop injection method of encapsulating sandwich the liquid crystal in a pair of substrates, the time required for manufacturing can be significantly reduced.
【0020】 [0020]
【発明の実施の形態】 DETAILED DESCRIPTION OF THE INVENTION
以下、本発明の実施の形態について、添付の図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
(第1の実施の形態) (First Embodiment)
図1(a)は本発明の第1の実施の形態の液晶表示装置の製造方法を示す断面図、図1(b)は同じくその基板接合部の近傍を詳細に示す拡大図である。 1 (a) is a sectional view, FIG. 1 (b) is also enlarged view showing the vicinity of the substrate bonding unit in detail showing the manufacturing method of the liquid crystal display device of the first embodiment of the present invention. 但し、図1(b)では、対向電極24及び配向膜13,25の図示を省略する。 However, in FIG. 1 (b), the not shown counter electrode 24 and an alignment film 13, 25.
【0021】 [0021]
TFT基板10は、従来と同様に形成する。 TFT substrate 10 is formed similarly to the conventional. すなわち、ガラス基板11上にTFT(図示せず)及び画素電極12を形成し、これらのTFT及び画素電極12上に配向膜13を形成する。 In other words, (not shown) TFT on the glass substrate 11 and forming a pixel electrode 12, an alignment film is formed 13 to these TFT and the pixel electrode 12. そして、配向膜13の表面をラビング処理する。 Then, rubbing the surface of the alignment film 13.
一方、CF基板20は以下のように形成する。 On the other hand, CF substrate 20 is formed as follows. すなわち、まず、ガラス基板21上に、画素電極12に対応する部分が開口されたブラックマトリクス22を形成する。 That is, first, on a glass substrate 21, to form a black matrix 22 which portions corresponding to the pixel electrode 12 is opened. また、ガラス基板21上の画素電極12に対応する位置に、R(赤)・G(緑)・B(青)の各カラーフィルタ23を約1.0〜2.5μmの厚さで形成するとともに、ブラックマトリクス22の縁部からその外側の領域を覆うバンドパスフィルタ23aを形成する。 At a position corresponding to the pixel electrodes 12 on the glass substrate 21 is formed with R (red) · G (green) · B thickness of about 1.0~2.5μm each color filter 23 (blue) together, forming a bandpass filter 23a for covering the region outside the edge of the black matrix 22. このバンドパスフィルタ23aは青のカラーフィルタと同じ材料により形成し、露光量を調整することにより約0.6μmの厚さに形成するその後、基板21上の全面にITOからなる対向電極24を形成し、更に対向電極24上に配向膜25を形成する。 Then the band pass filter 23a is formed of the same material as the color filter of blue, it is formed to a thickness of about 0.6μm by adjusting the exposure amount, forming the counter electrode 24 made of ITO on the entire surface of the substrate 21 and further forming an orientation film 25 on the counter electrode 24. そして、配向膜25の表面をラビング処理する。 Then, rubbing the surface of the alignment film 25.
【0022】 [0022]
次に、CF基板20のバンドパスフィルタ23aの縁部に沿って額縁状にシール材(紫外線硬化型樹脂)18を約1mmの幅で塗布する。 Then applied bandpass frame-shaped sealing material along edges of the filter 23a width of about 1mm (the UV-curable resin) 18 of the CF substrate 20. このとき、後工程で液晶を注入するための液晶注入口として、一部にシール材18を塗布しない領域を設けておく。 At this time, as the liquid crystal injection port for injecting the liquid crystal in a later step, preferably provided a region not a sealing material 18 is applied to a part. そして、TFT基板10とCF基板20との間に球形のスペーサ17を散布し、両方の基板10,20を配向膜13,25が形成されている面を内側にして対向配置し、シール材18により接合する。 Then, sparged with spherical spacers 17 between the TFT substrate 10 and the CF substrate 20, both substrates 10 and 20 to the surface on which the alignment films 13, 25 are formed on the inner face arranged, the sealing material 18 They are joined by.
【0023】 [0023]
次に、CF基板20の外側に表示領域を覆う遮光マスク(遮光性の金属膜又はフィルム等)27を配置し、CF基板20側から紫外線を照射してシール材18を硬化させる。 Next, place the light-shielding mask (light shielding metal film or a film, etc.) 27 that outwardly covers the display area of ​​the CF substrate 20 to cure the sealing material 18 is irradiated with ultraviolet rays from the CF substrate 20 side. これにより、2枚の基板10,20が接合されてなる液晶パネル(空パネル)が形成される。 Thus, the liquid crystal panel which two substrates 10 and 20 is formed by bonding (empty panel) is formed. この場合に、遮光マスク27の端部から回り込んだ紫外線短波長はバンドパスフィルタ23aによりカットされ、配向膜13,25の光劣化は最小限に抑えられる。 In this case, UV short wavelength wrapping around from the end portion of the light shielding mask 27 is cut by the band-pass filter 23a, the light deterioration of the alignment film 13, 25 is minimized.
【0024】 [0024]
その後、液晶パネルを真空チャンバ内に入れ、チャンバ内を真空にした後、液晶注入口を液晶中に浸漬し、チャンバ内を大気圧に戻す。 Then, put the liquid crystal panel in a vacuum chamber, after the chamber is evacuated, by immersing the liquid crystal injection port in the liquid crystal to return the chamber to atmospheric pressure. そうすると、パネル内の圧力と大気圧との差により、パネル内に液晶が充填される。 Then, the difference between the pressure and the atmospheric pressure in the panel, liquid crystal is filled in the panel.
次いで、液晶注入口に封止材として紫外線硬化型樹脂を充填し、CF基板20の外側に遮光マスク27を配置した後、紫外線を照射して封止材を硬化させる。 Then, an ultraviolet curable resin was packed as a sealing material in the liquid crystal injection port, after placing the light shielding mask 27 to the outside of the CF substrate 20 to cure the sealing material by irradiating ultraviolet rays. このようにして、液晶表示装置が製造される。 Thus, the liquid crystal display device is manufactured.
【0025】 [0025]
