JP5501002B2 - Method for producing metallized film for film capacitor - Google Patents

Method for producing metallized film for film capacitor Download PDF

Info

Publication number
JP5501002B2
JP5501002B2 JP2010006474A JP2010006474A JP5501002B2 JP 5501002 B2 JP5501002 B2 JP 5501002B2 JP 2010006474 A JP2010006474 A JP 2010006474A JP 2010006474 A JP2010006474 A JP 2010006474A JP 5501002 B2 JP5501002 B2 JP 5501002B2
Authority
JP
Japan
Prior art keywords
film
plasma
winding
substrate
roller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010006474A
Other languages
Japanese (ja)
Other versions
JP2011146553A (en
Inventor
嘉規 大胡
裕明 川村
昌敏 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2010006474A priority Critical patent/JP5501002B2/en
Publication of JP2011146553A publication Critical patent/JP2011146553A/en
Application granted granted Critical
Publication of JP5501002B2 publication Critical patent/JP5501002B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

本発明は、誘電体から成るフィルム状基材の表面に金属から成る電極膜を形成したフィルムコンデンサ用金属化フィルムの製造方法に関する。   The present invention relates to a method for producing a metallized film for a film capacitor in which an electrode film made of a metal is formed on the surface of a film-like substrate made of a dielectric.

フィルムコンデンサは、誘電体から成るフィルム状基材の表面に金属から成る電極膜を形成した金属化フィルムを積層又は巻回して形成される。ここで、近年、フィルムコンデンサはハイブリッド電気自動車での利用が盛んになっており、フィルムコンデンサの高静電容量化や小型化、更には、自己回復性(誘電体の局部に破壊が生じ電極膜に短絡が起きたときに、短絡電流によって電極膜が部分的に消失して絶縁回復する機能)が要求されている。そのため、フィルムコンデンサ用の金属化フィルムの電極膜の薄膜化が進んできており、膜厚をシート抵抗値換算で現在の10Ω/□前後から30Ω/□前後にした電極膜が必要とされている。   The film capacitor is formed by laminating or winding a metallized film in which an electrode film made of metal is formed on the surface of a film-like substrate made of dielectric. Here, in recent years, film capacitors have been increasingly used in hybrid electric vehicles. The film capacitors have a higher electrostatic capacity and a smaller size, and further have self-recovery properties (the dielectric film is broken and the electrode film is broken). When the short circuit occurs, the electrode film partially disappears due to the short circuit current and the insulation recovery function is required. Therefore, thinning of the electrode film of the metallized film for film capacitors is progressing, and an electrode film whose film thickness is reduced from the current 10Ω / □ to about 30Ω / □ in terms of sheet resistance is required. .

然し、ハイブリッド電気自動車用等の高温高湿の環境下で使用されるフィルムコンデンサでは、電極膜の膜厚が薄くなるのに伴い、経年劣化による電極膜の抵抗値の上昇と有効面積の低下が顕著になり、その結果、フィルムコンデンサの静電容量の低下を招き、製品の品質劣化を起こす問題が起きている。   However, in film capacitors used in high-temperature and high-humidity environments such as for hybrid electric vehicles, as the electrode film thickness becomes thinner, the resistance value of the electrode film increases and the effective area decreases due to deterioration over time. As a result, there is a problem that the capacitance of the film capacitor is reduced and the quality of the product is deteriorated.

ところで、従来、フィルムコンデンサ用金属化フィルムの製造方法として、フィルム状基材の表面にプラズマ処理を施してから、フィルム状基材のプラズマ処理面に電極膜を形成する方法が知られている(例えば、特許文献1,2参照)。このものでは、フィルム状基材と電極膜との密着性が向上し、耐電流性を確保した上で電極膜の薄膜化を図ることができるとしている。   By the way, conventionally, as a method for producing a metallized film for a film capacitor, a method of forming an electrode film on a plasma-treated surface of a film-like substrate after performing a plasma treatment on the surface of the film-like substrate is known ( For example, see Patent Documents 1 and 2). In this case, the adhesion between the film-like substrate and the electrode film is improved, and the electrode film can be made thinner while ensuring the current resistance.

また、本願発明者が試験したところ、上記方法で製造した金属化フィルムは、高温高湿下での経年劣化をある程度抑制できることが判明した。然し、電極膜を薄膜化した場合の経年劣化を十分に抑制できるには至っていない。   Moreover, when this inventor tested, it turned out that the metallized film manufactured by the said method can suppress aged deterioration to some extent in high temperature, high humidity. However, it has not yet been possible to sufficiently suppress deterioration over time when the electrode film is thinned.

特開2008−115417号公報JP 2008-115417 A 特開2007−300126号公報JP 2007-300126 A

本発明は、以上の点に鑑み、電極膜を薄膜化しても高温高湿下での経年劣化を十分に抑制できるようにしたフィルムコンデンサ用金属化フィルムの製造方法を提供することをその課題としている。   In view of the above, the present invention has as its object to provide a method for producing a metallized film for a film capacitor that can sufficiently suppress deterioration over time under high temperature and high humidity even if the electrode film is thinned. Yes.

上記課題を解決するために、本発明のフィルムコンデンサ用金属化フィルムの製造方法は、誘電体から成るフィルム状基材の表面にプラズマ処理を施す前プラズマ工程と、フィルム状基材のプラズマ処理面に金属から成る電極膜を形成する成膜工程と、電極膜の表面にプラズマ処理を施す後プラズマ工程とを有することを特徴とする。   In order to solve the above-mentioned problems, a method for producing a metallized film for a film capacitor according to the present invention comprises a plasma step before performing plasma treatment on the surface of a film-like substrate made of a dielectric, and a plasma-treated surface of the film-like substrate. A film forming step of forming an electrode film made of metal, and a plasma step after performing plasma treatment on the surface of the electrode film.

