JP5499238B2 - Thermoelectric converter - Google Patents

Thermoelectric converter Download PDF

Info

Publication number
JP5499238B2
JP5499238B2 JP2009209785A JP2009209785A JP5499238B2 JP 5499238 B2 JP5499238 B2 JP 5499238B2 JP 2009209785 A JP2009209785 A JP 2009209785A JP 2009209785 A JP2009209785 A JP 2009209785A JP 5499238 B2 JP5499238 B2 JP 5499238B2
Authority
JP
Japan
Prior art keywords
heat
thermoelectric conversion
frame
heat conductor
side heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009209785A
Other languages
Japanese (ja)
Other versions
JP2010074164A (en
Inventor
克博 都能
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CBC EST CO., LTD.
Original Assignee
CBC EST CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CBC EST CO., LTD. filed Critical CBC EST CO., LTD.
Priority to JP2009209785A priority Critical patent/JP5499238B2/en
Publication of JP2010074164A publication Critical patent/JP2010074164A/en
Application granted granted Critical
Publication of JP5499238B2 publication Critical patent/JP5499238B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、例えば電子冷却装置などとして用いる熱電変換装置に係り、特に熱電変換素子を挟持した吸熱側熱導体と放熱側熱導体を剛性の高い枠体の両端部で一体に連結した構造の熱電変換装置に関するものである。  The present invention relates to a thermoelectric conversion device used as, for example, an electronic cooling device, and more particularly to a thermoelectric device having a structure in which a heat absorption side heat conductor sandwiching a thermoelectric conversion element and a heat radiation side heat conductor are integrally connected at both ends of a rigid frame. The present invention relates to a conversion device.

図14は、特許文献1などで従来提案された熱電変換装置の断面図である。この熱電変換装置は、熱電変換素子51を間にしてその上下方向(積層方向)にブロック状の吸熱側熱導体52と板状の放熱側熱導体53が配置されている。  FIG. 14 is a cross-sectional view of a thermoelectric conversion device conventionally proposed in Patent Document 1 and the like. In this thermoelectric conversion device, a block-like heat-absorption-side heat conductor 52 and a plate-like heat-dissipation-side heat conductor 53 are arranged in the vertical direction (stacking direction) with a thermoelectric conversion element 51 in between.

吸熱側熱導体52は合成樹脂製枠体54の周壁55の内側に嵌合され、枠体54の上端部56と吸熱側熱導体52のフランジ部57とが接着剤58で一体に連結されている。一方、放熱側熱導体53の外周部と、枠体54の周壁55より外側に延びた基端部59とが接着剤60で一体に連結されている。61は、熱電変換素子51と吸熱側熱導体52の間に介在された弾性薄膜である。  The heat absorption side heat conductor 52 is fitted inside the peripheral wall 55 of the synthetic resin frame body 54, and the upper end portion 56 of the frame body 54 and the flange portion 57 of the heat absorption side heat conductor 52 are integrally connected by an adhesive 58. Yes. On the other hand, the outer peripheral portion of the heat radiation side thermal conductor 53 and the base end portion 59 extending outward from the peripheral wall 55 of the frame body 54 are integrally connected by an adhesive 60. 61 is an elastic thin film interposed between the thermoelectric conversion element 51 and the heat absorption side heat conductor 52.

この熱電変換装置は、熱電変換素子51の上下に配置した吸熱側熱導体52と放熱側熱導体53に接合する形で前記熱電変換素子51を取り囲むように枠体54で密閉化することにより、熱電変換素子51を介在して前記熱導体52,53間をネジ締結しない構造になっている。  This thermoelectric conversion device is hermetically sealed with a frame 54 so as to surround the thermoelectric conversion element 51 so as to be joined to the heat absorption side heat conductor 52 and the heat dissipation side heat conductor 53 arranged above and below the thermoelectric conversion element 51. The thermoelectric conversion element 51 is interposed so that the heat conductors 52 and 53 are not screwed together.

特許第3241270号公報Japanese Patent No. 3241270

この構造の熱電変換装置の場合、吸熱側熱導体52の上方のフランジ部57は接着剤58によって枠体54の上端部56に固定されているが、それより下方の部分は枠体54の周壁55に囲まれているが枠体54には固定されていない。従って図14において上下方向の矢印62で示すように吸熱側熱導体52のフランジ部57より下方から放熱側熱導体53の上面までの間は、枠体54の内側にあって、枠体54に拘束されないで熱膨張、熱収縮を生じる部分である。  In the case of the thermoelectric conversion device having this structure, the upper flange portion 57 of the heat absorption side heat conductor 52 is fixed to the upper end portion 56 of the frame body 54 by the adhesive 58, but the lower portion is the peripheral wall of the frame body 54. Although it is surrounded by 55, it is not fixed to the frame body 54. Accordingly, as shown by the vertical arrow 62 in FIG. 14, the space from the lower side of the flange portion 57 of the heat absorption side heat conductor 52 to the upper surface of the heat dissipation side heat conductor 53 is inside the frame body 54, It is a part that causes thermal expansion and contraction without being constrained.

熱電変換素子51は、動作時に冷却域と発熱域の境界領域は熱電変換素子51の厚さ方向のほぼ中央部位63であるため、そのほぼ中央部位63を境にして熱膨張と熱収縮が発生する。  When the thermoelectric conversion element 51 is in operation, the boundary region between the cooling region and the heat generation region is the substantially central part 63 in the thickness direction of the thermoelectric conversion element 51. Therefore, thermal expansion and thermal contraction occur at the central part 63 as a boundary. To do.

そのため図14に示すように、片側の熱導体(この従来例では吸熱側熱導体52)だけが枠体54の内側に突出した構造では、前記冷却域と発熱域の両側で膨張・収縮の変移量の差が出て、収縮または膨張のどちらかが大きくなる(この従来例では、吸熱側熱導体5の方が突出しているから収縮の変移量が大きくなる)。
吸熱側熱導体52と放熱側熱導体53は熱電変換素子51を挟んだ形で枠体54に固定されているから、前述の膨張・収縮の変移量の差により熱電変換素子51に応力が加わり、そのため長期間優れた性能を維持することが出来ず、信頼性に問題がある。
For this reason, as shown in FIG. 14, in the structure in which only one side of the heat conductor (in this conventional example, the heat absorption side heat conductor 52) protrudes inside the frame body 54, the expansion / contraction changes on both sides of the cooling region and the heat generation region. There is a difference in amount, and either shrinkage or expansion becomes larger (in this conventional example, the heat-absorbing side heat conductor 5 protrudes, so the amount of change in shrinkage becomes larger).
Since the heat-absorption-side heat conductor 52 and the heat-dissipation-side heat conductor 53 are fixed to the frame body 54 with the thermoelectric conversion element 51 sandwiched therebetween, stress is applied to the thermoelectric conversion element 51 due to the difference in expansion / contraction displacement described above. Therefore, excellent performance cannot be maintained for a long time, and there is a problem in reliability.

本発明の目的は、このような従来技術の欠点を解消し、長期にわたって信頼性が確保できる熱電変換装置を提供することにある。  An object of the present invention is to provide a thermoelectric conversion device that can eliminate such drawbacks of the prior art and ensure reliability over a long period of time.

前記目的を達成するため請求項1に記載の発明は、熱電変換素子を挟持した吸熱側熱導体と放熱側熱導体を剛性の高い枠体の両端部で一体に連結した熱電変換装置において、
前記熱電変換素子の中央部位から前記吸熱側熱導体の前記枠体によって拘束されない部分の端面までの厚みDが、前記吸熱側熱導体と熱電変換素子と放熱側熱導体のうちで前記枠体によって拘束されない部分の積層部の厚みLの半分の+20%〜−40%の範囲に規制されていることを特徴とするものである。
In order to achieve the object, the invention according to claim 1 is a thermoelectric conversion device in which a heat absorption side heat conductor sandwiching a thermoelectric conversion element and a heat dissipation side heat conductor are integrally connected at both ends of a rigid frame body.
The thickness D from the central portion of the thermoelectric conversion element to the end surface of the portion of the heat absorption side thermal conductor that is not constrained by the frame is determined by the frame body among the heat absorption side thermal conductor, the thermoelectric conversion element, and the heat radiation side thermal conductor. It is characterized by being restricted to a range of + 20% to −40% which is half of the thickness L of the laminated portion of the unconstrained portion.