図2は、横軸に波長をとり、縦軸に相対強度をとって、シール材の硬化に使用されている水銀ショートアークランプの輝線スペクトルを示す図である。 2 takes the wavelength on the horizontal axis, and the vertical axis represents the relative intensity, which is a diagram illustrating a bright line spectrum of a mercury short arc lamp used to cure the sealant. 紫外線硬化型樹脂は、主に波長が330〜380nmの光により硬化し、液晶や配向膜の劣化は主にそれよりも短い波長(図中Aで示す波長域)の光により発生する。 UV-curable resin is mainly wavelength is cured by light 330~380Nm, deterioration of the liquid crystal and the alignment film is mainly caused by light having a wavelength shorter than that (wavelength region shown in figure A). 図3及び図4は、横軸に波長をとり、縦軸に透過率をとって、ガラス(無アルカリガラス)基板の光透過率特性を示す図である。 3 and 4, taking the wavelength on the horizontal axis, the vertical axis represents the transmittance is a diagram showing the light transmittance characteristics of the glass (non-alkali glass) substrate. なお、図3はガラス基板のみの光透過率特性を示し、図4は表面にITO膜を有するガラス基板の光透過率特性を示す。 Incidentally, FIG. 3 shows the light transmittance properties of the glass substrate only, Figure 4 shows the light transmission characteristics of the glass substrate having an ITO film on the surface. 図3に示すようにITO膜がないガラス基板では波長が約250nmよりも長い光を透過するのに対し、図4に示すようにITO膜を有するガラス基板では波長が約280nmよりも長い波長の光を透過する。 Whereas wavelengths in the glass substrate there is no ITO film as shown in FIG. 3 is transmitted through the light longer than about 250 nm, the wavelength of wavelengths longer than about 280nm in a glass substrate having an ITO film as shown in FIG. 4 transmitted through the light. すなわち、ITO膜を有するガラス基板では、波長が280nm以下の光はほぼ100%カットされる。 That is, in the glass substrate having an ITO film, a wavelength light below 280nm is almost 100% reduction.
【0026】 [0026]
図5は、横軸に波長をとり、縦軸に光の透過率をとって、青のカラーフィルタの透過率特性を示す図である。 Figure 5 takes the wavelength on the horizontal axis, taking the vertical axis the transmittance of light is a diagram showing the transmittance characteristic of the blue color filter. 但し、このカラーフィルタは、顔料分散法により形成したものであり、フィルタの厚さは約1.3μmである。 However, the color filter is obtained by forming a pigment dispersion method, the thickness of the filter is approximately 1.3 .mu.m. この図に示すように、青のカラーフィルタは、波長が約320〜590nmの光を透過し、波長が約460nmの光を最もよく透過する。 As shown in this figure, the color filter of blue wavelength and transmits light of about 320~590Nm, wavelength is best transmits approximately 460nm light. このカラーフィルタをバンドパスフィルタとして使用した場合、紫外線硬化樹脂の硬化に有効な波長が330〜380nmの光は比較的多く(図中斜線で示す)透過し、液晶及び配向膜の劣化の原因となる波長が330nm以下の光はほぼ遮断される。 Using this color filter as a band-pass filter, the optical effective wavelength of 330~380nm the curing of the ultraviolet curing resin is relatively large (shown in FIG hatched) transmitted, and causes of deterioration of the liquid crystal and the alignment film wavelengths of the following optical 330nm is substantially blocked. この図から、青のカラーフィルタと同一材料により形成したバンドパスフィルタは、シール材の硬化に必要な波長の光を比較的よく透過し、液晶及び配向膜の劣化の原因となる紫外線短波長を効率よく遮断することが明らかである。 From this figure, a band-pass filter formed by the color filters of the same material of the blue light of a wavelength required for curing of the sealing material relatively well permeable, ultraviolet short-wavelength that causes degradation of the liquid crystal and the alignment film it is apparent that efficiently blocked.
【0027】 [0027]
本実施の形態では、紫外線照射時に遮光マスクの端部から紫外線が回り込んだとしても、バンドパスフィルタ23aにより液晶及び配向膜に有害な紫外線短波長が照射されることが抑制される。 In the present embodiment, even if the wrapping around the ultraviolet from the end of the light shielding mask during UV irradiation, the harmful UV short wavelength in the liquid crystal and the alignment layer by the band-pass filter 23a is irradiated it can be prevented. これにより、液晶及び配向膜の光劣化は最小限に抑えられ、表示品質の劣化は回避される。 Thus, the light deterioration of the liquid crystal and the alignment film is minimized, the degradation in display quality can be avoided. また、本実施の形態では、バンドパスフィルタ23aは、青のカラーフィルタと同一材料により同時に形成するので、工程数の増加が抑制される。 Further, in the present embodiment, the band pass filter 23a, since simultaneously formed by the color filter of the same material of blue, increase in the number of steps can be suppressed.
【0028】 [0028]
以下、バンドパスフィルタの厚さの最適値について調べた結果について説明する。 The following describes the results of examining the optimal value of the thickness of the band-pass filter.
第1の実施の形態においては、バンドパスフィルタは、青のカラーフィルタと同一材料により同時に形成する。 In the first embodiment, the bandpass filter is simultaneously formed by the color filter of the same material and blue. そこで、カラーフィルタに使用するレジストの膜厚と紫外線の遮蔽特性との関係について調べた。 Therefore, we investigated the relationship between the shielding characteristics of the film thickness and UV resist used in the color filter. なお、通常、カラーフィルタは、色純度を確保するために、1.0〜2.5μmの厚さに形成される。 Normally, the color filter, in order to ensure color purity, is formed to a thickness of 1.0 to 2.5 [mu] m.
【0029】 [0029]
まず、ネガ型アクリル樹脂の感光性レジスト(CB−2000:富士ハント社製)に青の顔料を分散させ、このレジストをローラコータによりガラス基板上に塗布した。 First, a negative acrylic photosensitive resist resin: dispersing a blue pigment (CB-2000 by Fuji Hunt Co., Ltd.) was applied to the resist on the glass substrate by roller coater. そして、ガラス基板をホットプレート上で110℃の温度で90秒間加熱し予備硬化させた後、露光及び現像処理を施した。 Then, after pre-cured by heating for 90 seconds at a temperature of 110 ° C. The glass substrate on a hot plate, subjected to exposure and development process. その後、230℃の温度で10分間加熱することによりレジストを本硬化させて、青のバンドパスフィルタを得た。 Thereafter, the resist is cured to by heating at a temperature of 230 ° C. 10 minutes to obtain a band-pass filter of blue.
【0030】 [0030]
この場合、紫外線露光量を調整して、種々の膜厚のバンドパスフィルタを形成した。 In this case, by adjusting the UV exposure, to form a band-pass filter of various thickness. 図6は横軸に紫外線露光量をとり、縦軸にバンドパスフィルタの膜厚をとって、両者の関係を示す図である。 Figure 6 takes the ultraviolet exposure amount on the horizontal axis and the vertical axis represents the film thickness of the band-pass filter is a diagram showing a relationship between them. この図6に示すように、紫外線露光量を調整することにより、所望の膜厚のバンドパスフィルタを形成することができる。 As shown in FIG. 6, by adjusting the ultraviolet exposure, it is possible to form a band-pass filter having a desired thickness.