本発明によれば、前プラズマ工程を行うことにより、フィルム状基材から水分等の不純物が除去され、その後の成膜工程でフィルム状基材に形成される電極膜の密着性が向上する。そのため、電極膜を薄膜化しても膜割れが生じにくくなり、自然酸化が抑制される。更に、本発明では、後プラズマ工程を行うことにより、電極膜の表面が改質される。その結果、電極層を薄膜化しても、高温高湿下での経年劣化による電極膜の抵抗値の上昇を十分に抑制できるようになる。従って、本発明の方法で製造した金属化フィルムを用いることにより、高静電容量と高い自己回復性を有し、且つ、高温高湿下での耐久性に優れた高品質のフィルムコンデンサを得ることができる。   According to the present invention, by performing the pre-plasma step, impurities such as moisture are removed from the film-like substrate, and the adhesion of the electrode film formed on the film-like substrate in the subsequent film-forming step is improved. Therefore, even if the electrode film is made thinner, film cracking is less likely to occur and natural oxidation is suppressed. Furthermore, in the present invention, the surface of the electrode film is modified by performing a post-plasma process. As a result, even if the electrode layer is thinned, an increase in the resistance value of the electrode film due to aging under high temperature and high humidity can be sufficiently suppressed. Therefore, by using the metallized film produced by the method of the present invention, a high-quality film capacitor having high capacitance and high self-recovery property and excellent durability under high temperature and high humidity is obtained. be able to.

尚、後プラズマ工程でのプラズマ処理は、雰囲気ガスとして酸素と窒素との少なくとも一方を含む雰囲気下で行われることが望ましい。これによれば、電極膜の表面に金属酸化物や金属窒化物から成る改質層が形成され、高温高湿下での耐久性が一層向上する。   Note that the plasma treatment in the post-plasma process is desirably performed in an atmosphere containing at least one of oxygen and nitrogen as the atmosphere gas. According to this, a modified layer made of metal oxide or metal nitride is formed on the surface of the electrode film, and the durability under high temperature and high humidity is further improved.

また、本発明においては、真空チャンバ内に、第1と第2の一対の巻出巻取ローラと、両巻出巻取ローラ間でフィルム状基材を巻回する冷却ドラムと、フィルム状基材を巻回する冷却ドラムの周面部分に対向するように配置される成膜ユニットと、冷却ドラムと第1の巻出巻取ローラとの間と、冷却ドラムと第2の巻出巻取ローラとの間との少なくとも一方に配置されるプラズマ発生ユニットとを収納した真空巻取成膜装置を用い、第1の巻出巻取ローラから第2の巻出巻取ローラにフィルム状基材を搬送しつつ、プラズマ発生ユニットを作動させて前プラズマ工程を実行し、次に、第2の巻出巻取ローラから第1の巻出巻取ローラにフィルム状基材を搬送しつつ、成膜ユニットを作動させて成膜工程を実行し、次に、第1の巻出巻取ローラから第2の巻出巻取ローラにフィルム状基材を搬送しつつ、プラズマ発生ユニットを作動させて後プラズマ工程を実行することが望ましい。   In the present invention, a first and second pair of unwinding and winding rollers, a cooling drum for winding a film-like substrate between both unwinding and winding rollers, and a film-like base in the vacuum chamber. A film forming unit disposed so as to face the peripheral surface portion of the cooling drum around which the material is wound, between the cooling drum and the first unwinding roller, and between the cooling drum and the second unwinding winding Using a vacuum wind-up film forming apparatus that houses at least one of the plasma generating units disposed between and a roller, a film-like base material is transferred from the first wind-up roll to the second wind-up roll. The plasma generating unit is operated while carrying out the pre-plasma process, and then the film-like substrate is conveyed from the second unwinding roller to the first unwinding roller. The film forming unit is operated to perform the film forming process, and then the first unwinding and winding roller While conveying the film-shaped substrate into et second winding Demakito roller, it is desirable to perform post-plasma process by operating the plasma unit.

また、上記の如く真空巻取成膜装置を用いて金属化フィルムを製造する場合は、プラズマ発生ユニットとして、フィルム状基材が通過する一対のスリット状開口部と、雰囲気ガスの導入口とを有する箱体内に、フィルム状基材を挟んで対向するように一対のカソード電極を配置して成るものを用いることが望ましい。これによれば、前後のプラズマ工程において、電極膜を形成するフィルム状基材の面とは反対の面(裏面)にもプラズマ処理が施されて、フィルム状基材の裏面から不純物が除去される。従って、各巻出巻取ローラにフィルム状基材が巻取られて、電極膜にフィル状基材の裏面が接触したときに、電極膜が不純物で汚染されることを防止できる。   Further, when a metallized film is produced using a vacuum winding film forming apparatus as described above, a pair of slit-like openings through which the film-like substrate passes and an atmosphere gas inlet are provided as a plasma generation unit. It is desirable to use a box having a pair of cathode electrodes arranged so as to face each other with a film-like substrate interposed therebetween. According to this, in the plasma process before and after, the plasma treatment is also performed on the surface (back surface) opposite to the surface of the film-shaped substrate forming the electrode film, and impurities are removed from the back surface of the film-shaped substrate. The Therefore, it is possible to prevent the electrode film from being contaminated with impurities when the film-like base material is wound around each unwinding and winding roller and the back surface of the fill-like base material comes into contact with the electrode film.

本発明の実施形態の製造方法の実施に用いる真空巻取成膜装置を示す断面図。Sectional drawing which shows the vacuum winding film-forming apparatus used for implementation of the manufacturing method of embodiment of this invention. 図1の装置のプラズマ発生ユニットの部分の拡大断面図。The expanded sectional view of the part of the plasma generation unit of the apparatus of FIG. 金属化フィルムの模式的断面図。The typical sectional view of a metallized film.

図1は、フィルムコンデンサ用の金属化フィルムを製造する真空巻取成膜装置を示している。尚、金属化フィルムは、図3に示す如く、フィルム状基材aの表面にアルミニウム等の金属から成る電極膜bを形成したものである。フィルム状基材aは、ポリエチレンテレフタレート(PET)、ポリエチレン(PEN)、ポリプロピレン(PP)等の誘電体から成り、その厚さは1〜10μmである。   FIG. 1 shows a vacuum winding film forming apparatus for producing a metallized film for a film capacitor. The metallized film is obtained by forming an electrode film b made of a metal such as aluminum on the surface of a film-like substrate a as shown in FIG. The film-like substrate a is made of a dielectric material such as polyethylene terephthalate (PET), polyethylene (PEN), polypropylene (PP), and has a thickness of 1 to 10 μm.

