JP5500048B2 - 画像処理方法および画像処理装置 - Google Patents

画像処理方法および画像処理装置 Download PDF

Info

Publication number
JP5500048B2
JP5500048B2 JP2010247145A JP2010247145A JP5500048B2 JP 5500048 B2 JP5500048 B2 JP 5500048B2 JP 2010247145 A JP2010247145 A JP 2010247145A JP 2010247145 A JP2010247145 A JP 2010247145A JP 5500048 B2 JP5500048 B2 JP 5500048B2
Authority
JP
Japan
Prior art keywords
face
face information
image data
information
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010247145A
Other languages
English (en)
Other versions
JP2012098980A (ja
Inventor
正年 松平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2010247145A priority Critical patent/JP5500048B2/ja
Publication of JP2012098980A publication Critical patent/JP2012098980A/ja
Application granted granted Critical
Publication of JP5500048B2 publication Critical patent/JP5500048B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Facsimile Image Signal Circuits (AREA)
  • Studio Devices (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)

Description

この発明は、顔情報に基づく画像データの補正を適切に行う画像処理方法および画像処理装置に関するものである。
近年、デジタルカメラで撮影時に画像を解析して補正を行うことが多くなってきた。その補正処理の一つとして、顔認識処理がある。これは、被写体に人物が含まれている際に画像から人物の顔を認識し、その認識した顔に合わせてオートフォーカスや露出を制御する機能である。また、顔認識機能を有するデジタルカメラでは、顔認識処理により得られる顔情報(顔オブジェクト情報や顔検出結果などと称することもある)を画像データに付加することが提案されている(例えば特許文献1参照)。そして、この特許文献1に記載の印刷装置では、画像データに付加される顔情報に基づいて画像データに対して色補正が実行され、色補正済の画像が印刷される。このように、デジタルカメラによる顔認識結果を利用して印刷装置側で独自に補正をかける技術が知られている。
特開2007−213455号公報
ところで、デジタルカメラでは被写体を撮像しながら顔認識処理を行っているため、例えば撮影時に露出補正を組み合わせて顔認識処理を行うことができ、顔認識精度の向上が図られている。しかしながら、デジタルカメラの顔認識によって撮影画像に含まれる人物の顔の全部が完全かつ正確に認識される保証はない。このため、デジタルカメラ側での顔認識の補佐あるいは再確認を行う意味で印刷装置側でも独自に顔認識を行い、それにより検出される顔情報を利用して画像データに補正を掛けることは有効である。その一方で、印刷装置側での顔認識処理により検出した顔情報を使用して一律に画像データを補正することが妥当でないこともある。例えばデジタルカメラで既に補正されている画像データに対し、さらに印刷装置側で補正を掛けることになり、過剰補正や印刷速度の低下という問題が発生することがある。
この発明にかかるいくつかの態様は、顔情報に基づいて画像データの補正を行う画像処理方法および画像処理装置において、顔情報が付加された画像データに対する補正を適正化することを目的とする。
本発明の第1の態様は、上記目的を達成するため、画像データから人物の顔を認識する顔認識処理を実行して第1顔情報を検出する第1工程と、画像データに付加される第2顔情報を取得する第2工程と、第1顔情報が第2顔情報と一致するときには画像データの補正を規制する第3工程とを備えることを特徴としている。
また、本発明の第2の態様は、上記目的を達成するため、画像データから人物の顔を認識する顔認識処理を実行して第1顔情報を検出する顔情報検出部と、画像データに付加される第2顔情報を取得する顔情報取得部と、第1顔情報が第2顔情報と一致するときには画像データの補正を規制する補正制御部とを備えることを特徴としている。
このように構成された発明(画像処理方法および画像処理装置)では、第1顔情報が第2顔情報と一致するとき、画像データの補正が規制される。これは以下の理由からである。これら2種類の顔情報のうち第2顔情報は予め画像データに付加されているものであり、このように画像データへの第2顔情報の付加は、当該画像データを生成する際に顔認識処理および補正処理が行われている蓋然性が高いことを示している。したがって、当該画像データに対する顔認識処理により検出された第1顔情報が第2顔情報と一致する場合、上記補正規制によって画像データの補正が重複して実行されるのを防止することができる。このように第2顔情報が付加された画像データに対する補正が適正化されて無駄な画像データの補正が省かれる。
ここで、第1顔情報および第2顔情報の個数は常に同じというわけではなく、1対1、1対多、多対1、多対多などのケースが生じる。そこで、第1顔情報と第2顔情報との一致/不一致については、次のようにして判別するのが好適である。すなわち、顔認識処理により検出された第1顔情報の各々が画像データに付加された第2顔情報のいずれかと一致するか否かを判別し、第1顔情報の全部が第2顔情報のいずれかに一致するときに、第1顔情報が第2顔情報と一致するとして補正を規制してもよい。
