JP5506973B1 - Spheroidal graphite cast iron and method for producing the same - Google Patents

Spheroidal graphite cast iron and method for producing the same Download PDF

Info

Publication number
JP5506973B1
JP5506973B1 JP2013070759A JP2013070759A JP5506973B1 JP 5506973 B1 JP5506973 B1 JP 5506973B1 JP 2013070759 A JP2013070759 A JP 2013070759A JP 2013070759 A JP2013070759 A JP 2013070759A JP 5506973 B1 JP5506973 B1 JP 5506973B1
Authority
JP
Japan
Prior art keywords
cast iron
spheroidal graphite
graphite cast
mass
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013070759A
Other languages
Japanese (ja)
Other versions
JP2014194052A (en
Inventor
圭晃 和田
享 萱原
孝信 椙本
智大 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2013070759A priority Critical patent/JP5506973B1/en
Priority to GB1405632.9A priority patent/GB2513253B/en
Priority to RU2014112069/02A priority patent/RU2551724C1/en
Application granted granted Critical
Publication of JP5506973B1 publication Critical patent/JP5506973B1/en
Publication of JP2014194052A publication Critical patent/JP2014194052A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/04Cast-iron alloys containing spheroidal graphite

Abstract

【課題】良好な機械的性質および優れた低温靭性を確保しつつ、大幅にコストを低減し得る球状黒鉛鋳鉄およびその製造方法を提供する。
【解決手段】Cを3.5〜4.0質量%、Siを1.7〜2.3質量%、Mnを0.2質量%未満、Crを0.1質量%未満、Mgを0.04〜0.06質量%、CuおよびS、並びにその他不可避的不純物を含有して、残部がFeからなり、氷点下で使用される球状黒鉛鋳鉄であって、上記Cuを0.10〜0.20質量%、上記Sを0.01〜0.02質量%含有する。
【選択図】なし
An object of the present invention is to provide a spheroidal graphite cast iron capable of drastically reducing costs while ensuring good mechanical properties and excellent low temperature toughness, and a method for producing the same.
A C of 3.5 to 4.0 mass%, the Si 1.7 to 2.3 mass%, less than 0.2 mass% of Mn, Cr, less than 0.1 wt%, a M g 0 .04~0.06 mass%, Cu and S, as well as contain other unavoidable impurities, the balance being Fe, a spheroidal graphite cast iron to be used in sub-zero, the Cu from 0.10 to 0. 20 wt%, contains the S 0.01 to 0.02 wt%.
[Selection figure] None

Description

本発明は、低温靭性に優れた球状黒鉛鋳鉄およびその製造方法に関するものである。   The present invention relates to a spheroidal graphite cast iron excellent in low temperature toughness and a method for producing the same.

近年、電力供給設備として、燃料の枯渇が心配される石油や原子力を利用するものから、環境にも優しく再生可能な自然エネルギー(風力、太陽光など)を利用するものへの転換が図られている。特に風力発電設備は、発電コストが低く、工期が短いので、世界的に普及しつつある。また、我が国において、風力発電関連は、国家レベルでの重点化技術であり、さらなる開発が望まれている。   In recent years, there has been a shift in power supply facilities from those that use oil and nuclear power, which are worried about fuel depletion, to those that use natural energy (wind power, solar light, etc.) that is friendly to the environment. Yes. In particular, wind power generation facilities are spreading worldwide because of their low power generation cost and short construction period. In Japan, wind power generation is a priority technology at the national level, and further development is desired.

このような風力発電設備では、風力を受けるプロペラが、地上または洋上の数十メートル上空に配置される。このため、寒冷地に設けられた風力発電設備では、上記プロペラやこれに接続される機器(増速機など)が、−20℃以下の低温環境下に配置されることもある。また、上記増速機のギヤボックスやベアリング用部品は、形状が複雑なので、現状だと鋳造法でしか製造することができない。   In such a wind power generation facility, a propeller that receives wind power is disposed on the ground or in the sky several tens of meters above the ocean. For this reason, in a wind power generation facility provided in a cold region, the propeller and devices (such as a gearbox) connected to the propeller may be arranged in a low temperature environment of −20 ° C. or lower. In addition, the gear box and bearing parts of the speed increaser have complicated shapes, so that they can be manufactured only by the casting method at present.