真空巻取成膜装置は、油拡散ポンプ等の真空ポンプ(図示省略)に接続される複数の排気口1a,1b,1cを有する真空チャンバ1を備えている。真空チャンバ1内には、第1と第2の一対の巻出巻取ローラ2,2と、両巻出巻取ローラ2,2間に位置する冷却ドラム3と、冷却ドラム3と各巻出巻取ローラ2,2との間に位置する複数のガイドローラ4とが収納されている。そして、フィルム状基材aを、冷却ドラム3の周面に所定の抱き角で巻回させた状態で、第1と第2の両巻出巻取ローラ2,2の一方から他方に搬送するようにしている。尚、冷却ドラム3は、その内部に流す冷却媒体により周面が冷却されるようになっている。 The vacuum winding film forming apparatus includes a vacuum chamber 1 having a plurality of exhaust ports 1a, 1b, 1c connected to a vacuum pump (not shown) such as an oil diffusion pump. The vacuum chamber 1, the first and the second pair of winding Demakito roller 2 1, 2 2, a double winding Demakito roller 2 1, 2 2 cooling drum 3 located between the cooling drum 3 And a plurality of guide rollers 4 positioned between the unwinding and winding rollers 2 1 and 2 2 are accommodated. Then, in a state where the film-like substrate a is wound around the peripheral surface of the cooling drum 3 at a predetermined holding angle, the first and second unwinding and winding rollers 2 1 and 2 2 are changed from one to the other. I am trying to carry it. The peripheral surface of the cooling drum 3 is cooled by a cooling medium flowing through the cooling drum 3.

また、真空チャンバ1内には、フィルム状基材aを巻回する冷却ドラム3の周面部分に対向するように成膜ユニット5が配置され、更に、冷却ドラム3と第1の巻出巻取ローラ2との間にプラズマ発生ユニット6が配置されている。また、真空チャンバ1内には、電極膜bの膜厚を測定するための渦電流センサ7が設けられると共に、成膜ユニット5を配置した空間を真空チャンバ1内の他の空間と仕切る仕切り板8が設けられている。 A film forming unit 5 is disposed in the vacuum chamber 1 so as to face the peripheral surface portion of the cooling drum 3 around which the film-shaped substrate a is wound. Further, the cooling drum 3 and the first unwinding winding are arranged. plasma unit 6 is arranged between the intake roller 2 1. Further, an eddy current sensor 7 for measuring the film thickness of the electrode film b is provided in the vacuum chamber 1, and a partition plate that partitions the space in which the film forming unit 5 is arranged from other spaces in the vacuum chamber 1. 8 is provided.

成膜ユニット5は、ルツボ51に収納したアルミニウム等の金属材料を電子銃52からの電子ビーム52aで加熱蒸発させるEB蒸着方式のものである。尚、成膜ユニット5として、抵抗加熱蒸着方式、誘導加熱蒸着方式、スパッタ方式等のEB蒸着方式以外のものを用いることも可能である。   The film forming unit 5 is of an EB vapor deposition type in which a metal material such as aluminum housed in a crucible 51 is heated and evaporated by an electron beam 52 a from an electron gun 52. In addition, as the film-forming unit 5, it is also possible to use a device other than the EB vapor deposition method such as a resistance heating vapor deposition method, an induction heating vapor deposition method, or a sputtering method.

プラズマ発生ユニット6は、図2に示す如く、フィルム状基材aが通過する一対のスリット状開口部61a,61bを形成した導電性の箱体61内に、フィルム状基材aを挟んで対向するように円筒状の一対のカソード電極62,62を配置したものである。そして、箱体61内に、これに形成したガス導入口63から雰囲気ガスを導入し、カソード電極62に直流又は交流を印加し、雰囲気ガス中で放電させてプラズマpを発生させることにより、フィルム状基材aや電極膜bに電子、イオンを照射するプラズマ処理を行う。   As shown in FIG. 2, the plasma generating unit 6 is opposed to a conductive box 61 having a pair of slit openings 61a and 61b through which the film-like substrate a passes, with the film-like substrate a interposed therebetween. In this way, a pair of cylindrical cathode electrodes 62, 62 are arranged. Then, an atmospheric gas is introduced into the box 61 from a gas inlet 63 formed therein, a direct current or an alternating current is applied to the cathode electrode 62, and the plasma p is generated by discharging in the atmospheric gas, thereby producing a film. Plasma treatment for irradiating the substrate a and the electrode film b with electrons and ions is performed.

尚、雰囲気ガスとしては、Ar(アルゴン)、O(酸素)、N(窒素)、He(ヘリウム)、CF(四フッ化炭素)、CO(二酸化炭素)、CH(メタン)、C(アセチレン)の中から選ばれた1種類のガス又は2種類以上の混合ガスを用いることができる。また、カソード電極62の内部や周囲に図示省略したマグネットを配置して、雰囲気ガス中でマグネトロン放電やぺニング放電させるが、放電形式はこれに限定されない。また、カソード電極62は平板状であってもよい。 As the atmospheric gas, Ar (argon), O 2 (oxygen), N 2 (nitrogen), the He (helium), CF 4 (carbon tetrafluoride), CO 2 (carbon dioxide), CH 4 (methane) , One kind of gas selected from C 2 H 2 (acetylene) or two or more kinds of mixed gases can be used. In addition, a magnet (not shown) is arranged inside or around the cathode electrode 62 to cause magnetron discharge or penning discharge in an atmospheric gas, but the discharge type is not limited to this. Further, the cathode electrode 62 may be flat.