本発明は前述のように構成されており、長期にわたって信頼性が確保できる熱電変換装置を提供することができる。  This invention is comprised as mentioned above and can provide the thermoelectric conversion apparatus which can ensure reliability over a long period of time.

本発明は、吸熱側熱導体、熱電変換素子ならびに放熱側熱導体の積層体を剛性の枠体で囲んだ構造の熱電変換装置において、冷却の動作時に枠体の内部で発生する応力は、動作条件よっても異なるため、冷蔵や冷凍などの異なる条件下で、各種の試験やシュミレーションを重ねて、多種多様の条件下で長期にわたって信頼性が確保できる熱電変換装置を得ることができた。  The present invention relates to a thermoelectric conversion device having a structure in which a laminated body of a heat absorption side heat conductor, a thermoelectric conversion element and a heat radiation side heat conductor is surrounded by a rigid frame, and the stress generated inside the frame during the cooling operation is Since it differs depending on conditions, various tests and simulations were repeated under different conditions such as refrigeration and freezing, and a thermoelectric conversion device capable of ensuring reliability over a long period of time under various conditions could be obtained.

〔熱電変換装置の構成〕
次に本発明の実施例を図面とともに説明する。図1は本発明の第1実施例に係る熱電変換装置の概略構成図、図2はその熱電変換装置の熱電変換素子付近の拡大断面図である。
[Configuration of thermoelectric converter]
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of a thermoelectric conversion device according to a first embodiment of the present invention, and FIG. 2 is an enlarged cross-sectional view in the vicinity of a thermoelectric conversion element of the thermoelectric conversion device.

図1に示すように実施例に係る熱電変換装置は、ブロック状の吸熱側熱導体1と、熱電変換素子2と、板状の放熱側熱導体枠内凸部3と、板状の放熱側熱導体基部4が順次積層されている。前記放熱側熱導体枠内凸部3と放熱側熱導体基部4とで放熱側熱導体が構成されている。放熱側熱導体枠内凸部3と放熱側熱導体基部4を一体物で構成することもできるが、放熱側熱導体枠内凸部3と放熱側熱導体基部4を別体にした方が生産効率は良好で、安価である。  As shown in FIG. 1, the thermoelectric conversion device according to the embodiment includes a block-like heat absorption side heat conductor 1, a thermoelectric conversion element 2, a plate-like heat radiation side heat conductor frame protrusion 3, and a plate-like heat radiation side. The heat conductor base 4 is sequentially laminated. The heat radiation side heat conductor frame convex portion 3 and the heat radiation side heat conductor base 4 constitute a heat radiation side heat conductor. Although the heat radiation side heat conductor frame in-convex portion 3 and the heat radiation side heat conductor base portion 4 can be formed as a single unit, the heat radiation side heat conductor frame in-convex portion 3 and the heat radiation side heat conductor base portion 4 should be separated. Production efficiency is good and inexpensive.

5は剛性を有する合成樹脂製の枠体で、前記放熱側熱導体基部4の上面外周部に接着剤6を介して一体に接合する基端部7と、その基端部7の内周部から前記積層体の積層方向に沿って立設した周壁8と、その周壁8の上端部からさらに内側に狭まって前記吸熱側熱導体1の外周面に接着剤9を介して一体に接合する接合部10が連続して形成されて、全体的に階段状になっている。  Reference numeral 5 denotes a rigid synthetic resin frame body, a base end portion 7 that is integrally joined to the outer peripheral portion of the upper surface of the heat radiation side heat conductor base portion 4 via an adhesive 6, and an inner peripheral portion of the base end portion 7 A peripheral wall 8 standing in the stacking direction of the multilayer body, and a joint that is further narrowed inward from the upper end portion of the peripheral wall 8 and integrally joined to the outer peripheral surface of the heat-absorbing side heat conductor 1 via an adhesive 9 The part 10 is formed continuously and has a step shape as a whole.

吸熱側熱導体1の前記接合部10とは接合しない点線より下部側は枠体5の内側に向けて突出して、吸熱側熱導体枠内凸部11を構成している。枠体5の周壁8は放熱側熱導体枠内凸部3と熱電変換素子2と吸熱側熱導体枠内凸部11の外周面から離れて、空間部12を形成している。この空間部12は、動作時の熱の戻りを可及的に少なくするために形成されている。  A portion below the dotted line that is not joined to the joining portion 10 of the heat absorption side heat conductor 1 protrudes toward the inside of the frame 5 to constitute a heat absorption side heat conductor frame convex portion 11. The peripheral wall 8 of the frame 5 is spaced apart from the outer peripheral surfaces of the heat-radiating-side heat conductor frame convex portion 3, the thermoelectric conversion element 2, and the heat-absorbing-side heat conductor frame convex portion 11, thereby forming a space portion 12. This space portion 12 is formed to minimize the return of heat during operation.

このように熱電変換装置は、枠体5の基端部7を放熱側熱導体基部4の上面外周部に接着し、枠体5の接合部10を吸熱側熱導体1の外周面に接着することにより枠体5の内部が密閉化され、熱電変換素子2は放熱側熱導体枠内凸部3と吸熱側熱導体枠内凸部11により挟持された構造になっている。  As described above, the thermoelectric conversion device adheres the base end portion 7 of the frame body 5 to the outer peripheral surface of the upper surface of the heat dissipating side heat conductor base 4 and bonds the joint portion 10 of the frame body 5 to the outer peripheral surface of the heat absorbing side heat conductor 1. As a result, the inside of the frame 5 is hermetically sealed, and the thermoelectric conversion element 2 has a structure that is sandwiched between the heat-radiating-side thermal conductor frame convex portion 3 and the heat-absorbing-side thermal conductor frame convex portion 11.

熱電変換素子2と放熱側熱導体枠内凸部3と吸熱側熱導体枠内凸部11が枠体5によって拘束されない部分となっており、図1において吸熱側熱導体枠内凸部11の厚さをA、放熱側熱導体枠内凸部3の厚さをB、熱電変換素子2の厚さをCで表している。図中の符号21は装置動作時の温度境界線で、熱電変換素子2の厚さ方向のほぼ中央部位に相当する。  The thermoelectric conversion element 2, the heat radiation side heat conductor frame in-convex portion 3 and the heat absorption side heat conductor frame in the convex portion 11 are portions that are not restrained by the frame body 5, and in FIG. The thickness is represented by A, the thickness of the radiating side heat conductor frame protrusion 3 is represented by B, and the thickness of the thermoelectric conversion element 2 is represented by C. Reference numeral 21 in the figure denotes a temperature boundary line during operation of the apparatus, which corresponds to a substantially central portion in the thickness direction of the thermoelectric conversion element 2.

図2に示すように熱電変換素子2は、吸熱側セラミックス基板13と、ゴム弾性膜からなる応力緩和層14と、吸熱側電極15と、多数並設されたn形とp形の熱電半導体16と、放熱側電極17と、放熱側セラミックス基板18とから構成されている。  As shown in FIG. 2, the thermoelectric conversion element 2 includes a heat absorption side ceramic substrate 13, a stress relaxation layer 14 made of a rubber elastic film, a heat absorption side electrode 15, and a large number of n-type and p-type thermoelectric semiconductors 16 arranged in parallel. And the heat radiation side electrode 17 and the heat radiation side ceramic substrate 18.