したがって、低温靭性に優れた鋳鉄が要望されており、この要望を満たすために、フェライト基地に微細な多数の球状黒鉛を均質に分布させた球状黒鉛鋳鉄が提案されている(例えば、特許文献1参照)。この球状黒鉛鋳鉄は、上記特許文献1の実験データにより、−40℃での優れた靭性を確保していることが示されている。また、上記球状黒鉛鋳鉄は、上記特許文献1の記載によると、フェライト化焼きなましを行うことにより、さらに靭性および伸びが向上する。   Therefore, cast iron excellent in low-temperature toughness is demanded, and in order to satisfy this demand, spheroidal graphite cast iron in which a large number of fine spheroidal graphites are uniformly distributed on a ferrite base has been proposed (for example, Patent Document 1). reference). The spheroidal graphite cast iron shows that the toughness at −40 ° C. is secured by the experimental data of Patent Document 1 described above. Further, according to the description in Patent Document 1, the spheroidal graphite cast iron is further improved in toughness and elongation by performing ferritic annealing.

特許第2716063号公報Japanese Patent No. 2716063

ところで、上記特許文献1に記載の球状黒鉛鋳鉄は、高価な元素であるNiが比較的多く添加されるので、当然ながら高価である。また、上記球状黒鉛鋳鉄に添加されるBiは、黒鉛化を阻害して球状黒鉛の微細化作用があるものの、歩留まりが悪い上に変動しやすいので、成分調整が困難である。さらに、上記球状黒鉛鋳鉄の製造において、フェライト化焼きなましを行うと、工数が増えることになる。したがって、上記特許文献1に記載の球状黒鉛鋳鉄は、高コストになるという問題があった。   Incidentally, the spheroidal graphite cast iron described in Patent Document 1 is naturally expensive because Ni, which is an expensive element, is added in a relatively large amount. Further, Bi added to the spheroidal graphite cast iron has the effect of refining the spheroidal graphite by inhibiting the graphitization, but the yield is poor and it is likely to fluctuate, so that it is difficult to adjust the components. Furthermore, in the production of the above-mentioned spheroidal graphite cast iron, the number of man-hours increases when ferritic annealing is performed. Therefore, the spheroidal graphite cast iron described in Patent Document 1 has a problem of high cost.

そこで、本発明は、良好な機械的性質および優れた低温靭性を確保しつつ、大幅にコストを低減し得る球状黒鉛鋳鉄およびその製造方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a spheroidal graphite cast iron and a method for producing the same that can significantly reduce costs while ensuring good mechanical properties and excellent low temperature toughness.

上記課題を解決するため、請求項1に係る本発明の球状黒鉛鋳鉄は、Cを3.5〜4.0質量%、Siを1.7〜2.3質量%、Mnを0.2質量%未満、Crを0.1質量%未満、Mgを0.04〜0.06質量%、CuおよびS、並びにその他不可避的不純物を含有して、残部がFeからなり、氷点下で使用される球状黒鉛鋳鉄であって、
上記Cuを0.10〜0.20質量%、上記Sを0.01〜0.02質量%含有するものである。
In order to solve the above-mentioned problems, the spheroidal graphite cast iron of the present invention according to claim 1 is such that C is 3.5 to 4.0 mass%, Si is 1.7 to 2.3 mass%, and Mn is 0.2 mass. less%, less than 0.1 wt% of Cr, the M g 0.04 to 0.06 wt%, containing Cu and S, as well as other unavoidable impurities, the balance being Fe, is used in sub-zero Spheroidal graphite cast iron,
The Cu 0.10 to 0.20 wt%, those containing the S 0.01 to 0.02 wt%.

また、請求項2に係る本発明の球状黒鉛鋳鉄の製造方法は、請求項1に記載の球状黒鉛鋳鉄を溶湯の鋳込みにより製造する球状黒鉛鋳鉄の製造方法であって、
上記鋳込み前に、Sを含有する接種剤を溶湯に添加する第一接種工程と、
上記鋳込み時に、Sを含有する接種剤を溶湯に添加する第二接種工程とが具備されるものである。
A method for producing the spheroidal graphite cast iron of the present invention according to claim 2 is a method for producing the spheroidal graphite cast iron according to claim 1, wherein the spheroidal graphite cast iron according to claim 1 is produced by casting a molten metal.
Before the casting, a first inoculation step of adding an inoculum containing S to the molten metal,
A second inoculation step of adding an inoculum containing S to the molten metal at the time of casting.