金属化フィルムを製造する際は、先ず、第1の巻出巻取ローラ2から第2の巻出巻取ローラ2にフィルム状基材aを搬送しつつ、プラズマ発生ユニット6を作動させて、フィルム状基材aの表面にプラズマ処理を施す前プラズマ工程を実行する。次に、第2の巻出巻取ローラ2から第1の巻出巻取ローラ2にフィルム状基材aを搬送しつつ、成膜ユニット5を作動させて、フィルム状基材aのプラズマ処理面に電極膜bを形成する成膜工程を実行する。次に、第1の巻出巻取ローラ2から第2の巻出巻取ローラ2にフィルム状基材aを搬送しつつ、プラズマ発生ユニット6を作動させて、電極膜bの表面にプラズマ処理を施す後プラズマ工程を実行する。尚、成膜工程では、渦電流センサ7で電極膜bの膜厚をモニターして基板搬送速度を調整することにより、所定の膜厚の電極膜bを形成する。 Making the metallized film is first while conveying the film-shaped substrate a from the first winding Demakito roller 2 1 to the second winding Demakito roller 2 2 actuates the plasma unit 6 Then, a pre-plasma process is performed to perform plasma treatment on the surface of the film-like substrate a. Then, the second winding Demakito roller 2 2 while conveying the first winding Demakito roller 2 1 to the film-form substrate a, by operating the film forming unit 5, the film-form substrate a A film forming process for forming the electrode film b on the plasma processing surface is performed. Then, while conveying the film-shaped substrate a from the first winding Demakito roller 2 1 to the second winding Demakito roller 2 2, by operating the plasma generating unit 6, the surface of the electrode film b After performing the plasma treatment, a plasma process is performed. In the film forming step, the electrode film b having a predetermined film thickness is formed by monitoring the film thickness of the electrode film b by the eddy current sensor 7 and adjusting the substrate transport speed.

ところで、冷却ドラム3と第2の巻出巻取ローラ2との間にもプラズマ発生ユニットを配置し、第1の巻出巻取ローラ2から第2の巻出巻取ローラ2にフィルム状基材aを搬送しつつ、冷却ドラム3と第1の巻出巻取ローラ2との間に配置したプラズマ発生ユニット6と、成膜ユニット5と、冷却ドラム3と第2の巻出巻取ローラ2との間に配置したプラズマ発生ユニットとを作動させて、前プラズマ工程と成膜工程と後プラズマ工程とを連続して行うことも考えられる。然し、電極膜bを薄膜化するには、成膜工程時の基材搬送速度をかなり速くすることが必要になり、一方、前後のプラズマ工程において、フィルム状基材aに損傷を与えないような強度で所要のプラズマ処理を施すには、基材搬送速度を遅くせざるを得ない。そのため、前プラズマ工程と成膜工程と後プラズマ工程とを上記の如く別々に行い、各工程で基板搬送速度を変更する必要がある。また、成膜ユニット5がEB蒸着方式のものであると、フィルム状基材aが帯電する。そのため、成膜工程時に、プラズマ発生ユニット6を作動させて、除電処理を行うようにしている。 Incidentally, also arranged plasma unit between the cooling drum 3 and the second winding Demakito roller 2 2, the first winding Demakito roller 2 1 to the second winding Demakito roller 2 2 while conveying the film-form substrate a, the plasma generating unit 6 which is disposed between the cooling drum 3 and the first winding Demakito roller 2 1, a deposition unit 5, and the cooling drum 3 second winding Demakito roller 2 2 is actuated and the plasma unit disposed between, it is conceivable to perform before continuously the plasma process and the deposition process and post-plasma process. However, in order to reduce the thickness of the electrode film b, it is necessary to considerably increase the substrate conveyance speed during the film formation process, and on the other hand, the film-shaped substrate a is not damaged in the front and rear plasma processes. In order to perform the required plasma treatment with a sufficient strength, the substrate conveyance speed must be reduced. Therefore, it is necessary to perform the pre-plasma process, the film-forming process, and the post-plasma process separately as described above, and change the substrate conveyance speed in each process. When the film forming unit 5 is of the EB vapor deposition type, the film-like substrate a is charged. Therefore, during the film forming process, the plasma generation unit 6 is operated to perform the charge removal process.

本実施形態によれば、前プラズマ工程を行うことにより、フィルム状基材aから水分等の不純物が除去され、その後の成膜工程でフィルム状基材aに形成される電極膜bの密着性が向上する。そのため、電極膜bを薄膜化しても膜割れが生じにくくなり、自然酸化が抑制される。更に、後プラズマ工程を行うことにより、電極膜bの表面が改質される。その結果、電極層bの膜厚を10nm程度に薄膜化しても、高温高湿下での経年劣化による電極膜bの抵抗値の上昇を十分に抑制できる。従って、本実施形態の如く製造した金属化フィルムを用いることにより、高静電容量と高い自己回復性を有し、且つ、高温高湿下での耐久性に優れた高品質のフィルムコンデンサを得ることができる。特に、後プラズマ工程を雰囲気ガスとして酸素と窒素との少なくとも一方を含む雰囲気下で行えば、電極膜bの表面に金属酸化物や金属窒化物から成る改質層が形成され、高温高湿下での耐久性が一層向上する。   According to this embodiment, by performing the pre-plasma process, impurities such as moisture are removed from the film-shaped substrate a, and the adhesion of the electrode film b formed on the film-shaped substrate a in the subsequent film-forming process. Will improve. Therefore, even if the electrode film b is thinned, film cracking is difficult to occur, and natural oxidation is suppressed. Furthermore, the surface of the electrode film b is modified by performing a post-plasma process. As a result, even if the film thickness of the electrode layer b is reduced to about 10 nm, an increase in the resistance value of the electrode film b due to aging under high temperature and high humidity can be sufficiently suppressed. Therefore, by using the metallized film manufactured as in the present embodiment, a high-quality film capacitor having high capacitance and high self-recovery property and excellent durability under high temperature and high humidity is obtained. be able to. In particular, when the post-plasma process is performed in an atmosphere containing at least one of oxygen and nitrogen as an atmospheric gas, a modified layer made of a metal oxide or metal nitride is formed on the surface of the electrode film b, and the high temperature and high humidity Durability is further improved.

