WO2024080080A1 - Multi-stage electronic temperature controller - Google Patents

Multi-stage electronic temperature controller Download PDF

Info

Publication number
WO2024080080A1
WO2024080080A1 PCT/JP2023/033765 JP2023033765W WO2024080080A1 WO 2024080080 A1 WO2024080080 A1 WO 2024080080A1 JP 2023033765 W JP2023033765 W JP 2023033765W WO 2024080080 A1 WO2024080080 A1 WO 2024080080A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
cooling
thermoelectric conversion
heat
stack
Prior art date
Application number
PCT/JP2023/033765
Other languages
French (fr)
Japanese (ja)
Inventor
克博 都能
Original Assignee
Mpsデザイン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mpsデザイン株式会社 filed Critical Mpsデザイン株式会社
Publication of WO2024080080A1 publication Critical patent/WO2024080080A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction

Definitions

  • the present invention relates to a multi-stage electronic temperature control device for controlling the temperature of an object such as an insulating container.
  • an insulating container is given as an example of an object to be temperature controlled, but the present invention is not limited to this.
  • thermoelectric conversion element hereafter simply referred to as element
  • element thermoelectric conversion element
  • a multi-stage electronic temperature control device has been proposed in which multiple elements are stacked and the temperature difference that one element is responsible for is reduced, allowing operation while maintaining a large amount of heat absorption.
  • FIG. 1 shows the structure of a typical thermoelectric conversion element 100 .
  • the element 100 is a substantially flat-plate element in which multiple semiconductor chips 101 are arranged on a plane, connected in series with electrodes 102, and insulating substrates 103a, b are attached to both ends.
  • a direct current is passed through lead wires 104 connected to the terminals of the electrodes 102, heat is absorbed on one side of the element 100 and heat is generated on the opposite side, resulting in a temperature difference.
  • the amount of heat absorption Qab generated on the cooling surface of the element 100 is calculated by the following formula (1).
  • Qab S ⁇ Tcp ⁇ I ⁇ 0.5 ⁇ I 2 ⁇ RK ⁇ Tp (1)
  • ⁇ Tp is the temperature difference between both ends of the semiconductor constituting element 100 (Thp ⁇ Tcp).
  • S, R, and K are values determined by the physical properties of the semiconductor ( ⁇ : Seebeck coefficient, ⁇ : electrical conductivity, ⁇ : thermal conductivity), the element size, and the number of mounted elements, and are determined by selecting the element to be used.
  • the power P applied to the element 100 is determined by the voltage V and current I applied to the element 100 .
  • the coefficient of performance (COP), which indicates the cooling efficiency of the element 100 is calculated by the following formula (3).
  • COP Qab/P (3) That is, the cooling efficiency COP is calculated by dividing the amount of heat absorbed by the element 100, Qab, by the power P applied to the element 100. The greater this value, the higher the efficiency.
  • FIG. 4 shows the relationship between the current I flowing through the element 100, the temperature difference ⁇ Tp occurring across both ends of the element 100, and the heat absorption capacity Qab.
  • the maximum current Imax of the element 100 is applied, the amount of heat absorption obtained varies depending on the temperature difference ⁇ Tp between both ends of the element 100.
  • the temperature difference ⁇ Tp occurring between both ends of the element 100 must be 50° C. Since there are heat transfer materials and contact interfaces on both sides of the element 100, which act as thermal resistance, a temperature difference larger than this temperature difference ⁇ Tp is actually required. Therefore, if the temperature difference required to obtain the required amount of heat absorption exceeds the maximum current Imax, no greater temperature difference can be obtained.
  • the top characteristic line in Figure 4 shows the relationship between temperature difference and amount of heat absorption when a current Imax flows that does not increase the amount of heat absorption any more.
  • the temperature difference when the amount of heat absorption becomes zero is called the maximum temperature difference ⁇ Tmax.
  • the temperature difference of element 100 must be lower than the maximum temperature difference ⁇ Tmax.
  • a multi-stage electronic temperature control device has been developed that can achieve a large temperature difference by adding up the temperature differences of each element (stage). For example, there are the following patents.
  • Patent Document 1 Patent No. 3164862
  • Patent Document 1 Patent No. 3164862
  • the cooling efficiency is further deteriorated because heat leaks from the surroundings into the gaps where no chips are mounted.
  • the manufacturing cost of the device increases.
  • Patent Document 2 JP Patent No. 3613251
  • elements with the same board size, the same number of mounted semiconductor chips, and the same chip cross-sectional area are stacked, so that the thermal conductance between the elements is the same.
  • the current-carrying circuits of the elements in each stage are divided, and the circuit is formed so that the current flowing toward the heat dissipation side is larger, and the elements are connected in parallel to one power supply voltage, so that the current flowing through the elements is larger from the cooling side element to the heat dissipation side element.
  • the ratio of currents that can be passed through the elements of each stage is fixed, and although efficient cooling can be performed under certain conditions, when temperature control is performed under other conditions, the cooling efficiency has to be operated under poor conditions. For example, when the set cooling temperature is changed or the outside air conditions change significantly, the cooling efficiency will deviate significantly from the optimal efficiency.
  • this multistage electronic temperature regulator when the polarity of the power supply voltage is switched and control is performed in heating mode, a large current always flows in the element circuit on the heat dissipation side, so the cooling capacity of the next stage element cannot absorb the heat, and the temperature rises at the interface. Basically, proper heating operation is impossible in a device that performs cooling control of the multistage electronic temperature regulator with the same power supply voltage.
  • each of the three stages is an element of a different pattern circuit, and the device is a specially designed multi-stage electronic temperature control device, which results in a high cost.
  • Patent Document 3 JP 2019-049378 A discloses a multi-stage electronic temperature control device that uses two stacked elements and controls current by applying individual voltages to each element.
  • the device comprises a cooling side element 1 attached to the object to be cooled, a heat dissipation side element 2 attached to the heat dissipation side of element 1, a temperature sensor 1 that measures the cooling side temperature Tc1 of element 1, and a temperature sensor 2 that measures the heat dissipation side temperature Th1 of element 1, and element 2 is controlled to keep the heat dissipation side of element 1 below a target temperature so that element 2 can maintain the amount of heat absorption and temperature difference required by element 1.
  • this method does not specify any operating conditions for element 2, and the condition is that any amount of power can be used on element 2 in order to maintain the target temperature, and the cooling efficiency of the device including element 2 is ignored.
  • it is necessary to detect the temperatures Tc1 and Th1 on both sides of the element 1, and therefore a temperature sensor is required on both sides of the element. Therefore, as the number of stages increases, the number of temperature sensors also increases, and it becomes extremely complicated to determine the operating conditions for optimal cooling efficiency. Naturally, the cost of the device also increases. Also, with regard to the heating operation, it is difficult to operate it under optimal operating conditions.
  • this patent proposes to place a heat storage material between the elements to store heat and stabilize the element against sudden temperature changes.
  • the patent chose to sandwich a material with high heat storage capacity, high specific heat and density, such as stainless steel, which has low thermal conductivity as a metal, between the elements.
  • a material with poor thermal conductivity is placed between the elements, it will create a large thermal resistance, resulting in a large temperature difference.
  • the operating temperature of the elements will have to be increased, further reducing the cooling efficiency.
  • no consideration has been given to optimizing the cooling efficiency of the thermoelectric conversion device.
  • an object of the present invention is to provide a multi-stage electronic temperature control device that can handle temperatures ranging from heating to ultra-low temperature freezing, can operate with large temperature differences, and can control cooling and heating under conditions that provide good cooling efficiency.
  • the present invention provides an electronic temperature control device for cooling an insulating container, comprising: A stack of a plurality of thermoelectric conversion elements having substantially the same specifications; A cooling-side heat conductor provided on a cooling surface of the laminate; A heat dissipation side thermal conductor provided on the heat dissipation surface of the laminate; a control board that supplies power to each of the plurality of thermoelectric conversion elements individually; power to be supplied to each thermoelectric conversion element is determined based on a temperature division ratio to each thermoelectric conversion element, which is calculated so that the cooling efficiency of the stack falls within a predetermined range using the insulation performance of the container, the heat transfer performance inside the container or the heat transfer performance on the cooling side of the stack, the heat dissipation performance of the stack, measurement data of the outside air temperature, measurement data of the target temperature of the container or the temperature inside the container, and measurement data of the heat dissipation temperature of the stack;
  • the present invention provides a multi-stage electronic temperature control device characterized by the above.
  • the laminate is composed of, in order from the cooling surface side, a first thermoelectric conversion element, a second thermoelectric conversion element, ..., and an nth thermoelectric conversion element, and that the temperature differences in the first thermoelectric conversion element, the second thermoelectric conversion element, ..., and the nth thermoelectric conversion element are ⁇ Tp1, ⁇ Tp2, ..., and ⁇ Tpn, and the temperature division ratio is determined to satisfy ⁇ Tp1 ⁇ Tp2 ⁇ ... ⁇ Tpn.
  • the stack is composed of, in order from the cooling surface side, a first thermoelectric conversion element, a second thermoelectric conversion element, and a third thermoelectric conversion element, and the temperature differences in the first thermoelectric conversion element, the second thermoelectric conversion element, and the third thermoelectric conversion element are ⁇ Tp1, ⁇ Tp2, and ⁇ Tp3, respectively, and the temperature division ratio may be determined to satisfy ⁇ Tp1 ⁇ Tp2 ⁇ Tp3.
  • the multi-stage electronic temperature control device of the present invention further comprises a thermally conductive spacer block that is disposed between adjacent thermoelectric conversion elements and separates the cooling surface and the heat dissipation surface by a predetermined distance.
  • the multi-stage electronic temperature control device of the present invention further comprises a frame that covers and integrates the cooling side heat conductor, the heat dissipation side heat conductor, and the laminate.
  • the present invention also provides an electronic temperature control device for heating an insulating container, comprising: A stack of a plurality of thermoelectric conversion elements having substantially the same specifications; A cooling-side heat conductor provided on the heating surface of the laminate; A heat dissipation side thermal conductor provided on a heat absorption surface of the laminate; a control board that supplies power to each of the plurality of thermoelectric conversion elements individually; power to be supplied to each thermoelectric conversion element is determined based on a temperature division ratio to each thermoelectric conversion element, the ratio being calculated so that the heating efficiency of the stack falls within a predetermined range using the heat insulating performance of the container, the heat transfer performance inside the container, the heat dissipation performance of the stack, measurement data of the outside air temperature, and the target temperature of the container or the measurement data of the temperature inside the container;
  • the present invention also provides a multi-stage electronic temperature control device, characterized in that
  • the present invention provides a multi-stage electronic temperature control device that can handle temperatures ranging from heating to ultra-low temperature freezing, can operate with large temperature differences, and can control cooling and heating under conditions that provide good cooling efficiency.
  • FIG. 1 is a schematic diagram showing the structure of a general thermoelectric conversion element 100.
  • FIG. 1 is a diagram showing the relationship between the input power P, the amount of heat absorption Qab, and the amount of heat exhaust Qd, as well as the relationship between the cooling side temperature Tcp, the heat dissipation side temperature Thp, and the temperature difference ⁇ Tp in a typical thermoelectric conversion element 100.
  • FIG. 1 is a graph showing the relationship between a current I flowing through a general thermoelectric conversion element 100 and the amount of heat absorption Qab and power consumption P.
  • 1 is a graph showing the relationship between the temperature difference ⁇ Tp and the amount of heat absorption Qab according to the supply current I in a typical thermoelectric conversion element 100.
  • FIG. 1 is a schematic diagram showing an example of a freezer 1 incorporating a multistage electronic temperature regulator 10 according to the present embodiment.
  • 1 is a schematic diagram of a multi-stage electronic temperature regulator 10.
  • FIG. 11 is a diagram showing an example of a method for determining a temperature difference (ratio) corresponding to good cooling efficiency of a thermoelectric conversion element 12.
  • FIG. 4 is an explanatory diagram of a temperature division ratio R ⁇ Tp. 3 is an explanatory diagram of heat reflux from a high temperature side to a low temperature side in the multistage electronic temperature regulator 10.
  • FIG. 4 is an explanatory diagram of spacer blocks 51 and 52.
  • FIG. 1 is a schematic diagram of a multistage electronic temperature regulator 10 in which a spacer block 51 on the cooling side is thicker than a spacer block 52 on the heat dissipation side.
  • 1 is an explanatory diagram of a cold/hot temperature boundary line in a multistage electronic temperature regulator 10 having a frame 60.
  • This embodiment discloses a multistage electronic temperature control device 10 (hereinafter, sometimes referred to as device 10) that uses a laminate 11 having multiple thermoelectric conversion elements 12 (hereinafter, sometimes referred to as elements 12) stacked on top of each other to control the temperature of an object such as an insulating container 2 (see Figure 5).
  • the multi-stage electronic temperature regulator 10 is used to cool or heat an object. Therefore, the multi-stage electronic temperature regulator 10 may be called a multi-stage electronic cooling device or a multi-stage electronic heating device.
  • the thermoelectric conversion element 12 is also called an electronic cooling element.
  • the element 12 is assumed to be a commercially available electronic cooling element having a size of 4 cm square, a thickness of 3.8 mm, 254 semiconductor chips, a Seebeck coefficient S of 0.014 V/°C, an internal resistance R of 2.114 ⁇ , and a heat reflux rate K of 0.143 W/°C, but the present invention is not limited to this.
  • the freezer 1 will be outlined.