さらに、請求項3に係る本発明の球状黒鉛鋳鉄の製造方法は、請求項2に記載の球状黒鉛鋳鉄の製造方法において、フェライト化焼きなましを行わないものである。   Furthermore, the manufacturing method of the spheroidal graphite cast iron of the present invention according to claim 3 is the same as the manufacturing method of the spheroidal graphite cast iron according to claim 2, but does not perform ferrite annealing.

上記球状黒鉛鋳鉄およびその製造方法によると、良好な機械的性質および優れた低温靭性を確保しつつ、大幅にコストを低減することができる。   According to the above spheroidal graphite cast iron and its manufacturing method, it is possible to significantly reduce the cost while ensuring good mechanical properties and excellent low temperature toughness.

本発明の実施例1に係る球状黒鉛鋳鉄および比較材の機械的性質および低温靭性とSiの含有量との関係を示すグラフであり、(a)は0.2%耐力とSiの含有量との関係を示し、(b)は引張強さとSiの含有量との関係を示し、(c)は−20℃での衝撃値とSiの含有量との関係を示し、(d)は−40℃での衝撃値とSiの含有量との関係を示す。It is a graph which shows the mechanical property of the spheroidal graphite cast iron which concerns on Example 1 of this invention, and the relationship between low temperature toughness and Si content, (a) is 0.2% yield strength and Si content. (B) shows the relationship between the tensile strength and the Si content, (c) shows the relationship between the impact value at −20 ° C. and the Si content, and (d) shows −40 The relationship between the impact value in ° C. and the Si content is shown. 本発明の実施例2に係る球状黒鉛鋳鉄、比較材および従来材の機械的性質および低温靭性とSiの含有量との関係を示すグラフであり、(a)は0.2%耐力とSiの含有量との関係を示し、(b)は引張強さとSiの含有量との関係を示し、(c)は−20℃での衝撃値とSiの含有量との関係を示し、(d)は−40℃での衝撃値とSiの含有量との関係を示す。It is a graph which shows the relationship between the mechanical property of the spheroidal graphite cast iron which concerns on Example 2 of this invention, a comparative material, and a conventional material, and low temperature toughness, and Si content, (a) is 0.2% yield strength and Si. (B) shows the relationship between the tensile strength and the Si content, (c) shows the relationship between the impact value at −20 ° C. and the Si content, (d) Indicates the relationship between the impact value at −40 ° C. and the Si content.

以下、本発明の実施の形態に係る球状黒鉛鋳鉄およびその製造方法について説明する。なお、本実施の形態において、低温とは氷点下(0℃以下)を言う。
まず、上記球状黒鉛鋳鉄について説明する。
Hereinafter, the spheroidal graphite cast iron and the manufacturing method thereof according to the embodiment of the present invention will be described. In the present embodiment, low temperature means below freezing point (0 ° C. or lower).
First, the spheroidal graphite cast iron will be described.

この球状黒鉛鋳鉄は、C(炭素)を3.5〜4.0質量%、Si(ケイ素)を1.7〜2.3質量%、Mn(マンガン)を0.2質量%未満、Cr(クロム)を0.1質量%未満、およびMg(マグネシウム)を0.04〜0.06質量%、P(リン)を0.025質量%未満含有する。   This spheroidal graphite cast iron has C (carbon) of 3.5 to 4.0 mass%, Si (silicon) of 1.7 to 2.3 mass%, Mn (manganese) of less than 0.2 mass%, Cr ( Chromium) is contained in an amount of less than 0.1% by mass, Mg (magnesium) in an amount of 0.04 to 0.06% by mass, and P (phosphorus) in an amount of less than 0.025% by mass.

特に上記球状黒鉛鋳鉄は、その特徴として、Cu(銅)を0.10〜0.20質量%、S(硫黄)を0.01〜0.02質量%含有する。なお、上記球状黒鉛鋳鉄は、その他不可避的不純物も含有し、残部がFe(鉄)などからなる。   In particular, the spheroidal graphite cast iron contains 0.10 to 0.20 mass% Cu (copper) and 0.01 to 0.02 mass% S (sulfur) as its features. The spheroidal graphite cast iron contains other inevitable impurities, and the balance is Fe (iron).