また、第2顔情報のいずれとも一致しない第1顔情報が存在する、つまり第2顔情報で特定される人物以外の顔を顔認識処理によって検出したときには、第2顔情報のいずれとも一致しない第1顔情報と、第2顔情報とに基づいて画像データを補正するのが望ましい。このように第2顔情報のいずれとも一致しない第1顔情報を加えて画像データを補正することで画像データの補正精度をさらに高めることができる。
なお、第1顔情報と第2顔情報との一致/不一致については、例えば第1顔情報で特定される第1顔領域と、第2顔情報で特定される第2顔領域との重なり部分の面積によって求めることができる。より具体的には、重なり部分の面積が第2顔領域の面積の40%以上であるときに第1顔情報が第2顔情報に一致すると判別することができる。
本発明にかかる画像処理装置の一実施形態を用いた印刷システムを示す図。 デジタルカメラで作成される画像ファイルの一例を示す図。 図2の部分拡大図。 顔認識処理により認識された顔の一例を示す図。 図1の印刷装置で実行される画像処理および印刷動作を示すフローチャート。 図1の印刷装置で実行される画像処理および印刷動作を示すフローチャート。 プリンター顔座標およびカメラ顔座標の座標リストへの登録例を示す図。
図1は、本発明にかかる画像処理装置の一実施形態を用いた印刷システムを示す図である。この印刷システムは、デジタルカメラ200の撮影により取得された画像データを、メモリカードM、USB(Universal Serial Bus)ケーブルや無線LAN(Local Area Network)等によって印刷装置100に転送し、印刷装置100で印刷するものである。すなわち、ここではユーザーがデジタルカメラ200で画像を撮影して画像データを生成し、その画像データをそのまま印刷装置100で読み込んで印刷する、いわゆるダイレクト印刷を想定しているが、本発明を適用可能な印刷システムはこれに限定されるものではない。つまり、デジタルカメラ200で生成した画像データをパーソナルコンピューターや携帯電話などに取り込み、パーソナルコンピューターから印刷装置100に画像データを送信して印刷する印刷システムにも本発明を適用することは可能である。
デジタルカメラ200では、同図に示すように、CPU(Central Processing Unit)201、ROM(Read Only Memory)202、RAM(Random Access Memory)203、CCD(Charge Coupled Device)204、GP(Graphic Processor)205およびI/F(Interface)206がバス207を介して相互に接続され、これらの間で情報の授受が可能となっている。そして、CPU201はROM202に格納されているプログラムに応じて各種演算処理を実行しながらデジタルカメラ200の制御を行う。このとき一時的に必要となるデータはRAM203に格納される。また、CCD204は、光学系208によって集光された被写体からの光学像を電気信号に変換して出力する。この光学系208は、複数のレンズおよびアクチュエータによって構成されており、アクチュエータによってフォーカス等を調整しながら被写体の光学像を複数のレンズによってCCD204の受光面に結像する。さらに、GP205は、CPU201から供給される表示命令に基づいて表示用の画像処理を実行し、得られた表示用画像データをLCD(Liquid Crystal Display)209に供給して表示させる。
I/F206はデジタルカメラ200の入出力機能を提供するものであり、操作ボタン210、ジャイロセンサー211およびカードI/F回路212の間で情報を授受する際に、データの表現形式を適宜変換する装置である。I/F206に接続される操作ボタン210には、電源、モード切替え、シャッターなどのボタンや、各種機能を設定できる入力手段があり、これらによってユーザーはデジタルカメラ200を任意に制御して動作させることが可能となっている。また、ジャイロセンサー211はデジタルカメラ200によって被写体を撮影した際のカメラ本体の角度(水平面に対する角度)を示す信号を生成して出力する。デジタルカメラ200は、上記したカメラ本体の角度を含め、撮影時における種々の情報(例えば、露光、被写体等に関する情報)を生成する。それらの情報の一つである撮影情報に後述する顔情報が含まれる。なお、本実施形態では、デジタルカメラ200は、撮影情報をExif(Exchangeable Image File Format)情報に記載し、画像データに付加した画像ファイルを生成することができる構造となっている。
また、カードI/F回路212はカードスロット213に挿入されたメモリカードMとの間で情報を読み書きするためのインタフェースである。さらに、I/F206は図示を省略するUSB、無線LANなどの外部機器との接続機能も有しており、有線または無線にて印刷装置100との間で画像ファイルの授受が可能となっている。なお、デジタルカメラ200で作成され、印刷装置100に与えられる画像ファイル(画像データ+Exif情報)については、後で詳述する。
印刷装置100はデジタルカメラ200で撮像された画像を印刷する装置であり、次のように構成されている。印刷装置100では、CPU101、ROM102、RAM103、EEPROM(Electrically Erasable and Programmable ROM)104、GP105およびI/F106がバス107を介して相互に接続され、これらの間で情報の授受が可能となっている。CPU101はROM102およびEEPROM104に格納されているプログラムに応じて各種演算処理を実行するとともに印刷装置100の各部を制御し、本発明の「顔情報検出部」、「顔情報取得部」および「補正制御部」として機能する。また、CPU101が実行対象とするプログラムやデータについてはRAM103に一時的に格納される一方、印刷装置の電源が切断された後も保持しておくデータ等についてはEEPROM104に格納される。さらに、CPU101は必要に応じてGP105に対して表示命令を与え、この表示命令に応じてGP105が表示用の画像処理を実行し、その処理結果をLCD108に供給して表示させる。