  • the freezer 1 described here incorporating the multistage electronic temperature regulator in which the elements 12 are stacked in three stages is assumed to be capable of handling freezer temperatures down to about ⁇ 25° C.
  • This freezer 1 is also capable of heating.
  • the freezer 1 includes a container 2 having excellent heat conductivity, a thermal insulation material 3 surrounding the container 2, a multi-stage electronic temperature control device 10 that cools the container 2, and an electric fan 4 that cools the heat dissipation portion of the multi-stage electronic temperature control device 10.
  • the container 2 is made of a material with excellent thermal conductivity, such as aluminum.
  • the insulating material 3 is made of a material with excellent insulating performance, such as urethane foam.
  • the insulating performance of the container 2 (insulating material 3), the heat transfer performance inside the container 2, and the heat dissipation performance of the multistage electronic temperature regulator 10 are determined by the specifications.
  • thermoelectric conversion elements 12 having substantially the same specifications, mounted between a cooling-side thermal conductor 21 and a heat-dissipation-side thermal conductor 22 .
  • thermoelectric conversion elements of substantially the same specifications refer to elements of substantially the same substrate size, in which substantially the same number of semiconductor chips of substantially the same size and substantially the same characteristics are mounted.
  • Semiconductors of substantially the same characteristics refer to elements of the same specifications that are generally available, with equivalent Seebeck coefficient ⁇ , electrical conductivity ⁇ , and thermal conductivity ⁇ . Naturally, variations are permitted within the range of the manufacturing lot.
  • the cooling side refers to the container 2 side
  • the heat dissipation side refers to the electric fan 4 side. Therefore, the cooling side thermal conductor 21 is a thermal conductor interposed between the laminate 11 and the container 2
  • the heat dissipation side thermal conductor 22 is a thermal conductor interposed between the laminate 11 and the heat dissipation fin (heat exchanger).
  • the cooling-side thermal conductor 21 and the heat-dissipation-side thermal conductor 22 are made of a material having high thermal conductivity, such as a metal such as aluminum. The thicknesses of the cooling-side thermal conductor 21 and the heat-dissipation-side thermal conductor 22 will be described later.
  • the device 10 is equipped with several temperature sensors 41, 42. That is, there is provided a temperature sensor 41 that measures the cooling-side temperature Tcp of the device 10. This temperature sensor 41 is disposed on the cooling-side thermal conductor 21 of the device 10 or in its vicinity. Also provided is a temperature sensor 42 for measuring the heat radiation side temperature Thp of the device 10. This temperature sensor 42 is disposed on the heat radiation side thermal conductor 22 of the device 10 or in its vicinity.
  • the term "vicinity" refers to a range or a portion having a temperature that can be evaluated as being equivalent to the temperature of the cooling-side thermal conductor 21 or the heat-radiation-side thermal conductor 22 .
  • a temperature sensor 5 that measures a temperature equivalent to the temperature Tc of the object to be cooled (or the inside of the container 2) and a temperature sensor 6 that measures the outside air temperature Ta are provided.
  • These temperature sensors 5 and 6 are not installed in the device 10 but in the product (freezer 1, etc.) in which they are incorporated and whose temperature is to be regulated (see FIG. 5).
  • the device 10 includes a control board 30 that applies the required power (including voltage or current) to each element 12 of the device 10 based on the output signals of the temperature sensors 5, 6, 41, and 42 and the input setting values.
  • This control board 30 may also operate the electric fan 4 for heat dissipation and control the battery.
  • the operating temperature differences ⁇ Tp1, ⁇ Tp2, ⁇ Tp3 of elements 1, 2, and 3 are divided according to the temperature division ratio R ⁇ Tp that provides the previously calculated cooling efficiency COP of device 10 for the most efficient condition, and the individual operating voltages (or operating currents) of elements 1, 2, and 3 are determined.
  • the ratio of the temperature division ratio R ⁇ Tp that is in the range where the COP can be said to be optimal or appropriate is called the optimal temperature division ratio Q ⁇ Tp.
  • the temperature difference ⁇ Tp between both ends of the device 10 is expressed by the following equation using the cooling side temperature Tcp and the heat dissipation side temperature Thp.
  • ⁇ Tp Thp ⁇ Tcp
  • the temperature difference ⁇ Tp1 of element 1 is expressed as follows using the cooling side temperature Tcp1 and the heat dissipation side temperature Thp1.
  • ⁇ Tp1 Thp1 ⁇ Tcp1
  • ⁇ Tp2 Thp2 ⁇ Tcp2
  • ⁇ Tp3 Thp3 ⁇ Tcp3
  • the thermal resistance between adjacent elements is small enough that Tcp ⁇ Tcp1 Thp1 ⁇ Tcp2 Thp2 ⁇ Tcp3 Thp3 ⁇ Thp If the thermal resistance cannot be ignored, it can be corrected by actual measurement.
  • ⁇ Tp ⁇ Tp1+ ⁇ Tp2+ ⁇ Tp3
  • the temperature difference ⁇ Tp is divided into temperatures for element 1, element 2, and element 3.
  • the initial temperature difference ⁇ Tpt determines temperature differences ⁇ Tp1, ⁇ Tp2, ⁇ Tp3 assigned to element 1, element 2, element 3.
  • cooling side temperatures Tcp1, Tcp2, Tcp3 of element 1, element 2, element 3 and heat radiation side temperature Thp3 of element 3 are determined.
  • freezer 1 will be considered.
  • the following values are determined from the specifications of the freezer 1. That is, the insulation specifications of the freezer 1 determine the leakage heat conductance KL, which indicates how easily heat leaks from the outside into the freezer. Also, the cooling side heat conductance KC, which indicates how well heat is transferred from the container 2 to the multistage electronic temperature control device 10, is determined. Also, the heat dissipation side heat conductance KH is determined by the specifications of the heat dissipation heat exchanger (both are expressed in units of W/°C or W/K). By determining these thermal conductances KL, KC, and KH, the required heat absorption amount Qab and cooling side temperature Tcp of the multistage electronic temperature regulator 10 are determined.
  • the amount of heat QL leaking into the heat-insulating freezer from the outside is expressed by the following equation using the measured data of the outside air temperature Ta and the freezer 1 internal temperature Tc (however, in the initial cooling mode applied when the power is turned on or after the lid is closed, the internal temperature setting Tct can be used instead of the internal temperature Tc.
  • the system transitions to the constant temperature control mode and the actual internal temperature Tc is used).
  • QL KL ⁇ (Ta - Tc) That is, the multistage electronic temperature regulator 10 must absorb this amount of heat QL while maintaining the temperature inside the refrigerator at Tc.
  • QL Qab.
  • the leakage heat amount QL i.e., the required heat absorption amount Qab
  • the leakage heat amount QL is calculated using the cooling-side thermal conductance KC as follows:
  • the cooling side temperature Tcp and the required heat absorption amount Qab of the multistage electronic temperature regulator 10 are determined. In this way, when the specifications of the object (here, the freezer 1) into which the multistage electronic temperature regulator 10 is to be incorporated are given, the cooling side temperature Tcp and the required heat absorption amount Qab of the multistage electronic temperature regulator 10 are determined.
  • the heat absorption amount Qab, input power P, and heat dissipation amount Qd of each element can be calculated by the following formula.
  • heat absorption amount: Qab1 S x Tcp1 x I1 - 0.5 x I1 ⁇ 2 x R1 - K x ⁇ Tp1
  • Heat dissipation: Qd1 Qab1 + P1 - Regarding element 2
  • heat absorption amount: Qab2 S x Tcp2 x I2 - 0.5 x I2 ⁇ 2 x R2 - K x ⁇ Tp2
  • P2 (S x ⁇ Tp2 + R2 x I2) x I2
  • Heat dissipation: Qd2 Qab1 + P1 + P2 - Regarding element 3
  • heat absorption amount: Qab3 S x Tcp1 x I1 - 0.5 x I1 ⁇ 2 x R1 - K x ⁇ T
  • the coefficients S, R, and K are determined by determining the specifications of the element 12, and Qab1 and Tcp1 are determined by determining the specifications of the freezer 1.
  • the temperature difference ⁇ Tp occurring in the device 10 depends on the operating temperature differences ⁇ Tp1, ..., ⁇ Tpn (n: number of element stages) of each element 12, and since the temperature difference of the elements 12 can take any value, it is difficult to determine under what conditions the COP will be maximum or appropriate. Therefore, a prototype freezer 1 incorporating the device 10 was manufactured, and the cooling efficiency was examined while changing various operating conditions of each element 12. The details are described below.
  • FIG. 8 shows an example of the temperature distribution in the multistage electronic temperature regulator 10 having a three-element configuration.
  • the solid line in Fig. 8 corresponds to data (3) in Table 1 and is an approximately straight line. This indicates that the temperature difference ⁇ Tp is approximately equally divided among elements 1, 2, and 3. From Table 1, the COP under these conditions is 0.279.
  • the dashed line in Fig. 8 corresponds to data (5) in Table 1 and is located below the solid line (i.e., the dashed line is downwardly convex). This shows that the temperature difference ⁇ Tp is divided such that ⁇ Tp1 ⁇ ⁇ Tp2 ⁇ ⁇ Tp3 for element 1, element 2, and element 3.
  • the temperature split ratio at which this COP becomes optimal hardly changes even when the internal temperature setting Tct, the internal temperature Tc, or the outside air temperature Ta is changed.
  • the optimal temperature division ratio Q ⁇ Tp is determined.
  • the temperatures Tcp1, Tcp2, Tcp3, and Thp are measured by temperature sensors.
  • the heat absorption amount Qab1 and temperature Tcp1 are determined from the specifications of the freezer 1.
  • a current I2 that allows the heat absorption amount Qab2 of element 2 to absorb heat under the condition of a temperature difference ⁇ Tp2 is applied to element 2.
  • the heat dissipation amount Qd2 of element 2 Qab1 + P2, so this heat dissipation amount becomes the required heat absorption amount Qab3 of element 3.
  • a current I3 is applied to element 3 such that the amount of heat absorbed by element 3, Qab3, is sufficient to absorb heat under the condition of a temperature difference ⁇ Tp3.
  • the mode switches to constant temperature control mode, and the same control as above is performed using the measured data of the internal temperature Tc instead of the internal set temperature Tct. In this way, the temperature of the device 10 can be controlled under conditions that are considered to be the maximum COP.
  • the heat exchanger on the heat dissipation side is designed to have a higher heat dissipation capacity than the heat conductor on the heat absorption side in order to cool the device to the freezing temperature.
  • KC ⁇ KH the heat exchanger on the heat dissipation side
  • the balance is different from that of the cooling mode, so appropriate control cannot be achieved with the same current density ratio.
  • the temperature division ratio suitable for heating is also different. As a result of extensive research by the inventors, it was found that an optimal temperature split ratio Q' ⁇ Tp for heating does exist. However, it was also found that the optimal temperature split ratio Q' ⁇ Tp for heating is a temperature split ratio different from that for cooling.
  • this temperature division ratio Q' ⁇ Tp is used to individually control the current or voltage of each element 12, making it possible to efficiently control temperatures higher than room temperature and also to rapidly change the temperature.
  • the thickness of the device 10 is determined by the thickness of the element 12.
  • the lowest temperature is the cooling surface of the cooling side element 12, and the highest temperature is the heat dissipation surface of the heat dissipation side element 12.
  • thermoelectric conversion element 12 in order to increase the distance L between the cold source (cooling side) and the heat source (heat dissipation side) of the thermoelectric conversion element 12, it is advisable to install spacer blocks 51 and 52 with high thermal conductivity between adjacent elements 12. This improves the thermal insulation of the surrounding insulation material 3, and reduces the effect of reflux heat on the cooling efficiency of the device 10. Since the spacer blocks 51 and 52 act as thermal resistance components between the elements 12, it is preferable to use a material with high thermal conductivity, such as aluminum or copper.
  • the spacer blocks 51 and 52 have thermal resistance, if the thickness is increased, the temperature difference occurring in the spacer blocks 51 and 52 increases, and the cooling efficiency decreases. In order to alleviate this, it is advisable to make the spacer block 51 on the cooling side thicker (see FIG. 11). This is because the amount of heat passing through the spacer block 51 on the cooling side is small, so it is easy to reduce the temperature difference with respect to the spacer block 51.
  • the cross-sectional area is Sab
  • the thickness is Tsb
  • the thermal conductivity is ⁇
  • the amount of heat passing through is Qab
  • the heating efficiency is high, so that the temperature difference between the spacer blocks 51 and 52 due to the difference in thickness between the spacer blocks 51 and 52 can be ignored.
  • the outer periphery of the cooling side thermal conductor 21 and the heat dissipation side thermal conductor 22 of the device 10 and the element 12 stacked between them may be covered with a frame body 60, and the frame body 60 may be integrated with the cooling side and heat dissipation side thermal conductors 21, 22 to seal the element 12 (see Figure 12).
  • the cooling surface is lower than the outside air temperature and the heat dissipation surface is higher than the outside air temperature, so that a cold/hot temperature boundary line M is formed between the two surfaces, where the temperature is equal to the outside air temperature.
  • the area below (outside) this boundary line M becomes the heat dissipation zone.
  • the cold/hot temperature boundary line N of the frame 60 is on the heat dissipation side of the cold/hot temperature boundary line M of the element 12. Therefore, it is preferable to provide a step 61 on the high temperature side of the cold/hot temperature boundary line N of the frame 60, and to position the step 61 exactly inside the thermal insulation material 3 when attaching the device 10 and the frame 60 to the thermal insulation material 3. That is, by assembling the frame 60 so that the portion that becomes hotter than the environmental temperature, such as room temperature, is disposed outside the heat insulating material 3, an installation with good cooling efficiency can be ensured.
  • the temperature differences in the first thermoelectric conversion element, the second thermoelectric conversion element, ..., and the nth thermoelectric conversion element are ⁇ Tp1, ⁇ Tp2, ..., and ⁇ Tpn, and the temperature division ratio is determined so as to satisfy ⁇ Tp1 ⁇ Tp2 ⁇ ... ⁇ Tpn.
  • a multistage electronic temperature regulator used in an ultra-low temperature freezer capable of handling temperatures in the ultra-low temperature freezing range up to about -80°C may use a six-stage stacked thermoelectric conversion element in order to operate with a large temperature difference.
  • the temperature difference ⁇ Tp required for the multistage electronic temperature regulator may be temperature-divided for the six stages of thermoelectric conversion elements so as to satisfy ⁇ Tp1 ⁇ Tp2 ⁇ Tp3 ⁇ Tp4 ⁇ Tp5 ⁇ Tp6. Furthermore, by using a temperature division ratio Q ⁇ Tp that provides an optimal or appropriate COP, the multistage electronic temperature regulator can be operated with reduced energy regardless of changes in temperature conditions.
  • Reference Signs List 1 Freezer 2 Container 3 Insulation material 4 Electric fan 5, 6 Temperature sensor 10 Multi-stage electronic temperature control device 11 Laminated body 12 Thermoelectric conversion element 21 Cooling side heat conductor 22 Heat dissipation side heat conductor 30 Control board 41, 42 Temperature sensor 51, 52 Spacer block 60 Frame