また、後プラズマ工程において、フィルム状基材aが第1の巻出巻取ローラ2から第2の巻出巻取ローラ2に冷却ドラム3を介して搬送されることになり、成膜工程で加熱されたフィルム状基材aの冷却を冷却ドラム3により促進することができる。従って、後プラズマ工程後、金属化フィルムを真空チャンバ1から取出すまでに要する冷却のための待ち時間を短縮することができ、生産性が向上する。 Further, in the post-plasma process, will be a film-shaped substrate a is conveyed through the first winding Demakito roller 2 1 to the second winding Demakito roller 2 2 to the cooling drum 3, the film formation Cooling of the film-like substrate a heated in the process can be promoted by the cooling drum 3. Therefore, after the post-plasma process, the waiting time for cooling required to take out the metallized film from the vacuum chamber 1 can be shortened, and productivity is improved.

また、本実施形態では、プラズマ発生ユニット6として、フィルム状基材aを挟むようにして対向する一対のカソード電極62,62を有するものを用いているため、前後のプラズマ工程において、電極膜bを形成するフィルム状基材aの面とは反対の面(裏面)にもプラズマ処理が施されて、フィルム状基材aの裏面から不純物が除去される。従って、第1と第2の各巻出巻取ローラ2,2にフィルム状基材aが巻取られて、電極膜bにフィル状基材aの裏面が接触したときに、電極膜bが不純物で汚染されることを防止できる。 In this embodiment, since the plasma generation unit 6 has a pair of cathode electrodes 62 and 62 facing each other with the film-like substrate a interposed therebetween, the electrode film b is formed in the front and rear plasma processes. Plasma treatment is also performed on the surface (back surface) opposite to the surface of the film-shaped substrate a to remove impurities from the back surface of the film-shaped substrate a. Therefore, when the film-like base material a is wound around the first and second unwinding and winding rollers 2 1 and 2 2 and the back surface of the fill-like base material a comes into contact with the electrode film b, the electrode film b Can be prevented from being contaminated with impurities.

ところで、本実施形態では、冷却ドラム3と第1の巻出巻取ローラ2との間にプラズマ発生ユニット6を配置しているが、成膜工程で帯電せず、その後の除電処理が不要であるなら、冷却ドラム3と第2の巻出巻取ローラ2との間にプラズマ発生ユニットを配置してもよい。また、冷却ドラム3と第1の巻出巻取ローラ2との間と、冷却ドラム3と第2の巻出巻取ローラ2との間との双方にプラズマ発生ユニットを配置し、前プラズマ工程と後プラズマ工程を夫々両プラズマ発生ユニットで行うようにしてもよく、一方のプラズマ発生ユニットで前プラズマ工程を行い、他方のプラズマ発生ユニットで後プラズマ工程を行うようにしてもよい。 Incidentally, in this embodiment, it is arranged plasma unit 6 between the cooling drum 3 and the first winding Demakito roller 2 1, without charging the film forming step, unnecessary subsequent neutralization process If it is, it may be disposed plasma unit between the cooling drum 3 and the second winding Demakito roller 2 2. Also, the between the cooling drum 3 and the first winding Demakito roller 2 1, the plasma unit is disposed on both the between the cooling drum 3 and the second winding Demakito roller 2 2, prior The plasma process and the post-plasma process may be performed by both plasma generation units, respectively, the pre-plasma process may be performed by one plasma generation unit, and the post-plasma process may be performed by the other plasma generation unit.

(実施例1)
図1の真空巻取成膜装置を用い、真空チャンバ1内を4.7×10−3Paまで真空引きした後に、第1の巻出巻取ローラ2から第2の巻出巻取ローラ2にフィルム状基材a(材質PP、厚さ12μm、幅220mm)を3.0m/minの速度で搬送しつつ、プラズマ発生ユニット6に雰囲気ガスとして酸素を300sccmの流量で導入すると共に、カソード電極62に直流電圧を印加し、電流0.1A、電圧250Vの条件でフィル状基材aの表面にプラズマ処理を施す前プラズマ工程を行った。次に、第2の巻出巻取ローラ2から第1の巻出巻取ローラ2にフィルム状基材aを搬送しつつ、成膜ユニット5のルツボ51内のアルミ材料(純度99.9%)をパワー5.8kWの電子ビーム52aで加熱し、成膜時の圧力1.0〜1.4×10−2Pa、冷却ドラム3とルツボ51間の距離275mm、基材張力24.5N、冷却ドラム3の周面温度20℃の条件で、フィルム状基材aのプラズマ処理面にアルミ材料から成る電極膜bを形成する成膜工程を行った。電極膜bの膜厚は、渦電流センサ7でモニターして基板搬送速度を調整することにより、20nm、10nmになるようにした。尚、基材搬送速度は、膜厚20nmの電極膜bを形成する場合に48m/min程度、膜厚10nmの電極膜bを形成する場合に80m/min程度になった。また、成膜工程では、プラズマ発生ユニット6により除電処理を行った。最後に、第1の巻出巻取ローラ2から第2の巻出巻取ローラ2にフィルム状基材aを3.0m/minの速度で搬送しつつ、プラズマ発生ユニット6に雰囲気ガスとして窒素を300sccmの流量で導入すると共に、カソード電極62に直流電圧を印加し、電流0.1A、電圧230Vの条件で電極膜bの表面にプラズマ処理を施す後プラズマ工程を行い、金属化フィルムのサンプルを製造した。
Example 1
Using a vacuum take-up the film deposition apparatus shown in FIG. 1, the vacuum chamber 1 after evacuated to 4.7 × 10 -3 Pa, the second winding Demakito roller from the first winding Demakito roller 2 1 2 2 film-form substrate a (material PP, thickness 12 [mu] m, width 220 mm) while conveying at a speed of 3.0 m / min, while introducing oxygen as an atmospheric gas at 300sccm flow rate into the plasma generation unit 6, A direct current voltage was applied to the cathode electrode 62, and a pre-plasma process was performed on the surface of the fill substrate a under the conditions of current 0.1A and voltage 250V. Then, while conveying the film-shaped substrate a the second winding Demakito roller 2 2 to the first winding Demakito roller 2 1, aluminum materials (purity 99 in the crucible 51 of the deposition unit 5. 9%) is heated with an electron beam 52a having a power of 5.8 kW, the pressure during film formation is 1.0 to 1.4 × 10 −2 Pa, the distance between the cooling drum 3 and the crucible 51 is 275 mm, and the substrate tension is 24. A film forming step of forming an electrode film b made of an aluminum material on the plasma-treated surface of the film-like substrate a was performed under the conditions of 5N and the peripheral surface temperature of the cooling drum 3 of 20 ° C. The film thickness of the electrode film b was adjusted to 20 nm and 10 nm by monitoring with the eddy current sensor 7 and adjusting the substrate transport speed. The substrate conveyance speed was about 48 m / min when the electrode film b having a thickness of 20 nm was formed, and about 80 m / min when the electrode film b having a thickness of 10 nm was formed. In the film forming step, the plasma generation unit 6 performed a charge removal process. Finally, while the film-shaped substrate a from the first winding Demakito roller 2 1 to the second winding Demakito roller 2 2 is conveyed at a speed of 3.0 m / min, the atmospheric gas into the plasma generating unit 6 As a result, nitrogen is introduced at a flow rate of 300 sccm, a direct current voltage is applied to the cathode electrode 62, a plasma process is performed on the surface of the electrode film b under conditions of current 0.1A and voltage 230V, and then a metallized film is formed. The sample was manufactured.