I/F106は、操作ボタン109、カードI/F回路110およびプリンターエンジンコントローラー111の間で情報を授受する際に、データの表現形式を適宜変換する装置である。印刷装置100では、操作ボタン109は印刷装置100のメニュー選択等を行う時に押されるように構成されている。また、カードI/F回路110は、カードスロット112と接続されており、このカードスロット112に挿入されたメモリカードMからデジタルカメラ200によって生成された画像ファイルを読み出す。なお、I/F106は、図示を省略するUSB、無線LANなどの外部機器との接続機能も有しており、有線通信または無線通信にてデジタルカメラ200との間で画像ファイルの授受が可能となっている。
そして、印刷装置100は、メモリカードMを介して、あるいはデータ通信により画像データを受け取ると、CPU101により種々の処理を行うとともにプリンターエンジンコントローラー111によりプリンターエンジン113を制御し、これによって画像データに対応する画像を印刷する。以下、図2ないし図4に基づき画像ファイルの構成を説明した上で、本実施形態における画像処理動作および印刷動作について図4ないし図7を参照しつつ詳述する。
図2は上記のように構成されたデジタルカメラで作成される画像ファイルの一例を示す図である。また、図3は図2の部分拡大図である。この実施形態では、デジタルカメラ200はCCD204で撮像された画像データをRAM203に格納する。また、デジタルカメラ200は、被写体に人物が含まれているときには顔認識処理を行う(顔認識方式については従来より数多く提案されており、それらのうちいずれの方式を採用してもよい)。なお、本実施形態では、顔認識処理により検出される顔認識結果は、図4(a)に示すような座標情報が顔情報として表現される。すなわち、同図(a)に示すように、画像データは所定の画像幅(Width)と画像高さ(Height)の画素で構成されており、Xが横軸、Yが縦軸を表しており、左上が原点(0,0)である。そして、画像データから顔が検出されると、両目端が入る間隔(顔サイズ)を1辺とする正方形の顔領域(または顔矩形という)FRcを左上(LT)、左下(LB)、右上(RT)、右下(RB)の4点の座標で囲まれる領域で表し、顔領域FRcを示す座標、つまり顔座標を、認識した顔の個数(つまりカメラ顔個数)NcとともにRAM203に格納する。
また、本明細書では、後で説明するように、印刷装置100においてもデジタルカメラ200での顔認識と同様に顔認識を行って顔座標を求めるため、デジタルカメラ200での顔認識により得られる顔座標を「カメラ顔座標」と称し、左上(LTc)、左下(LBc)、右上(RTc)、右下(RBc)で示す。また、顔認識処理により複数個の顔が検出される場合もあるため、第n番目のカメラ顔座標を左上(LTnc)、左下(LBnc)、右上(RTnc)、右下(RBnc)で示す。また、後述するように印刷装置100の顔認識処理により検出される顔座標については「プリンター顔座標」と称し、第n番目のプリンター顔座標については、左上(LTnp)、左下(LBnp)、右上(RTnp)、右下(RBnp)で示す。図4(a)では、カメラ側での顔認識処理によって二人の人物が検出され、各人物のカメラ顔座標(LT1c,LB1c,RT1c,RB1c)、(LT2c,LB2c,RT2c,RB2c)が図示されている。
また、この実施形態では、上記のように画像データ、顔個数および顔座標などをRAM203に格納しているが、その記録方式としてディジタルスチルカメラ用画像ファイルフォーマット規格Exif Ver.2.2.1を使用している。このExif画像ファイルの構造は、基本的には通常のJPEG(Joint Photographic Experts Group)画像形式そのものであり、その中にサムネイル画像や撮影関連データ等のデータをJPEGの規約に準拠した形で埋め込んだものである。
本実施形態で使用する画像ファイルは、図2の左側部分に示すように、最初にSOI(Start of image)301がある。その後に、APP1(アプリケーション・マーカーセグメント)302、DQT(Define Quantization Table)303、DHT(Define Huffman Table)304の順となっている。さらにその後に、SOF(Start of Frame)305、SOS(Start of Stream)マーカー306、圧縮データ(Compress Data)307の順となっている。最後にEOI(End of Image)308がある。これらのうちAPP1はアプリケーションプログラムで使用するためのデータ領域として図2の中央部分に示す構造を有している。APP1の構造では、先頭にAPP1 Marker領域302aがある。そして、その次にLength領域302bがある。
Length領域302bに続くデータの最初の6バイトの領域302cでは、識別子としてASCII文字の“Exif"が、その次に2バイトの0x00が続く。そこからTiff(Tagged Image File Format)形式でデータが格納されている。Tiff形式の最初の8バイトはTiffヘッダー(Header)領域302dである。
また、Tiffヘッダー領域302dの次の0th IFD(IFD of main image)領域302eに、同図の右側部分に示すように、画像幅、画像高さ等の画像関連情報が格納される。そして、0th IFDの次に0th IFD Value領域302fがある。さらに、その次にExif IFD領域302gが設けられ、露出時間、Fナンバーなどの撮影関連情報が格納される。また、Exif IFD領域302gにExif IFD Value領域302hがある。なお、現在のところ、顔認識処理により検出される顔個数NcとNc個の顔座標をExifタグに書き込む規格は規定されていないが、本実施形態では顔個数NcがExif IFD領域302gに書き込まれ、Nc個の顔座標がExif IFD Value領域302hに書き込まれるとともに該書込位置をポイントする情報がExif IFD領域302gに書き込まれると仮定して説明を続ける。もちろん、これらの情報をメーカーに依存する領域に書き込むように構成してもよい。このように、顔位置(顔座標)の情報である顔情報はExif情報に記載され、画像データに添付されている。したがって、Exif情報に顔情報が含まれる場合には、顔個数Ncやシーン情報などとともに画像データの補正に利用される。一方、Exif情報に顔情報が含まれていない場合、顔情報がないと判断される。