Abstract

The present invention provides a multi-stage electronic temperature controller which can cope with from elevated temperatures to ultralow freezing-range temperatures, can be operated so as to have a large temperature difference, and can perform cooling/heating control under good cooling-efficiency conditions. This multi-stage electronic temperature controller, which is for cooling a heat-insulated vessel, comprises: a stack of a plurality of thermoelectric conversion elements having substantially the same specifications; a cooling-side heat conductor disposed on a cooling surface of the stack; a radiation-side heat conductor disposed on a radiating surface of the stack; and a control board for separately supplying electric power to the plurality of thermoelectric conversion elements. The multi-stage electronic temperature controller is characterized in that the electric power to be supplied to each of the thermoelectric conversion elements is determined on the basis of a ratio of temperature allocation to the thermoelectric conversion elements calculated from the heat-insulating performance of the vessel, the heat-conducting performance of the interior of the vessel or the heat-conducting performance of the cooling-side portion of the stack, the radiation performance of the stack, measured data on ambient temperatures, a target temperature of the vessel or measured data on interior temperatures of the vessel, and measured data on radiation temperatures of the stack, so that the cooling efficiency of the stack is within a given range.

Description

多段電子温調装置Multi-stage electronic temperature control device
 本発明は、断熱性の容器等の対象物を温調するための多段電子温調装置に関する。ここで、温調の対象物の一例として断熱性の容器を挙げているが、本発明はこれに限られない。 The present invention relates to a multi-stage electronic temperature control device for controlling the temperature of an object such as an insulating container. Here, an insulating container is given as an example of an object to be temperature controlled, but the present invention is not limited to this.
 熱電変換素子(以下、単に素子という。)を使用して、大きな温度差を維持しながら吸熱動作を行う場合、素子の両側の温度差が大きくなると素子の吸熱量は小さくなり、素子の冷却効率COP=Qab/Pも悪くなるため、1つの素子では適切な温度差を維持できないことがある。このような問題に対処するために、複数の素子を積層し、一つの素子に担当させる温度差を小さくすることで、大きな吸熱量を維持しながら動作させる多段電子温調装置が提案されている。 When using a thermoelectric conversion element (hereafter simply referred to as element) to absorb heat while maintaining a large temperature difference, if the temperature difference between the two sides of the element becomes large, the amount of heat absorbed by the element decreases, and the cooling efficiency of the element, COP = Qab/P, also deteriorates, so that a single element may not be able to maintain an appropriate temperature difference. To address this issue, a multi-stage electronic temperature control device has been proposed in which multiple elements are stacked and the temperature difference that one element is responsible for is reduced, allowing operation while maintaining a large amount of heat absorption.
 より具体的に説明する。
 図1に、一般的な熱電変換素子100の構造を示す。
 素子100は、複数の半導体チップ101を平面に配置し、電極102で直列に接続し、その両端に絶縁基板103a,bを設置した略平板状の素子である。電極102の端末に接続したリード線104より直流の電流を流せば、素子100の片面に吸熱が、また反対面に発熱が生じ、温度差が発生する。
A more specific explanation will now be given.
FIG. 1 shows the structure of a typical thermoelectric conversion element 100 .
The element 100 is a substantially flat-plate element in which multiple semiconductor chips 101 are arranged on a plane, connected in series with electrodes 102, and insulating substrates 103a, b are attached to both ends. When a direct current is passed through lead wires 104 connected to the terminals of the electrodes 102, heat is absorbed on one side of the element 100 and heat is generated on the opposite side, resulting in a temperature difference.
 素子100の冷却面で生じる吸熱量Qabは、次の(1)式で求まる。
 Qab=S×Tcp×I-0.5×I×R-K×ΔTp    (1)式
 ただし、ΔTpは素子100を構成する半導体の両端の温度差(Thp-Tcp)である。
 また、S、R、Kは半導体の物性値(α:ゼーベック係数、σ:電気伝導度、κ:熱伝導度)、エレメントサイズ及び実装数で決まる値であり、使用する素子を選択すると定まる。
  S:素子ゼ-ベック起電力 単位(V/℃)
  R:素子内部抵抗     単位(Ω) 
  K:素子の熱還流率    単位(W/℃)
 そのため、素子を選択すると(すなわちS、R、Kが決まると)、(1)式より、素子に流す電流Iと素子両端の温度差ΔTを用いて、吸熱量Qabを求めることができる。
The amount of heat absorption Qab generated on the cooling surface of the element 100 is calculated by the following formula (1).
Qab=S×Tcp×I−0.5×I 2 ×RK×ΔTp (1) where ΔTp is the temperature difference between both ends of the semiconductor constituting element 100 (Thp−Tcp).
Further, S, R, and K are values determined by the physical properties of the semiconductor (α: Seebeck coefficient, σ: electrical conductivity, κ: thermal conductivity), the element size, and the number of mounted elements, and are determined by selecting the element to be used.
S: Seebeck electromotive force of element (V/℃)
R: Internal resistance of element (Ω)
K: Heat return rate of the element (W/℃)
Therefore, once the elements are selected (i.e., S, R, and K are determined), the amount of heat absorption Qab can be calculated from equation (1) using the current I flowing through the element and the temperature difference ΔT between both ends of the element.
 また、素子100に加える電力Pは、素子100に印加する電圧Vと電流Iにより求まる。
 P=V×I=(R×I+S×ΔT)×I           (2)式
Moreover, the power P applied to the element 100 is determined by the voltage V and current I applied to the element 100 .
P = V x I = (R x I + S x ΔT) x I (2)
 したがって、素子100の冷却効率を示す成績係数COPは次の(3)式で求まる。
 COP=Qab/P                    (3)式
 すなわち、素子100の吸熱量Qabを素子100に加えた電力Pで割った値が冷却効率COPであり、この値が大きいほど効率が良い。
Therefore, the coefficient of performance (COP), which indicates the cooling efficiency of the element 100, is calculated by the following formula (3).
COP=Qab/P (3) That is, the cooling efficiency COP is calculated by dividing the amount of heat absorbed by the element 100, Qab, by the power P applied to the element 100. The greater this value, the higher the efficiency.
 図3に示すように、素子100に流す電流Iを大きくすると素子100の吸熱量Qabは大きくなり、素子100の両端に生じる温度差ΔTp=Thp-Tcp(図2参照)も大きくなっていく。
 しかし、(2)式の素子100の内部のジュール発熱は電流の2乗に比例して大きくなり、素子100の温度差により冷却側に戻る還流熱量Qrとジュール発熱量の合計が吸熱量Qabを上回ることになり、その電流値(最大電流Imax)よりも大きい条件では吸熱量が減少していく。また温度差ΔTpが大きくなると吸熱量Qabは小さくなる関係にもある(図4参照)。
As shown in FIG. 3, when the current I flowing through the element 100 is increased, the amount of heat absorbed Qab by the element 100 increases, and the temperature difference ΔTp=Thp−Tcp (see FIG. 2) across the element 100 also increases.
However, the Joule heat generated inside the element 100 in formula (2) increases in proportion to the square of the current, and the sum of the reflux heat Qr that returns to the cooling side due to the temperature difference of the element 100 and the Joule heat generation exceeds the heat absorption Qab, and the heat absorption decreases under conditions where the current value (maximum current Imax) is greater. Also, there is a relationship in which the heat absorption Qab decreases as the temperature difference ΔTp increases (see FIG. 4).
 図4に、素子100に流す電流Iと素子100の両端に生じる温度差ΔTpと吸熱能力Qabの関係を示す。
 この図から判るように、素子100の最大電流Imaxを流しても、素子100の両端の温度差ΔTpにより得られる吸熱量が変化する。例えば、20Wの吸熱量を得るためには、素子100の両端に生じる温度差ΔTpは50℃でないといけない。
 素子100の両側には伝熱材や接触界面があって熱抵抗となる為、実際にはこの温度差ΔTpよりも大きな温度差が必要である。その為、必要な吸熱量を得るための温度差が最大電流Imaxを越える場合は、それ以上の温度差は得られない。
FIG. 4 shows the relationship between the current I flowing through the element 100, the temperature difference ΔTp occurring across both ends of the element 100, and the heat absorption capacity Qab.
As can be seen from this figure, even if the maximum current Imax of the element 100 is applied, the amount of heat absorption obtained varies depending on the temperature difference ΔTp between both ends of the element 100. For example, to obtain a heat absorption amount of 20 W, the temperature difference ΔTp occurring between both ends of the element 100 must be 50° C.
Since there are heat transfer materials and contact interfaces on both sides of the element 100, which act as thermal resistance, a temperature difference larger than this temperature difference ΔTp is actually required. Therefore, if the temperature difference required to obtain the required amount of heat absorption exceeds the maximum current Imax, no greater temperature difference can be obtained.
 図4の一番上の特性線は、それ以上吸熱量が増えない電流Imaxを流した時の、温度差と吸熱量の関係を示している。吸熱量がゼロになる時の温度差を最大温度差ΔTmaxという。図4上に破線に示すように、ある吸熱Qabの仕事をするためには素子100の温度差は最大温度差ΔTmaxよりも低い値にしかならないことが判る。 The top characteristic line in Figure 4 shows the relationship between temperature difference and amount of heat absorption when a current Imax flows that does not increase the amount of heat absorption any more. The temperature difference when the amount of heat absorption becomes zero is called the maximum temperature difference ΔTmax. As shown by the dashed line in Figure 4, it can be seen that in order to perform a certain amount of heat absorption work Qab, the temperature difference of element 100 must be lower than the maximum temperature difference ΔTmax.
 したがって、素子1枚(段)では吸熱Qabを維持しながら得られる素子の温度差ΔTpに限界があるため、低温冷凍などの大きな温度差及び吸熱能力を必要とする用途では、複数の素子を積層し、各素子に生じる温度差を小さくして動作させることで、大きな吸熱量を維持できる。
 そして各素子(段)の温度差が合計されて大きな温度差を達成できる多段電子温調装置が考えられている。例えば、以下のような特許がある。
Therefore, since there is a limit to the temperature difference ΔTp that can be obtained while maintaining the heat absorption Qab with a single element (stage), in applications that require a large temperature difference and heat absorption capacity, such as low-temperature refrigeration, a large amount of heat absorption can be maintained by stacking multiple elements and operating them with a small temperature difference generated between each element.
A multi-stage electronic temperature control device has been developed that can achieve a large temperature difference by adding up the temperature differences of each element (stage). For example, there are the following patents.
特許第3164862号公報Japanese Patent No. 3164862 特許第3613251号公報Japanese Patent No. 3613251 特開2019-049378号公報JP 2019-049378 A
 従来の多段電子温調装置では、例えば特許文献1(特許第3164862号)のように、放熱側の素子になる程サイズが大きくなる構造を採用している。
 しかし、このような素子構成では、冷却側の素子から放熱側の素子に対して水平(素子の積層方向と直交する方向)にも熱を拡散させる必要があり、冷却側の素子から次段の素子に対して熱コンダクタンスが段々と悪くなる。また周囲からチップの実装されていない隙間スペースに熱が漏れ込んでくるためさらに冷却効率が悪くなる問題がある。
 さらに、多段の素子を、回路を一体に加工するため、装置の製造コストが高くなる。
Conventional multi-stage electronic temperature regulators employ a structure in which the elements closer to the heat dissipation side become larger in size, as in Patent Document 1 (Patent No. 3164862), for example.
However, in this type of element configuration, it is necessary to dissipate heat horizontally (in a direction perpendicular to the stacking direction of the elements) from the element on the cooling side to the element on the heat dissipation side, and the thermal conductance from the element on the cooling side to the element on the next stage gradually deteriorates.In addition, there is a problem that the cooling efficiency is further deteriorated because heat leaks from the surroundings into the gaps where no chips are mounted.
Furthermore, since multiple elements are fabricated into a single circuit, the manufacturing cost of the device increases.
 特許文献2(特許第3613251号)では、冷却側素子から放熱側素子への熱コンダクタンスを改善する目的で、基板サイズが同等で、実装された半導体チップ数が同一で、チップ断面積も同一の素子が積層されているため、素子間の熱コンダクタンスは同等となっている。さらに、それぞれの段の素子の通電回路を分割し、放熱側程流れる電流が大きくなるよう回路形成し、1つの電源電圧に並列に接続することで、素子に流れる電流を、冷却側素子から放熱側素子に向けて大きくなるようにしている。
 しかしながら、この手法では、各段の素子に流せる電流の比率は固定されていて、ある条件においては効率のよい冷却動作が行えるが、それ以外の条件で温度制御する場合は冷却効率が悪い条件で動作させるしかない。例えば、冷却する設定温度を変えたり、外気条件が大きく変化したりする場合は、最適な冷却効率から大きくずれてしまう。
 また、この多段電子温調装置では、電源電圧の極性を切り替えた加温モードでの制御は、必ず放熱側の素子回路に大きな電流が流れる為、次段の素子の冷却能力ではその熱を吸熱できず、界面で温度上昇してしまう。基本的に、同一電源電圧で多段電子温調装置の冷却制御を行う装置では適正な加温動作は不可能である。
 また、3段のそれぞれの素子が、別々のパターン回路の素子となり、特別設計の多段電子温調装置となるため、コスト的にも高い装置となる。
In Patent Document 2 (JP Patent No. 3613251), in order to improve the thermal conductance from the cooling side element to the heat dissipation side element, elements with the same board size, the same number of mounted semiconductor chips, and the same chip cross-sectional area are stacked, so that the thermal conductance between the elements is the same. Furthermore, the current-carrying circuits of the elements in each stage are divided, and the circuit is formed so that the current flowing toward the heat dissipation side is larger, and the elements are connected in parallel to one power supply voltage, so that the current flowing through the elements is larger from the cooling side element to the heat dissipation side element.
However, with this method, the ratio of currents that can be passed through the elements of each stage is fixed, and although efficient cooling can be performed under certain conditions, when temperature control is performed under other conditions, the cooling efficiency has to be operated under poor conditions. For example, when the set cooling temperature is changed or the outside air conditions change significantly, the cooling efficiency will deviate significantly from the optimal efficiency.
In addition, in this multistage electronic temperature regulator, when the polarity of the power supply voltage is switched and control is performed in heating mode, a large current always flows in the element circuit on the heat dissipation side, so the cooling capacity of the next stage element cannot absorb the heat, and the temperature rises at the interface. Basically, proper heating operation is impossible in a device that performs cooling control of the multistage electronic temperature regulator with the same power supply voltage.
Furthermore, each of the three stages is an element of a different pattern circuit, and the device is a specially designed multi-stage electronic temperature control device, which results in a high cost.
 特許文献3(特開2019-049378号)は、2つの素子を積層して使用した多段電子温調装置であって、個々の素子に個別の電圧をかけて電流を制御する方式の装置を開示している。
 この特許では、被冷却物に取り付けられた冷却側素子1と、素子1の放熱側に取り付けられた放熱側素子2と、素子1の冷却側温度Tc1を計測する温度センサー1と素子1の放熱側温度Th1を計測する温度センサー2とからなり、素子2を、素子1が必要とする吸熱量と温度差を維持できるよう、素子1の放熱側面を、その目標温度以下になるよう制御する。
 しかしながら、この手法では素子2の動作条件は何も規定されておらず、目標温度を維持するためには素子2にいくら電力を使ってもよい条件であり、素子2を含めた装置の冷却効率は無視されている。
 また、素子1の両側の温度Tc1、Th1を必ず検知する必要があり、素子の両側に必ず温度センサーが必要である。そのため、段数を増やすにつれて温度センサーも増えてゆき、しかも最適冷却効率の動作条件を決めることは極めて複雑となる。当然装置のコストも高くなる。
 また、加温動作についてもやはり、最適動作条件で動作させることは困難である。
 しかも、この特許では、素子と素子の間に、蓄熱を目的とした蓄熱材を設置し、急激な温度変化に対して安定化を図ろうとしている。そのために蓄熱性の高い、比熱、比重の大きな、例として金属としては熱伝導性の低いステンレスの様な素材を間に挟み込むことを選択している。
 しかしながら、素子の間に熱伝導の悪い素材を介在させた場合、大きな熱抵抗となり、そこで大きな温度差が生じる。結果として素子の動作温度をより大きくしなければならなくなるため、さらに冷却効率が悪くなってしまう。このように熱電変換装置の冷却効率の最適化には何の考慮もされていない。
Patent Document 3 (JP 2019-049378 A) discloses a multi-stage electronic temperature control device that uses two stacked elements and controls current by applying individual voltages to each element.
In this patent, the device comprises a cooling side element 1 attached to the object to be cooled, a heat dissipation side element 2 attached to the heat dissipation side of element 1, a temperature sensor 1 that measures the cooling side temperature Tc1 of element 1, and a temperature sensor 2 that measures the heat dissipation side temperature Th1 of element 1, and element 2 is controlled to keep the heat dissipation side of element 1 below a target temperature so that element 2 can maintain the amount of heat absorption and temperature difference required by element 1.
However, this method does not specify any operating conditions for element 2, and the condition is that any amount of power can be used on element 2 in order to maintain the target temperature, and the cooling efficiency of the device including element 2 is ignored.
In addition, it is necessary to detect the temperatures Tc1 and Th1 on both sides of the element 1, and therefore a temperature sensor is required on both sides of the element. Therefore, as the number of stages increases, the number of temperature sensors also increases, and it becomes extremely complicated to determine the operating conditions for optimal cooling efficiency. Naturally, the cost of the device also increases.
Also, with regard to the heating operation, it is difficult to operate it under optimal operating conditions.
Moreover, this patent proposes to place a heat storage material between the elements to store heat and stabilize the element against sudden temperature changes. To achieve this, the patent chose to sandwich a material with high heat storage capacity, high specific heat and density, such as stainless steel, which has low thermal conductivity as a metal, between the elements.