次に、分光器(キャノン製LC−SP)を使用し、膜厚が0.3μm、0.6μm及び1.3μmのバンドパスフィルタの分光特性を調べた。 Next, using a spectroscope (manufactured by Canon Inc. LC-SP), the film thickness was investigated 0.3 [mu] m, the spectral characteristics of the bandpass filter of 0.6μm and 1.3 .mu.m. 図7は、横軸に波長をとり、縦軸に光の透過率をとって、バンドパスフィルタの膜厚と透過率との関係を示す図である。 Figure 7 takes the wavelength on the horizontal axis, taking the vertical axis the transmittance of light is a diagram showing the relationship between the film thickness and the transmittance of the band-pass filter. この図7に示すように、バンドパスフィルタの膜厚を薄くすると光の透過率は上昇するが、過度に薄くすると液晶や配向膜の劣化の原因となる波長の光も透過して、バンドパスフィルタとしての性能が低下する。 As shown in FIG. 7, but when reducing the thickness of the band-pass filter transmittance of light increases, the excessive thinner light of a wavelength that causes degradation of the liquid crystal and the orientation film by transmitting a band-pass the performance of the filter is reduced. 一方、バンドパスフィルタの厚さを厚くすると、シール材の硬化に有効な波長の光も遮断されて、バンドパスフィルタの下のシール材を十分に硬化させることができなくなる。 On the other hand, when the thickness of the band-pass filter, light of a wavelength effective to cure the sealing material be cut off, it becomes impossible to sufficiently cure the sealing material under the bandpass filter. 第1の実施の形態では、紫外線硬化樹脂の硬化に寄与する波長が約330〜380nmの光をできるだけ透過し、且つ液晶及び配向膜に対し有害な短波長成分をカットできるバンドパスフィルタとして、約0.6μmの厚さのカラーフィルタが好適である。 In the first embodiment, transmits only the wavelength that contributes to curing of the ultraviolet curable resin can be light at about 330~380Nm, as a band-pass filter and can keep unwanted short-wavelength component to the liquid crystal and the alignment film, about a color filter having a thickness of 0.6μm are preferred. しかし、この図5に示すように、膜厚が0.3〜1.3μmのカラーフィルタでもバンドパスフィルタとして使用することができる。 However, as shown in FIG. 5, it is possible thickness used as a band-pass filter in the color filter of 0.3~1.3Myuemu.
【0031】 [0031]
次に、上記のようにして形成したバンドパスフィルタに対するシール材(紫外線硬化樹脂)の接合強度について調べた結果について説明する。 It will now be described the results of examining the bond strength of the sealing material (ultraviolet curable resin) for the band-pass filter formed as described above.
まず、15×50mmの2枚のガラス基板の中央に紫外線硬化型樹脂を直径が3mmの点状に塗布し、直径が約5μmの球形スペーサ(SP−205:積水ファインケミカル製)散布して、これらの基板を貼合わせた。 First, 15 an ultraviolet curable resin in diameter was applied to 3mm punctate on two central glass substrate of × 50 mm, a diameter of about 5μm spherical spacers (SP-205: manufactured by Sekisui Fine Chemical) was sprayed, they It was laminated to the substrate. これと同様に、2枚のガラス基板にカラーフィルタ用レジストの膜を形成し、このレジスト膜上に紫外線硬化型樹脂を塗布し、基板間にスペーサを散布して2枚の基板を貼合わせた。 Similarly, the two glass substrates to form a resist film for color filter, the resist film an ultraviolet curable resin was applied onto and laminated two substrates by spraying spacers between the substrates . 更に、ガラス基板にカラーフィルタ用レジストの膜をストライプ状に形成し、紫外線硬化樹脂を半分がガラス基板に接触し、残りがレジスト膜に接触するように塗布して、基板間にスペーサを散布した後、貼合わせた。 Furthermore, the film of the resist for a color filter on a glass substrate formed in a stripe shape, half an ultraviolet curable resin is in contact with the glass substrate, by applying to the remaining contacts the resist film was sprayed spacers between the substrates after, it was laminated.
【0032】 [0032]
そして、これらの基板に対し、3000mJ/cm 2の光量で紫外線を照射して樹脂を硬化させた。 Then, for these substrates, the resin was cured by ultraviolet irradiation at a light quantity of 3000 mJ / cm 2. その後、剥離試験機を使用して剥離強度を測定した。 Then, the peel strength was measured using a peel tester.
その結果、ガラス基板に直接紫外線硬化型樹脂を塗布した場合の剥離強度は1.5kgf/cm 2であった。 As a result, the peel strength when applied directly ultraviolet curing resin on the glass substrate was 1.5 kgf / cm 2. また、レジスト膜上に紫外線硬化型樹脂を塗布した場合の剥離強度は0.7kgf/cm 2であった。 Also, the peel strength in the case of an ultraviolet curable resin was applied on the resist film was 0.7 kgf / cm 2. さらに、半分がガラス基板に接触し、残りがレジスト膜に接触するように紫外線硬化型樹脂を塗布した場合の剥離強度は1.2kgf/cm 2であった。 Furthermore, half in contact with the glass substrate, the peel strength when the remaining is an ultraviolet curable resin so as to be in contact with the resist film was coated was 1.2 kgf / cm 2.
【0033】 [0033]
図8は、横軸にシール材とカラーフィルタ用レジスト膜との重ね合わせの割合をとり、縦軸に剥離強度をとって、両者の関係を示す図である。 Figure 8 takes a percentage of the superposition of the sealing material and the resist film for color filter on the horizontal axis and the vertical axis the peel strength is a diagram showing a relationship between them. 通常、液晶表示装置では、パネル強度や耐湿性の点から、剥離強度は1.0kgf/cm 2以上必要であるとされている。 Normally, in the liquid crystal display device, in terms of the panel strength and moisture resistance, peel strength is to be required 1.0 kgf / cm 2 or more. この図8から、シール材がガラス基板に直接接触している部分が30%以上であれば、剥離強度は1.0kgf/cm 2以上になり、十分な剥離強度を確保することができることがわかる。 From FIG. 8, if the portion where the seal member is in direct contact with the glass substrate is 30% or more, the peel strength becomes 1.0 kgf / cm 2 or more, it is understood that it is possible to ensure sufficient peel strength .
【0034】 [0034]
(第2の実施の形態) (Second Embodiment)
図9(a)は本発明の第2の実施の形態の液晶表示装置を示す断面図、図9(b)は同じくその基板接合部の近傍を詳細に示す拡大図である。 9 (a) is a sectional view, FIG. 9 (b) likewise enlarged view showing the vicinity of the substrate junction detail showing a liquid crystal display device of the second embodiment of the present invention. 本実施の形態は、TFT基板側にブラックマトリクスを形成するいわゆるBMオンTFT方式の液晶表示装置に本発明を適用したものである。 This embodiment is an application of the present invention to a liquid crystal display device of the so-called BM on TFT method of forming a black matrix on the TFT substrate side. なお、図9(a)では、対向電極44及び配向膜34,45の図示を省略している。 In FIG. 9 (a), the are not shown counter electrode 44 and an alignment film 34, 45.
【0035】 [0035]