次に、上記のようなデータ構造(図2)を有する画像ファイルがメモリカードMに保存されており、そのメモリカードMから画像ファイルを読み出し、印刷装置100により画像ファイルに含まれる各種情報に基づき所定の画像処理を実行して印刷する動作について、図4ないし7を参照しつつ説明する。
図5および図6は図1の印刷装置で実行される画像処理および印刷動作を示すフローチャートである。ユーザーが印刷装置100のカードスロット112にメモリカードMを挿入し、操作ボタン109を操作して印刷指令を与えると、CPU101がROM102に格納されているプログラムにしたがって装置各部を制御して以下の画像処理および印刷動作を実行する。
まず、CPU101は、印刷の対象となる画像ファイルをメモリカードMから取得し、ハフマン解凍処理を実行し、量子化DCT(Discrete Cosine Transform)係数を得る(ステップS10)。より具体的には、CPU101は、図2に示す画像ファイルからエントロピー符号化テーブルを取得し、圧縮データ307に含まれているY(輝度)成分、Cr(色差成分)、および、Cb(色差成分)のそれぞれのブロックのDC係数と、AC係数とを復号する。なお、この際、最小符号化単位であるMCU(Minimum Coded Unit)単位で復号を行う。
また、CPU101は、ステップS10において得られた量子化DCT係数を逆量子化する(ステップS11)。具体的には、CPU101は、図2に示す画像ファイルから量子化テーブルを取得し、ステップS10において得られた量子化DCT係数に乗じることにより(逆量子化することにより)、DCT係数を得る。
次に、CPU101は、画像を回転させるために必要な情報を、例えばRAM103にキャッシュする(ステップS12)。具体的には、JPEG方式によって圧縮された画像を回転させる場合、MCUのDC成分(直流成分)とAC成分(交流成分)のそれぞれを一度ハフマン展開しなければならない。ここで、DC成分については隣接するDC成分値の差分をハフマン符号化することから、隣接するMCUとの相関関係が問題となる。また、AC成分ではハフマン符号化処理によりそのデータ長が各MCUで一定にならず、JPEGデータのビットストリーム中のどのデータが求めるMCUのAC成分値であるかが不明となることが問題となる。そこで、ステップS12では、各MCUのDC成分値とAC成分のアドレスを求めてキャッシュしておくことにより、ローテート処理を可能とする。
そして、CPU101はステップS11で得られたDCT係数に対して逆DCT演算を施すことによりもとの画素値を得る(ステップS13)。また、CPU101は、ステップS13の処理によって得られたYCC空間の画像をRGB(Red Green Blue)空間の画像と、HSB(Hue Saturation Brightness)空間の画像に変換する(ステップS14)。
次に、CPU101はステップS13およびステップS14の処理において得られたYCC,RGB,HSBのそれぞれの画像をRAM103に格納して保持する。なお、このとき、データ量を削減するために画素を所定の割合で間引きした後にRAM103に格納してもよい(ステップS15)。
また、CPU101は、ステップS15においてRAM103に格納されたYCC,RGB,HSBそれぞれの画像の成分について、ヒストグラムを計算する(ステップS16)。具体的には、RGB画像については、R,G,Bそれぞれの画像についてヒストグラムを計算する。その結果、画像を構成する各成分の分布を得る。
上記したように、本実施形態では、ステップS10〜16の処理はMCU単位で行われており、CPU101は、全てのMCUについての処理が終了したことを確認するまで、ステップS10に戻って処理を繰り返して実行する。一方、全てのMCUについての処理が終了した場合には、次のステップS17に進む。
このステップS17で、CPU101は、ステップS15でRAM103に格納した画像データを使って顔認識処理を行う。この顔認識方式についても、デジタルカメラ200と同様に従来より提案されている方式を採用することができ、デジタルカメラ200で採用した方式と同一のものを採用してもよいし、異なる方式であってもよい。また、印刷装置100の顔認識処理により検出されたプリンター顔座標についてはRAM103に記憶される。この実施形態では、図7(a)に示すように予め10個のプリンター顔座標を記憶するためのメモリ空間がRAM103に準備されており、このメモリ空間に検出されたプリンター顔座標が登録顔情報No.1、2、…の順序で記憶される。例えば図4(c)に示すように印刷装置(プリンター)100での顔認識処理によって三人の人物について、各人物のプリンター顔座標(LT1p,LB1p,RT1p,RB1p)、(LT2p,LB2p,RT2p,RB2p)、(LT3p,LB3p,RT3p,RB3p)が検出されると、図7(a)に示すようにそれぞれ登録顔情報No.1〜3に登録される。なお、該当するプリンター顔座標がない登録顔情報No.4以降のアドレスにはゼロを登録する。また、CPU101は、検出した顔の個数、つまりプリンター顔個数Npを設定する(上記した具体例では、Np=3と設定する)。
また、プリンター顔座標の検出・記憶に続いて、CPU101はステップS18およびS19を実行してカメラ顔座標を取得し、RAM103のカメラ顔座標用のメモリ空間に記憶するとともにカメラ顔個数Ncを記憶する。すなわち、CPU101は、図2の画像ファイル中のExifタグから顔個数Ncおよび顔座標を読み込み(ステップS18)、さらにカメラ顔座標についてはQVGA(Quarter Video Graphics Array)サイズに規格化し、それらをRAM103に格納する(ステップS19)。この実施形態では、カメラ顔座標についても、図7(b)に示すように予め10個を記憶するためのメモリ空間がRAM103に準備されており、このメモリ空間にカメラ顔座標が登録顔情報No.1、2、…の順序で記憶される。例えば図4(a)に示すようにデジタルカメラ200での顔認識処理によって二人の人物について、各人物のカメラ顔座標(LT1c,LB1c,RT1c,RB1c)、(LT2c,LB2c,RT2c,RB2c)が検出されて画像データに付加されているときには、印刷装置100において2つのカメラ顔座標は図7(b)に示すようにそれぞれ登録顔情報No.1、2に登録される。なお、該当するカメラ顔座標がない登録顔情報No.3以降のアドレスにはゼロを登録する。また、CPU101は、ステップS18で読み込んだ顔の個数、つまりカメラ顔個数Ncを設定する(上記した具体例では、Nc=2と設定する)。