However, if a material with poor thermal conductivity is placed between the elements, it will create a large thermal resistance, resulting in a large temperature difference. As a result, the operating temperature of the elements will have to be increased, further reducing the cooling efficiency. As such, no consideration has been given to optimizing the cooling efficiency of the thermoelectric conversion device.
 以上のように、多段電子温調装置において、消費電力が最小ないしそれに近い適正な冷却効率を考慮し、かつ簡略な制御機構で、冷却も加温も制御できる多段電子温調装置はない。
 上記のとおり、同一電源電圧による制御は、冷却条件が固定されていて冷却効率の良い制御ができなかったり、加温ができなかったりする問題を抱えている。また、素子を個別に電圧制御する多段電子温調装置では、素子の両端の温度を検知する必要があり、多段構成では多くの温度センサーを必要とし、温度制御は複雑となり、コストも高く、信頼性も低下する。
As described above, there is no multistage electronic temperature regulator that takes into consideration proper cooling efficiency with minimum or nearly minimum power consumption and that can control both cooling and heating with a simple control mechanism.
As mentioned above, control using the same power supply voltage has problems such as the cooling conditions being fixed, making it impossible to control cooling with good efficiency, and not being able to heat. In addition, in a multi-stage electronic temperature control device that controls the voltage of each element individually, it is necessary to detect the temperatures at both ends of the element, and a multi-stage configuration requires many temperature sensors, which makes temperature control complicated, increases costs, and reduces reliability.
 本発明者は、鋭意検討を重ねた結果、超低温冷凍庫のような大きな温度差を必要とする装置では多段電子温調装置の段数が多くならざるを得ないが、それを簡単な制御機構で効率よく最適制御できることが重要であるとの認識を得て、本発明をなすに至った。
 したがって、本発明は、加温から超低温冷凍域の温度まで対応でき、大きな温度差をつけて動作させることが可能であり、しかも、冷却効率のよい条件で冷却・加温制御のできる多段電子温調装置を提供することを目的とする。
As a result of extensive research, the inventors came to the realization that, although a multi-stage electronic temperature control device needs to have a large number of stages in an apparatus that requires a large temperature difference, such as an ultra-low temperature freezer, it is important to be able to efficiently and optimally control this with a simple control mechanism, and thus developed the present invention.
Therefore, an object of the present invention is to provide a multi-stage electronic temperature control device that can handle temperatures ranging from heating to ultra-low temperature freezing, can operate with large temperature differences, and can control cooling and heating under conditions that provide good cooling efficiency.
 本発明は、断熱性の容器を冷却するための電子温調装置であって、
 実質的に同じ仕様を有する複数の熱電変換素子の積層体と、
 前記積層体の冷却面に設けられた冷却側熱導体と、
 前記積層体の放熱面に設けられた放熱側熱導体と、
 前記複数の熱電変換素子のそれぞれに個別に電力を供給する制御基板と、を含み、
 前記容器の断熱性能、前記容器の庫内の伝熱性能又は前記積層体の冷却側の伝熱性能、前記積層体の放熱性能、外気温度の計測データ、前記容器の目標温度又は前記容器の庫内温度の計測データ、並びに、前記積層体の放熱温度の計測データ、を用いて、前記積層体の冷却効率が所定の範囲となるように算出された、各熱電変換素子への温度分割比に基づいて、各熱電変換素子に供給する電力が決定されること、
を特徴とする多段電子温調装置、を提供する。
The present invention provides an electronic temperature control device for cooling an insulating container, comprising:
A stack of a plurality of thermoelectric conversion elements having substantially the same specifications;
A cooling-side heat conductor provided on a cooling surface of the laminate;
A heat dissipation side thermal conductor provided on the heat dissipation surface of the laminate;
a control board that supplies power to each of the plurality of thermoelectric conversion elements individually;
power to be supplied to each thermoelectric conversion element is determined based on a temperature division ratio to each thermoelectric conversion element, which is calculated so that the cooling efficiency of the stack falls within a predetermined range using the insulation performance of the container, the heat transfer performance inside the container or the heat transfer performance on the cooling side of the stack, the heat dissipation performance of the stack, measurement data of the outside air temperature, measurement data of the target temperature of the container or the temperature inside the container, and measurement data of the heat dissipation temperature of the stack;
The present invention provides a multi-stage electronic temperature control device characterized by the above.
 本発明の多段電子温調装置では、前記積層体が、前記冷却面側から順に、第1熱電変換素子、第2熱電変換素子、・・・及び第n熱電変換素子から構成され、前記第1熱電変換素子、前記第2熱電変換素子、・・・及び前記第n熱電変換素子における温度差をΔTp1、ΔTp2、・・・及びΔTpnとして、前記温度分割比が、ΔTp1≦ΔTp2≦・・・<ΔTpnを満たすように決定されること、が好ましい。
 例えば3素子を積層した場合には、前記積層体が、前記冷却面側から順に、第1熱電変換素子、第2熱電変換素子及び第3熱電変換素子から構成され、前記第1熱電変換素子、前記第2熱電変換素子及び前記第3熱電変換素子における温度差をΔTp1、ΔTp2、ΔTp3として、前記温度分割比が、ΔTp1≦ΔTp2<ΔTp3を満たすように決定されてよい。
In the multi-stage electronic temperature control device of the present invention, it is preferable that the laminate is composed of, in order from the cooling surface side, a first thermoelectric conversion element, a second thermoelectric conversion element, ..., and an nth thermoelectric conversion element, and that the temperature differences in the first thermoelectric conversion element, the second thermoelectric conversion element, ..., and the nth thermoelectric conversion element are ΔTp1, ΔTp2, ..., and ΔTpn, and the temperature division ratio is determined to satisfy ΔTp1≦ΔTp2≦...<ΔTpn.
For example, when three elements are stacked, the stack is composed of, in order from the cooling surface side, a first thermoelectric conversion element, a second thermoelectric conversion element, and a third thermoelectric conversion element, and the temperature differences in the first thermoelectric conversion element, the second thermoelectric conversion element, and the third thermoelectric conversion element are ΔTp1, ΔTp2, and ΔTp3, respectively, and the temperature division ratio may be determined to satisfy ΔTp1≦ΔTp2<ΔTp3.
 また、本発明の多段電子温調装置では、隣り合う熱電変換素子の間に配置され、前記冷却面と前記放熱面との間を所定の距離だけ離間させる熱伝導性のスペーサーブロックを更に具備すること、が好ましい。 In addition, it is preferable that the multi-stage electronic temperature control device of the present invention further comprises a thermally conductive spacer block that is disposed between adjacent thermoelectric conversion elements and separates the cooling surface and the heat dissipation surface by a predetermined distance.
 また、本発明の多段電子温調装置は、前記冷却側熱導体、前記放熱側熱導体、及び前記積層体の周囲を覆って一体化する枠体を更に具備すること、が好ましい。 In addition, it is preferable that the multi-stage electronic temperature control device of the present invention further comprises a frame that covers and integrates the cooling side heat conductor, the heat dissipation side heat conductor, and the laminate.
 また、本発明は、断熱性の容器を加温するための電子温調装置であって、
 実質的に同じ仕様を有する複数の熱電変換素子の積層体と、
 前記積層体の加温面に設けられた冷却側熱導体と、
 前記積層体の吸熱面に設けられた放熱側熱導体と、
 前記複数の熱電変換素子のそれぞれに個別に電力を供給する制御基板と、を含み、
 前記容器の断熱性能、前記容器の庫内の伝熱性能、前記積層体の放熱性能、外気温度の計測データ、並びに、前記容器の目標温度又は前記容器の庫内温度の計測データ、を用いて、前記積層体の加温効率が所定の範囲となるように算出された、各熱電変換素子への温度分割比に基づいて、各熱電変換素子に供給する電力が決定されること、
を特徴とする多段電子温調装置、をも提供する。
The present invention also provides an electronic temperature control device for heating an insulating container, comprising:
A stack of a plurality of thermoelectric conversion elements having substantially the same specifications;
A cooling-side heat conductor provided on the heating surface of the laminate;
A heat dissipation side thermal conductor provided on a heat absorption surface of the laminate;
a control board that supplies power to each of the plurality of thermoelectric conversion elements individually;
power to be supplied to each thermoelectric conversion element is determined based on a temperature division ratio to each thermoelectric conversion element, the ratio being calculated so that the heating efficiency of the stack falls within a predetermined range using the heat insulating performance of the container, the heat transfer performance inside the container, the heat dissipation performance of the stack, measurement data of the outside air temperature, and the target temperature of the container or the measurement data of the temperature inside the container;
The present invention also provides a multi-stage electronic temperature control device, characterized in that
 本発明によれば、加温から超低温冷凍域の温度まで対応でき、大きな温度差をつけて動作させることが可能であり、しかも、冷却効率のよい条件で冷却・加温制御できる多段電子温調装置を提供することができる。 The present invention provides a multi-stage electronic temperature control device that can handle temperatures ranging from heating to ultra-low temperature freezing, can operate with large temperature differences, and can control cooling and heating under conditions that provide good cooling efficiency.
一般的な熱電変換素子100の構造を示す概略図である。1 is a schematic diagram showing the structure of a general thermoelectric conversion element 100. FIG. 一般的な熱電変換素子100における、投入電力P、吸熱量Qab及び排熱量Qdの関係、並びに、冷却側温度Tcp、放熱側温度Thp及び温度差ΔTpの関係を示す図である。1 is a diagram showing the relationship between the input power P, the amount of heat absorption Qab, and the amount of heat exhaust Qd, as well as the relationship between the cooling side temperature Tcp, the heat dissipation side temperature Thp, and the temperature difference ΔTp in a typical thermoelectric conversion element 100. FIG. 一般的な熱電変換素子100に流す電流Iと、吸熱量Qab及び消費電力Pとの関係を示すグラフである。1 is a graph showing the relationship between a current I flowing through a general thermoelectric conversion element 100 and the amount of heat absorption Qab and power consumption P. 一般的な熱電変換素子100における、供給電流Iに応じた温度差ΔTp及び吸熱量Qabの関係を示すグラフである。1 is a graph showing the relationship between the temperature difference ΔTp and the amount of heat absorption Qab according to the supply current I in a typical thermoelectric conversion element 100. 本実施形態に係る多段電子温調装置10が組み込まれた冷凍庫1の一例を示す概略図である。1 is a schematic diagram showing an example of a freezer 1 incorporating a multistage electronic temperature regulator 10 according to the present embodiment. 多段電子温調装置10の概略図である。1 is a schematic diagram of a multi-stage electronic temperature regulator 10. FIG. 熱電変換素子12の良好な冷却効率に対応する温度差(比)を決定する手法の一例を示す図である。11 is a diagram showing an example of a method for determining a temperature difference (ratio) corresponding to good cooling efficiency of a thermoelectric conversion element 12. FIG. 温度分割比RΔTpの説明図である。FIG. 4 is an explanatory diagram of a temperature division ratio RΔTp. 多段電子温調装置10における高温側から低温側への熱還流の説明図である。3 is an explanatory diagram of heat reflux from a high temperature side to a low temperature side in the multistage electronic temperature regulator 10. FIG. スペーサーブロック51,52の説明図である。4 is an explanatory diagram of spacer blocks 51 and 52. FIG. 冷却側のスペーサーブロック51を放熱側のスペーサーブロック52よりも厚くした多段電子温調装置10の概略図である。1 is a schematic diagram of a multistage electronic temperature regulator 10 in which a spacer block 51 on the cooling side is thicker than a spacer block 52 on the heat dissipation side. 枠体60を有する多段電子温調装置10における冷/温温度境界線の説明図である。1 is an explanatory diagram of a cold/hot temperature boundary line in a multistage electronic temperature regulator 10 having a frame 60. FIG.
 以下、本発明に係る多段電子温調装置の代表的な実施形態について、図面を参照しながら詳細に説明するが、本発明はこれに限定されるものではない。なお、図面は、本発明を概念的に説明するためのものであるから、理解容易のために寸法、比又は数を誇張又は簡略化して表している場合がある。 Below, a representative embodiment of the multi-stage electronic temperature control device according to the present invention will be described in detail with reference to the drawings, but the present invention is not limited thereto. Note that the drawings are intended to conceptually explain the present invention, and therefore dimensions, ratios, or numbers may be exaggerated or simplified for ease of understanding.
 本実施形態は、熱電変換素子12(以下、素子12ということがある。)を複数枚積層した積層体11を用いて、断熱性の容器2などの対象物を温度調節する多段電子温調装置10(以下、装置10ということがある。)を開示する(図5参照)。
 多段電子温調装置10は、対象物を冷却し又は加温するために用いられる。したがって、多段電子温調装置10は、多段電子冷却装置あるいは多段電子加温装置と言ってもよい。
 また、熱電変換素子12は、電子冷却素子とも呼ばれる。本実施形態では素子12として市販の4cm□、厚み3.8mm、半導体チップ数254個、ゼーベック係数S=0.014V/℃、内部抵抗R=2.114Ω、熱還流率K=0.143W/℃の電子冷却素子を想定しているが、本発明はこれに限られない。
This embodiment discloses a multistage electronic temperature control device 10 (hereinafter, sometimes referred to as device 10) that uses a laminate 11 having multiple thermoelectric conversion elements 12 (hereinafter, sometimes referred to as elements 12) stacked on top of each other to control the temperature of an object such as an insulating container 2 (see Figure 5).
The multi-stage electronic temperature regulator 10 is used to cool or heat an object. Therefore, the multi-stage electronic temperature regulator 10 may be called a multi-stage electronic cooling device or a multi-stage electronic heating device.
The thermoelectric conversion element 12 is also called an electronic cooling element. In this embodiment, the element 12 is assumed to be a commercially available electronic cooling element having a size of 4 cm square, a thickness of 3.8 mm, 254 semiconductor chips, a Seebeck coefficient S of 0.014 V/°C, an internal resistance R of 2.114 Ω, and a heat reflux rate K of 0.143 W/°C, but the present invention is not limited to this.
 以下の説明は、特に断らない限り、容器2の冷却を想定して行う。また、説明の便宜上、図5に示すように装置10が組み込まれた冷凍庫1の例を用いて説明を行うこととし、図6に示すように装置10における積層体11は3段の熱電変換素子12から構成されるものとする。ただし、本発明はこのような構成に限られるものではないし、冷凍庫以外の対象物にも適用可能である。 The following explanation assumes cooling of a container 2 unless otherwise specified. For ease of explanation, the explanation will be given using the example of a freezer 1 incorporating the device 10 as shown in FIG. 5, and the laminate 11 in the device 10 is composed of three stages of thermoelectric conversion elements 12 as shown in FIG. 6. However, the present invention is not limited to this configuration, and can be applied to objects other than freezers.
 まず冷凍庫1の概略を説明する。
 ここで説明する、素子12を3段に積層した多段電子温調装置を組み込んだ冷凍庫1は、-25℃程度の冷凍庫温度までの対応を想定している。この冷凍庫1は加温にも対応している。
 図5に示すように、冷凍庫1は、伝熱性に優れた容器2と、容器2を取り囲む断熱材3と、容器2を冷却する多段電子温調装置10と、多段電子温調装置10の放熱部を冷却する電動ファン4と、を含む。
 容器2は、例えばアルミニウム等の熱伝導率に優れた材料で作製される。また、断熱材3は、例えばウレタンフォーム等の断熱性能に優れた材料からなる。容器2(断熱材3)の断熱性能、容器2の庫内の伝熱性能、多段電子温調装置10の放熱性能は、仕様の決定によって定まる。
First, the freezer 1 will be outlined.
The freezer 1 described here incorporating the multistage electronic temperature regulator in which the elements 12 are stacked in three stages is assumed to be capable of handling freezer temperatures down to about −25° C. This freezer 1 is also capable of heating.
As shown in Figure 5, the freezer 1 includes a container 2 having excellent heat conductivity, a thermal insulation material 3 surrounding the container 2, a multi-stage electronic temperature control device 10 that cools the container 2, and an electric fan 4 that cools the heat dissipation portion of the multi-stage electronic temperature control device 10.
The container 2 is made of a material with excellent thermal conductivity, such as aluminum. The insulating material 3 is made of a material with excellent insulating performance, such as urethane foam. The insulating performance of the container 2 (insulating material 3), the heat transfer performance inside the container 2, and the heat dissipation performance of the multistage electronic temperature regulator 10 are determined by the specifications.
 次いで、多段電子温調装置10の説明に移る。
 装置10は、実質的に同じ仕様の熱電変換素子12を重ねて形成された積層体11を、冷却側熱導体21と放熱側熱導体22との間に実装している。
 ここで、実質的に同じ仕様の熱電変換素子とは、実質的に同じ特性の半導体、実質的に同じサイズの半導体チップを実質的に同じチップ数実装した、実質的に同じ基板サイズの素子を指す。実質的に同じ特性の半導体とは、ゼーベック係数α、電気伝導度σ、熱伝導度κが同等であることをいい、一般に調達できる同一仕様の素子をいう。当然のことながら、製造ロットの範囲でばらつきは許容されるものとする。
 また、冷却側とは容器2側を指し、放熱側とは電動ファン4側を指す。したがって、冷却側熱導体21は、積層体11と容器2との間に介在する熱伝導体であり、放熱側熱導体22は積層体11と放熱フィン(熱交換器)との間に介在する熱伝導体である。
 これらの冷却側熱導体21及び放熱側熱導体22は、例えばアルミニウム等の金属のような、熱伝導率の高い材料からなる。冷却側熱導体21及び放熱側熱導体22の厚みについては追って述べる。
Next, the multistage electronic temperature regulator 10 will be described.
The device 10 has a laminate 11 formed by stacking thermoelectric conversion elements 12 having substantially the same specifications, mounted between a cooling-side thermal conductor 21 and a heat-dissipation-side thermal conductor 22 .
Here, thermoelectric conversion elements of substantially the same specifications refer to elements of substantially the same substrate size, in which substantially the same number of semiconductor chips of substantially the same size and substantially the same characteristics are mounted. Semiconductors of substantially the same characteristics refer to elements of the same specifications that are generally available, with equivalent Seebeck coefficient α, electrical conductivity σ, and thermal conductivity κ. Naturally, variations are permitted within the range of the manufacturing lot.