TFT基板30は、以下のように形成する。 TFT substrate 30 is formed as follows. すなわち、まず、ガラス基板31上に、ブラックマトリクス32を所定のパターンで形成する。 That is, first, on a glass substrate 31, to form a black matrix 32 in a predetermined pattern. その後、各画素領域にそれぞれ画素電極33とTFT(図示せず)とを形成する。 Thereafter, each forming a pixel electrode 33 and the TFT (not shown) in each pixel region. そして、基板31上に、これらの画素電極33及びTFTを覆う配向膜34を形成した後、配向膜34の表面をラビング処理する。 Then, on the substrate 31, after forming an orientation film 34 for covering these pixel electrodes 33 and TFT, rubbing the surface of the alignment film 34.
【0036】 [0036]
一方、CF基板40は以下のように形成する。 On the other hand, CF substrate 40 is formed as follows. すなわち、ガラス基板41の上に、各画素領域毎に、R(赤)・G(緑)・B(青)のいずれか一色のカラーフィルタ43を形成する。 That is, on the glass substrate 41, for each pixel region to form a color filter 43 of any color of R (red) · G (green) · B (blue). このとき、青のカラーフィルタと同一の材料により、表示領域の縁部に沿って額縁状にバンドパスフィルタ43aを形成する。 In this case, the same material and blue color filters, to form a band-pass filter 43a in a frame shape along the edge of the display area. 次に、基板41の表示領域上を覆う対向電極44を形成し、この対向電極44上に配向膜45を形成する。 Next, a counter electrode 44 covering the display area of ​​the substrate 41, to form an alignment film 45 on the counter electrode 44. その後、配向膜45の表面をラビング処理する。 Thereafter, rubbing the surface of the alignment film 45.
【0037】 [0037]
なお、画素電極33及び対向電極44はいずれもITOにより形成し、カラーフィルタ43は約1.0〜2.5μm、バンドパスフィルタ43aは約0.6μmの厚さに形成する。 Incidentally, both the pixel electrode 33 and the counter electrode 44 is formed by ITO, the color filter 43 is about 1.0 to 2.5 [mu] m, the band-pass filter 43a to a thickness of approximately 0.6 .mu.m.
次に、CF基板40のバンドパスフィルタ43aの縁部に沿って額縁状にシール材(紫外線硬化型樹脂)を塗布し、TFT基板30とCF基板40との間にスペーサ37を散布するとともに、液晶を滴下し、両方の基板30,40を配向膜34,45が形成されている面を内側にして対向配置し、シール材18により接合する。 Next, the sealing material (ultraviolet curable resin) is applied in a frame shape along the edge of the band-pass filter 43a of the CF substrate 40, to spray the spacer 37 between the TFT substrate 30 and the CF substrate 40, liquid crystal is dropped, the surfaces of both substrates 30, 40 alignment film 34, 45 are formed in the inner faces disposed, is joined with a sealing material 18.
【0038】 [0038]
その後、CF基板40上に表示領域を覆う遮光マスク47を配置し、CF基板40側から紫外線を照射してシール材38を硬化させる。 Then, place the light shielding mask 47 covering the display region on the CF substrate 40 to cure the sealing material 38 is irradiated with ultraviolet rays from the CF substrate 40 side. このようにして液晶表示装置が形成される。 In this way, the liquid crystal display device is formed.
本実施の形態においては、ブラックマトリクス32がTFT基板30側に形成されており、バンドパスフィルタ43aはブラックマトリクス32の縁部よりも内側に配置することができるので、狭額縁化が達成でき、第1の実施の形態に比べ基板の寸法を削減できる。 In the present embodiment, the black matrix 32 is formed on the TFT substrate 30 side, since the band-pass filter 43a can be arranged inside the edge of the black matrix 32, frame narrowing can be achieved, It reduces the size of the substrate than in the first embodiment. また、TFT基板30とCF基板40とを接合するときに両者の間に液晶を滴下し、TFT基板30とCF基板40との接合と同時に基板間に液晶を封入するので、第1の実施の形態に比べて製造に要する時間が著しく短縮される。 Further, liquid crystal is dropped therebetween when joining the TFT substrate 30 and the CF substrate 40, since the liquid crystal is sealed between the substrate simultaneously with the bonding of the TFT substrate 30 and the CF substrate 40, the first embodiment the time required for manufacture as compared to the embodiment is significantly reduced.
【0039】 [0039]
以下、第2の実施の形態の液晶表示装置を実際に形成し、表示部のセル厚のばらつき、イオン密度及び残留DC電圧を測定した結果について説明する。 Hereinafter, a liquid crystal display device of the second embodiment is actually formed, the variation of the cell thickness of the display unit, the results of measurement of ion density and residual DC voltage will be described. 液晶表示装置の劣化は、イオン密度及び残留DC電圧に関係し、イオン密度又は残留DC電圧が高いほど劣化しやすいということが知られている。 Deterioration of the liquid crystal display device is related to the ion density and residual DC voltage, it is known that easily degrade higher ion density or residual DC voltage.
実施例のパネルとして、上記の方法によりBMオンTFT方式の液晶表示装置を形成した。 As panels of Examples, to form a liquid crystal display device of the BM on TFT type by the method described above. パネル内に充填した液晶には、標準液晶ZLI−4792(メルク社製)を用いた。 The liquid crystal filled in the panel, using standard liquid crystal ZLI-4792 (manufactured by Merck). なお、シールに混入させるファイバスペーサの径は青のカラーフィルタ膜厚分だけ小さくした。 The diameter of the fiber spacers to be mixed in the seal is reduced by the color filter the film thickness of the blue. また、ブラックマトリクスの外縁部(額縁部)の幅は4.5mm、バンドパスフィルタ43aの幅は3mm、バンドパスフィルタ43aの外縁からブラックマトリクス32の外縁までの距離は0.5mmである。 The width of the outer edge portion of the black matrix (frame portion) is 4.5 mm, the distance of the width of the band-pass filter 43a is 3 mm, from the outer edge of the band-pass filter 43a to the outer edge of the black matrix 32 is 0.5 mm.
【0040】 [0040]
また、従来例として、バンドパスフィルタを有しないこと以外は実施例と同様の液晶表示装置を形成した。 Further, as a conventional example, except that no it has a band pass filter to form a liquid crystal display device similar to the embodiment.
そして、これらの実施例及び従来例の液晶表示装置について、セル厚のばらつき、イオン密度及び残留DC電圧を調べた。 Then, a liquid crystal display device of these embodiments and the conventional example, variations in cell thickness, was investigated ion density and residual DC voltage. その結果を、下記表1に示す。 The results are shown in Table 1 below. 但し、セル厚のばらつきは、シール端部から3.5mmの位置(表示部端)におけるセル厚と、表示領域の中央の厚さを測定し、その差を求めることによって評価した。 However, variations in cell thickness, and the cell thickness at a position of 3.5mm from the seal end portion (display portion end), the thickness of the center of the display area was measured and evaluated by determining the difference. また、イオン密度は、温度が50℃の条件で電極間に波高値が10V、周波数が0.05Hzの三角波電圧を印加して測定した。 The ion density, temperature peak value between the electrodes under the conditions of 50 ° C. 10V, frequency is measured by applying a triangular wave voltage of 0.05 Hz. 更に残留DC電圧は、温度が50℃の条件で、波高値が2.0V、周波数が30Hz、オフセット電圧が4Vの矩形波電圧を電極間に約10分間印加した後、測定した。 Further residual DC voltage, under the condition of temperature of 50 ° C., the peak value is 2.0 V, frequency 30 Hz, after the offset voltage has been applied for about 10 minutes between the electrodes a rectangular wave voltage of 4V, were measured.