こうして、プリンター顔座標とカメラ顔座標とが得られると、CPU101は、印刷装置100で検出されたプリンター顔座標(第1顔情報)の各々がステップS19で取得されたカメラ顔座標(第2顔情報)のいずれかと一致するか否かを判別する(ステップS20〜S25)。すなわちステップS20で、CPU101は、カメラ顔個数Ncがゼロよりも大きいか否かを判別する。ここで、ステップS18で取得したカメラ顔個数Ncが元々ゼロである場合、あるいはステップS21〜S25の処理を全カメラ顔座標について完了した時点でカメラ顔個数Nc=0となるため、これらの場合には、CPU101はステップS20で「NO」と判別し、ステップS26に進む。
一方、ステップS20で「YES」のとき、つまり各プリンター顔座標との異同判別が実施されていないカメラ顔座標が残っている間、ステップS21〜S25の処理を繰り返して行う。このステップS21で、CPU101は、プリンター顔個数Npがゼロよりも大きいか否かを判別する。そして、ステップS21で「YES」のとき、つまりNc番目のカメラ顔座標との異同判別が実施されていないプリンター顔座標が残っているときには、CPU101は、Nc番目のカメラ顔座標で特定されるカメラ顔と、各プリンター顔座標で特定されるプリンター顔との重複率を算出する(ステップS22)。例えば図4(b)に示すように、カメラ顔座標(LT2c,LB2c,RT2c,RB2c)で特定されるカメラ顔の顔領域FRcと、プリンター顔座標(LT2p,LB2p,RT2p,RB2p)で特定されるプリンター顔の顔領域FRpとの重なっている重複領域(同図(b)中のハッチング領域)ORの面積を求めるとともに、顔領域FRc(またはFRp)に対する重複領域ORの面積率を上記重複率として求める。
また、CPU101は、その他のプリンター顔の顔領域FRpについても同様にして求めた後、重複率が40%以上となるプリンター顔が存在する、つまりステップS17で検出したプリンター顔のなかにNc番目のカメラ顔と重なる(あるいは一致する)ものがあるか否かを判別する(ステップS23)。このステップS23でNc番目のカメラ顔と重なるプリンター顔が見つかった場合のみ、CPU101は、当該プリンター顔を特定するプリンター顔座標をRAM103から削除するとともに、プリンター顔個数Npを「1」だけデクリメントし(ステップS24)、ステップS25に進む。なお、Nc番目のカメラ顔と重なるプリンター顔がない場合には、ステップS24を実行することなく、ステップS25に進む。
このステップS25で、CPU101はNc番目のカメラ顔座標をRAM103の座標リストに登録する。この座標リストは、例えば図7(c)に示すように予め10個の顔座標を記憶するためのRAM103に設定されたメモリ空間であり、上記カメラ顔座標用およびプリンター顔座標用とは別個に設けられたものである。また、CPU101は、Nc番目カメラ顔座標の座標リストへの登録後に、カメラ顔個数Ncを「1」だけデクリメントし、ステップS20に戻る。
このようにステップS20〜S25の実行により、ステップS19で取得されたカメラ顔座標の全部は座標リストに登録されるのに対し、ステップS17で検出されたプリンター顔座標のうちカメラ顔座標と重なるものについてはRAM103から削除される。例えば図4および図7に示す具体例では、3つのうちプリンター顔座標(LT1p,LB1p,RT1p,RB1p)、(LT2p,LB2p,RT2p,RB2p)がRAM103から削除され、プリンター顔座標(LT3p,LB3p,RT3p,RB3p)のみがRAM103に残っている(なお、この時点でのプリンター顔個数Np=1である)。
次のステップS26で、CPU101は、残っているNp個のプリンター顔座標を座標リストに登録する。そして、残ったプリンター顔個数と、座標リストへの顔座標の登録状況とに応じて3つのケース、つまり、
(1)座標リストにプリンター顔座標が登録されているケース、
(2)座標リストにカメラ顔座標もプリンター顔座標も登録されていないケース、
(3)座標リストにカメラ顔座標のみが登録されているケース、
に区分けし、各ケースに応じてエンハンスパラメータを設定する(ステップS27〜S32)。
(1)座標リストにプリンター顔座標が登録されているケース
この場合、ステップS27でCPU101は、プリンター顔個数Npがゼロよりも大きい、つまりステップS17で検出されたプリンター顔座標のうち一部または全部が残っていると判別し、ステップS28およびS29を実行する。すなわち、CPU101は、座標リストに登録された顔座標に基づいて全ての顔位置を計算し、さらに顔の平均顔色を取得した(ステップS28)後、顔色が最適になるようにエンハンスパラメータを計算する(ステップS29)。なお、エンハンスパラメータ計算の詳細については省略するが、RAM103に記憶したRGBヒストグラムに基づきコントラスト、明度、彩度、シャープネスなどの各画質パラメータの特徴量を抽出し、抽出した特徴量が所定の画質パラメータの特徴量に近づくようエンハンスのパラメータを設定する。
(2)座標リストにカメラ顔座標もプリンター顔座標も登録されていないケース
これは、ステップS27で「NO」と判別され、しかもステップS30で「NO」と判別されたケースである。このステップS30は、座標リストに顔登録座標が含まれているか否かを判別するステップである。したかって、ステップS30で「NO」と判別されるという技術的意味は、座標リストにカメラ顔座標が登録されない、さらに遡って言えば、画像データにカメラ顔座標が付加されていないことを意味している。したがって、この場合、CPU101は、画像全体が最適になるようにエンハンスパラメータを計算する(ステップS31)。
(3)座標リストにカメラ顔座標のみが登録されているケース