The cooling side refers to the container 2 side, and the heat dissipation side refers to the electric fan 4 side. Therefore, the cooling side thermal conductor 21 is a thermal conductor interposed between the laminate 11 and the container 2, and the heat dissipation side thermal conductor 22 is a thermal conductor interposed between the laminate 11 and the heat dissipation fin (heat exchanger).
The cooling-side thermal conductor 21 and the heat-dissipation-side thermal conductor 22 are made of a material having high thermal conductivity, such as a metal such as aluminum. The thicknesses of the cooling-side thermal conductor 21 and the heat-dissipation-side thermal conductor 22 will be described later.
 装置10にはいくつかの温度センサー41,42が設置されている。
 すなわち、装置10の冷却側温度Tcpを計測する温度センサー41が設けられている。この温度センサー41は、装置10の冷却側熱導体21ないしその近傍に配置されている。
 また、装置10の放熱側温度Thpを計測する温度センサー42が設けられている。この温度センサー42は、装置10の放熱側熱導体22ないしその近傍に配置されている。
 ここに近傍とは、冷却側熱導体21又は放熱側熱導体22の温度と同等と評価できる温度を有する範囲ないし部位を指す。
 その他に、冷却対象物[又は容器2の庫内]温度Tcに相当する温度を測定する温度センサー5と、外気温Taを計測する温度センサー6が設けられる。これら温度センサー5,6は装置10にでなく、それを組み込んで温調動作させる製品(冷凍庫1等)側に設置されるものである(図5参照)。
The device 10 is equipped with several temperature sensors 41, 42.
That is, there is provided a temperature sensor 41 that measures the cooling-side temperature Tcp of the device 10. This temperature sensor 41 is disposed on the cooling-side thermal conductor 21 of the device 10 or in its vicinity.
Also provided is a temperature sensor 42 for measuring the heat radiation side temperature Thp of the device 10. This temperature sensor 42 is disposed on the heat radiation side thermal conductor 22 of the device 10 or in its vicinity.
Here, the term "vicinity" refers to a range or a portion having a temperature that can be evaluated as being equivalent to the temperature of the cooling-side thermal conductor 21 or the heat-radiation-side thermal conductor 22 .
In addition, a temperature sensor 5 that measures a temperature equivalent to the temperature Tc of the object to be cooled (or the inside of the container 2) and a temperature sensor 6 that measures the outside air temperature Ta are provided. These temperature sensors 5 and 6 are not installed in the device 10 but in the product (freezer 1, etc.) in which they are incorporated and whose temperature is to be regulated (see FIG. 5).
 装置10は、上記の各温度センサー5,6,41,42の出力信号及び入力された設定値に基づき、装置10の各素子12に要望される電力(電圧又は電流を含む)を印加する制御基板30を含む。この制御基板30は、放熱用の電動ファン4の動作や電池制御なども行ってよい。 The device 10 includes a control board 30 that applies the required power (including voltage or current) to each element 12 of the device 10 based on the output signals of the temperature sensors 5, 6, 41, and 42 and the input setting values. This control board 30 may also operate the electric fan 4 for heat dissipation and control the battery.
 以下、各素子12にどのように電圧(又は電流)を割り振るかについての考え方を述べる。ここでは、図5及び図6のように装置10が3段(枚)の素子12から構成されているものとして説明するが、装置10は2段の素子12から構成されていてもよいし、4段以上の素子12から構成されていてもよいことは言うまでもない。
 ここでは、同じ仕様の3枚の素子12を、冷却側(温調対象から近い側)から順に素子1、素子2、素子3と呼ぶこととする。
Below, we will explain how to allocate voltage (or current) to each element 12. Here, we will explain the device 10 as being composed of three stages (sheets) of elements 12 as shown in Figures 5 and 6, but it goes without saying that the device 10 may be composed of two stages of elements 12, or may be composed of four or more stages of elements 12.
Here, the three elements 12 having the same specifications will be referred to as element 1, element 2, and element 3, in that order from the cooling side (the side closest to the temperature control target).
 すなわち、庫内設定温度Tctと外気温度Taの計測値より求めた温度差ΔT(=Ta-Tct)をもとに、必要になる装置10の最大動作温度差ΔTpを計算する。その温度差ΔTpを用いて、素子1、素子2、素子3の動作温度差ΔTp1、ΔTp2、ΔTp3を、事前に求めた装置10の冷却効率COPが効率の良い条件となる温度分割比RΔTpに従って分割することで、素子1、素子2、素子3の個々の動作電圧(もしくは動作電流)を決める。なお、後述するように、温度分割比RΔTpのなかでも、COPが最適ないし適正であると言える範囲にある比率を最適温度分割比QΔTpという。 In other words, the required maximum operating temperature difference ΔTp of device 10 is calculated based on the temperature difference ΔT (= Ta - Tct) calculated from the measured values of the internal set temperature Tct and the outside air temperature Ta. Using this temperature difference ΔTp, the operating temperature differences ΔTp1, ΔTp2, ΔTp3 of elements 1, 2, and 3 are divided according to the temperature division ratio RΔTp that provides the previously calculated cooling efficiency COP of device 10 for the most efficient condition, and the individual operating voltages (or operating currents) of elements 1, 2, and 3 are determined. Note that, as will be described later, the ratio of the temperature division ratio RΔTp that is in the range where the COP can be said to be optimal or appropriate is called the optimal temperature division ratio QΔTp.
 より具体的に説明すると、装置10の両端の温度差ΔTpは、冷却側温度Tcp及び放熱側温度Thpを用いて、次式で表される。
  ΔTp=Thp-Tcp
 素子1、素子2、素子3の冷却側及び放熱側の温度差をΔTp1、ΔTp2、ΔTp3とすると、素子1の温度差ΔTp1は、冷却側温度Tcp1及び放熱側温度Thp1を用いて、次式のように表される。
  ΔTp1=Thp1-Tcp1
 同様に、素子2の温度差ΔTp2は、冷却側温度Tcp2及び放熱側温度Thp2を用いて、次式のように表される。
  ΔTp2=Thp2-Tcp2
 また、素子3の温度差ΔTp3は、冷却側温度Tcp3及び放熱側温度Thp3を用いて、次式のように表される。
  ΔTp3=Thp3-Tcp3
More specifically, the temperature difference ΔTp between both ends of the device 10 is expressed by the following equation using the cooling side temperature Tcp and the heat dissipation side temperature Thp.
ΔTp=Thp−Tcp
If the temperature differences between the cooling side and heat dissipation side of element 1, element 2, and element 3 are ΔTp1, ΔTp2, and ΔTp3, respectively, the temperature difference ΔTp1 of element 1 is expressed as follows using the cooling side temperature Tcp1 and the heat dissipation side temperature Thp1.
ΔTp1=Thp1−Tcp1
Similarly, the temperature difference ΔTp2 of the element 2 is expressed by the following equation using the cooling-side temperature Tcp2 and the heat-dissipation-side temperature Thp2.
ΔTp2=Thp2−Tcp2
Further, the temperature difference ΔTp3 of the element 3 is expressed by the following equation using the cooling side temperature Tcp3 and the heat radiation side temperature Thp3.
ΔTp3=Thp3−Tcp3
 また、隣り合う素子間の熱抵抗は十分に小さいので
   Tcp≒Tcp1
  Thp1≒Tcp2
  Thp2≒Tcp3
  Thp3≒Thp
として考えて差し支えない。なお、熱抵抗を無視しえない場合には、実測により補正すればよい。
In addition, the thermal resistance between adjacent elements is small enough that Tcp ≒ Tcp1
Thp1 ≒ Tcp2
Thp2 ≒ Tcp3
Thp3 ≒ Thp
If the thermal resistance cannot be ignored, it can be corrected by actual measurement.
 したがって、装置10の両端の温度差ΔTpは、素子1、素子2、素子3の温度差ΔTp1、ΔTp2及びΔTp3を用いて次のように表すこともできる。
  ΔTp=ΔTp1+ΔTp2+ΔTp3
 ただし、温度差ΔTpは、初期ないし動作開始時には、庫内設定温度Tctと外気温度Taを用いて、ΔTpt=Ta-Tctに設定されるものとする。
Therefore, the temperature difference ΔTp across the device 10 can also be expressed as follows using the temperature differences ΔTp1, ΔTp2 and ΔTp3 between the elements 1, 2 and 3:
ΔTp=ΔTp1+ΔTp2+ΔTp3
However, at the initial stage or when operation starts, the temperature difference ΔTp is set as ΔTpt=Ta-Tct using the internal temperature setting Tct and the outside air temperature Ta.
 かかる温度差ΔTpを素子1、素子2、素子3に温度分割する。
 温度分割の比は、事前に求めておいた、冷却効率が最大ないし適正となる分割比QΔTp=ΔTp1:ΔTp2:ΔTp3を用いることとする。ここでは例えばQΔTp=0.2:0.3:0.5とするが、これに限られない。
 そうすると、初期の温度差ΔTptより、素子1、素子2、素子3に割り当てられる温度差ΔTp1、ΔTp2、ΔTp3が決まる。次いで、素子1、素子2、素子3の冷却側温度Tcp1、Tcp2、Tcp3及び素子3の放熱側温度Thp3が決まる。
The temperature difference ΔTp is divided into temperatures for element 1, element 2, and element 3.
The temperature division ratio is a division ratio QΔTp=ΔTp1:ΔTp2:ΔTp3 that is determined in advance and that maximizes or optimizes the cooling efficiency. For example, QΔTp=0.2:0.3:0.5 is used here, but the present invention is not limited to this.
Then, the initial temperature difference ΔTpt determines temperature differences ΔTp1, ΔTp2, ΔTp3 assigned to element 1, element 2, element 3. Next, cooling side temperatures Tcp1, Tcp2, Tcp3 of element 1, element 2, element 3 and heat radiation side temperature Thp3 of element 3 are determined.
 次いで、冷凍庫1について検討する。
 冷凍庫1の仕様から次の値が決まる。すなわち、冷凍庫1の断熱仕様より、外部から庫内への熱の漏れ込みやすさを示す漏込熱コンダクタンスKLが決まる。また、容器2から多段電子温調装置10への伝熱性の良さを示す冷却側熱コンダクタンスKCが決まる。また、放熱熱交換器の仕様による放熱側熱コンダクタンスKHが決まる(いずれも単位はW/℃ないしW/K)。
 これらの熱コンダクタンスKL、KC、KHが決まることで、多段電子温調装置10の必要吸熱量Qabと冷却側温度Tcpが決まる。
Next, freezer 1 will be considered.
The following values are determined from the specifications of the freezer 1. That is, the insulation specifications of the freezer 1 determine the leakage heat conductance KL, which indicates how easily heat leaks from the outside into the freezer. Also, the cooling side heat conductance KC, which indicates how well heat is transferred from the container 2 to the multistage electronic temperature control device 10, is determined. Also, the heat dissipation side heat conductance KH is determined by the specifications of the heat dissipation heat exchanger (both are expressed in units of W/°C or W/K).
By determining these thermal conductances KL, KC, and KH, the required heat absorption amount Qab and cooling side temperature Tcp of the multistage electronic temperature regulator 10 are determined.
 敷衍すると、外気温度Ta及び冷凍庫1の庫内温度Tcの計測データ[ただし、電源投入時や蓋の閉動作後などに適用される初期冷却モードでは、庫内温度Tcの代わりに庫内設定温度Tctを用いることができる。実測の庫内温度Tcが庫内設定温度Tctに到達した時点で定温制御モードに移行し、実測の庫内温度Tcを使用する。]を用いて、外部から断熱性の庫内に漏れ込んでくる熱量QLは次式で表される。
  QL=KL×(Ta-Tc)
 すなわち、多段電子温調装置10は、庫内をTcに保ちつつ、この熱量QLを吸熱しなければならない。なお、熱量QLと多段電子温調装置10の必要吸熱量Qabとの間には、QL≧Qabの関係があるが、ここでは説明の便宜上、QL=Qabとして説明する。
More specifically, the amount of heat QL leaking into the heat-insulating freezer from the outside is expressed by the following equation using the measured data of the outside air temperature Ta and the freezer 1 internal temperature Tc (however, in the initial cooling mode applied when the power is turned on or after the lid is closed, the internal temperature setting Tct can be used instead of the internal temperature Tc. When the actual internal temperature Tc reaches the internal temperature setting Tct, the system transitions to the constant temperature control mode and the actual internal temperature Tc is used).
QL = KL × (Ta - Tc)
That is, the multistage electronic temperature regulator 10 must absorb this amount of heat QL while maintaining the temperature inside the refrigerator at Tc. Note that there is a relationship between the amount of heat QL and the amount of heat absorption Qab required by the multistage electronic temperature regulator 10, QL ≧ Qab, but for the sake of convenience, the following description will be given assuming QL = Qab.
 多段電子温調装置10の装置の冷却面で漏れ込み熱量QLすなわち必要吸熱量Qabを庫内容器2から吸熱する場合、漏れ込み熱量QLすなわち必要吸熱量Qabは、冷却側熱コンダクタンスKCを用いて、
  QL=Qab=KC×(Tc-Tcp)
と表すことができるから、多段電子温調装置10の冷却側温度Tcpは、
  Tcp=Tc-Qab/KC
となり、多段電子温調装置10の冷却側温度Tcp及び必要吸熱量Qabが定まる。
 このように、多段電子温調装置10が組み込まれる対象(ここでは冷凍庫1)の仕様が与えられると、多段電子温調装置10の冷却側温度Tcpと必要吸熱量Qabが定まることになる。
When the leakage heat amount QL, i.e., the required heat absorption amount Qab, is absorbed from the inner container 2 on the cooling surface of the multistage electronic temperature control device 10, the leakage heat amount QL, i.e., the required heat absorption amount Qab, is calculated using the cooling-side thermal conductance KC as follows:
QL = Qab = KC × (Tc - Tcp)
Therefore, the cooling side temperature Tcp of the multistage electronic temperature regulator 10 can be expressed as follows:
Tcp = Tc - Qab / KC
Thus, the cooling side temperature Tcp and the required heat absorption amount Qab of the multistage electronic temperature regulator 10 are determined.
In this way, when the specifications of the object (here, the freezer 1) into which the multistage electronic temperature regulator 10 is to be incorporated are given, the cooling side temperature Tcp and the required heat absorption amount Qab of the multistage electronic temperature regulator 10 are determined.
 図5及び図6に例示する、3素子を積層して冷却動作する多段電子温調装置10では、各素子の吸熱量Qab、投入電力P及び放熱量Qdは以下の式で計算できる。
- 素子1について
 吸熱量: Qab1=S×Tcp1×I1-0.5×I1^2×R1-K×ΔTp1
 投入電力:m
 放熱量: Qd1=Qab1+P1
- 素子2について
 吸熱量: Qab2=S×Tcp2×I2-0.5×I2^2×R2-K×ΔTp2
 投入電力:P2=(S×ΔTp2+R2×I2)×I2
 放熱量: Qd2=Qab1+P1+P2
- 素子3について
 吸熱量: Qab3=S×Tcp3×I3-0.5×I3^2×R3-K×ΔTp3
 投入電力:P3=(S×ΔTp3+R3×I3)×I3
 放熱量: Qd3=Qab1+P1+P2+P3
  ただし、S:素子ゼ-ベック起電力(V/℃)
      R:素子内部抵抗(Ω)
      K:素子の熱還流率(W/℃)
 したがって、冷却効率COPは次式で計算できる。
  COP=Qab1/P=Qab1/(P1+P2+P3)
In the multistage electronic temperature regulator 10 shown in FIGS. 5 and 6, which performs cooling operation by stacking three elements, the heat absorption amount Qab, input power P, and heat dissipation amount Qd of each element can be calculated by the following formula.
- Regarding element 1, heat absorption amount: Qab1 = S x Tcp1 x I1 - 0.5 x I1^2 x R1 - K x ΔTp1
Input power: m
Heat dissipation: Qd1 = Qab1 + P1
- Regarding element 2, heat absorption amount: Qab2 = S x Tcp2 x I2 - 0.5 x I2^2 x R2 - K x ΔTp2
Input power: P2 = (S x ΔTp2 + R2 x I2) x I2
Heat dissipation: Qd2 = Qab1 + P1 + P2
- Regarding element 3, heat absorption amount: Qab3 = S x Tcp3 x I3 - 0.5 x I3^2 x R3 - K x ΔTp3
Input power: P3 = (S x ΔTp3 + R3 x I3) x I3
Heat dissipation: Qd3 = Qab1 + P1 + P2 + P3
where S is the Seebeck electromotive force of the element (V/°C)
R: Internal resistance of element (Ω)
K: Heat return rate of the element (W/°C)
Therefore, the cooling efficiency COP can be calculated using the following formula.
COP=Qab1/P=Qab1/(P1+P2+P3)
 上記のように、素子12の仕様を決めることで係数S、R、Kは決まり、また、冷凍庫1の仕様を決めることでQab1とTcp1は決まる。
 しかしながら、装置10に生じる温度差ΔTpは、各素子12の動作温度差ΔTp1、・・・、ΔTpn(n:素子の段数)に依存し、また、素子12の温度差は任意の値を取れるので、このままでは、どの条件でCOPが最大ないし適正となるのかを求めることは困難である。
 そこで、装置10を組み込んだ冷凍庫1を試作し、各素子12の動作条件を様々に変えながら冷却効率を調べた。以下に詳細を述べる。
As described above, the coefficients S, R, and K are determined by determining the specifications of the element 12, and Qab1 and Tcp1 are determined by determining the specifications of the freezer 1.
However, the temperature difference ΔTp occurring in the device 10 depends on the operating temperature differences ΔTp1, ..., ΔTpn (n: number of element stages) of each element 12, and since the temperature difference of the elements 12 can take any value, it is difficult to determine under what conditions the COP will be maximum or appropriate.
Therefore, a prototype freezer 1 incorporating the device 10 was manufactured, and the cooling efficiency was examined while changing various operating conditions of each element 12. The details are described below.
 試作した多段電子温調装置は、4cm×4cm角、厚み3.8mmの熱電変換素子を3個積層したもので、素子特性S,R,Kは次のとおりである。
  S=0.051(V/K)、
  R=2.114(Ω)、
  K=0.417(W/K)
The prototype multi-stage electronic temperature regulator is a stack of three thermoelectric conversion elements, each 4 cm×4 cm square and 3.8 mm thick, with the element characteristics S, R, and K being as follows:
S = 0.051 (V / K),
R = 2.114 (Ω),
K = 0.417 (W/K)
 冷凍庫については、10cm×10cm×8cmのアルミニウム製容器をウレタン製断熱材で覆い、この容器に上記の多段電子温調装置を取り付け、当該装置の放熱側を強制空冷する電動ファンを取り付けた。
 冷凍庫の仕様は次のとおりである。
  漏れ込み熱コンダクタンス:KL=0.120(W/K)
  庫内冷却側熱コンダクタンス:KC=0.200(W/K)
  放熱側熱コンダクタンス:KH=5.000(W/K)
For the freezer, a 10 cm x 10 cm x 8 cm aluminum container was covered with urethane insulation, and the above-mentioned multi-stage electronic temperature control device was attached to this container, and an electric fan was installed to forcibly cool the heat dissipation side of the device.
The specifications of the freezer are as follows:
Leakage thermal conductance: KL = 0.120 (W/K)
Thermal conductance on the cooling side inside the chamber: KC = 0.200 (W/K)
Heat dissipation side thermal conductance: KH = 5.000 (W/K)
 この装置に、外気温度Ta、庫内温度Tc、冷却側温度Tcp、放熱側温度Thp、各素子の中間温度Tcp2、Tcp3をそれぞれ計測する温度センサーを設置した。
 そして、外気温度25℃の環境下で、電動ファンを一定条件で動作させ(すなわちKH=一定)、庫内温度を-25℃とする為に、素子1、素子2、素子3に任意の電流I1、I2、I3を流した時の多段電子温調装置10の冷却効率COPを調べた。
 測定結果を次の表1に示す。
This device was equipped with temperature sensors for measuring the outside air temperature Ta, the inside temperature Tc, the cooling side temperature Tcp, the heat dissipation side temperature Thp, and the intermediate temperatures Tcp2 and Tcp3 of each element.
Then, in an environment with an outside air temperature of 25°C, the electric fan was operated under constant conditions (i.e., KH = constant) and the cooling efficiency COP of the multi-stage electronic temperature control device 10 was investigated when arbitrary currents I1, I2, and I3 were passed through elements 1, 2, and 3 to set the temperature inside the cabinet to -25°C.
The measurement results are shown in Table 1 below.
   