【0041】 [0041]
【表1】 [Table 1]
【0042】 [0042]
この表1に示すように、実施例及び従来例の液晶表示装置は、いずれもセル厚のばらつきは±0.1μmの範囲であり、実施例と従来例との間で差異は認められなかった。 As shown in Table 1, the liquid crystal display device of Example and Conventional Example, any variation in the cell thickness is in the range of ± 0.1 [mu] m, the difference between the embodiment and the conventional example was not observed .
また、実施例の液晶表示パネルは、イオン密度が従来例の1/6〜1/7、残留DC電圧が従来例の約1/3と低い値を示した。 The liquid crystal display panel of the embodiment, the ion density conventional example 1 / 6-1 / 7, the residual DC voltage showed a low value of about 1/3 of the conventional example. このことから、実施例の液晶表示装置は、従来例に比べて、紫外線による液晶及び配向膜の劣化が発生しにくいことが明らかである。 Therefore, the liquid crystal display device of Example, as compared with the conventional example, deterioration of the liquid crystal and the alignment film due to ultraviolet rays is evident that hardly occurs.
【0043】 [0043]
【発明の効果】 【Effect of the invention】
以上説明したように、本発明によれば、一方の透明基板の表示領域の外側にバンドパスフィルタを設け、このバンドパスフィルタを形成した面を内側にして一対の基板をシール材で接合し、前記一方の基板の外側に遮光マスク配置して紫外線を照射することによりシール材を硬化させるので、遮光マスクの端部から回り込んだ紫外線短波長がバンドパスフィルタによりカットされ、配向膜及び液晶の光劣化を最小限に抑えることができ、焼き付きや表示むらのない液晶表示装置を製造できる。 As described above, according to the present invention, the band-pass filter outside the display area of ​​the one transparent substrate provided, joining a pair of substrates by a sealing material to the surface formed with the band-pass filter on the inside, because curing the sealing material by irradiating ultraviolet light by shielding mask disposed outside of said one substrate, UV short wavelength is cut by the band-pass filter, the alignment films and the liquid crystal wrapping around from the end portion of the shading mask can minimize photodegradation can be produced a liquid crystal display device free from seizure and display unevenness.
【0044】 [0044]
また、青のカラーフィルタと同一材料で前記バンドパスフィルタを形成することにより、工程数の増加を回避できる。 Further, by forming the band-pass filter of the same material and blue color filters, it can avoid an increase in the number of steps.
更に、本発明をBMオンTFT方式の液晶表示装置に適用することにより、表示領域の外側の寸法を縮小することができるという。 Further, by applying the present invention to a liquid crystal display device of the BM on TFT type, that it is possible to reduce the outer dimensions of the display area. 更にまた、滴下注入法により基板間に液晶を封入することにより、製造に要する時間が著しく短縮される。 Furthermore, by sealing a liquid crystal between the substrates by a one drop filling method, the time required for manufacturing can be significantly reduced.
【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS
【図1】(a)は本発明の第1の実施の形態の液晶表示装置の製造方法を示す断面図、(b)は同じくその基板接合部の近傍を詳細に示す拡大図である。 1 (a) is a cross-sectional view, (b) is also enlarged view showing the vicinity of the substrate bonding unit in detail showing the manufacturing method of the liquid crystal display device of the first embodiment of the present invention.
【図2】水銀ショートアークランプの輝線スペクトルを示す図である。 FIG. 2 is a diagram showing a bright-line spectrum of mercury short arc lamp.
【図3】ガラス基板のみの光透過率特性を示す図である。 3 is a diagram showing the light transmittance characteristics of the glass substrate only.
【図4】ITO膜を有するガラス基板の光透過率特性を示す図である。 4 is a diagram showing the light transmittance characteristics of the glass substrate having an ITO film.
【図5】青のカラーフィルタの透過率特性を示す図である。 5 is a diagram showing the transmittance characteristic of the blue color filter.
【図6】紫外線露光量とバンドパスフィルタの膜厚との関係を示す図である。 6 is a diagram showing the relationship between the thickness of the ultraviolet exposure amount and a band-pass filter.
【図7】バンドパスフィルタの膜厚と透過率との関係を示す図である。 7 is a diagram showing the relationship between the thickness of the band-pass filter and the transmittance.
【図8】シール材及びフィルタの重ね合わせの割合と剥離強度との関係を示す図である。 8 is a diagram showing the relationship between the ratio and the peel strength of the sealing material and the superposition of the filter.
【図9】(a)は本発明の第2の実施の形態の液晶表示装置を示す断面図、(b)は同じくその基板接合部の近傍を詳細に示す拡大図である。 9 (a) is a cross-sectional view, (b) is also enlarged view showing the vicinity of the substrate junction detail showing a liquid crystal display device of the second embodiment of the present invention.
【図10】(a)は従来の液晶表示装置の製造方法を示す断面図、(b)は同じくその基板接合部の近傍を詳細に示す拡大図である。 [10] (a) is a sectional view showing the manufacturing method of the conventional liquid crystal display device is an enlarged view showing in detail the vicinity of (b) is also the substrate junction.
【図11】従来の問題点を示す図である。 11 is a diagram illustrating a conventional problem.
【符号の説明】 DESCRIPTION OF SYMBOLS
10,30,50 TFT基板11,21,31,42,51,61 ガラス基板12,33,52 画素電極13,25,34,45,54,65 配向膜17,37,57 スペーサ18,38,58 シール材20,40,60 CF基板22,32,62 ブラックマトリクス23,43,63 カラーフィルタ24,44,64 対向電極27,47,67 遮光マスク23a,43a バンドパスフィルタ 10, 30, 50 TFT substrate 11,21,31,42,51,61 glass substrate 12,33,52 pixel electrode 13,25,34,45,54,65 alignment film 17,37,57 spacer 18, 38, 58 sealing material 20, 40, 60 CF substrate 22,32,62 black matrix 23,43,63 color filters 24,44,64 counter electrode 27,47,67 shielding mask 23a, 43a bandpass filter