これは、ステップS27で「NO」と判別され、しかもステップS30で「YES」と判別されたケースであり、ステップS17で検出した各プリンター顔座標が、ステップS19で取得したカメラ顔座標のいずれかと一致していることを意味している。また、画像データにカメラ顔座標を付加する際には、顔認識処理および補正処理が行われている。したがって、カメラ顔座標しか座標リストに残っていない状況で、これらカメラ顔座標に基づき画像データを補正することは補正処理の重複となり、無駄である。そこで、本ケースでは、CPU101は「エンハンスなし」と設定し、後で説明するように印刷前のエンハンス処理を省き、デジタルカメラ200により予め補正された画像データに基づいて印刷処理を実行する。
このようにエンハンスパラメータに関する設定が完了すると、CPU101は、印刷対象となる画像ファイルにおいて、解凍処理の対象となる位置を示すファイルポインタをリセットし、処理位置を画像ファイルの先頭に復元する(ステップS33)。そして、CPU101は、以下のステップS34〜S42を繰り返して画像データに基づいて画像を印刷する。
CPU101は、RAM103にキャッシュされた1MCUライン分の画像データにハフマン解凍処理を施し、量子化DCT係数を得る(ステップS34)。ここで、1MCUラインとは、画像を回転させる場合には、画像を構成する列方向に1列のMCU群をいい、回転させない場合には、画像を構成する行方向に1列のMCU群をいう。そして、CPU101は、ステップS29の処理において得られた量子化DCT係数を逆量子化し(ステップS35)、さらにステップS30で得られたDCT係数に対して逆DCT演算を施すことによりもとのデータを得る(ステップS36)。
こうして得られたYCC空間の画像を、CPU101はRGB空間の画像に変換する(ステップS37)。そして、CPU101は、エンハンスの実行が設定されている場合のみ、つまりステップS38で「YES」と判別した場合のみ、RGB空間の画像を構成する各画素に対してステップS29、S31において算出したエンハンスパラメータを適用することにより、印刷される画像を最適な色合いに補正し(ステップS39)、次のステップS40に進む。
CPU101は、こうして補正された画像データに対して、リサイズ、回転などのレイアウト処理を施し(ステップS40)、プリンターエンジンコントローラー111の図示せぬバンドバッファに供給する。これを受けたプリンターエンジンコントローラー111は、プリンターエンジン113の各部を制御して画像データに対応する画像を印刷する(ステップS41)。そして、印刷処理が完了すると、CPU101はRAM103のキャッシュ状態を更新する(ステップS42)。そして、全MCUライン分について上記ステップS34〜S42が完了すると、一連の処理を終了する。
以上のように、本実施形態によれば、全プリンター顔座標がカメラ顔座標と一致している場合には、印刷装置100でエンハンス処理を行わず、デジタルカメラ200で補正された画像データに基づき印刷処理を行っているので、画像データの補正が重複して実行されるのを防止することができる。また、無駄な画像データの補正を省略することができ、ユーザーが印刷装置100でのエンハンス処理を待つ必要はなくなる。
また、ステップS19で画像データに付加されているカメラ顔座標を取得するとともに、ステップS17で画像データからプリンター顔座標を検出し、各プリンター顔の顔領域FRpと各カメラ顔の顔領域FRcとの重複率を求め、それらに基づきプリンター顔座標がカメラ顔座標と一致しているか否かを判別している。このため、被写体に含まれる人物が複数人であり、デジタルカメラ200で検出されるカメラ顔座標の数と、印刷装置100で検出されるプリンター顔座標の数が同数である場合はもちろんのこと、異なる場合でも、各プリンター顔座標について、カメラ顔座標との一致/不一致を正確に求めることができる。また、カメラ顔の顔領域FRcとプリンター顔の顔領域FRpとの重複領域ORの面積率に基づき重複率を求め、基準値と対比してカメラ顔座標との一致/不一致を判別しているため、客観的で、かつ高精度な判別が可能となっている。なお、本実施形態では、基準値を40%以上としているが、これは種々の検証に基づき設定した値である。
さらに、いずれのカメラ顔座標とも一致しないプリンター顔座標が検出された場合には、当該プリンター顔座標で特定される人物の顔色と、カメラ顔座標で特定される人物の顔色とに基づきエンハンス処理を行っているので、デジタルカメラ200で補正し切れなかった人物を含め、被写体に含まれる人物全体について顔色の色合いを最適化することができる。
このように、本実施形態では、エンハンス処理が本発明の「画像データの補正」に相当し、プリンター顔情報およびカメラ顔情報がそれぞれ本発明の「第1顔情報」および「第2顔情報」に相当する。また、顔領域FRp、FRcはそれぞれ本発明の「第1顔領域」および「第2顔領域」に相当し、重複領域ORが本発明の「重なり部分」に相当する。
なお、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば、上記実施形態では、画像データに顔座標などを付加した画像ファイルをメモリカードMに記録し、当該メモリカードMを介して印刷装置100に供給して印刷しているが、有線または無線通信により画像ファイルが印刷装置100に供給される場合も、本発明を適用することで上記した実施形態と同様の作用効果が得られる。
また、上記実施形態では、顔領域を4点の座標で示しているが、顔領域の表現方式はこれに限定されるものではなく、例えば中心座標に大きさを組み合わせたもの、中心座標に幅および高さを組み合わせたもの等を用いることができる。
また、上記実施形態では、本発明にかかる画像処理装置および方法を印刷装置100に適用しているが、複数の電子機器から構成される印刷システムにも、また印刷装置以外の1つの電子機器(例えば複合機、ファクシミリ装置など)にも適用可能である。
また、上記実施形態にかかる画像処理方法を実行するプログラムを、CD−ROM、光ディスク、光磁気ディスク、不揮発性メモリカードなどの記憶媒体に記憶させ、この記憶媒体からプログラムをコードとして読み出し、コンピューターにおいて実行してもよい。つまり、上記プログラムを記憶した記憶媒体、コンピュータープログラム自体も本発明の一実施形態に含まれる。
100…印刷装置、 101…CPU(顔情報検出部、顔情報取得部、補正制御部)、 102…ROM、 103…RAM、 104…EEPROM、 200…デジタルカメラ、 307…圧縮データ(画像データ)、 FRc…(第2)顔領域、 FRp…(第1)顔領域、 OR…重複領域