この熱電変換素子2と前記吸熱側熱導体枠内凸部11の間には、ゴム弾性膜からなる応力緩和層19が設けられている。また、熱電変換素子2と前記放熱側熱導体枠内凸部3の間には、弾性体からなる接着剤20が設けられている。  A stress relaxation layer 19 made of a rubber elastic film is provided between the thermoelectric conversion element 2 and the protrusion 11 in the heat absorption side heat conductor frame. In addition, an adhesive 20 made of an elastic body is provided between the thermoelectric conversion element 2 and the projection 3 in the heat radiation side thermal conductor frame.

〔各部品の構成〕
図3は、各部品の材質と厚みと熱膨張係数をまとめて表した図である。図中のPPSはポリフェニレンサルファイド、GFはガラス繊維である。なお、放熱側熱導体枠内凸部3ならびに吸熱側熱導体枠内凸部11としては銅やマグネシウムなども使用可能であるが、加工性や価格などの点でアルミニウムが好適である。
本実施例では電気絶縁性のためにアルミナなどのセラミックス基板13、18を使用しているが、他の絶縁手段を利用してセラミックス基板を用いない場合もある。
[Configuration of each part]
FIG. 3 is a diagram collectively showing the material, thickness, and thermal expansion coefficient of each component. In the figure, PPS is polyphenylene sulfide, and GF is glass fiber. In addition, although copper, magnesium, etc. can be used as the heat-radiation-side heat conductor frame in-convex portion 3 and the heat-absorption-side heat conductor frame in-convex portion 11, aluminum is preferable in terms of workability and price.
In this embodiment, ceramic substrates 13 and 18 such as alumina are used for electrical insulation, but there are cases where ceramic substrates are not used by utilizing other insulating means.

熱電半導体16として用いられるビスマス−テルル系半導体には結晶体と焼結体のタイプがあり、結晶体は結晶軸の方向で膨張係数が異なる。性能の高いa軸方向を使用する。a軸方向の膨張係数は22×10−6/℃(図3では、これを22ppm/℃と表記している。他の部品においても同様に表記している)、a軸と直交する方向の膨張係数は16ppm/℃である。焼結体は結晶体を粉砕して焼き固めたもので、膨張係数は18ppm/℃である。The bismuth-tellurium-based semiconductor used as the thermoelectric semiconductor 16 includes a crystal body and a sintered body, and the crystal body has different expansion coefficients in the direction of the crystal axis. Use the high-performance a-axis direction. The expansion coefficient in the a-axis direction is 22 × 10 −6 / ° C. (in FIG. 3, this is expressed as 22 ppm / ° C., and the same applies to other components). The expansion coefficient is 16 ppm / ° C. The sintered body is obtained by pulverizing and solidifying a crystal body, and has an expansion coefficient of 18 ppm / ° C.

枠体5は、変形し難い剛性の高い材料を使用する必要がある。剛性が高い材料として、合成樹脂にガラス繊維などのフィラーを混入して、弾性率と機械的強度を高めた強化樹脂材料を使用している。一般にガラス繊維を30〜60重量%混入した合成樹脂は、ガラス繊維の物性が強く出るため10〜40ppm/℃程度の膨張係数となる。枠体5の材質としては、水分透過性が低く、機械的強度ならびに寸法精度が高く、耐熱性を有し、接着などの加工性に優れていることから、PPS(ポリフェニレンサルファイド樹脂)のGF(ガラス繊維)強化グレードが好適である。  The frame 5 needs to use a highly rigid material that is difficult to deform. As a material having high rigidity, a reinforced resin material in which a filler such as glass fiber is mixed into a synthetic resin to increase the elastic modulus and mechanical strength is used. Generally, a synthetic resin mixed with 30 to 60% by weight of glass fiber has an expansion coefficient of about 10 to 40 ppm / ° C. because the physical properties of the glass fiber are strong. As the material of the frame 5, since it has low moisture permeability, high mechanical strength and dimensional accuracy, heat resistance, and excellent workability such as adhesion, GF (polyphenylene sulfide resin) GF ( Glass fiber) reinforced grades are preferred.

このPPSにGFを混入したグレードは、GFが繊維のため、射出成形時の樹脂の流れ方向とその直交方向とで線膨張係数が異なる。GFの充填量にもよるが、射出成形時の樹脂の流れ方向で大体膨張係数は10〜20ppm/℃程度となる。流れ方向の値は50〜100%大きくて、枠体5の設計にもよるが、熱導体や熱電変換素子の積層方向(図1に示す上下方向)の膨張係数は20〜30ppm/℃程度である。  The grade in which GF is mixed in this PPS has different linear expansion coefficients between the flow direction of the resin at the time of injection molding and its orthogonal direction because GF is a fiber. Although depending on the amount of GF filled, the expansion coefficient is about 10 to 20 ppm / ° C. in the direction of resin flow during injection molding. Although the value in the flow direction is 50 to 100% larger and depends on the design of the frame body 5, the expansion coefficient in the stacking direction (vertical direction shown in FIG. 1) of the thermal conductor and thermoelectric conversion element is about 20 to 30 ppm / ° C. is there.

応力緩和層14、19にはシリコーンのゴム状弾性体が使用され、伸び率は100%以上である。通常、熱電変換装置に熱電変換素子2を実装する場合、図2に示すように弾性を有する接着剤20を界面に介在して組み立てる。この接着剤20の厚み変動が熱電変換装置の動作時に伸び縮みとして現れ、それに伴う応力の発生を吸収するために応力緩和層14、19が用いられている。各応力緩和層14、19は1層でも2層でもよく、応力緩和層の総合厚みは10〜30μmが適当で、30μmを超えると熱抵抗が増加して性能上好ましくない。  Silicone rubber-like elastic bodies are used for the stress relaxation layers 14 and 19, and the elongation percentage is 100% or more. Usually, when the thermoelectric conversion element 2 is mounted in a thermoelectric conversion device, as shown in FIG. 2, an adhesive 20 having elasticity is interposed at the interface and assembled. The thickness variation of the adhesive 20 appears as expansion and contraction during the operation of the thermoelectric conversion device, and the stress relaxation layers 14 and 19 are used to absorb the generation of stress associated therewith. Each of the stress relaxation layers 14 and 19 may be one layer or two layers. The total thickness of the stress relaxation layers is suitably 10 to 30 μm, and if it exceeds 30 μm, the thermal resistance increases, which is not preferable in terms of performance.

室温下(20〜25℃)で、この応力緩和層14、19を介して熱電変換装置を組み立てる。前述のように枠体5で固定した後、熱電変換装置の動作時に生じる各部品の膨張または収縮に伴う変移をこの応力緩和層14、19で吸収する。応力緩和層14、19で熱伝導性能を落とさず安定して長期間吸収できる変移量は膜の±10%程度であることが分かり、従って吸収できる変位量は±3μm前後となる。  The thermoelectric conversion device is assembled through the stress relaxation layers 14 and 19 at room temperature (20 to 25 ° C.). After being fixed by the frame 5 as described above, the stress relaxation layers 14 and 19 absorb the transition accompanying the expansion or contraction of each component that occurs during the operation of the thermoelectric converter. It can be seen that the amount of displacement that can be absorbed stably for a long period of time without degrading the heat conduction performance by the stress relaxation layers 14 and 19 is about ± 10% of the film, and therefore the amount of displacement that can be absorbed is about ± 3 μm.

本実施例で用いる熱導体と応力緩和層の材質と熱伝導度を示せば下記の通りである。
材 質 熱伝導度(W/m・K)
熱導体 アルミニウム 120〜130
応力緩和層 シリコーン弾性体 1
The material and thermal conductivity of the thermal conductor and stress relaxation layer used in this example are as follows.
Material Thermal conductivity (W / m · K)
Thermal conductor Aluminum 120-130
Stress relaxation layer Silicone elastic body 1

〔熱電変換装置の動作条件〕
次に熱電変換装置の動作条件について説明する。
[Operating conditions of thermoelectric converter]
Next, the operating conditions of the thermoelectric converter will be described.