Claims (6)

  1. 一対の基板のいずれか一方の基板の表示領域に画素電極を形成する工程と、 Forming a pixel electrode in the display area of one of the pair of substrates,
    他方の基板に、前記画素電極に対応する部分が開口されたブラックマトリクスを形成する工程と、 On the other substrate, a step portion corresponding to the pixel electrodes form a black matrix which is open,
    前記他方の基板の前記画素電極に対応する位置に赤、緑及び青の各カラーフィルタを形成する工程と、 Forming red, each color filter of green and blue in a position corresponding to the pixel electrode of the other substrate,
    前記他方の基板の表示領域とシール材塗布領域との間に、 前記ブラックマトリクスの外側の縁部及び前記シール材塗布領域の前記表示領域側の縁部に重なるように、波長が330nm以下の紫外線に対する透過率が50%以下であり且つ波長が380nm以上の紫外線に対する透過率が50%以上のバンドパスフィルタを形成する工程と、 Between the display region and the sealing material application region of the other substrate so as to overlap an edge of the display area side of the outer edge and the sealing material application region of the black matrix, the following UV wavelength 330nm a step of and a wavelength not more than 50% transmittance transmittance to more UV 380nm to form a band-pass filter of 50% or more with respect,
    前記他方の基板の全面にITOからなる対向電極を形成する工程と、 Forming a counter electrode made of ITO on the entire surface of the other substrate,
    前記バンドパスフィルタを形成した面を内側にして、前記一対の基板を前記シール材塗布領域に塗布したシール材により接合する工程と、 And bonding by the by the band-pass filter formed by the surface to the inside, sealant coated with the pair of substrates in the sealing material application region,
    前記他方の基板側から紫外線を照射して前記シール材を硬化させる工程と を有することを特徴とする液晶表示装置の製造方法。 Method of manufacturing a liquid crystal display device characterized by a step of curing the sealing material by irradiating ultraviolet rays from the other substrate side.
  2. 前記バンドパスフィルタは、前記シール材の反応波長の紫外線を透過し、それよりも短い波長の紫外線をカットするものであることを特徴とする請求項1に記載の液晶表示装置の製造方法。 The band-pass filter is transmitted through the ultraviolet reaction wavelengths of the sealing material, a method of manufacturing a liquid crystal display device according to claim 1, characterized in that the UV rays of wavelength shorter than that.
  3. 前記シール材を硬化させる工程において、 前記他方の基板の外側に、前記表示領域を覆い且つ前記バンドパスフィルタの前記表示領域側の縁部に重なるように遮光膜を配置することを特徴とする請求項1に記載の液晶表示装置の製造方法。 In curing the sealing material, wherein the outside of the other substrate, characterized by arranging the light shielding film so as to overlap the edge of the display area side of and the bandpass filter covering the display region the method according to claim 1.
  4. 前記バンドパスフィルタは、前記青のカラーフィルタと同一の材料により形成することを特徴とする請求項1に記載の液晶表示装置の製造方法。 The band-pass filter, The method according to claim 1, characterized in that to form the same material as the color filter of the blue.
  5. 前記バンドパスフィルタは、前記青のカラーフィルタよりも薄く形成することを特徴とする請求項4に記載の液晶表示装置の製造方法。 The band-pass filter, The method according to claim 4, characterized in that the formed thinner than the color filter of the blue.
  6. 前記一対の基板をシール材で接合する工程において、滴下注入法により前記一対の基板間に液晶を封入することを特徴とする請求項1に記載の液晶表示装置の製造方法。 In the step of bonding the pair of substrates with a sealing material, a method of manufacturing a liquid crystal display device according to claim 1, characterized in that the liquid crystal is sealed between the pair of substrates by a dropping injection method.
JP02640697A 1997-02-10 1997-02-10 A method of manufacturing a liquid crystal display device Expired - Fee Related JP3874871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02640697A JP3874871B2 (en) 1997-02-10 1997-02-10 A method of manufacturing a liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02640697A JP3874871B2 (en) 1997-02-10 1997-02-10 A method of manufacturing a liquid crystal display device