また、同一のバッチ内で、上記と同一条件で成膜工程のみを行ったサンプルと、上記と同一の条件で前プラズマ工程と成膜工程とを行ったサンプルと、上記と同一の条件で成膜工程と後プラズマ工程とを行ったサンプルを製造した。そして、高温高湿下での劣化を加速するため、各サンプルを恒温恒湿炉の中に入れ、温度40℃、湿度90%の状態で30日間維持して、各サンプルのシート抵抗値Rsの変化を測定した。Rsは四端子法で測定した。電極膜bの膜厚を20nmにした場合の結果を下記表1に示し、10nmにした場合の結果を下記表2に示す。   In addition, a sample in which only the film forming process was performed under the same conditions as described above in the same batch, a sample in which the pre-plasma process and the film forming process were performed under the same conditions as described above, and the same conditions as described above. A sample was manufactured in which a film process and a post-plasma process were performed. And in order to accelerate the deterioration under high temperature and high humidity, each sample is put in a constant temperature and humidity furnace, maintained at a temperature of 40 ° C. and a humidity of 90% for 30 days, and the sheet resistance value Rs of each sample is Changes were measured. Rs was measured by the four probe method. The results when the thickness of the electrode film b is 20 nm are shown in Table 1 below, and the results when it is 10 nm are shown in Table 2 below.

表1

Figure 0005501002
Table 1
Figure 0005501002

表2

Figure 0005501002
Table 2
Figure 0005501002

表1と表2の比較から、高温高湿下での経年劣化によるRsの上昇が電極膜bを薄膜化するほど顕著になることが分かる。そして、電極膜bの膜厚が10nmと薄膜化した場合、前プラズマ工程と後プラズマ工程とを省略したサンプルでは、Rsが30日間で104.1%も上昇した。また、後プラズマ工程を省略したサンプルでは、Rsが30日間で55.1%上昇し、前プラズマ工程を省略したサンプルでは、Rsが30日間で53.9%上昇した。これに対し、前プラズマ工程と後プラズマ工程との両者を行ったサンプルでは、Rsが30日間で26.4%しか上昇していない。従って、前プラズマ工程及び後プラズマ工程を行うことにより、電極膜bを薄膜化しても高温高湿下での経年劣化を十分に抑制できることが分かる。   From the comparison between Table 1 and Table 2, it can be seen that the increase in Rs due to aging under high temperature and high humidity becomes more prominent as the electrode film b is made thinner. When the thickness of the electrode film b was reduced to 10 nm, in the sample in which the pre-plasma process and the post-plasma process were omitted, Rs increased by 104.1% in 30 days. In the sample in which the post-plasma process was omitted, Rs increased by 55.1% in 30 days, and in the sample in which the pre-plasma process was omitted, Rs increased by 53.9% in 30 days. On the other hand, in the sample which performed both the pre-plasma process and the post-plasma process, Rs rose only 26.4% in 30 days. Therefore, it can be seen that by performing the pre-plasma step and the post-plasma step, the aging deterioration under high temperature and high humidity can be sufficiently suppressed even if the electrode film b is thinned.

尚、表2から明らかなように、電極膜bを薄膜化した場合、前プラズマ工程を行ったサンプルでは、成膜直後のRsが前プラズマ工程を省略したサンプルよりも大幅に低くなっている。これは、前プラズマ工程でフィルム状基材aの表面から不純物が除去され、電極膜bの密着性が向上して、膜割れによるRsの増加が抑制されるためである。   As is apparent from Table 2, when the electrode film b is thinned, the sample subjected to the pre-plasma process has a significantly lower Rs immediately after the film formation than the sample omitting the pre-plasma process. This is because impurities are removed from the surface of the film-like substrate a in the pre-plasma process, the adhesion of the electrode film b is improved, and an increase in Rs due to film cracking is suppressed.