次に、上述の成分範囲にした理由について説明する。
CおよびSiの含有量については、それぞれの範囲を、CE値(C+Si/3)が4.3程度になるようにして定めた。なぜなら、CE値と機械的強度とには強い相関関係があり、球状黒鉛鋳鉄の所定の機械的強度を確保するためである。特にSiの含有量については、Siを多量に含有すると0.2%耐力および引張強さが向上するものの、−20℃での衝撃値が低下するので、これらが図1および図2に示すDIN規格を満たす範囲として、1.7%〜2.3%とした。なお、上記DIN規格は、図1および図2に示すように、EN−GJS−400U−L相当材において、0.2%耐力が220MPa以上、引張強さが370MPa以上、−20℃での衝撃値が10J以上である。
Next, the reason why the above-described component range is adopted will be described.
Regarding the contents of C and Si, the respective ranges were determined such that the CE value (C + Si / 3) was about 4.3. This is because there is a strong correlation between the CE value and the mechanical strength, and the predetermined mechanical strength of the spheroidal graphite cast iron is ensured. In particular, with respect to the Si content, 0.2% proof stress and tensile strength are improved when a large amount of Si is contained, but the impact value at −20 ° C. decreases. The range satisfying the standard was 1.7% to 2.3%. In addition, as shown in FIG. 1 and FIG. 2, the DIN standard is an EN-GJS-400U-L equivalent material with a 0.2% proof stress of 220 MPa or more, a tensile strength of 370 MPa or more, and an impact at −20 ° C. The value is 10J or more.

Mnの含有量については、Mnを多量に含有するとパーライトが生成されるので、0.2質量%未満とした。
Crの含有量については、Crを多量に含有すると炭化物が生成されるので、0.1質量%未満とした。
The Mn content was set to less than 0.2% by mass because pearlite was produced when a large amount of Mn was contained.
The Cr content was set to less than 0.1% by mass because carbide is generated when a large amount of Cr is contained.

Mgの含有量については、黒鉛の球状化のために、0.04〜0.06質量%とした。
Pの含有量については、Pは不可避的不純物の1つであるから、特に限定されるものではないが、一例として0.025質量%以下とした。
The Mg content was set to 0.04 to 0.06% by mass for spheroidizing graphite.
The content of P is not particularly limited because P is one of the inevitable impurities, but is 0.025% by mass or less as an example.

以下、本発明の要旨であるCuおよびSの成分範囲について詳細に説明する。
一般に鋳鉄は、Cuを含有させることにより、機械的性質が良好になるものの、低温靭性に劣る。言い換えれば、0.2%耐力および引張強さが向上するものの、低温での衝撃値が低下する。しかしながら、本発明者らは、Cuの含有量が0.10〜0.20質量%であれば、良好な機械的性質と優れた低温靭性とが両立することを見出した。具体的には、α−Fe(フェライト)にCuが0.10質量%以上固溶すると、機械的性質が良好になるとともに、低温靭性に優れる。しかし、α−Fe(フェライト)におけるCuの溶解度(常温)は0.20質量%であり、それを超えると低温靭性に劣る。したがって、0.10〜0.20質量%が、Cuの好ましい含有量である。これにより、本発明の鋳鉄では、特許文献1のように高価なNiを添加することなく、良好な機械的性質と優れた低温靭性とが両立する。
Hereinafter, the component ranges of Cu and S which are the gist of the present invention will be described in detail.
In general, cast iron contains Cu, but its mechanical properties are improved, but it is inferior in low-temperature toughness. In other words, although the 0.2% proof stress and the tensile strength are improved, the impact value at a low temperature is lowered. However, the present inventors have found that if the Cu content is 0.10 to 0.20% by mass, good mechanical properties and excellent low temperature toughness are compatible. Specifically, when Cu is dissolved in α-Fe (ferrite) in an amount of 0.10% by mass or more, the mechanical properties are improved and the low temperature toughness is excellent. However, the solubility (normal temperature) of Cu in α-Fe (ferrite) is 0.20% by mass, and if it exceeds that, the low temperature toughness is inferior. Therefore, 0.10 to 0.20 mass% is a preferable content of Cu. Thereby, the cast iron of the present invention achieves both good mechanical properties and excellent low temperature toughness without adding expensive Ni as in Patent Document 1.