Claims (8)

  1. 画像データから人物の顔を認識する顔認識処理を実行して第1顔情報を検出する第1工程と、
    前記画像データに付加される第2顔情報を取得する第2工程と、
    前記第1顔情報が前記第2顔情報と一致するときには前記画像データの補正を規制する第3工程と
    を備えることを特徴とする画像処理方法。
  2. 前記第3工程は、前記第1工程で検出された前記第1顔情報の各々について第1顔情報が前記第2工程で取得された前記第2顔情報のいずれかと一致するか否かを判別する判別工程と、前記第1顔情報の全部が前記第2顔情報のいずれかと一致すると判別されると前記補正を規制する規制工程とを有する請求項1に記載の画像処理方法。
  3. 前記判別工程で前記第2顔情報のいずれとも一致しないと判別される前記第1顔情報があるとき、前記第2顔情報のいずれとも一致しない前記第1顔情報と、前記第2顔情報とに基づいて前記画像データを補正する第4工程を備える請求項2に記載の画像処理方法。
  4. 前記判別工程は、前記第1顔情報で特定される第1顔領域と、前記第2顔情報で特定される第2顔領域との重なり部分の面積が前記第2顔領域の面積の40%以上であるときに前記第1顔情報が前記第2顔情報と一致すると判別する請求項2または3に記載の画像処理方法。
  5. 画像データから人物の顔を認識する顔認識処理を実行して第1顔情報を検出する顔情報検出部と、
    前記画像データに付加される第2顔情報を取得する顔情報取得部と、
    前記第1顔情報が前記第2顔情報と一致するときには前記画像データの補正を規制する補正制御部と
    を備えることを特徴とする画像処理装置。
  6. 前記補正制御部は、前記顔情報検出部により検出された前記第1顔情報の各々について第1顔情報が前記顔情報取得部で取得された前記第2顔情報のいずれかと一致するか否かを判別し、前記第1顔情報の全部が前記第2顔情報のいずれかに一致すると判別されると前記補正を規制する請求項5に記載の画像処理装置。
  7. 前記補正制御部は、前記第2顔情報のいずれとも一致しない前記第1顔情報があるときには、前記第2顔情報のいずれとも一致しない前記第1顔情報と、前記第2顔情報とに基づいて前記画像データを補正する請求項5または6に記載の画像処理装置。
  8. 前記補正制御部は、前記第1顔情報で特定される第1顔領域と、前記第2顔情報で特定される第2顔領域との重なり部分の面積が前記第2顔領域の面積の40%以上であるときに前記第1顔情報が前記第2顔情報に一致すると判別する請求項6または7に記載の画像処理装置。
JP2010247145A 2010-11-04 2010-11-04 画像処理方法および画像処理装置 Active JP5500048B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010247145A JP5500048B2 (ja) 2010-11-04 2010-11-04 画像処理方法および画像処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010247145A JP5500048B2 (ja) 2010-11-04 2010-11-04 画像処理方法および画像処理装置