(実施例2)
実施例1と同様にフィルム状基材a(材質PP、厚さ5μm、幅200mm)の表面にプラズマ発生ユニット6によりプラズマ処理を施す前プラズマ工程を行った後、成膜ユニット5によりフィルム状基材aのプラズマ処理面にアルミ材料から成る電極膜bを形成する成膜工程を行い、最後に、プラズマ発生ユニット6により電極膜bの表面にプラズマ処理を施す後プラズマ工程を行った。成膜時の圧力は5.0〜6.0×10−3Pa、冷却ドラム3とルツボ51間の距離は280mmとし、渦電流センサ7でモニターして基板搬送速度を調整することにより、電極膜bの膜厚が10nmになるようにした。前プラズマ工程及び後プラズマ工程は、雰囲気ガスを300sccmの流量で導入すると共に、カソード電極62に直流を電流0.4A、電圧250〜300Vの条件で印加して行った。そして、前プラズマ工程及び後プラズマ工程で使用する雰囲気ガスとして、アルゴンを用いたサンプルと、酸素を用いたサンプルと、窒素を用いたサンプルと、ヘリウムを用いたサンプルと、四フッ化炭素を用いたサンプルと、二酸化炭素を用いたサンプルとを作成した。また、比較例として、上記と同一条件で成膜工程のみを行ったサンプルも作成した。
(Example 2)
As in Example 1, after performing a plasma process on the surface of the film-like base material a (material PP, thickness 5 μm, width 200 mm) by the plasma generation unit 6, A film forming process for forming an electrode film b made of an aluminum material on the plasma processing surface of the material a was performed, and finally, a plasma process was performed after the plasma generation unit 6 performed plasma processing on the surface of the electrode film b. The pressure at the time of film formation is 5.0 to 6.0 × 10 −3 Pa, the distance between the cooling drum 3 and the crucible 51 is 280 mm, and the electrode is monitored by the eddy current sensor 7 to adjust the substrate conveyance speed. The thickness of the film b was set to 10 nm. The pre-plasma process and the post-plasma process were performed by introducing atmospheric gas at a flow rate of 300 sccm and applying direct current to the cathode electrode 62 under conditions of a current of 0.4 A and a voltage of 250 to 300 V. As an atmospheric gas used in the pre-plasma process and the post-plasma process, a sample using argon, a sample using oxygen, a sample using nitrogen, a sample using helium, and carbon tetrafluoride are used. And a sample using carbon dioxide. Moreover, the sample which performed only the film-forming process on the same conditions as the above as a comparative example was also created.

その後、各サンプルを恒温恒湿炉の中に入れ、温度40℃、湿度90%の状態で30日間維持して、各サンプルのシート抵抗値Rsの変化を測定した。Rsは四端子法で測定した。その結果を下記表3に示す。   Thereafter, each sample was placed in a constant temperature and humidity oven, maintained at a temperature of 40 ° C. and a humidity of 90% for 30 days, and the change in the sheet resistance value Rs of each sample was measured. Rs was measured by the four probe method. The results are shown in Table 3 below.

表3

Figure 0005501002
Table 3
Figure 0005501002

Rsの変化率は、雰囲気ガスとして上記何れのガスを用いても、前プラズマ工程と後プラズマ工程とを省略したものより低くなっている。尚、Rsの30日経過時点での上昇率は、アルゴン、四フッ化炭素、二酸化炭素を用いた場合、80%を上回るのに対し、酸素を用いた場合は42.2%、窒素を用いた場合は33.4%と大幅に低下している。これは、電極膜bの表面に酸化アルミ、窒化アルミから成る改質層が形成され、高温高湿下での耐久性が一層向上したためである。このことから、後プラズマ工程でのプラズマ処理は、雰囲気ガスとして酸素と窒素との少なくとも一方を含む雰囲気下で行うとよいことが分かる。   The rate of change in Rs is lower than that obtained by omitting the pre-plasma process and the post-plasma process, regardless of which of the above gases is used as the atmospheric gas. The rate of increase of Rs after 30 days is over 80% when argon, carbon tetrafluoride, and carbon dioxide are used, whereas 42.2% when nitrogen is used. In this case, it is significantly reduced to 33.4%. This is because a modified layer made of aluminum oxide or aluminum nitride is formed on the surface of the electrode film b, and the durability under high temperature and high humidity is further improved. This shows that the plasma treatment in the post-plasma process is preferably performed in an atmosphere containing at least one of oxygen and nitrogen as the atmosphere gas.

a…フィルム状基材、b…電極膜、1…真空チャンバ、2…第1の巻出巻取ローラ、2…第2の巻出巻取ローラ、3…冷却ドラム、5…成膜ユニット、6…プラズマ発生ユニット、61…箱体、61a,61b…スリット状開口部、62…カソード電極、63…ガス導入口。 a ... film-like substrate, b ... electrode film, 1 ... vacuum chamber, 2 1 ... first unwinding and winding roller, 2 2 ... second unwinding and winding roller, 3 ... cooling drum, 5 ... film formation Unit: 6 ... Plasma generating unit, 61 ... Box, 61a, 61b ... Slit-like opening, 62 ... Cathode electrode, 63 ... Gas inlet.

Claims (3)