また、さらに優れた低温靭性を得るために、鋳鉄における球状黒鉛は、微細且つ多数であって均質に分布していることが望ましい。ここで、通常の球状化剤を使用すると、球状黒鉛は所望のサイズよりも大きくなる。しかしながら、本発明者らは、Sの接種を行うことにより、球状黒鉛が所望のサイズに微細分散することを確認した。原理的には、SがMgS(硫化マグネシウム)などを生成し、これらMgSなどが球状黒鉛の核になると考えられる。したがって、Sの接種を行うことにより、特許文献1のように成分調整が困難なBiを添加することなく、球状黒鉛が微細分散する。   In order to obtain further excellent low temperature toughness, it is desirable that the spheroidal graphite in the cast iron is fine and numerous and is uniformly distributed. Here, when a normal spheroidizing agent is used, the spherical graphite becomes larger than a desired size. However, the present inventors have confirmed that spherical graphite is finely dispersed in a desired size by inoculating S. In principle, it is considered that S generates MgS (magnesium sulfide) and the like, and these MgS and the like become the core of the spherical graphite. Therefore, by inoculating S, spherical graphite is finely dispersed without adding Bi, which is difficult to adjust as in Patent Document 1.

以下、上記球状黒鉛鋳鉄の製造方法について、具体的に示した実施例を説明する。   Hereinafter, specific examples of the method for producing the spheroidal graphite cast iron will be described.

溶解炉には、5ton低周波溶解炉を使用した。また、成分調整後の出湯の温度を1480℃とした。
次に、球状化剤としてFe−Si−Mg合金を取鍋内添加した。ここで、添加方法をサンドイッチ法とし、添加量を1.1%とした。そして、一次接種としてFe−Si−Ca−S合金(第一接種剤)を取鍋内添加した(第一接種工程)。ここで、添加方法をサンドイッチ法とし、添加量を0.3%とした。
A 5 ton low frequency melting furnace was used as the melting furnace. Moreover, the temperature of the hot water after component adjustment was 1480 degreeC.
Next, an Fe—Si—Mg alloy was added in the ladle as a spheroidizing agent. Here, the addition method was a sandwich method, and the addition amount was 1.1%. And Fe-Si-Ca-S alloy (1st inoculum) was added in the pan as primary inoculation (1st inoculation process). Here, the addition method was a sandwich method, and the addition amount was 0.3%.

その後、二次接種としてFe−Si−Ca−S合金(第二接種剤)を、鋳込み流(鋳込み中の溶湯流れ)に直接添加した(第二接種工程)。ここで、添加温度が1350℃であり、添加量を0.1%とした。なお、二次接種を行う理由は、確実に接種の効果を得て、微細で多数の球状黒鉛を生成するためである。すなわち、二次接種は、一次接種から鋳込みまでの時間経過により薄れた一次接種の効果を補うためのものである。また、鋳込みには、JISG5502本体付き供試材を採取できるようにした。   Then, the Fe-Si-Ca-S alloy (second inoculum) was directly added to the casting flow (melt flow during casting) as the second inoculation (second inoculation step). Here, the addition temperature was 1350 ° C., and the addition amount was 0.1%. In addition, the reason for performing the secondary inoculation is that the effect of the inoculation is surely obtained and fine and many spherical graphites are generated. That is, the secondary inoculation is intended to supplement the effect of the primary inoculation that has faded over time from the primary inoculation to casting. In addition, for casting, a specimen with a JISG5502 main body can be collected.

そして、上記鋳込み後には、熱処理を行わず、つまり鋳放しとした。
引張試験片はJIS14Aに準拠したものとし、衝撃試験片はJIS4号(Vノッチ)に準拠したものとした。以下、採取した供試材の成分並びに試験片の機械的性質および低温靭性を、比較材(1)〜(3)とともに表1および表2に示す。また、表2の内容をグラフ化して、図1に示す。
Then, after the casting, no heat treatment was performed, that is, casting was performed.
The tensile test piece was based on JIS14A, and the impact test piece was based on JIS4 (V notch). Hereinafter, the components of the sample material collected and the mechanical properties and low temperature toughness of the test pieces are shown in Tables 1 and 2 together with the comparative materials (1) to (3). Further, the contents of Table 2 are graphed and shown in FIG.