Publications (2)

Publication Number Publication Date
JP2012098980A JP2012098980A (ja) 2012-05-24
JP5500048B2 true JP5500048B2 (ja) 2014-05-21

Family

ID=46390803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010247145A Active JP5500048B2 (ja) 2010-11-04 2010-11-04 画像処理方法および画像処理装置

Country Status (1)

Country Link
JP (1) JP5500048B2 (ja)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4962295B2 (ja) * 2005-09-30 2012-06-27 セイコーエプソン株式会社 画像処理装置及び画像処理プログラム
JP4810478B2 (ja) * 2006-03-30 2011-11-09 キヤノン株式会社 画像処理装置及び画像処理方法及び撮像装置及びプログラム及び記憶媒体
JP4992519B2 (ja) * 2007-04-02 2012-08-08 セイコーエプソン株式会社 情報処理方法、情報処理装置及びプログラム
JP4942189B2 (ja) * 2007-05-11 2012-05-30 キヤノン株式会社 画像処理装置、画像処理方法、プログラムおよび記憶媒体
JP2009110486A (ja) * 2007-11-01 2009-05-21 Sony Corp 画像処理装置、画像処理方法および画像処理プログラム、並びに、撮像装置および撮像装置の制御方法
JP4769847B2 (ja) * 2008-06-25 2011-09-07 キヤノン株式会社 画像処理装置及び画像処理方法、プログラム、並びに、コンピュータ読み取り可能な記憶媒体
JP5127592B2 (ja) * 2008-06-25 2013-01-23 キヤノン株式会社 画像処理装置および画像処理方法、プログラム並びに、コンピュータ読み取り可能な記録媒体
JP2010010947A (ja) * 2008-06-25 2010-01-14 Canon Inc 画像処理装置、画像処理方法、プログラム、および記録媒体

Also Published As

Publication number Publication date
JP2012098980A (ja) 2012-05-24

Similar Documents

Publication Publication Date Title
JP5127592B2 (ja) 画像処理装置および画像処理方法、プログラム並びに、コンピュータ読み取り可能な記録媒体
EP1292108A2 (en) Image processing apparatus for print process of photographed image
JP2007074578A (ja) 画像処理装置、撮影装置、及びプログラム
US9723169B2 (en) Imaging apparatus and imaging apparatus control method
JP6406949B2 (ja) 画像処理装置及び画像処理方法
JP2015076782A (ja) 画像処理装置、その制御方法、および制御プログラム
JP2012175500A (ja) 画像処理方法、制御プログラムおよび画像処理装置
JP6278712B2 (ja) 撮像装置およびその制御方法
JP2014123881A (ja) 情報処理装置、情報処理方法、コンピュータプログラム
JP5609555B2 (ja) 画像処理装置、プログラムおよび画像処理方法
JP6417752B2 (ja) ネットワークカメラシステム、情報処理方法、プログラム
JP2008061209A (ja) 画像処理方法
JP5500048B2 (ja) 画像処理方法および画像処理装置
JP5830851B2 (ja) 画像処理装置、画像処理プログラムおよび画像処理方法
JP2001292449A (ja) 画像処理装置、画像処理方法、及び記録媒体
JP5644578B2 (ja) 画像処理装置、画像処理方法および画像処理のためのコンピュータープログラム
JP2015119403A (ja) 画像記録装置、画像記録方法およびプログラム並びに撮像装置
JP2006279460A (ja) 画像処理装置、印刷装置、画像処理方法、および、画像処理プログラム
JP2000216985A (ja) 電子透かし埋込み装置および方法,電子透かし埋込みプログラムを格納した記録媒体ならびにディジタル・カメラおよびその制御方法
US7609425B2 (en) Image data processing apparatus, method, storage medium and program
JP5625832B2 (ja) 画像処理装置および画像処理方法
JP2012146164A (ja) 画像処理方法、制御プログラムおよび画像処理装置
JP5195317B2 (ja) カメラ装置、及び撮影方法、撮影制御プログラム
JP2012099897A (ja) 画像処理方法および画像処理装置
JP2004222078A (ja) 画像処理装置、画像処理方法、およびそのプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140225

R150 Certificate of patent or registration of utility model

Ref document number: 5500048

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350