一般的な冷蔵庫の条件(a:冷蔵庫動作条件)は、外気25℃のときに庫内を5℃に冷却する条件であり、このとき熱電変換装置の吸熱側熱導体1は0℃前後、放熱側熱導体基部4は40℃前後となり、吸熱側熱導体枠内凸部11においても0℃前後、放熱側熱導体枠内凸部3においても40℃前後になっている。そしてこの温度の中間領域は図1に示すように熱電変換素子2の厚さ方向のほぼ中央の温度境界線21であり、それを境にして吸熱側が低温、放熱側が高温となる。
また、外気が低くなったときの動作条件(b:冷蔵庫外気低温動作条件)は、外気10℃で庫内を5℃に維持する場合で、吸熱側熱導体枠内凸部11は0℃程度、放熱側熱導体枠内凸部3は15℃程度となる。
General refrigerator conditions (a: refrigerator operating conditions) are conditions for cooling the interior to 5 ° C. when the outside air is 25 ° C. At this time, the heat-absorbing side heat conductor 1 of the thermoelectric conversion device is around 0 ° C. and dissipates heat. The side heat conductor base portion 4 is around 40 ° C., the heat absorption side heat conductor frame convex portion 11 is also around 0 ° C., and the heat radiation side heat conductor frame convex portion 3 is also around 40 ° C. As shown in FIG. 1, the intermediate region of the temperature is a temperature boundary line 21 at the center of the thermoelectric conversion element 2 in the thickness direction, and the heat absorption side becomes a low temperature and the heat dissipation side becomes a high temperature.
In addition, the operating condition when the outside air is low (b: the low temperature operating condition of the refrigerator outside air) is the case where the outside air is kept at 10 ° C. and the inside of the cabinet is kept at 5 ° C., and the convex portion 11 on the heat absorption side heat conductor frame is about 0 ° C. The heat-radiating-side heat conductor frame protrusion 3 is about 15 ° C.

冷凍条件(c:冷凍庫動作条件)で外気25℃のときに庫内を−18℃に維持する場合、吸熱側熱導体枠内凸部11は−23℃程度、放熱側熱導体枠内凸部3は50℃程度となる。
図4は、これらの動作条件と各部品の温度をまとめて表した図である。
When the interior is maintained at −18 ° C. when the outside air is 25 ° C. under freezing conditions (c: freezer operating conditions), the heat-absorbing side heat conductor frame convex portion 11 is about −23 ° C., and the heat radiation side heat conductor frame convex portion. 3 is about 50 ° C.
FIG. 4 is a diagram summarizing these operating conditions and the temperature of each component.

〔変移量の計算方法〕
熱電変換装置は、常温(25℃)で組み立てるので、その状態を基準に冷却、加温動作時の内部の膨張・収縮による変移量を計算する。
変移量は、部品の熱膨張係数と、当該部品の積層方向(変移方向)の厚みと、部品の動作時の温度から25℃を引いた温度差に基づいて、下式により計算する。
変移量=〔部品の熱膨張係数〕×〔部品の変移方向の厚み〕×〔温度差(到達温度−25℃)〕
枠体5の変移量は、吸熱側熱導体1ならびに放熱側熱導体基部4と強固に接合しているので、ほぼ同等温度と見てよい。また、冷却と加温の中間温度領域は、前述のように熱電変換素子2の厚み方向の中央部位とした。
[Calculation method of displacement]
Since the thermoelectric converter is assembled at normal temperature (25 ° C.), the amount of change due to internal expansion / contraction during cooling and heating operations is calculated based on the state.
The amount of displacement is calculated by the following equation based on the thermal expansion coefficient of the component, the thickness of the component in the stacking direction (transition direction), and the temperature difference obtained by subtracting 25 ° C. from the temperature during operation of the component.
Displacement = [Thermal expansion coefficient of the part] × [Thickness of the part in the transition direction] × [Temperature difference (attainable temperature−25 ° C.)]
Since the amount of change of the frame 5 is firmly joined to the heat-absorbing-side heat conductor 1 and the heat-dissipating-side heat conductor base 4, it can be regarded as substantially the same temperature. In addition, the intermediate temperature region between cooling and heating is the central portion in the thickness direction of the thermoelectric conversion element 2 as described above.

枠体5との接着で動きが拘束されている部分よりも内側にある構成部品の動作時における膨張・収縮の変移量と、枠体5のL部(図1参照)の膨張・収縮の変移量を求め、その差し引きから放熱側熱導体枠内凸部3と吸熱側熱導体枠内凸部11間に挟持されている熱電変換素子2にかかる応力を計算した。  The amount of expansion / contraction change during operation of a component located inside the portion where the movement is restricted by adhesion to the frame 5 and the expansion / contraction change of the L part (see FIG. 1) of the frame 5 The amount was calculated, and the stress applied to the thermoelectric conversion element 2 sandwiched between the heat-radiation-side heat conductor frame convex portion 3 and the heat-absorption-side heat conductor frame convex portion 11 was calculated from the subtraction.

〔変移量の具体的な計算例〕
a:冷蔵庫条件(吸熱側熱導体枠内凸部11:0℃、放熱側熱導体枠内凸部3:40℃)
熱電変換素子2の厚み方向の中央部位が冷却と加温の境界領域となり、熱電変換素子2の上下両端部が0℃/40℃とみなせる。従って、吸熱側熱導体枠内凸部11、吸熱側セラミックス基板13ならびに吸熱側電極15は0℃、放熱側電極17、放熱側セラミックス基板18ならびに放熱側熱導体枠内凸部3は40℃として計算する。
[Specific example of calculation of displacement]
a: Refrigerator condition (heat-absorbing side heat conductor frame convex part 11: 0 ° C., heat radiation side heat conductor frame convex part 3: 40 ° C.)
The central portion in the thickness direction of the thermoelectric conversion element 2 becomes a boundary region between cooling and heating, and the upper and lower ends of the thermoelectric conversion element 2 can be regarded as 0 ° C./40° C. Therefore, the heat-absorbing-side heat conductor frame convex portion 11, the heat-absorbing-side ceramic substrate 13 and the heat-absorbing-side electrode 15 are 0 ° C., and the heat-dissipation side electrode 17, the heat-dissipation-side ceramic substrate 18 and the heat-radiation-side heat conductor frame convex portion 3 are 40 ° C. calculate.

枠体内部の変移量Xは、各部品の変移量を足し合わせたものとなる。枠体のL部の変移量Yは、下式のように枠体の積層方向の厚みを2分割して計算したY1とY2を足し合わせたものとなる(Y=Y1+Y2)。
吸熱側枠体部分の変移量Y1=〔枠体の熱膨張係数〕×〔枠体の厚み1/2〕×〔吸熱側の温度差(動作部温度−25℃)〕
加温側枠体部分の変移量Y2=〔枠体の熱膨張係数〕×〔枠体の厚み1/2〕×〔加温側の温度差(動作部温度−25℃)〕
そして前記〔内部の変移量X〕から〔枠体の変移量Y〕を差し引いた〔トータル変移量Z〕を計算し、その計算結果の値がマイナスなら熱電変換素子に対して引き剥がしの応力が発生し、計算結果の値がプラスなら熱電変換素子に対して圧縮の応力が発生することになる。
〔トータル変移量Z〕=〔内部の変移量X〕−〔枠体の変移量Y〕
The amount of change X inside the frame is the sum of the amount of change of each part. The amount of shift Y of the L part of the frame is obtained by adding Y1 and Y2 calculated by dividing the thickness of the frame in the stacking direction into two (Y = Y1 + Y2).
Displacement amount Y1 of the endothermic frame portion = [thermal expansion coefficient of the frame body] × [thickness 1/2 of the frame body] × [temperature difference on the endothermic side (operation part temperature−25 ° C.)]
Heating side frame portion displacement amount Y2 = [thermal expansion coefficient of frame body] × [frame body thickness ½] × [temperature difference on heating side (operation part temperature−25 ° C.)]
Then, the [total shift amount Z] obtained by subtracting the [frame shift amount Y] from the [internal shift amount X] is calculated. If the value of the calculation result is negative, the peeling stress is applied to the thermoelectric conversion element. If the value of the calculation result is positive, a compressive stress is generated on the thermoelectric conversion element.
[Total shift amount Z] = [Internal shift amount X]-[Frame shift amount Y]