 表1から、素子1、素子2、素子3の温度差ΔTp1、ΔTp2、ΔTp3を、装置10の温度差ΔTpに対して一定の比率で温度分割した結果、温度分割比RΔTpのなかでも、COPが最大になる温度分割比QΔTpが存在することが分った。すなわち、
  RΔTp=ΔTp1:ΔTp2:ΔTp3
  RΔTp1=ΔTp1/ΔTp
  RΔTp2=ΔTp2/ΔTp
  RΔTp3=ΔTp3/ΔTp
とすると、この冷凍庫では、冷却動作での適正な温度分割比はΔTp1≦ΔTp2<ΔTp3であり、さらに最適条件はΔTp1:ΔTp2:ΔTp3=0.23:0.33:0.44近辺であった。
From Table 1, it was found that when the temperature differences ΔTp1, ΔTp2, and ΔTp3 of the elements 1, 2, and 3 are divided by a certain ratio with respect to the temperature difference ΔTp of the device 10, there exists a temperature division ratio QΔTp that maximizes the COP among the temperature division ratios RΔTp.
RΔTp=ΔTp1:ΔTp2:ΔTp3
RΔTp1=ΔTp1/ΔTp
RΔTp2=ΔTp2/ΔTp
RΔTp3=ΔTp3/ΔTp
Then, in this freezer, the appropriate temperature division ratio in the cooling operation is ΔTp1≦ΔTp2<ΔTp3, and further the optimal condition is approximately ΔTp1:ΔTp2:ΔTp3=0.23:0.33:0.44.
 敷衍すると、図7(A)は、素子3のCOPとΔTp3/ΔTpとの関係を示す。この図から、RΔTp3=ΔTp3/ΔTp=0.44の近くにCOPの最大値があることが分かる。
 また、図7(B)は素子1のCOPとΔTp1/ΔTpとの関係を示す。この図から、RΔTp1=ΔTp1/ΔTp=0.23の近くにCOPの最大値がある。
 したがって、RΔTp2=ΔTp2/ΔTp=0.33となる。
 よって、この例における温度分割比はQΔTp=0.23:0.33:0.44となる。
7A shows the relationship between the COP and ΔTp3/ΔTp of the element 3. From this figure, it can be seen that the maximum value of COP is near RΔTp3=ΔTp3/ΔTp=0.44.
7B shows the relationship between COP and ΔTp1/ΔTp for element 1. From this figure, it can be seen that the maximum value of COP is near RΔTp1=ΔTp1/ΔTp=0.23.
Therefore, RΔTp2=ΔTp2/ΔTp=0.33.
Therefore, the temperature division ratio in this example is QΔTp=0.23:0.33:0.44.
 図8に、3素子構成の多段電子温調装置10の温度分布の一例を示す。
 図8の実線は、表1のデータ(3)に対応し、ほぼ直線である。このことは、温度差ΔTpが素子1、素子2、素子3に対してほぼ等分に温度分割されていることを示す。表1より、この条件でのCOPは0.279である。
 また、図8の破線は表1のデータ(5)に対応し、実線よりも下側に位置する(つまり、破線は下に凸である)。このことは、温度差ΔTpが素子1、素子2、素子3に対して、ΔTp1≦ΔTp2<ΔTp3となるように温度分割されていることを示す。表1より、この条件でのCOPは0.305であり、データ(3)よりも高効率であることが分かる。表1のデータ(4)、(6)及び(7)もデータ(3)と同様の傾向を示す。
 これに対して、図8の一点鎖線は表1のデータ(1)に対応し、実線よりも上側に位置する(つまり、破線は上に凸である)。このことは、温度差ΔTpが素子1、素子2、素子3に対して、ΔTp1>ΔTp2≧ΔTp3となるように温度分割されていることを示す。表1より、この条件でのCOPは0.235であり、データ(3)ないしデータ(7)に比べ効率において劣る。表1のデータ(2)もデータ(1)と同様の傾向を示す。
 この点、このCOPが最適となる温度分割比は、庫内設定温度Tct、庫内温度Tcを変化させても、外気温度Taを変化させてもほとんど変化しなかった。
 発明者が鋭意検討した結果、装置10のCOPが適正であると言える(最適値から±20%の範囲の)最適温度分割比QΔTpは、おおむね、ΔTp1:ΔTp2:ΔTp3=0.16~0.24:0.24~0.36:0.40~0.55の範囲(但しΔTp1≦ΔTp2<ΔTp3の範囲内)であることが分かった。
FIG. 8 shows an example of the temperature distribution in the multistage electronic temperature regulator 10 having a three-element configuration.
The solid line in Fig. 8 corresponds to data (3) in Table 1 and is an approximately straight line. This indicates that the temperature difference ΔTp is approximately equally divided among elements 1, 2, and 3. From Table 1, the COP under these conditions is 0.279.
The dashed line in Fig. 8 corresponds to data (5) in Table 1 and is located below the solid line (i.e., the dashed line is downwardly convex). This shows that the temperature difference ΔTp is divided such that ΔTp1 ≦ ΔTp2 < ΔTp3 for element 1, element 2, and element 3. From Table 1, it can be seen that the COP under these conditions is 0.305, which is more efficient than data (3). Data (4), (6), and (7) in Table 1 also show the same tendency as data (3).
In contrast, the dashed line in FIG. 8 corresponds to data (1) in Table 1 and is located above the solid line (i.e., the dashed line is upwardly convex). This shows that the temperature difference ΔTp is divided such that ΔTp1>ΔTp2≧ΔTp3 for element 1, element 2, and element 3. From Table 1, the COP under these conditions is 0.235, which is inferior in efficiency to data (3) to (7). Data (2) in Table 1 also shows the same tendency as data (1).
In this regard, the temperature split ratio at which this COP becomes optimal hardly changes even when the internal temperature setting Tct, the internal temperature Tc, or the outside air temperature Ta is changed.
As a result of careful consideration by the inventors, it was found that the optimal temperature division ratio QΔTp at which the COP of the device 10 can be said to be appropriate (within a range of ±20% from the optimal value) is roughly in the range of ΔTp1:ΔTp2:ΔTp3 = 0.16-0.24: 0.24-0.36: 0.40-0.55 (however, within the range of ΔTp1≦ΔTp2<ΔTp3).
 したがって、素子12の仕様と冷凍庫1の仕様が決まれば、多段電子温調装置10に生じる温度差ΔTpに対してCOPが最適ないし適正となる温度分割比QΔTpが存在し、最適温度分割比QΔTpを用いることで、温度条件の変化にかかわらず多段電子温調装置10を適正COP条件で動作させること、すなわち消費エネルギーを充分に小さくして温度制御することができることが判った。 Therefore, once the specifications of element 12 and freezer 1 are determined, there exists a temperature division ratio QΔTp for which the COP is optimal or appropriate for the temperature difference ΔTp that occurs in multi-stage electronic temperature control device 10, and it has been found that by using the optimal temperature division ratio QΔTp, it is possible to operate multi-stage electronic temperature control device 10 under appropriate COP conditions regardless of changes in temperature conditions, i.e., it is possible to control temperature with sufficiently small energy consumption.
 以上をまとめると、素子12の仕様と冷凍庫1の仕様が決まり、かつ、最適温度分割比QΔTpが決まれば、
- 温度Tcp1、Tcp2、Tcp3、Thpをそれぞれ温度センサーにより測定する。
- 初期冷却モードでは、庫内設定温度(目標温度)Tctと測定された外気温度Taより、動作温度差ΔT=Ta-Tctを初期の多段電子温調装置10の温度差ΔTpとし、最適温度分割比QΔTpを適用して、各素子12の温度差ΔTp1、ΔTp2、ΔTp3を決定する。
- 冷凍庫1の仕様から吸熱量Qab1と温度Tcp1を決する。
- 素子1の吸熱量Qab1が温度差ΔTp1の条件下で吸熱できる電流値I1を素子1に加える。[ここで、Qab1=S×Tcp1×I1-0.5×I1^2×R1-K×ΔTp1で電流Iの2次関数であるから、吸熱量Qab1となる電流値I1は2次関数の解より求まる。以下同じ。]このとき、素子1の放熱量Qd1=Qab+P1であるから、この放熱量が素子2の必要吸熱量Qab2となる。
- 同様に、素子2の吸熱量Qab2が温度差ΔTp2の条件下で吸熱できる電流値I2を素子2に加える。このとき、素子2の放熱量Qd2=Qab1+P2であるから、この放熱量が素子3の必要吸熱量Qab3となる。
- 同様に、素子3の吸熱量Qab3が温度差ΔTp3の条件下で吸熱できる電流値I3を素子3に加える。
- 素子3の放熱量Qd3=Qab2+P3が、放熱側熱交換器による処理を要する放熱量QDとなる。
- 放熱量QDは、放熱側熱コンダクタンスKHと、必要温度差ΔTh=Thp-Ta及びQD=KH×(Th-Ta)の関係式より、Thp=QD/KH+Taとなる。
したがって、Thp>Taである。
- そこで、庫内温度TcとThpの差を新しい温度差ΔTpとして更新し、最適温度分割比QΔTpで分割する。
- 実測の庫内温度Tcが庫内設定温度Tctとなるまで温度分割動作を繰り返して、放熱側熱交換器が放熱できる能力と均衡する条件でThpは落ち着く。
- 実測の庫内温度Tcが庫内設定温度Tctに到達した時点で定温制御モードに移行し、庫内設定温度Tctの代わりに庫内温度Tcの計測データを使用して、上記と同様の制御を行う。
 こうして、COPの最大と言える条件下で装置10の温度制御を行うことができる。
In summary, once the specifications of the element 12 and the freezer 1 are determined, and the optimal temperature division ratio QΔTp is determined,
The temperatures Tcp1, Tcp2, Tcp3, and Thp are measured by temperature sensors.
- In the initial cooling mode, the operating temperature difference ΔT = Ta - Tct is set as the initial temperature difference ΔTp of the multi-stage electronic temperature control device 10 based on the internal temperature setting (target temperature) Tct and the measured outside air temperature Ta, and the optimal temperature division ratio QΔTp is applied to determine the temperature differences ΔTp1, ΔTp2, and ΔTp3 of each element 12.
The heat absorption amount Qab1 and temperature Tcp1 are determined from the specifications of the freezer 1.
- A current value I1 that allows element 1 to absorb the amount of heat Qab1 absorbed under the condition of a temperature difference ΔTp1 is applied to element 1. [Here, Qab1 = S x Tcp1 x I1 - 0.5 x I1^2 x R1 - K x ΔTp1, which is a quadratic function of current I, so the current value I1 that results in the amount of heat absorption Qab1 can be found by solving the quadratic function. The same applies below.] At this time, the amount of heat dissipation Qd1 of element 1 = Qab + P1, so this amount of heat dissipation becomes the amount of heat absorption Qab2 required for element 2.
Similarly, a current I2 that allows the heat absorption amount Qab2 of element 2 to absorb heat under the condition of a temperature difference ΔTp2 is applied to element 2. At this time, the heat dissipation amount Qd2 of element 2 = Qab1 + P2, so this heat dissipation amount becomes the required heat absorption amount Qab3 of element 3.
Similarly, a current I3 is applied to element 3 such that the amount of heat absorbed by element 3, Qab3, is sufficient to absorb heat under the condition of a temperature difference ΔTp3.
The amount of heat radiation Qd3=Qab2+P3 of element 3 is the amount of heat radiation QD that needs to be treated by the heat radiation side heat exchanger.
The amount of heat dissipation QD is calculated as Thp=QD/KH+Ta based on the heat dissipation-side thermal conductance KH, the required temperature difference ΔTh=Thp-Ta, and the relational equation QD=KH×(Th-Ta).
Therefore, Thp>Ta.
Therefore, the difference between the inside temperatures Tc and Thp is updated as a new temperature difference ΔTp, and is divided by the optimum temperature division ratio QΔTp.
The temperature division operation is repeated until the measured internal temperature Tc reaches the internal set temperature Tct, and Thp settles at a condition where it is in equilibrium with the heat radiation capacity of the heat radiation side heat exchanger.
When the measured internal temperature Tc reaches the internal set temperature Tct, the mode switches to constant temperature control mode, and the same control as above is performed using the measured data of the internal temperature Tc instead of the internal set temperature Tct.
In this way, the temperature of the device 10 can be controlled under conditions that are considered to be the maximum COP.
 この手法を用いることで、装置10の冷却側温度Tcpと放熱側温度Thpの温度だけわかれば良いため、素子12の段数にかかわらず、中間の温度を測定する必要はなく、非常にシンプルな装置構造で済む。
 なお、同一の仕様の素子12を用いない場合、つまり異なる仕様の素子を積層する場合でも、計算は複雑になるが、上記と同じ考え方で温度制御は可能である。
By using this method, it is only necessary to know the cooling side temperature Tcp and the heat dissipation side temperature Thp of the device 10, so there is no need to measure intermediate temperatures regardless of the number of stages of the elements 12, and a very simple device structure can be used.
Even when elements 12 of different specifications are not used, that is, when elements of different specifications are stacked, the temperature can be controlled in the same manner as above, although the calculations become more complex.
 次いで、装置10の素子12への電力の極性を逆に切り替えて、容器2の庫内を加温する場合を考える。
 一般に冷凍庫に適用されている多段電子温調装置では、通常、冷凍温度のへ冷却動作の為に放熱側の熱交換器は吸熱側の熱導体より放熱性を大きくしている。すなわちKC<KHである。その為、かかる多段電子温調装置を加温モードで制御しようとする場合、冷却動作とバランスが異なるため、同じ電流密度比では適切な制御ができない。また、加温動作に好適な温度分割比も異なる。
 そこで、発明者が鋭意調べたところ、加温における最適温度分割比Q’ΔTpは存在することが分かった。ただし、加温最適温度分割比Q’ΔTpは、冷却動作とは異なる温度分割比であることも分かった。
Next, consider the case where the polarity of the power to element 12 of device 10 is reversed to heat the interior of container 2.