Figure 0005506973
Figure 0005506973

Figure 0005506973
図1に示すように、比較材では、機械的性質およびSiの含有量で正の相関が見られ、低温での衝撃値およびSiの含有量で負の相関が見られた。一方、本発明材では、比較材と比べて、良好な機械的性質および優れた低温靭性が得られた。
Figure 0005506973
As shown in FIG. 1, in the comparative material, a positive correlation was observed between the mechanical properties and the Si content, and a negative correlation was observed between the impact value at a low temperature and the Si content. On the other hand, in the material of the present invention, good mechanical properties and excellent low temperature toughness were obtained as compared with the comparative material.

本実施例2に係る球状黒鉛鋳鉄の製造方法は、上記実施例1に係る製造方法の鋳込み後に、応力除去焼なましの熱処理を行ったものである。これ以外については、実施例2は実施例1と同一である。   The manufacturing method of the spheroidal graphite cast iron according to the second embodiment is a heat treatment for stress relief annealing after the casting of the manufacturing method according to the first embodiment. In other respects, Example 2 is the same as Example 1.

すなわち、本実施例2では、鋳込み後に、応力除去焼なましの熱処理として、590℃で5時間保持し、その後は炉内でゆっくりと冷却(炉冷)した。以下、採取した供試材の成分並びに試験片の機械的性質および低温靭性を、比較材(1)〜(3)および従来材とともに表3および表4に示す。また、表4の内容をグラフ化して、図2に示す。なお、上記従来材は、比較材(3)相当材において、Niの含有量を、本発明材のCuの含有量と同じにしたものである。   That is, in this Example 2, after casting, as heat treatment for stress relief annealing, it was held at 590 ° C. for 5 hours, and then slowly cooled (furnace cooling) in the furnace. Hereinafter, the components of the collected specimens and the mechanical properties and low temperature toughness of the test pieces are shown in Tables 3 and 4 together with the comparative materials (1) to (3) and the conventional materials. Further, the contents of Table 4 are graphed and shown in FIG. The conventional material is the same as the comparative material (3), but the Ni content is the same as the Cu content of the present invention material.

Figure 0005506973
Figure 0005506973

Figure 0005506973
図2に示すように、比較材では、機械的性質およびSiの含有量で正の相関が見られ、低温での衝撃値およびSiの含有量で負の相関が見られた。一方、本発明材では、比較材と比べて、良好な機械的性質および優れた低温靭性が得られた。本発明は、特に−40℃で、靭性が顕著に向上した。
Figure 0005506973
As shown in FIG. 2, in the comparative material, a positive correlation was observed between the mechanical properties and the Si content, and a negative correlation was observed between the impact value at a low temperature and the Si content. On the other hand, in the material of the present invention, good mechanical properties and excellent low temperature toughness were obtained as compared with the comparative material. In the present invention, the toughness was remarkably improved particularly at -40 ° C.

このように、本発明の上記球状黒鉛鋳鉄およびその製造方法によると、球状黒鉛鋳鉄の機械的性質および低温靭性を向上させることができた。また、高価なNiや成分調整が困難なBiを用いないので、大幅にコストを低減することができた。さらに、上記製造方法によると、熱処理を行わず、または応力除去焼なましのみの熱処理を行い、フェライト化焼なましを行わないので、工数を減らし、一層コストを低減することができた。   Thus, according to the above-mentioned spheroidal graphite cast iron of the present invention and the production method thereof, the mechanical properties and low-temperature toughness of the spheroidal graphite cast iron could be improved. Moreover, since expensive Ni and Bi which is difficult to adjust components are not used, the cost can be significantly reduced. Furthermore, according to the above manufacturing method, heat treatment is not performed, or heat treatment is performed only for stress-relief annealing, and ferrite annealing is not performed. Therefore, man-hours can be reduced and costs can be further reduced.

ところで、上記実施例1および2では、第一接種剤および第二接種剤として、Fe−Si−Ca−S合金について説明したが、これに限定されるものではなく、Sを含有するものであればよい。   By the way, in the said Example 1 and 2, although Fe-Si-Ca-S alloy was demonstrated as a 1st inoculation agent and a 2nd inoculation agent, it is not limited to this, What is contained S That's fine.