真空チャンバ内に、第1と第2の一対の巻出巻取ローラと、両巻出巻取ローラ間でフィルム状基材を巻回する冷却ドラムと、フィルム状基材を巻回する冷却ドラムの周面部分に対向するように配置される成膜ユニットと、冷却ドラムと第1の巻出巻取ローラとの間と、冷却ドラムと第2の巻出巻取ローラとの間との少なくとも一方に配置されるプラズマ発生ユニットとを収納した真空巻取成膜装置を用い、
第1の巻出巻取ローラから第2の巻出巻取ローラにフィルム状基材を搬送しつつ、プラズマ発生ユニットを作動させて、誘電体から成るフィルム状基材の表面にプラズマ処理を施す前プラズマ工程を実行し、
次に、第2の巻出巻取ローラから第1の巻出巻取ローラにフィルム状基材を搬送しつつ、成膜ユニットを作動させて、フィルム状基材のプラズマ処理面に金属から成る電極膜を形成する成膜工程を実行し
次に、第1の巻出巻取ローラから第2の巻出巻取ローラにフィルム状基材を搬送しつつ、プラズマ発生ユニットを作動させて、電極膜の表面にプラズマ処理を施す後プラズマ工程を実行することを特徴とするフィルムコンデンサ用金属化フィルムの製造方法。
In the vacuum chamber, a first and second pair of unwinding and winding rollers, a cooling drum for winding the film-like substrate between both unwinding and winding rollers, and a cooling drum for winding the film-like substrate At least between the film-forming unit disposed so as to face the peripheral surface portion, between the cooling drum and the first unwinding roller, and between the cooling drum and the second unwinding roller. Using a vacuum winding film forming apparatus containing a plasma generating unit arranged on one side,
The plasma generating unit is operated while conveying the film-like substrate from the first unwinding roller to the second unwinding roller, and the surface of the film-like substrate made of a dielectric is subjected to plasma treatment. Perform pre-plasma process ,
Next, the film forming unit is operated while conveying the film-like base material from the second unwinding and winding roller to the first unwinding and winding roller, and the plasma-treated surface of the film-like base material is made of metal. Execute the film forming process to form the electrode film,
Next, a plasma process is performed after the plasma generating unit is operated while the film-like base material is conveyed from the first unwinding roller to the second unwinding roller to perform plasma treatment on the surface of the electrode film. The manufacturing method of the metallized film for film capacitors characterized by performing these.
前記後プラズマ工程でのプラズマ処理は、雰囲気ガスとして酸素と窒素との少なくとも一方を含む雰囲気下で行われることを特徴とする請求項1記載のフィルムコンデンサ用金属化フィルムの製造方法。   2. The method for producing a metallized film for a film capacitor according to claim 1, wherein the plasma treatment in the post-plasma process is performed in an atmosphere containing at least one of oxygen and nitrogen as an atmosphere gas. 前記プラズマ発生ユニットとして、フィルム状基材が通過する一対のスリット状開口部と、雰囲気ガスを導入するガス導入口とを有する箱体内に、フィルム状基材を挟んで対向するように一対のカソード電極を配置して成るものを用いることを特徴とする請求項1又は2記載のフィルムコンデンサ用金属化フィルムの製造方法。 As the plasma generating unit, a pair of cathodes is disposed so as to face each other with a film-like substrate sandwiched in a box having a pair of slit-like openings through which the film-like substrate passes and a gas introduction port for introducing atmospheric gas. The method for producing a metallized film for a film capacitor according to claim 1 or 2, wherein an electrode is used.
JP2010006474A 2010-01-15 2010-01-15 Method for producing metallized film for film capacitor Active JP5501002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010006474A JP5501002B2 (en) 2010-01-15 2010-01-15 Method for producing metallized film for film capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010006474A JP5501002B2 (en) 2010-01-15 2010-01-15 Method for producing metallized film for film capacitor

Publications (2)

Publication Number Publication Date
JP2011146553A JP2011146553A (en) 2011-07-28
JP5501002B2 true JP5501002B2 (en) 2014-05-21

Family

ID=44461141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010006474A Active JP5501002B2 (en) 2010-01-15 2010-01-15 Method for producing metallized film for film capacitor

Country Status (1)

Country Link
JP (1) JP5501002B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9947477B2 (en) 2014-02-10 2018-04-17 Rubycon Corporation Method of manufacturing thin-film polymer multi-layer capacitor and thin-film polymer multi-layer capacitor
WO2019206058A1 (en) * 2018-04-27 2019-10-31 东丽先端材料研究开发(中国)有限公司 Metalized film

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2778091B2 (en) * 1989-03-23 1998-07-23 東レ株式会社 Metallized film for capacitor and method of manufacturing the same
JP2890614B2 (en) * 1990-02-20 1999-05-17 凸版印刷株式会社 Thermal adhesive deposition sheet
US5589280A (en) * 1993-02-05 1996-12-31 Southwall Technologies Inc. Metal on plastic films with adhesion-promoting layer
JP2006264317A (en) * 2005-02-22 2006-10-05 Toray Ind Inc Metalized film, film for capacitor and film capacitor using it
JP2008115417A (en) * 2006-11-02 2008-05-22 Toray Ind Inc Method for producing metallized film, and metallized film

Also Published As

Publication number Publication date
JP2011146553A (en) 2011-07-28

Similar Documents

Publication Publication Date Title
JP6724967B2 (en) Vapor deposition equipment with pretreatment equipment using plasma
JP4747658B2 (en) Film forming apparatus and film forming method
WO2012172304A1 (en) Method and device for manufacturing a barrier layer on a flexible substrate
EP2298956A1 (en) Film deposition method
US10151024B2 (en) Method for producing transparent conductive film
JP5501002B2 (en) Method for producing metallized film for film capacitor
JP4597756B2 (en) Film forming apparatus and film forming method
TWI728283B (en) Deposition apparatus, method of coating a flexible substrate and flexible substrate having a coating
JP2009024205A (en) Plasma cvd system
JP7181587B2 (en) Plasma processing equipment
CN111699277B (en) Deposition apparatus, method of coating flexible substrate, and flexible substrate having coating layer
JP4924939B2 (en) Winding-type composite vacuum surface treatment apparatus and film surface treatment method
KR20100032305A (en) Substrate processing method
JP4826907B2 (en) Winding type vacuum deposition method and apparatus
JP2001052949A (en) Manufacture of metalized film for capacitor and apparatus for manufacturing metalized film for capacitor
TWI752266B (en) Method, evaporation source for forming a ceramic layer of a component of an electrochemical energy storage device and processing chamber
EP3647457B1 (en) Film treatment method and film production method
WO2020025102A1 (en) Method of coating a flexible substrate with a stack of layers, layer stack, and deposition apparatus for coating a flexible substrate with a stack of layers
JP2003183813A (en) Apparatus for manufacturing transparent electroconductive film
TWI812642B (en) Method and processing system for controlling a thickness of a ceramic layer on a substrate and roll-to-roll system using the same
JP4648936B2 (en) Gas barrier film manufacturing method and gas barrier film manufacturing apparatus
JP6922164B2 (en) Winding method and winding device for long resin film
JP2002060931A (en) Winding type vacuum film deposition apparatus, and manufacturing method of deposition film using the same
JP2004002961A (en) Thin film deposition method and thin film deposition system by plasma cvd method
JP4648935B2 (en) Gas barrier film manufacturing method and gas barrier film manufacturing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140311

R150 Certificate of patent or registration of utility model

Ref document number: 5501002

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250