In general, in a multi-stage electronic temperature control device applied to a freezer, the heat exchanger on the heat dissipation side is designed to have a higher heat dissipation capacity than the heat conductor on the heat absorption side in order to cool the device to the freezing temperature. In other words, KC<KH. Therefore, when trying to control such a multi-stage electronic temperature control device in a heating mode, the balance is different from that of the cooling mode, so appropriate control cannot be achieved with the same current density ratio. In addition, the temperature division ratio suitable for heating is also different.
As a result of extensive research by the inventors, it was found that an optimal temperature split ratio Q'ΔTp for heating does exist. However, it was also found that the optimal temperature split ratio Q'ΔTp for heating is a temperature split ratio different from that for cooling.
 すなわち、発明者が試作した冷凍庫及び多段電子温調装置では、加温動作での適正な温度分割比はΔTp1>ΔTp2≧ΔTp3であり、最適にはQ’ΔTp=0.4:0.3:0.3であった。
 発明者の検討によれば、加温動作時における装置10の適正効率に対応する温度分割比Q’ΔTpは、おおむね、ΔTp1:ΔTp2:ΔTp3=0.2~0.5:0.2~0.4:0.1~0.3の範囲である。
That is, in the freezer and multistage electronic temperature regulator prototyped by the inventors, the appropriate temperature division ratio in the heating operation was ΔTp1>ΔTp2≧ΔTp3, and optimally Q′ΔTp=0.4:0.3:0.3.
According to the inventor's investigation, the temperature division ratio Q'ΔTp corresponding to the appropriate efficiency of the device 10 during heating operation is generally in the range of ΔTp1:ΔTp2:ΔTp3=0.2-0.5:0.2-0.4:0.1-0.3.
 したがって、加温動作で温度制御する場合、この温度分割比Q’ΔTpを使って各素子12の電流又は電圧を個別制御することで、室温より高い温度でも効率よく制御することができ、急速に温度変化させる事も可能となった。 Therefore, when controlling temperature by heating, this temperature division ratio Q'ΔTp is used to individually control the current or voltage of each element 12, making it possible to efficiently control temperatures higher than room temperature and also to rapidly change the temperature.
 ここで、冷却動作の説明に戻り、装置10の放熱側から冷却側への熱の還流を抑制する手法について説明する。
 すなわち、熱の還流の抑制の観点からは、隣り合う素子12の間に熱伝導性の高いスペーサーブロック51,52を入れて、装置10の周囲の断熱材3の断熱沿面距離Lを大きくすることが好ましい(図10参照)。
 また、そのスペーサーブロック51,52の厚みが、冷却側の厚みが厚いことが好ましい(図11参照)。
Returning now to the explanation of the cooling operation, a method for suppressing the reflux of heat from the heat dissipation side to the cooling side of the device 10 will be described.
In other words, from the viewpoint of suppressing heat reflux, it is preferable to insert spacer blocks 51, 52 with high thermal conductivity between adjacent elements 12 and increase the insulating creepage distance L of the insulating material 3 around the device 10 (see Figure 10).
It is also preferable that the spacer blocks 51, 52 are thicker on the cooling side (see FIG. 11).
 詳しく説明すると、図9に示すように、装置10の厚みは素子12の厚みで決まる。最も低い温度は冷却側素子12の冷却面であり、最も高い温度は、放熱側素子12の放熱面である。冷却側素子12及び放熱側素子12の間に大きな温度差が生じると、周囲の断熱材3などを通して高温側から熱が冷却部(低温側)に還流する。
 その為、冷却側素子12の冷却面と放熱側素子12の放熱面との距離Lが短いと、周囲の断熱材3の還流熱量が大きくなり冷却効率が低減する。
 そこで、図10に示すように、熱電変換素子12の冷熱源(冷却側)と発熱源(放熱側)の距離Lを長くするために、隣り合う素子12の間に、熱伝導性の高いスペーサーブロック51,52を設置するとよい。これにより周囲の断熱材3の断熱性が向上し、装置10の冷却効率に対する還流熱の影響を小さくすることができる。
 このスペーサーブロック51,52は素子12間の熱抵抗成分となるため、熱伝導度の高い素材、例えばアルミニウムや銅などを用いることが好ましい。
9, the thickness of the device 10 is determined by the thickness of the element 12. The lowest temperature is the cooling surface of the cooling side element 12, and the highest temperature is the heat dissipation surface of the heat dissipation side element 12. When a large temperature difference occurs between the cooling side element 12 and the heat dissipation side element 12, heat flows back from the high temperature side to the cooling part (low temperature side) through the surrounding insulation material 3, etc.
Therefore, if the distance L between the cooling surface of the cooling side element 12 and the heat radiation surface of the heat radiation side element 12 is short, the amount of heat circulating through the surrounding heat insulating material 3 increases, reducing the cooling efficiency.
10, in order to increase the distance L between the cold source (cooling side) and the heat source (heat dissipation side) of the thermoelectric conversion element 12, it is advisable to install spacer blocks 51 and 52 with high thermal conductivity between adjacent elements 12. This improves the thermal insulation of the surrounding insulation material 3, and reduces the effect of reflux heat on the cooling efficiency of the device 10.
Since the spacer blocks 51 and 52 act as thermal resistance components between the elements 12, it is preferable to use a material with high thermal conductivity, such as aluminum or copper.
 ただし、スペーサーブロック51,52は熱抵抗であるため、その厚みを大きくすると、スペーサーブロック51,52で生じる温度差は大きくなり、冷却効率は低下する。
 それを緩和するためには、冷却側のスペーサーブロック51ほど厚くするとよい(図11参照)。冷却側では通過熱量が小さいため、スペーサーブロック51に対して温度差を小さくしやすいからである。
However, since the spacer blocks 51 and 52 have thermal resistance, if the thickness is increased, the temperature difference occurring in the spacer blocks 51 and 52 increases, and the cooling efficiency decreases.
In order to alleviate this, it is advisable to make the spacer block 51 on the cooling side thicker (see FIG. 11). This is because the amount of heat passing through the spacer block 51 on the cooling side is small, so it is easy to reduce the temperature difference with respect to the spacer block 51.
 すなわち、スペーサーブロックの形状比Asb(=Ssb/Tsb)、断面積Sab、厚みTsb、熱伝導率λ、熱還流率Ksb(=Asb×λ)、通過する熱量Qabとすると、温度差ΔTsbは次式で表される。
  ΔTsb=Qab/Ksb
      =Qab/(Asb×λ)
      =Qab/((Ssb/Tsb)×λ)
これより、通過熱量Qabが小さいと温度差ΔTsbは小さくなるため、厚みTsbを大きくしても温度差ΔTsbの増加を抑制できる。
 なお、加温条件においては、加温効率が高いので、スペーサーブロック51,52の厚みの差によるスペーサーブロック51,52の温度差は無視できる。
That is, if the shape ratio of the spacer block is Asb (=Ssb/Tsb), the cross-sectional area is Sab, the thickness is Tsb, the thermal conductivity is λ, the heat return rate is Ksb (=Asb×λ), and the amount of heat passing through is Qab, then the temperature difference ΔTsb is expressed by the following equation.
ΔTsb=Qab/Ksb
= Q ab / ( Asb × λ)
= Qab / ((Ssb / Tsb) × λ)
As a result, when the amount of heat passed Qab is small, the temperature difference ΔTsb is small, so even if the thickness Tsb is increased, an increase in the temperature difference ΔTsb can be suppressed.
In addition, under the heating conditions, the heating efficiency is high, so that the temperature difference between the spacer blocks 51 and 52 due to the difference in thickness between the spacer blocks 51 and 52 can be ignored.
 あるいは、装置10の冷却側熱導体21と放熱側熱導体22とその間に積層された素子12の外周を枠体60で覆い、枠体60と冷却側・放熱側熱導体21,22と一体化することで、素子12を密閉してもよい(図12参照)。
 このとき、放熱側の素子12では、冷却面は外気温度より低く、放熱面は外気温より高いため、両面の中間に、外気温度と同等の温度となる冷/温温度境界線Mがある。この境界線Mより下(外側)は、放熱ゾーンとなる。
 これに対して、枠体60の冷/温温度境界線Nは、素子12の冷/温温度境界線Mよりも放熱側にある。したがって、枠体60の冷/温温度境界線Nより高温側に段差61を設け、装置10及び枠体60を断熱材3に取り付ける時に、断熱材3の中に丁度この段差61の位置が来るように配置することが好ましい。
 すなわち、室温などの環境温度よりも高温となる部位を断熱材3の外に配置するように枠体60を組み付けることで、確実に冷却効率の良い取り付けができるようになる。
Alternatively, the outer periphery of the cooling side thermal conductor 21 and the heat dissipation side thermal conductor 22 of the device 10 and the element 12 stacked between them may be covered with a frame body 60, and the frame body 60 may be integrated with the cooling side and heat dissipation side thermal conductors 21, 22 to seal the element 12 (see Figure 12).
In this case, in the element 12 on the heat dissipation side, the cooling surface is lower than the outside air temperature and the heat dissipation surface is higher than the outside air temperature, so that a cold/hot temperature boundary line M is formed between the two surfaces, where the temperature is equal to the outside air temperature. The area below (outside) this boundary line M becomes the heat dissipation zone.
In contrast, the cold/hot temperature boundary line N of the frame 60 is on the heat dissipation side of the cold/hot temperature boundary line M of the element 12. Therefore, it is preferable to provide a step 61 on the high temperature side of the cold/hot temperature boundary line N of the frame 60, and to position the step 61 exactly inside the thermal insulation material 3 when attaching the device 10 and the frame 60 to the thermal insulation material 3.
That is, by assembling the frame 60 so that the portion that becomes hotter than the environmental temperature, such as room temperature, is disposed outside the heat insulating material 3, an installation with good cooling efficiency can be ensured.
 以上、本発明の代表的な実施形態について説明したが、本発明はこれに限定されるものではなく、種々の設計変更が可能であり、かかる設計変更した態様も全て本発明の技術的範囲に含まれる。
 本発明の多段電子温調装置では、積層体が、冷却面側(温調対象に近い側)から順に、第1熱電変換素子、第2熱電変換素子、・・・及び第n熱電変換素子から構成されていてもよい(n≧2)。第1熱電変換素子、第2熱電変換素子、・・・及び第n熱電変換素子における温度差をΔTp1、ΔTp2、・・・及びΔTpnとして、温度分割比が、ΔTp1≦ΔTp2≦・・・<ΔTpnを満たすように決定されることが好ましい。
 例えば、-80℃程度の超低温冷凍域の温度まで対応できる超低温冷凍庫に使用される多段電子温調装置には、大きな温度差をつけて動作させるために6段積層の熱電変換素子が用いられてよい。この場合、多段電子温調装置に要求される温度差ΔTpを、6段の熱電変換素子に対して、ΔTp1≦ΔTp2≦ΔTp3≦ΔTp4≦ΔTp5<ΔTp6を満たすように温度分割するとよい。さらに、COPが最適ないし適正となる温度分割比QΔTpを用いることで、温度条件の変化にかかわらず多段電子温調装置を省エネルギーで作動させることができる。
Although a representative embodiment of the present invention has been described above, the present invention is not limited to this, and various design modifications are possible, and all such design modifications are included in the technical scope of the present invention.
In the multistage electronic temperature regulator of the present invention, the laminate may be composed of, in order from the cooling surface side (the side closer to the temperature control target), a first thermoelectric conversion element, a second thermoelectric conversion element, ..., and an nth thermoelectric conversion element (n >= 2). It is preferable that the temperature differences in the first thermoelectric conversion element, the second thermoelectric conversion element, ..., and the nth thermoelectric conversion element are ΔTp1, ΔTp2, ..., and ΔTpn, and the temperature division ratio is determined so as to satisfy ΔTp1≦ΔTp2≦ ...<ΔTpn.
For example, a multistage electronic temperature regulator used in an ultra-low temperature freezer capable of handling temperatures in the ultra-low temperature freezing range up to about -80°C may use a six-stage stacked thermoelectric conversion element in order to operate with a large temperature difference. In this case, the temperature difference ΔTp required for the multistage electronic temperature regulator may be temperature-divided for the six stages of thermoelectric conversion elements so as to satisfy ΔTp1≦ΔTp2≦ΔTp3≦ΔTp4≦ΔTp5<ΔTp6. Furthermore, by using a temperature division ratio QΔTp that provides an optimal or appropriate COP, the multistage electronic temperature regulator can be operated with reduced energy regardless of changes in temperature conditions.
 1 冷凍庫
 2 容器
 3 断熱材
 4 電動ファン
 5,6 温度センサー
10 多段電子温調装置
11 積層体
12 熱電変換素子
21 冷却側熱導体
22 放熱側熱導体
30 制御基板
41,42 温度センサー
51,52 スペーサーブロック
60 枠体