Claims (3)

Cを3.5〜4.0質量%、Siを1.7〜2.3質量%、Mnを0.2質量%未満、Crを0.1質量%未満、Mgを0.04〜0.06質量%、CuおよびS、並びにその他不可避的不純物を含有して、残部がFeからなり、氷点下で使用される球状黒鉛鋳鉄であって、
上記Cuを0.10〜0.20質量%、上記Sを0.01〜0.02質量%含有することを特徴とする球状黒鉛鋳鉄。
C is 3.5 to 4.0% by mass, Si is 1.7 to 2.3% by mass, Mn is less than 0.2% by mass, Cr is less than 0.1% by mass , and Mg is 0.04 to 0%. 0.06% by mass, Cu and S, and other inevitable impurities, the balance being Fe, and the spheroidal graphite cast iron used below freezing point,
The Cu 0.10 to 0.20 wt%, spheroidal graphite cast iron, characterized in that it contains the S 0.01 to 0.02 wt%.
請求項1に記載の球状黒鉛鋳鉄を溶湯の鋳込みにより製造する球状黒鉛鋳鉄の製造方法であって、
上記鋳込み前に、Sを含有する接種剤を溶湯に添加する第一接種工程と、
上記鋳込み時に、Sを含有する接種剤を溶湯に添加する第二接種工程とが具備されることを特徴とする球状黒鉛鋳鉄の製造方法。
A method for producing spheroidal graphite cast iron according to claim 1, wherein the spheroidal graphite cast iron according to claim 1 is produced by casting a molten metal.
Before the casting, a first inoculation step of adding an inoculum containing S to the molten metal,
And a second inoculation step of adding an inoculum containing S to the molten metal at the time of casting.
フェライト化焼きなましを行わないことを特徴とする請求項2に記載の球状黒鉛鋳鉄の製造方法。

3. The method for producing spheroidal graphite cast iron according to claim 2, wherein ferritic annealing is not performed.

JP2013070759A 2013-03-29 2013-03-29 Spheroidal graphite cast iron and method for producing the same Active JP5506973B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013070759A JP5506973B1 (en) 2013-03-29 2013-03-29 Spheroidal graphite cast iron and method for producing the same
GB1405632.9A GB2513253B (en) 2013-03-29 2014-03-28 Spheroidal graphite cast iron and method of manufacturing the same
RU2014112069/02A RU2551724C1 (en) 2013-03-29 2014-03-28 Nodular iron and method of its manufacturing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013070759A JP5506973B1 (en) 2013-03-29 2013-03-29 Spheroidal graphite cast iron and method for producing the same

Publications (2)

Publication Number Publication Date
JP5506973B1 true JP5506973B1 (en) 2014-05-28
JP2014194052A JP2014194052A (en) 2014-10-09

Family

ID=50737630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013070759A Active JP5506973B1 (en) 2013-03-29 2013-03-29 Spheroidal graphite cast iron and method for producing the same

Country Status (3)

Country Link
JP (1) JP5506973B1 (en)
GB (1) GB2513253B (en)
RU (1) RU2551724C1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110565005A (en) * 2019-09-06 2019-12-13 郴州市鼎新铸造有限责任公司 Production process method of low-temperature ductile iron casting

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015111915A1 (en) * 2015-07-22 2017-01-26 Eickhoff Gießerei GmbH Ferritic cast iron with nodular graphite
JP2018204082A (en) * 2017-06-08 2018-12-27 青梅鋳造 株式会社 Spheroidal graphite cast iron, and manufacturing method therefor
CN109402492B (en) * 2018-12-05 2020-05-22 北京工业大学 External treatment method for carbide-containing nodular cast iron molten iron

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10317093A (en) * 1997-05-19 1998-12-02 Toyota Motor Corp High rigidity spheroidal graphite cast iron and its production
JP2011026705A (en) * 2009-07-23 2011-02-10 General Electric Co <Ge> Large size component of austempered spheroidal graphite cast iron