このトータル変移量Zが、応力吸収のために設けている応力緩和層14,19による吸収範囲内であることが必要となる。
熱電変換装置の組み立て状態から前記内部の変移量Xの吸収量は、伝熱性能の観点から応力緩和層の膜厚の±10%程度であり、実際の厚みに換算すると±3μm程度である。
This total shift amount Z needs to be within the absorption range of the stress relaxation layers 14 and 19 provided for stress absorption.
From the assembly state of the thermoelectric conversion device, the amount of absorption of the internal displacement amount X is about ± 10% of the thickness of the stress relaxation layer from the viewpoint of heat transfer performance, and is about ± 3 μm when converted to the actual thickness.

ガラス繊維を混入した枠体の膨張係数は繊維の流れ方向で異なるが、ガラス繊維の充填量や充填材形状から10〜40ppm/℃程度の範囲となる。そして吸水率や機械的強度、耐熱性から最適と考えられるガラス繊維40重量%のPPSの場合、枠体構造から水平方向と垂直方向が組み合わさるため20〜30ppm/℃程度と考えられる。  Although the expansion coefficient of the frame containing glass fibers varies depending on the fiber flow direction, it is in the range of about 10 to 40 ppm / ° C. depending on the glass fiber filling amount and filler shape. And in the case of PPS with 40% by weight of glass fiber, which is considered optimal from the water absorption rate, mechanical strength, and heat resistance, it is considered to be about 20 to 30 ppm / ° C. because the horizontal direction and the vertical direction are combined from the frame structure.

吸熱側熱導体ならびに放熱側熱導体の枠内凸部の寸法構成は、図5〜図7に示すような構成が考えられる。積層方向の厚みがLであり、図5は熱導体Aの厚みが熱導体Bに比べて大きい場合、図6は熱導体Aと熱導体Bの厚みがほぼ等しい場合、図7は熱導体Bの厚みが熱導体Aに比べて大きい場合を示している。熱電変換素子Cは、通常2.0〜4.5mmであり、ここでは一般的な素子厚みとして4mmで計算する。  As the dimensional configuration of the in-frame convex portions of the heat absorption side heat conductor and the heat radiation side heat conductor, configurations as shown in FIGS. FIG. 5 shows a case where the thickness of the heat conductor A is larger than that of the heat conductor B, FIG. 6 shows a case where the heat conductor A and the heat conductor B are substantially equal, and FIG. The case where the thickness of is larger than that of the heat conductor A is shown. The thermoelectric conversion element C is usually 2.0 to 4.5 mm, and here, the calculation is made with 4 mm as a general element thickness.

上面の熱導体を吸熱側として考えた場合、温度境界線より上側が収縮し、下側が膨張する。熱電変換装置は対称的な構造であり、中央部位を境にして膨張と収縮が発生するため、変移は打ち消されると見てよい。上下の熱導体の厚みとその比率が熱電変換素子に発生する応力に強く影響すると考えられる。  When the heat conductor on the upper surface is considered as the heat absorption side, the upper side from the temperature boundary line contracts and the lower side expands. The thermoelectric converter has a symmetrical structure, and expansion and contraction occur at the central part, so it can be seen that the transition is canceled out. It is considered that the thickness and ratio of the upper and lower thermal conductors strongly influence the stress generated in the thermoelectric conversion element.

一方、熱電変換素子の装置内組み込みに際しては、発生する応力緩和の目的で、熱電変換素子をゴム弾性を有する熱伝導性材料を介して組み込む。この熱伝導性材料は、厚さが厚すぎると熱抵抗となるためできるだけ薄い10〜20μm程度の厚さとし、この弾性薄膜で吸収できる変移量は1μm以下程度である。これ以上の変移の場合、伝熱性能に影響がでたり、熱電変換素子に応力が大きく加わったりして、性能を急速に劣化させる。  On the other hand, when the thermoelectric conversion element is incorporated in the apparatus, the thermoelectric conversion element is incorporated via a heat conductive material having rubber elasticity for the purpose of relaxing the generated stress. Since this thermal conductive material has a thermal resistance when it is too thick, it is as thin as possible about 10 to 20 μm, and the amount of transition that can be absorbed by this elastic thin film is about 1 μm or less. In the case of a transition beyond this, the heat transfer performance is affected, or a large stress is applied to the thermoelectric conversion element, causing the performance to deteriorate rapidly.

このようなことから、熱電変換装置の信頼性を長期的に維持するために必要となる積層方向の変移量は±3μm程度の範囲に収める必要がある。  For this reason, the amount of change in the stacking direction necessary for maintaining the reliability of the thermoelectric converter for a long period of time must be within a range of about ± 3 μm.

機械的な外力から熱電変換素子を保護することと、防湿の目的で枠体を用いて外周を囲む構造において、内部に設置された熱電変換素子への応力を低減するためには、枠体の膨張・収縮による変移と内部に構成部材の変移がほぼ等しく変移することが望ましい。そのために、内部の熱導体の厚みと上下比率を適正な範囲に収め、枠体の積層方向の膨張係数と内部の熱導体の膨張係数を合わせることで、信頼性の高い熱電変換装置が得られることを計算と各種の試験を繰り返すことにより確認した。  In order to protect the thermoelectric conversion element from mechanical external force and to reduce the stress on the thermoelectric conversion element installed inside in the structure surrounding the outer periphery using the frame for the purpose of moisture prevention, It is desirable that the displacement due to expansion / contraction and the displacement of the constituent members are substantially equal. Therefore, a highly reliable thermoelectric conversion device can be obtained by keeping the thickness and vertical ratio of the internal heat conductor within an appropriate range and combining the expansion coefficient in the stacking direction of the frame and the expansion coefficient of the internal heat conductor. This was confirmed by repeating calculations and various tests.

すなわち、
(a)枠体の積層方向の膨張係数を、20〜30ppm/℃とする。
(b)内部の枠体に拘束されない積層部の厚みLは25mm以下、好ましくは15mm以下とする。
(c)熱電変換素子の中央部位から吸熱側熱導体の端面までの厚みDは、積層部厚みLの半分(1/2L)の+20%〜−40%の範囲とする。
(d)枠体の積層方向の膨張係数と、内部熱導体の膨張係数をほぼ等しくする。
ことである。
That is,
(A) The expansion coefficient in the stacking direction of the frame is set to 20 to 30 ppm / ° C.
(B) The thickness L of the laminated portion not constrained by the internal frame is 25 mm or less, preferably 15 mm or less.
(C) The thickness D from the central portion of the thermoelectric conversion element to the end face of the heat absorption side heat conductor is in the range of + 20% to −40% of the half (1/2 L) of the laminated portion thickness L.
(D) The expansion coefficient of the frame in the stacking direction is made substantially equal to the expansion coefficient of the internal heat conductor.
That is.