 
Reference Signs List 1 Freezer 2 Container 3 Insulation material 4 Electric fan 5, 6 Temperature sensor 10 Multi-stage electronic temperature control device 11 Laminated body 12 Thermoelectric conversion element 21 Cooling side heat conductor 22 Heat dissipation side heat conductor 30 Control board 41, 42 Temperature sensor 51, 52 Spacer block 60 Frame

Claims (5)

  1.  断熱性の容器を冷却するための電子温調装置であって、
     実質的に同じ仕様を有する複数の熱電変換素子の積層体と、
     前記積層体の冷却面に設けられた冷却側熱導体と、
     前記積層体の放熱面に設けられた放熱側熱導体と、
     前記複数の熱電変換素子のそれぞれに個別に電力を供給する制御基板と、を含み、
     前記容器の断熱性能、前記容器の庫内の伝熱性能又は前記積層体の冷却側の伝熱性能、前記積層体の放熱性能、外気温度の計測データ、前記容器の目標温度又は前記容器の庫内温度の計測データ、並びに、前記積層体の放熱温度の計測データ、を用いて、前記積層体の冷却効率が所定の範囲となるように算出された、各熱電変換素子への温度分割比に基づいて、各熱電変換素子に供給する電力が決定されること、
    を特徴とする多段電子温調装置。
    1. An electronic temperature control device for cooling an insulating container, comprising:
    A stack of a plurality of thermoelectric conversion elements having substantially the same specifications;
    A cooling-side heat conductor provided on a cooling surface of the laminate;
    A heat dissipation side thermal conductor provided on the heat dissipation surface of the laminate;
    a control board that supplies power to each of the plurality of thermoelectric conversion elements individually;
    power to be supplied to each thermoelectric conversion element is determined based on a temperature division ratio to each thermoelectric conversion element, which is calculated so that the cooling efficiency of the stack falls within a predetermined range using the insulation performance of the container, the heat transfer performance inside the container or the heat transfer performance on the cooling side of the stack, the heat dissipation performance of the stack, measurement data of the outside air temperature, measurement data of the target temperature of the container or the temperature inside the container, and measurement data of the heat dissipation temperature of the stack;
    A multi-stage electronic temperature control device characterized by:
  2.  前記積層体が、前記冷却面側から順に、第1熱電変換素子、第2熱電変換素子、・・・及び第n熱電変換素子から構成され、
     前記第1熱電変換素子、前記第2熱電変換素子、・・・及び前記第n熱電変換素子における温度差をΔTp1、ΔTp2、・・・及びΔTpnとして、前記温度分割比が、ΔTp1≦ΔTp2≦・・・<ΔTpnを満たすように決定されること、
    を特徴とする請求項1に記載の多段電子温調装置。
    the laminate is composed of, in order from the cooling surface side, a first thermoelectric conversion element, a second thermoelectric conversion element, ..., and an n-th thermoelectric conversion element,
    where temperature differences in the first thermoelectric conversion element, the second thermoelectric conversion element, ..., and the nth thermoelectric conversion element are ΔTp1, ΔTp2, ..., and ΔTpn, and the temperature division ratio is determined so as to satisfy ΔTp1≦ΔTp2≦ ... <ΔTpn;
    2. The multi-stage electronic temperature regulator according to claim 1 .
  3.  隣り合う熱電変換素子の間に配置され、前記冷却面と前記放熱面との間を所定の距離だけ離間させる熱伝導性のスペーサーブロックを更に具備すること、
    を特徴とする請求項1に記載の多段電子温調装置。
    Further comprising a thermally conductive spacer block disposed between adjacent thermoelectric conversion elements to separate the cooling surface and the heat dissipation surface by a predetermined distance;
    2. The multi-stage electronic temperature regulator according to claim 1 .
  4.  前記冷却側熱導体、前記放熱側熱導体、及び前記積層体の周囲を覆って一体化する枠体を更に具備すること、
    を特徴とする請求項1に記載の多段電子温調装置。
    Further comprising a frame that covers and integrates the cooling side thermal conductor, the heat dissipation side thermal conductor, and the laminate;
    2. The multi-stage electronic temperature regulator according to claim 1 .
  5.  断熱性の容器を加温するための電子温調装置であって、
     実質的に同じ仕様を有する複数の熱電変換素子の積層体と、
     前記積層体の加温面に設けられた冷却側熱導体と、
     前記積層体の吸熱面に設けられた放熱側熱導体と、
     前記複数の熱電変換素子のそれぞれに個別に電力を供給する制御基板と、を含み、
     前記容器の断熱性能、前記容器の庫内の伝熱性能、前記積層体の放熱性能、外気温度の計測データ、並びに、前記容器の目標温度又は前記容器の庫内温度の計測データ、を用いて、前記積層体の加温効率が所定の範囲となるように算出された、各熱電変換素子への温度分割比に基づいて、各熱電変換素子に供給する電力が決定されること、
    を特徴とする多段電子温調装置。
     

     
    An electronic temperature control device for heating an insulating container, comprising:
    A stack of a plurality of thermoelectric conversion elements having substantially the same specifications;
    A cooling-side heat conductor provided on the heating surface of the laminate;
    A heat dissipation side thermal conductor provided on a heat absorption surface of the laminate;
    a control board that supplies power to each of the plurality of thermoelectric conversion elements individually;
    power to be supplied to each thermoelectric conversion element is determined based on a temperature division ratio to each thermoelectric conversion element, the ratio being calculated so that the heating efficiency of the stack falls within a predetermined range using the heat insulating performance of the container, the heat transfer performance inside the container, the heat dissipation performance of the stack, measurement data of the outside air temperature, and the target temperature of the container or the measurement data of the temperature inside the container;
    A multi-stage electronic temperature control device characterized by:


PCT/JP2023/033765 2022-10-14 2023-09-15 Multi-stage electronic temperature controller WO2024080080A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022165535 2022-10-14
JP2022-165535 2022-10-14

Publications (1)

Publication Number Publication Date
WO2024080080A1 true WO2024080080A1 (en) 2024-04-18

Family

ID=90669075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/033765 WO2024080080A1 (en) 2022-10-14 2023-09-15 Multi-stage electronic temperature controller

Country Status (1)

Country Link
WO (1) WO2024080080A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001355937A (en) * 2001-04-09 2001-12-26 Sharp Corp Electronic cooling device
JP2005101544A (en) * 2003-08-15 2005-04-14 Toshiba Corp Heat-flow rate control system and evaluation system of endothermic/exothermic characteristics of thermoelectric conversion module
JP2007139328A (en) * 2005-11-18 2007-06-07 Seishi Takagi Cooling/cold insulating vessel and peltier module thereof
JP2010074164A (en) * 2008-08-21 2010-04-02 Esuto:Kk Thermoelectric conversion device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001355937A (en) * 2001-04-09 2001-12-26 Sharp Corp Electronic cooling device
JP2005101544A (en) * 2003-08-15 2005-04-14 Toshiba Corp Heat-flow rate control system and evaluation system of endothermic/exothermic characteristics of thermoelectric conversion module
JP2007139328A (en) * 2005-11-18 2007-06-07 Seishi Takagi Cooling/cold insulating vessel and peltier module thereof
JP2010074164A (en) * 2008-08-21 2010-04-02 Esuto:Kk Thermoelectric conversion device

Similar Documents

Publication Publication Date Title
US6338251B1 (en) Mixed thermoelectric cooling apparatus and method
US5156004A (en) Composite semiconductive thermoelectric refrigerating device
Min et al. Experimental evaluation of prototype thermoelectric domestic-refrigerators
US20110300420A1 (en) Temperature controlled battery pack assembly and methods for using the same
Cosnier et al. An experimental and numerical study of a thermoelectric air-cooling and air-heating system
US7954332B2 (en) Temperature control systems and methods
JP5999665B2 (en) Heat transfer unit and temperature control device
CN201152650Y (en) Cold-hot transformation apparatus having solid multi-lattice
US9416995B2 (en) Heating and cooling unit with semiconductor device and heat pipe
US20100218512A1 (en) Heat exchanger for thermoelectric applications
Jose et al. Air conditioner using Peltier module
Faraji et al. Experimental study of a thermoelectrically-driven liquid chiller in terms of COP and cooling down period
Vasil’ev Calculation and optimization of thermoelectric cooling modes of thermally loaded elements
Atta Thermoelectric cooling
He et al. Investigations on coupling between performance and external operational conditions for a semiconductor refrigeration system
Kodeeswaran et al. Precise temperature control using reverse seebeck effect
Enescu Thermoelectric refrigeration principles
WO2024080080A1 (en) Multi-stage electronic temperature controller
JP3129409U (en) Energy efficient electronic refrigerator
US20080283219A1 (en) Methods and apparatus for multiple temperature levels
Suo et al. Research on thermal design control and optimization of relay protection and automation equipment
Shetty et al. Experimental analysis of thermoelectric heat exchanger powered by solar energy
Singh et al. Air conditioner using Peltier module
KR20170140657A (en) temperature control system using the thermoelectric element and the coolant
Belovski et al. Examination of the Characteristics of a Thermoelectric Cooler in Cascade