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU471385A1 (en) * 1973-06-08 1975-05-25 Центральный Ордена Трудового Красного Знамени Научно-Исследовательский Автомобильный И Автомоторный Институт Method for producing nodular cast iron
JPH055125A (en) * 1990-09-14 1993-01-14 Mazda Motor Corp Production of sliding member excellent in wear resistance
US5346561A (en) * 1992-02-27 1994-09-13 Hitachi Metals, Ltd. Spheroidal graphite cast iron member having improved mechanical strength hand method of producing same
JPH0813079A (en) * 1994-07-01 1996-01-16 Mazda Motor Corp Spheroidal graphite cast iron and production thereof
JPH10176218A (en) * 1996-12-18 1998-06-30 Hitachi Metals Ltd Production of core bar for crawler, and core bar for crawler
RU2112073C1 (en) * 1996-12-30 1998-05-27 Сергей Венедиктович Моцыгин Cast iron
FR2839727B1 (en) * 2002-05-14 2004-06-25 Technologica Sarl PROCESS FOR THE PREPARATION AND SHAPING OF CAST IRON PARTS WITH SPHEROIDAL GRAPHITE WITH HIGH MECHANICAL CHARACTERISTICS
JP5113104B2 (en) * 2009-02-18 2013-01-09 株式会社栗本鐵工所 Spheroidal graphite cast iron pipe and manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10317093A (en) * 1997-05-19 1998-12-02 Toyota Motor Corp High rigidity spheroidal graphite cast iron and its production
JP2011026705A (en) * 2009-07-23 2011-02-10 General Electric Co <Ge> Large size component of austempered spheroidal graphite cast iron

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110565005A (en) * 2019-09-06 2019-12-13 郴州市鼎新铸造有限责任公司 Production process method of low-temperature ductile iron casting

Also Published As

Publication number Publication date
JP2014194052A (en) 2014-10-09
GB2513253A (en) 2014-10-22
GB201405632D0 (en) 2014-05-14
GB2513253B (en) 2015-04-01
RU2551724C1 (en) 2015-05-27

Similar Documents

Publication Publication Date Title
CN106661705B (en) carburized alloy steel and preparation method and application thereof
CN103981434B (en) A kind of preparation method of high tough spheroidal graphite cast iron
JP6079641B2 (en) Spheroidal graphite cast iron excellent in strength and toughness and method for producing the same
KR101373488B1 (en) Spheroidal graphite cast iron
JP5506973B1 (en) Spheroidal graphite cast iron and method for producing the same
CN102851623A (en) Marine engineering F36-Z35 steel plate 80mm in thickness and production method thereof
CN103147017A (en) Steel plate with high strength and excellent low-temperature toughness and manufacturing method thereof
CN103741056A (en) Corrosion resistant steel plate for resisting marine environment of South China Sea and production process of corrosion resistant steel plate
CN102605248B (en) Thick steel plates for high heat input welding and production method thereof
JP2010196147A (en) Ferritic spheroidal graphite cast iron
CN102666896A (en) Cgi cast iron and a production method for the same
CN109930058A (en) - 40 DEG C of low-temperature high-strength high-ductility spheroidal graphite cast-iron and preparation method thereof and railway locomotive components
CN109930059A (en) Low-temperature high-strength high-ductility spheroidal graphite cast-iron and preparation method thereof and railway locomotive components
CN102021485A (en) Medium carbon alloy steel
RU2395366C1 (en) Procedure for production of casts out of alloyed iron
CN102534090B (en) Preparation method of-60 ℃ low-temperature impact nodular cast iron
CN108203786B (en) Silicon solid solution high-strength plastic ferrite nodular cast iron, manufacturing method and railway locomotive part
CN101818298A (en) Corrosion-resistant medium-silicon-molybdenum-nickel-cobalt nodular cast iron alloy
CN103451541A (en) Martensite stainless steel applicable to rotor of shield pump of nuclear power station
CN102400047A (en) Method for preparing rare earth-containing seamless steel tube for petroleum cracking
CN104651730A (en) Wear-resistant alloy steel, alloy grinding ball and preparation method of wear-resistant alloy steel
CN104213022A (en) Agitation tank steel with tensile strength of 650 MPa grade and production method thereof
CN104087813B (en) The extraordinary special mill ball in a kind of mine
CN101643870A (en) Scandium-aluminum alloy connecting rod material capable of hot forging
CN102936690A (en) Novel 9SiCrAlBN alloy tool steel

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140318

R150 Certificate of patent or registration of utility model

Ref document number: 5506973

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250