次に、変移量の検討結果について説明する。
熱電変換装置の動作条件:外気25℃、庫内0℃。熱導体A(吸熱側熱導体枠内凸部11)0℃、熱導体B(放熱側熱導体枠内凸部3)40℃とする
前記熱導体A部(吸熱側熱導体枠内凸部11)と熱導体B部(放熱側熱導体枠内凸部3)の寸法条件を種々変えて変移量を求めた。
前記熱導体A部(吸熱側熱導体枠内凸部11)と全厚みLの半分の比率K=(A+1/2C)/(L/2)−1と変移量の関係を求めた。
Next, the examination result of the shift amount will be described.
Operating conditions of thermoelectric converter: outside air 25 ° C, inside chamber 0 ° C. Heat conductor A (heat-absorbing side heat conductor frame convex portion 11) 0 ° C., heat conductor B (heat radiation side heat conductor frame convex portion 3) 40 ° C. Heat conductor A portion (heat absorption side heat conductor frame convex portion 11) ) And the heat conductor B (the heat-radiating-side heat conductor frame protrusion 3) were variously changed to obtain the amount of displacement.
The relationship between the heat conductor A portion (the heat absorption side heat conductor frame convex portion 11) and the half ratio K = (A + 1 / 2C) / (L / 2) -1 of the total thickness L was determined.

これらの検討結果を示したのが図8ないし図13である。図8と図9は各種条件での厚みと変移量を示し、図10ないし図13は全厚みLの条件を変えた場合の前記比率Kと変移量との関係を示している。図8ないし図13の図中のα2枠17は枠体として膨張係数が17ppm/℃の枠体、α2枠20は枠体として膨張係数が20ppm/℃の枠体、α2枠23は枠体として膨張係数が23ppm/℃の枠体を使用した場合を示している。また、図10ないし図13の図に示している枠線は、変移量が目標としている±3μmの範囲を示している。図8および図9の欄の上に付した丸付きの数字と、図10ないし図13の図中に付した丸付きの数字が対応している。  These examination results are shown in FIGS. FIGS. 8 and 9 show the thickness and shift amount under various conditions, and FIGS. 10 to 13 show the relationship between the ratio K and the shift amount when the condition of the total thickness L is changed. 8 to 13, the α2 frame 17 is a frame body having an expansion coefficient of 17 ppm / ° C, the α2 frame 20 is a frame body having an expansion coefficient of 20 ppm / ° C, and the α2 frame 23 is a frame body. This shows a case where a frame having an expansion coefficient of 23 ppm / ° C. is used. Further, the frame lines shown in FIGS. 10 to 13 indicate the range of ± 3 μm targeted for the shift amount. The numbers with circles on the columns of FIGS. 8 and 9 correspond to the numbers with circles in FIGS. 10 to 13.

これらの結果から明らかなように、変移量を目標としている±3μmの範囲内(枠内)に収めるためには、熱電変換素子の中央部位から吸熱側熱導体の枠体によって拘束されない部分の端面までの厚みD(図1参照)を、吸熱側熱導体と熱電変換素子と放熱側熱導体のうちで枠体によって拘束されない部分の積層部の厚みL(図1参照)の半分の+20%〜−40%の範囲、すなわち)図8ないし図13において比率Kが+20%〜−40%の範囲に入るように規制する必要がある。  As is clear from these results, the end face of the portion that is not constrained from the central portion of the thermoelectric conversion element by the frame of the heat absorption side heat conductor in order to be within the range of ± 3 μm that is targeted for the shift amount (within the frame). Thickness D (see FIG. 1) is + 20% to half of the thickness L (see FIG. 1) of the layered portion of the heat-absorbing-side heat conductor, thermoelectric conversion element, and heat-radiating-side heat conductor that is not constrained by the frame. In the range of −40%, that is, in FIG. 8 to FIG. 13, it is necessary to regulate the ratio K to be in the range of + 20% to −40%.

なお、図13に示すように、吸熱側熱導体と熱電変換素子と放熱側熱導体のうちで枠体によって拘束されない部分の積層部の厚みLが29mmと厚くなることは、実質的には吸熱側熱導体あるいは(ならびに)放熱側熱導体の厚みが厚くなり、その結果、±3μmの範囲が狭くなり、製作上の寸法誤差などによって前記範囲から外れ易くなるため、前記積層部の厚みLは25mm以下に規制した方がよい。  As shown in FIG. 13, the thickness L of the laminated portion of the heat absorption side heat conductor, the thermoelectric conversion element, and the heat radiation side heat conductor, which is not constrained by the frame, is as thick as 29 mm. Since the thickness of the side heat conductor or (and) the heat radiation side heat conductor is increased, as a result, the range of ± 3 μm is narrowed and is easily deviated from the above range due to dimensional errors in manufacturing. It is better to regulate to 25 mm or less.

図15は、本発明の第2実施例に係る熱電変換装置の一部を断面にした正面図である。この実施例で前記図1に示す第1実施例と相違する点は、次の通りである。  FIG. 15 is a front view, partly in section, of a thermoelectric conversion device according to a second embodiment of the present invention. This embodiment is different from the first embodiment shown in FIG. 1 as follows.

第1の相違点は、枠体5をブロック状吸熱側熱導体1の外周部に一体成形した点である。そのために吸熱側熱導体1の外周には1本の溝が形成され、枠体5の射出成形時に前記溝内に枠体用の樹脂が入り込んで、環状の突出部22を形成している。従って、吸熱側熱導体1の溝と枠体5の突出部22との係合部(図中の点線部分)より下方の吸熱側熱導体1の部分が、吸熱側熱導体枠内凸部11となる。
第2の相違点は、枠体5の基端部7にネジ孔23が形成され、そのネジ孔23に差し込んだネジ(図示せず)により、放熱側熱導体基部4の外周部と枠体5の基端部7が一体に連結されている。
第3の相違点は、放熱側熱導体基部4の下方に放熱フィン24が一体に取り付けられている。
The first difference is that the frame 5 is integrally formed on the outer peripheral portion of the block-like heat absorption side heat conductor 1. Therefore, one groove is formed on the outer periphery of the heat absorption side heat conductor 1, and the resin for the frame body enters the groove during the injection molding of the frame body 5, thereby forming the annular protrusion 22. Therefore, the portion of the heat absorption side heat conductor 1 below the engagement portion (dotted line portion in the figure) between the groove of the heat absorption side heat conductor 1 and the protrusion 22 of the frame 5 is the protrusion 11 in the heat absorption side heat conductor frame. It becomes.
The second difference is that a screw hole 23 is formed in the base end portion 7 of the frame body 5, and a screw (not shown) inserted into the screw hole 23 causes the outer peripheral portion of the heat radiation side heat conductor base portion 4 and the frame body. 5 base end portions 7 are integrally connected.
The third difference is that the heat radiation fins 24 are integrally attached below the heat radiation side heat conductor base 4.

図16は、本発明の第3実施例に係る熱電変換装置の一部を断面にした正面図である。この実施例で前記図15に示す第2実施例と相違する点は、次の通りである。  FIG. 16 is a front view, partly in section, of a thermoelectric conversion device according to a third embodiment of the present invention. This embodiment is different from the second embodiment shown in FIG. 15 as follows.

第1の相違点は、金属製の板の中央部分を上方に絞り加工して放熱側熱導体枠内凸部3を形成し、それの外周部を放熱側熱導体基部4としたものである。従って本実施例では、放熱側熱導体枠内凸部3と放熱側熱導体基部4が一体物となっている。
第2の相違点は、前記放熱側熱導体枠内凸部3と放熱側熱導体基部4の下部に、水冷ジャケット25が取り付けられている。水冷ジャケット25の前記放熱側熱導体枠内凸部3と対向する部分には、平面から見て蛇行状に延びた流路26が形成され、この水冷ジャケット25内に冷却水27が流通される。
The first difference is that the center portion of the metal plate is drawn upward to form the heat radiation side heat conductor frame convex portion 3, and the outer peripheral portion thereof is the heat radiation side heat conductor base 4. . Accordingly, in this embodiment, the heat radiation side heat conductor frame convex portion 3 and the heat radiation side heat conductor base 4 are integrated.
The second difference is that a water-cooling jacket 25 is attached to the lower part of the heat-radiating-side heat conductor frame convex portion 3 and the heat-radiating-side heat conductor base 4. A flow path 26 extending in a meandering manner as viewed from above is formed in a portion of the water cooling jacket 25 facing the protrusion 3 in the heat radiation side heat conductor frame, and the cooling water 27 is circulated in the water cooling jacket 25. .

図17は本発明の第4実施例に係る熱電変換装置の一部を断面にした正面図、図18は比較例に係る熱電変換装置の一部を断面にした正面図である。  FIG. 17 is a front view in which a part of the thermoelectric conversion device according to the fourth embodiment of the present invention is sectioned, and FIG. 18 is a front view in which a part of the thermoelectric conversion device according to the comparative example is sectioned.

通常、熱電変換装置の外周部は断熱層28で覆われている。そして放熱側熱導体基部4の外周部と枠体5の基端部7をネジなどで機械的に連結した場合に、枠体5の基端部7と断熱層28の下面との間に必然的に隙間29が形成される。また、放熱側熱導体基部4の外周部と枠体5の基端部7を接着剤で連結した場合も、部品寸法のバラツキあるいは取り付け位置のバラツキなどによって、枠体5の基端部7と断熱層28の下面との間に隙間29が形成される。  Usually, the outer peripheral portion of the thermoelectric converter is covered with a heat insulating layer 28. When the outer peripheral portion of the heat radiation side heat conductor base portion 4 and the base end portion 7 of the frame body 5 are mechanically connected with screws or the like, it is necessarily between the base end portion 7 of the frame body 5 and the lower surface of the heat insulating layer 28. Thus, a gap 29 is formed. Further, when the outer peripheral portion of the heat radiation side heat conductor base portion 4 and the base end portion 7 of the frame body 5 are connected by an adhesive, the base end portion 7 of the frame body 5 and A gap 29 is formed between the lower surface of the heat insulating layer 28.

このような状況下において、図18に示すように、放熱側熱導体枠内凸部3が無くて、板状の放熱側熱導体基部4の上に直接熱電変換素子2を載置した熱電変換装置の場合、あるいは放熱側熱導体枠内凸部3を用いても、その厚さが極めて薄い熱電変換装置の場合、熱電変換素子2の厚さ方向の中央部位に位置する温度境界線21が、断熱層28の下面よりも下側となり、そのために吸熱側熱導体枠内凸部11の下端部が前記隙間29の近くに位置する。
そのため枠体5の周壁8を通しての隙間29からの熱の洩れがあり、熱電変換装置の性能の低下を招く。
Under such circumstances, as shown in FIG. 18, the thermoelectric conversion in which the thermoelectric conversion element 2 is placed directly on the plate-like heat radiation side heat conductor base 4 without the heat radiation side heat conductor frame convex portion 3. In the case of a device, or in the case of a thermoelectric conversion device having a very thin thickness even if the heat-radiating-side heat conductor frame convex portion 3 is used, the temperature boundary line 21 located at the central portion in the thickness direction of the thermoelectric conversion element 2 The lower end portion of the heat-absorbing-side heat conductor frame convex portion 11 is located near the gap 29 because it is below the lower surface of the heat insulating layer 28.
Therefore, there is heat leakage from the gap 29 through the peripheral wall 8 of the frame body 5, which causes a decrease in performance of the thermoelectric conversion device.

これに対して図17に示すように、熱電変換素子2の温度境界線21(厚さ方向の中央部位)が断熱層28の下面よりも上側、すなわち温度境界線21(厚さ方向の中央部位)が断熱層28の中にあるようにすれば、吸熱側領域が断熱層28によって完全に遮断され、隙間29からの熱の洩れが阻止でき、熱電変換装置の性能を高く維持することができる。  On the other hand, as shown in FIG. 17, the temperature boundary line 21 (central portion in the thickness direction) of the thermoelectric conversion element 2 is above the lower surface of the heat insulating layer 28, that is, the temperature boundary line 21 (central portion in the thickness direction). ) Is in the heat insulating layer 28, the heat absorption side region is completely blocked by the heat insulating layer 28, heat leakage from the gap 29 can be prevented, and the performance of the thermoelectric conversion device can be kept high. .

このように熱電変換素子2の温度境界線21(厚さ方向の中央部位)を断熱層28の下面よりも上側に持っていくためには、或る程度の厚さを有する放熱側熱導体枠内凸部3が必要であり、本発明者の種々の実験結果から前記積層部の厚みLを8mm以上にする必要があることが分かった。
このように隙間29からの熱の洩れを阻止するとともに、前記変移量を±3μm以内に確実に収めるために、前記積層部の厚みLを8〜25mm、好ましくは8〜15mmの範囲内に規制するとよい。
Thus, in order to bring the temperature boundary line 21 (the central portion in the thickness direction) of the thermoelectric conversion element 2 to the upper side of the lower surface of the heat insulating layer 28, a heat radiation side heat conductor frame having a certain thickness is provided. It was found that the inner convex portion 3 is necessary, and the thickness L of the laminated portion needs to be 8 mm or more from various experimental results of the present inventors.
As described above, in order to prevent the heat leakage from the gap 29 and to ensure that the amount of change is within ± 3 μm, the thickness L of the laminated portion is restricted within the range of 8 to 25 mm, preferably 8 to 15 mm. Good.

なお、図17ならびに図18において、符号30は、吸熱側熱導体1に接触する吸熱側補助熱導体である。
前述した熱電変換素子2の厚さ方向中央の温度境界線21を断熱層28の内側に位置する構成は、前記第1〜3実施例においても同様に適用できることである。
また前記第2〜4実施例において、熱電変換素子2の中央部位から吸熱側熱導体1の枠体5によって拘束されない部分の端面までの厚みD1と、熱電変換素子2の中央部位から放熱側熱導体の枠体5によって拘束されない部分の端面までの厚みD2は、D1≒D2となしている。
In FIG. 17 and FIG. 18, reference numeral 30 denotes a heat absorption side auxiliary heat conductor that contacts the heat absorption side heat conductor 1.
The above-described configuration in which the temperature boundary line 21 at the center in the thickness direction of the thermoelectric conversion element 2 is located inside the heat insulating layer 28 is also applicable to the first to third embodiments.
Moreover, in the said 2nd-4th Example, thickness D1 from the center site | part of the thermoelectric conversion element 2 to the end surface of the part which is not restrained by the frame 5 of the heat absorption side heat conductor 1, and the heat radiation side heat from the center site | part of the thermoelectric conversion element 2 The thickness D2 up to the end face of the portion not constrained by the conductor frame 5 is D1≈D2.