Publications (2)

Publication Number Publication Date
JPH10221700A JPH10221700A (en) 1998-08-21
JP3874871B2 true JP3874871B2 (en) 2007-01-31

Family

ID=12192681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02640697A Expired - Fee Related JP3874871B2 (en) 1997-02-10 1997-02-10 A method of manufacturing a liquid crystal display device

Country Status (1)

Country Link
JP (1) JP3874871B2 (en)

Families Citing this family (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6459467B1 (en) 1998-05-15 2002-10-01 Minolta Co., Ltd. Liquid crystal light modulating device, and a manufacturing method and a manufacturing apparatus thereof
JP4862008B2 (en) * 1999-02-15 2012-01-25 シャープ株式会社 The liquid crystal display device
JP2007041625A (en) * 1999-05-24 2007-02-15 Sharp Corp Liquid crystal display and method of fabricating the same
JP2001222017A (en) 1999-05-24 2001-08-17 Fujitsu Ltd Liquid crystal display device and its manufacturing method
KR100847809B1 (en) * 2001-08-30 2008-07-23 엘지디스플레이 주식회사 Method For Fabricating Liquid Crystal Display Device
US6819391B2 (en) 2001-11-30 2004-11-16 Lg. Philips Lcd Co., Ltd. Liquid crystal display panel having dummy column spacer with opened portion
US7292304B2 (en) 2001-12-17 2007-11-06 Lg.Philips Lcd Co., Ltd. Liquid crystal display panel and method for fabricating the same comprising a dummy column spacer to regulate a liquid crystal flow and a supplemental dummy column spacer formed substantially parallel and along the dummy column spacer
KR100652045B1 (en) 2001-12-21 2006-11-30 엘지.필립스 엘시디 주식회사 A Liquid Crystal Display Device And The Method For Manufacturing The Same
KR100685949B1 (en) 2001-12-22 2007-02-23 엘지.필립스 엘시디 주식회사 A Liquid Crystal Display Device And The Method For Manufacturing The Same
KR100510718B1 (en) 2002-02-04 2005-08-30 엘지.필립스 엘시디 주식회사 manufacturing device for manufacturing of liquid crystal device
KR100469353B1 (en) 2002-02-06 2005-02-02 엘지.필립스 엘시디 주식회사 bonding device for liquid crystal display
KR100469354B1 (en) 2002-02-06 2005-02-02 엘지.필립스 엘시디 주식회사 Method for manufacturing liquid crystal display device
KR100817129B1 (en) 2002-02-07 2008-03-27 엘지.필립스 엘시디 주식회사 Cutter of liquid crystal panel and cutting method thereof
KR100789454B1 (en) 2002-02-09 2007-12-31 엘지.필립스 엘시디 주식회사 Cutter of liquid crystal panel and cutting method thereof
KR100832292B1 (en) 2002-02-19 2008-05-26 엘지디스플레이 주식회사 Cutter of liquid crystal panel
KR100789455B1 (en) 2002-02-20 2007-12-31 엘지.필립스 엘시디 주식회사 Cutting method of liquid crystal display panel
KR100469359B1 (en) 2002-02-20 2005-02-02 엘지.필립스 엘시디 주식회사 bonding device for liquid crystal display
KR100532083B1 (en) 2002-02-20 2005-11-30 엘지.필립스 엘시디 주식회사 A liquid crystal dispensing apparatus having an integrated needle sheet
USRE46146E1 (en) 2002-02-20 2016-09-13 Lg Display Co., Ltd Liquid crystal display device and method of manufacturing the same
US6824023B2 (en) 2002-02-20 2004-11-30 Lg. Philips Lcd Co., Ltd. Liquid crystal dispensing apparatus
US7006202B2 (en) 2002-02-21 2006-02-28 Lg.Philips Lcd Co., Ltd. Mask holder for irradiating UV-rays
KR100469508B1 (en) 2002-02-22 2005-02-02 엘지.필립스 엘시디 주식회사 A liquid crystal dispensing apparatus having controlling function of dropping amount caused by controlling tension of spring
US6864948B2 (en) 2002-02-22 2005-03-08 Lg.Philips Lcd Co., Ltd. Apparatus for measuring dispensing amount of liquid crystal drops and method for manufacturing liquid crystal display device using the same
KR100469360B1 (en) 2002-02-22 2005-02-02 엘지.필립스 엘시디 주식회사 bonding device for liquid crystal display and operation method thereof
US6803984B2 (en) 2002-02-25 2004-10-12 Lg.Philips Lcd Co., Ltd. Method and apparatus for manufacturing liquid crystal display device using serial production processes
US6712883B2 (en) 2002-02-25 2004-03-30 Lg.Philips Lcd Co., Ltd. Apparatus and method for deaerating liquid crystal
US6774958B2 (en) 2002-02-26 2004-08-10 Lg.Philips Lcd Co., Ltd. Liquid crystal panel, apparatus for inspecting the same, and method of fabricating liquid crystal display thereof
KR100511352B1 (en) 2002-02-27 2005-08-31 엘지.필립스 엘시디 주식회사 An apparatus for dispensing liquid crystal and a method of controlling liquid crystal dropping amount
US6833901B2 (en) 2002-02-27 2004-12-21 Lg. Philips Lcd Co., Ltd. Method for fabricating LCD having upper substrate coated with sealant
US6784970B2 (en) 2002-02-27 2004-08-31 Lg.Philips Lcd Co., Ltd. Method of fabricating LCD
KR100606966B1 (en) 2002-03-06 2006-08-01 엘지.필립스 엘시디 주식회사 Production line of Liquid Crystal Display Device
KR100685951B1 (en) 2002-03-06 2007-02-23 엘지.필립스 엘시디 주식회사 Liquid Crystal Display Device and Method of manufacturing the same
KR100798320B1 (en) 2002-03-06 2008-01-28 엘지.필립스 엘시디 주식회사 Appratus and method for testing liquid crystal display panel
KR100662495B1 (en) 2002-03-07 2007-01-02 엘지.필립스 엘시디 주식회사 Method of manufacturing Liquid Crystal Display Device
KR100720415B1 (en) 2002-03-08 2007-05-22 엘지.필립스 엘시디 주식회사 conveyance device for liquid crystal display
US7027122B2 (en) 2002-03-12 2006-04-11 Lg.Philips Lcd Co., Ltd. Bonding apparatus having compensating system for liquid crystal display device and method for manufacturing the same
US6892437B2 (en) 2002-03-13 2005-05-17 Lg. Philips Lcd Co., Ltd. Apparatus and method for manufacturing liquid crystal display device
KR100817130B1 (en) 2002-03-13 2008-03-27 엘지.필립스 엘시디 주식회사 Pattern for detecting grind amount of liquid crystal display panel and method for deciding grind defective using it
KR100817132B1 (en) 2002-03-15 2008-03-27 엘지.필립스 엘시디 주식회사 Liquid crystal dispensing apparatus
US6782928B2 (en) 2002-03-15 2004-08-31 Lg.Philips Lcd Co., Ltd. Liquid crystal dispensing apparatus having confirming function for remaining amount of liquid crystal and method for measuring the same
US6885427B2 (en) 2002-03-15 2005-04-26 Lg.Philips Lcd Co., Ltd. Substrate bonding apparatus for liquid crystal display device having alignment system with one end provided inside vacuum chamber
KR100652050B1 (en) 2002-03-20 2006-11-30 엘지.필립스 엘시디 주식회사 Liquid Crystal Display Device and Method of manufacturing the same
US7040525B2 (en) 2002-03-20 2006-05-09 Lg.Philips Lcd Co., Ltd. Stage structure in bonding machine and method for controlling the same
KR100832293B1 (en) 2002-03-20 2008-05-26 엘지디스플레이 주식회사 Grind table of liquid crystal display panel and grinder using it
KR100480819B1 (en) 2002-03-20 2005-04-06 엘지.필립스 엘시디 주식회사 Method for cleaning chamber of bonding device
KR100854378B1 (en) 2002-03-20 2008-08-26 엘지디스플레이 주식회사 Liquid crystal display panel and fabricating method thereof
US6827240B2 (en) 2002-03-21 2004-12-07 Lg.Philips Lcd Co., Ltd. Liquid crystal dispensing apparatus
US6874662B2 (en) 2002-03-21 2005-04-05 Lg. Philips Lcd Co., Ltd. Liquid crystal dispensing apparatus
KR100841623B1 (en) 2002-03-21 2008-06-27 엘지디스플레이 주식회사 Grinder of liquid crystal display panel
US6793756B2 (en) 2002-03-22 2004-09-21 Lg. Phillips Lcd Co., Ltd. Substrate bonding apparatus for liquid crystal display device and method for driving the same
KR100662496B1 (en) 2002-03-23 2007-01-02 엘지.필립스 엘시디 주식회사 Liquid Crystal Display Device and Method of manufacturing the same
JP4210139B2 (en) 2002-03-23 2009-01-14 エルジー ディスプレイ カンパニー リミテッド The liquid crystal dropping device and added dropwise method by the height of the spacers is possible dripping amount adjustment of the liquid crystal
KR20030077070A (en) 2002-03-25 2003-10-01 엘지.필립스 엘시디 주식회사 A Cassette for Measuring Gravitation Badness
KR100685923B1 (en) 2002-03-25 2007-02-23 엘지.필립스 엘시디 주식회사 Bonding devise and method for manufacturing liquid crystal display device using the same
KR100518269B1 (en) 2002-03-25 2005-10-04 엘지.필립스 엘시디 주식회사 A method of dispensing liquid crystal using a plurality of liquid crystal dispensing device
KR100720420B1 (en) 2002-03-25 2007-05-22 엘지.필립스 엘시디 주식회사 method for motion contoling in bonding device for LCD and device the same
KR100640994B1 (en) 2002-03-25 2006-11-02 엘지.필립스 엘시디 주식회사 Container used in removing bubble of sealant, and Device for removing bubble of sealant using the same
KR100848556B1 (en) 2002-03-25 2008-07-25 엘지디스플레이 주식회사 Turn buffer of liquid crystal display panel and rubbing apparatus using it
KR100698040B1 (en) 2002-06-14 2007-03-23 엘지.필립스 엘시디 주식회사 Portable jig
US7295279B2 (en) 2002-06-28 2007-11-13 Lg.Philips Lcd Co., Ltd. System and method for manufacturing liquid crystal display devices
KR100488535B1 (en) 2002-07-20 2005-05-11 엘지.필립스 엘시디 주식회사 Apparatus for dispensing Liquid crystal and method for dispensing thereof
KR100675628B1 (en) 2002-10-16 2007-02-01 엘지.필립스 엘시디 주식회사 Apparatus and method for etching isolating film
KR100689310B1 (en) 2002-11-11 2007-03-08 엘지.필립스 엘시디 주식회사 Dispenser of liquid crystal display panel and method for controlling gap between substrate and nozzle using the same
KR100710163B1 (en) 2002-11-28 2007-04-20 엘지.필립스 엘시디 주식회사 method for manufacturing of LCD
KR100700176B1 (en) 2002-12-18 2007-03-27 엘지.필립스 엘시디 주식회사 Dispenser of liquid crystal display panel and method for controlling gap between substrate and nozzle using the same
KR100996576B1 (en) 2003-05-09 2010-11-24 엘지디스플레이 주식회사 Liquid crystal dispensing system and method of dispensing liquid crystal material using thereof
KR100557500B1 (en) 2003-06-24 2006-03-07 엘지.필립스 엘시디 주식회사 Liquid crystal dispensing system which can read information of liqid crystal container and method of dispensing liquid crystal material using thereof
KR100495476B1 (en) 2003-06-27 2005-06-14 엘지.필립스 엘시디 주식회사 Liquid crystal dispensing system
KR100987910B1 (en) 2003-11-28 2010-10-13 엘지디스플레이 주식회사 An apparatus and method of dispensing liquid crystal
KR101026935B1 (en) 2003-12-10 2011-04-04 엘지디스플레이 주식회사 Apparatus for aligning dispenser and method thereof
JP2006201433A (en) * 2005-01-20 2006-08-03 Toppan Printing Co Ltd Method of manufacturing color filter for semi-transmissive liquid crystal display device and color filter for semi-transmissive liquid crystal display device
KR100824880B1 (en) 2006-11-10 2008-04-23 삼성에스디아이 주식회사 Organic light emitting display device and manufacturing method thereof and moving device therefor
KR100824881B1 (en) 2006-11-10 2008-04-23 삼성에스디아이 주식회사 Organic light emitting display device and manufacturing method thereof and moving device therefor
KR100824902B1 (en) 2006-12-13 2008-04-23 삼성에스디아이 주식회사 Organic light emitting display device and manufacturing method thereof
JP5478817B2 (en) * 2007-08-30 2014-04-23 株式会社ジャパンディスプレイ The liquid crystal display device and manufacturing method thereof
JP4912443B2 (en) * 2009-08-07 2012-04-11 シャープ株式会社 A method of manufacturing a liquid crystal display device
JP5193328B2 (en) 2011-03-02 2013-05-08 株式会社ジャパンディスプレイイースト The liquid crystal display device
JP5620006B2 (en) * 2011-08-25 2014-11-05 シャープ株式会社 A method of manufacturing a liquid crystal display device
JP5507715B2 (en) * 2013-02-01 2014-05-28 株式会社ジャパンディスプレイ The liquid crystal display device