本発明の第1実施例に係る熱電変換装置の断面図である。It is sectional drawing of the thermoelectric conversion apparatus which concerns on 1st Example of this invention. その熱電変換装置の熱電変換素子付近の拡大断面図である。It is an expanded sectional view near the thermoelectric conversion element of the thermoelectric conversion device. 熱電変換装置を構成する各部品の材質と厚みと熱膨張係数をまとめて表した図である。It is the figure which represented collectively the material, thickness, and thermal expansion coefficient of each component which comprise a thermoelectric conversion apparatus. 熱電変換装置の動作条件と各部品の温度をまとめて表した図である。It is the figure which represented collectively the operating condition of the thermoelectric converter, and the temperature of each component. 吸熱側熱導体ならびに放熱側熱導体の枠内凸部の寸法構成を示す図である。It is a figure which shows the dimension structure of the convex part in a frame of a heat absorption side heat conductor and a heat radiation side heat conductor. 吸熱側熱導体ならびに放熱側熱導体の枠内凸部の寸法構成を示す図である。It is a figure which shows the dimension structure of the convex part in a frame of a heat absorption side heat conductor and a heat radiation side heat conductor. 吸熱側熱導体ならびに放熱側熱導体の枠内凸部の寸法構成を示す図である。It is a figure which shows the dimension structure of the convex part in a frame of a heat absorption side heat conductor and a heat radiation side heat conductor. 各種条件での厚みと変移量をまとめて示した図である。It is the figure which showed collectively the thickness and the variation | change_quantity in various conditions. 各種条件での厚みと変移量をまとめて示した図である。It is the figure which showed collectively the thickness and the variation | change_quantity in various conditions. 全厚みLの条件を変えた場合の比率Kと変移量との関係を示した特性図である。It is the characteristic view which showed the relationship between the ratio K at the time of changing the conditions of the total thickness L, and the amount of displacement. 全厚みLの条件を変えた場合の比率Kと変移量との関係を示した特性図である。It is the characteristic view which showed the relationship between the ratio K at the time of changing the conditions of the total thickness L, and the amount of displacement. 全厚みLの条件を変えた場合の比率Kと変移量との関係を示した特性図である。It is the characteristic view which showed the relationship between the ratio K at the time of changing the conditions of the total thickness L, and the amount of displacement. 全厚みLの条件を変えた場合の比率Kと変移量との関係を示した特性図である。It is the characteristic view which showed the relationship between the ratio K at the time of changing the conditions of the total thickness L, and the amount of displacement. 従来の熱電変換装置の断面図である。It is sectional drawing of the conventional thermoelectric conversion apparatus. 本発明の第2実施例に係る熱電変換装置の一部を断面にした正面図である。It is the front view which made a part of thermoelectric conversion device concerning the 2nd example of the present invention a section. 本発明の第3実施例に係る熱電変換装置の一部を断面にした正面図である。It is the front view which made a part of thermoelectric conversion device concerning the 3rd example of the present invention a section. 本発明の第4実施例に係る熱電変換装置の一部を断面にした正面図である。It is the front view which made a part of thermoelectric conversion device concerning the 4th example of the present invention a section. 比較例に係る熱電変換装置の一部を断面にした正面図である。It is the front view which made a part of thermoelectric conversion device concerning a comparative example a section.

1...吸熱側熱導体
2...熱電変換素子
3...放熱側熱導体枠内凸部
4...放熱側熱導体基部
5...枠体
6...接着剤
7...基端部
8...周壁
9...接着剤
10...接合部
11...吸熱側熱導体枠内凸部
12...空間部
13...吸熱側セラミックス基板
14...応力緩和層
15...吸熱側電極
16...熱電半導体
17...放熱側電極
18...放熱側セラミックス基板
19...応力緩和層
20...接着剤
21...温度境界線
22...突出部
23...ネジ孔
24...放熱フィン
25...水冷ジャケット
26...流路
27...冷却水
28...断熱層
29...隙間
30...吸熱側補助熱導体。
1. . . 1. Heat absorption side heat conductor . . 2. Thermoelectric conversion element . . 3. Convex part on heat dissipation side heat conductor frame . . 4. Radiation side heat conductor base . . Frame 6. . . 6. Adhesive . . Base end 8. . . Peripheral wall 9. . . Adhesive 10. . . Joint 11. . . 11. Convex part in heat absorption side heat conductor frame . . Space part 13. . . Endothermic ceramic substrate 14. . . Stress relaxation layer 15. . . Endothermic electrode 16. . . Thermoelectric semiconductor 17. . . Radiation side electrode 18. . . 18. Heat radiation side ceramic substrate . . Stress relaxation layer 20. . . Adhesive 21. . . Temperature boundary line 22. . . Projection 23. . . Screw hole 24. . . Radiating fin 25. . . Water cooling jacket 26. . . Flow path 27. . . Cooling water 28. . . Thermal insulation layer 29. . . Gap 30. . . Heat absorption side auxiliary heat conductor.

Claims (1)

熱電変換素子を挟持した吸熱側熱導体と放熱側熱導体を剛性がある枠体の両端部で一体に接着固定した熱電変換装置において、
前記熱電変換素子の中央部位から前記吸熱側熱導体の前記枠体によって拘束されない部分の端面までの厚みDが、前記吸熱側熱導体と熱電変換素子と放熱側熱導体のうちで前記枠体によって拘束されない部分の積層部の厚みLの半分の+20%〜−40%の範囲に規制されていることを特徴とする熱電変換装置。
In the thermoelectric conversion device in which the heat absorption side heat conductor holding the thermoelectric conversion element and the heat dissipation side heat conductor are integrally bonded and fixed at both ends of the rigid frame body,
The thickness D from the central portion of the thermoelectric conversion element to the end surface of the portion of the heat absorption side thermal conductor that is not constrained by the frame is determined by the frame body among the heat absorption side thermal conductor, the thermoelectric conversion element, and the heat radiation side thermal conductor. A thermoelectric conversion device, characterized by being restricted to a range of + 20% to −40%, which is half of the thickness L of the laminated portion of the unconstrained portion.
JP2009209785A 2008-08-21 2009-08-21 Thermoelectric converter Active JP5499238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009209785A JP5499238B2 (en) 2008-08-21 2009-08-21 Thermoelectric converter

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008238635 2008-08-21
JP2008238635 2008-08-21
JP2009209785A JP5499238B2 (en) 2008-08-21 2009-08-21 Thermoelectric converter

Publications (2)

Publication Number Publication Date
JP2010074164A JP2010074164A (en) 2010-04-02
JP5499238B2 true JP5499238B2 (en) 2014-05-21

Family

ID=42205611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009209785A Active JP5499238B2 (en) 2008-08-21 2009-08-21 Thermoelectric converter

Country Status (1)

Country Link
JP (1) JP5499238B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017077587A1 (en) * 2015-11-04 2017-05-11 三菱電機株式会社 Portable cooling device
WO2024080080A1 (en) * 2022-10-14 2024-04-18 Mpsデザイン株式会社 Multi-stage electronic temperature controller

Also Published As

Publication number Publication date
JP2010074164A (en) 2010-04-02

Similar Documents

Publication Publication Date Title
US7242582B2 (en) Semiconductor module mounting structure, a cardlike semiconductor module, and heat receiving members bonded to the cardlike semiconductor module
JP5007296B2 (en) Power module base
US5430322A (en) Thermoelectric element sheet in which thermoelectric semiconductors are mounted between films
JP5511621B2 (en) Semiconductor device
JP5484456B2 (en) Electrode part of medium pressure or high pressure switchgear assembly and method of manufacturing electrode part
JP6409690B2 (en) Cooling module
JP2008148530A (en) Inverter apparatus
JP6539917B2 (en) Thermally conductive adhesive sheet, method of manufacturing the same, and electronic device using the same
US20210359190A1 (en) Thermoelectric conversion substrate and thermoelectric conversion module
JP2007305702A (en) Semiconductor device and its manufacturing method
JP2007081200A (en) Insulated circuit board with cooling sink section
JP2009246063A (en) Cooling structure of power module and semiconductor device using same
JP5499238B2 (en) Thermoelectric converter
JP5499239B2 (en) Thermoelectric converter
JP2019125730A (en) Semiconductor device
JP5499240B2 (en) Thermoelectric conversion device and manufacturing method thereof
JP2009200258A (en) Semiconductor module
JP5368492B2 (en) Power semiconductor device
JP2008258533A (en) Thermoelectric conversion device
Wang et al. Highly thermal conductive and electrically insulated graphene based thermal interface material with long-term reliability
JP2011199110A (en) Power semiconductor device and manufacturing method thereof
JP2008227043A (en) Radiating substrate and power source unit using the same
JP2005056916A (en) Circuit board
US8183681B2 (en) Semiconductor device
KR101733531B1 (en) A heat dissipation system having a heat dissipation tube of a multilayer structure film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131225

R150 Certificate of patent or registration of utility model

Ref document number: 5499238

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350