Also Published As

Publication number Publication date
JPH10221700A (en) 1998-08-21

Similar Documents

Publication Publication Date Title
KR100395866B1 (en) Lcd panel and method of fabricating same
CN1062957C (en) Liquid crystal display device and method for mfg. same
US6313894B1 (en) Liquid crystal display
US6552764B2 (en) Reflective LCD whose color filter pattern extends outside display region and whose seal overlaps color filter
JP3978241B2 (en) The liquid crystal display panel and manufacturing method thereof
JP4394479B2 (en) The liquid crystal display device and manufacturing method thereof
JP3624834B2 (en) Electro-optical panel, a projection display device, and a method of manufacturing an electro-optical panel
CN1074838C (en) Thin seal liquid crystal display and method of making same
JP4342428B2 (en) The liquid crystal display panel and a manufacturing method thereof
CN1133897C (en) The liquid crystal display element
JP2991407B2 (en) The liquid crystal display device and a manufacturing method thereof
CN1071028C (en) Liquid crystal display device and method of fabricating the same
JP3590737B2 (en) The liquid crystal display element
CN1075200C (en) Liquid crystal display device having uniform liquid crystal layer thickness
US6429917B1 (en) Color liquid-crystal panel having a frame-shaped black matrix and manufacturing process therefor
KR20010074545A (en) Reflection-type liquid crystal display and method for manufacturing the same
JP4413191B2 (en) Spacer-bearing substrate, panel, manufacturing method of a liquid crystal display panel, the panel manufacturing method and a liquid crystal display panel
CN1410815A (en) Liquid crystal display
JP2001222017A (en) Liquid crystal display device and its manufacturing method
CN101825802B (en) A method of manufacturing a color filter substrate
JP2004004563A (en) Substrate for liquid crystal display, liquid crystal display equipped with the same, its manufacturing method and manufacturing apparatus
CN1126977C (en) LCD element and making method thereof
JP2001142061A (en) Active matrix type liquid crystal display device
JPH1010516A (en) Color liquid crystal display device
JP2001117103A (en) Liquid crystal display device and its manufacturing method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040427

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050712

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050713

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060830

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061025

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees