JP5499206B1 - 伝送装置及び伝送方法 - Google Patents

伝送装置及び伝送方法 Download PDF

Info

Publication number
JP5499206B1
JP5499206B1 JP2013123813A JP2013123813A JP5499206B1 JP 5499206 B1 JP5499206 B1 JP 5499206B1 JP 2013123813 A JP2013123813 A JP 2013123813A JP 2013123813 A JP2013123813 A JP 2013123813A JP 5499206 B1 JP5499206 B1 JP 5499206B1
Authority
JP
Japan
Prior art keywords
unit
client signal
payload
opu
writing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013123813A
Other languages
English (en)
Other versions
JP2014241541A (ja
Inventor
賢治 久留
圭 北村
義朗 山田
光啓 手島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2013123813A priority Critical patent/JP5499206B1/ja
Application granted granted Critical
Publication of JP5499206B1 publication Critical patent/JP5499206B1/ja
Publication of JP2014241541A publication Critical patent/JP2014241541A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Time-Division Multiplex Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

【課題】ペイロードにおけるフレームの書き込み位置を揃えて、書き込みや読み出しの処理を簡易化する。
【解決手段】転送フレームを用いてクライアント信号を伝送する伝送装置であって、OPUマッピング部2は、クライアント信号を符号化する符号化部と、転送フレームにおけるペイロード領域のサイズと一致し、符号化されたクライアント信号の書き込み単位の整数倍となるようにパディングを含めたクライアント信号長を決定する決定部と、ペイロード領域の各々の先頭位置に書き込み単位の先頭を割り当てて、符号化されたクライアント信号を書き込む書込部とを備える。
【選択図】図1

Description

本発明は、転送フレームを用いてクライアント信号を伝送する伝送技術に関する。
現在、広域光転送網としてOTN (Optical Transport Network)が広く用いられている。OTNを用いてイーサネット(登録商標)やファイバ・チャネルなどのクライアント信号を伝送する手段としてGFP(Generic Framing Procedure)がある(例えば、非特許文献1参照)。図23は、GFPフレームの構造を示す図である。GFPフレームの先頭には4バイトのコアヘッダ(Core header)が置かれ、次に4〜64バイトのペイロードヘッダ(Payload header)、次に実データを収容するペイロード情報フィールド(Payload information field)、最後にオプションとしてペイロードにおけるエラーを検出するFCS(Frame Check Sequence)が置かれる。
図24は、64B/65B符号化の仕組みを示す図である。図24は、GFPにおけるクライアント信号を示している。図24に示されるように、64ビット(8バイト)のデータおよび8ビットの制御信号が、1ビットのフラグを含む65ビットに符号化される。これが64B/65B符号化である。
図25は、64B/65B符号化されたスーパーブロックのGFPフレームへの収容形態を示す図である。図25に示されるように、64B/65B符号化されたクライアント信号は、GFPのペイロード情報フィールドに収容される。クライアント信号を64バイト纏めたスーパーブロック単位で64B/65B符号化し、フラグ以外のデータを64バイト並べた後に1バイト(8ビット)のフラグを纏めて配置する。最後にエラーを検出するためにCRC(Cyclic Redundancy Check)−16を付加する。
"Generic framing procedure", ITU-T Recommendation G.7041/Y.1303, 2011
伝送装置の送信側でGFPフレームをOTNのペイロードに書き込んだり、伝送装置の受信側でOTNのペイロードからGFPフレームを読み出したりする時、メモリバス幅に合わせて書き込みや読み出しを行えるように回路実装すると、システムのスループットが向上する。メモリバス幅としては2^N(128、256、512など)ビットが一般的である。GFPフレームを2^9=512ビットでOTNのペイロードに書き込む場合を考える。ペイロードヘッダは最小の4バイトで、ペイロード情報フィールド内のCRC−16は省略する。
図26は、64B/65B符号化されたクライアントデータを512ビットのメモリバス幅でOTNのペイロードに書き込む様子を示す図である。図26に示されるように、最初は64ビットのヘッダ(4バイトのコアヘッダと4バイトのペイロードヘッダ)と64B/65B符号化された1番目のスーパーブロックの最初の448ビットの合計512ビットがOTNのペイロードに書き込まれる。次に、1番目のスーパーブロックの残り72ビットと2番目のスーパーブロックの最初の440ビットとが書き込まれる。次に、2番目のスーパーブロックの残り80ビットと3番目のスーパーブロックの最初の432ビットとが書き込まれる。次に3番目のスーパーブロックの残り88ビットと4番目のスーパーブロックの最初の424ビットとが書き込まれる。
このように符号化されたデータの長さがメモリバス幅の整数倍でないと、フレームの書き込み位置が次第にずれ、ペイロード毎にフレームの書き込み位置が異なることになるので、書き込みや読み出しの処理が複雑になる。
上記事情に鑑み、本発明は、ペイロードにおけるフレームの書き込み位置を揃えて、書き込みや読み出しの処理を簡易化することができる伝送装置及び伝送方法を提供することを目的としている。
本発明の一態様は、転送フレームを用いてクライアント信号を伝送する伝送装置であって、前記クライアント信号を符号化する符号化部と、前記転送フレームにおけるペイロード領域のサイズと一致し、符号化された前記クライアント信号の書き込み単位の整数倍となるようにパディングを含めたクライアント信号長を決定する決定部と、前記ペイロード領域の各々の先頭位置に前記書き込み単位の先頭を割り当てて、符号化された前記クライアント信号を書き込む書込部とを備える。
また、本発明の一態様においては、前記書込部は、符号化された前記クライアント信号を所定ビットのメモリバス幅で前記ペイロード領域に書き込むメモリバスを備え、前記決定部は、書き込み時の符号化された前記クライアント信号の信号長を前記メモリバス幅の整数倍とする。
また、本発明の一態様においては、符号化された前記クライアント信号をフラグ領域と当該フラグ領域を除いた主データ領域とに分割する分割部を更に備え、前記書込部は、前記フラグ領域と前記主データ領域とを連続処理せず、主データ領域を前記メモリバス幅の整数倍並べて書き込んだ後に、前記フラグ領域を纏めて書き込む。
また、本発明の一態様においては、前記分割部は、符号化された前記クライアント信号を、その読み出し順に従って、前記フラグ領域のデータを格納するフラグ領域用メモリと前記主データ領域のデータを格納する主データ領域用メモリとに振り分けて書き込むセレクタを備える。
また、本発明の一態様においては、前記クライアント信号を、その行き先に応じた複数のフローに分配するフロー分配部を更に備え、前記符号化部は、分配された前記クライアント信号を符号化する。
また、本発明の一態様においては、複数のフローに分配され、符号化された前記クライアント信号を復号し、復元された前記クライアント信号を一つに統合して出力する。
また、本発明の一態様においては、前記ペイロード領域は、複数のOPUペイロードからなる可変OPUペイロードである。
また、本発明の一態様は、転送フレームを用いてクライアント信号を伝送する伝送方法であって、前記クライアント信号を符号化する段階と、前記転送フレームにおけるペイロード領域のサイズと一致し、符号化された前記クライアント信号の書き込み単位の整数倍となるようにパディングを含めたクライアント信号長を決定する段階と、前記ペイロード領域の各々の先頭位置に前記書き込み単位の先頭を割り当てて、符号化された前記クライアント信号を書き込む段階とを有する。
本発明によれば、ペイロードにおけるフレームの書き込み位置を揃えて、書き込みや読み出しの処理を簡易化することができる。
本発明の一実施形態に係る伝送装置の送信部の構成を示す図である。 64B/65B符号化されたクライアントデータのOPUペイロードへの収容状態を示した図である。 OTUフレームの構成を示す図である。 伝送装置の送信部におけるOPUマッピング部の構成を示す図である。 伝送装置の受信部の構成を示す図である。 伝送装置の受信部におけるOPUデマッピング部の構成を示す図である。 64B/65B符号化されたクライアントデータを512ビットのメモリバス幅でOTNのペイロードに書き込む例を示す図である。 遅延に対応するように、64B/65B符号化されたクライアントデータを512ビットのメモリバス幅でOTNのペイロードに書き込む例を示す図である。 伝送装置の送信部の構成を示す図である。 64B/65B符号化されたクライアントデータの可変OPUペイロードへの収容状態を示した図である。 可変OTUフレームの構成を示す図である。 伝送装置の送信部における可変OPUマッピング部の構成を示す図である。 伝送装置の受信部の構成を示す図である。 伝送装置の受信部における可変OPUデマッピング部の構成を示す図である。 64B/65B符号化されたクライアントデータのOPUペイロードへの収容状態を示した図である。 64B/65B符号化されたクライアントデータの可変OPUペイロードへの収容状態を示した図である。 64B/66B符号化されたクライアントデータのOPUペイロードへの収容状態を示した図である。 伝送装置の送信部におけるOPUマッピング部の構成を示す図である。 伝送装置の受信部におけるOPUデマッピング部の構成を示す図である。 64B/66B符号化されたクライアントデータの可変OPUペイロードへの収容状態を示した図である。 伝送装置の送信部における可変OPUマッピング部の構成を示す図である。 伝送装置の受信部における可変OPUデマッピング部の構成を示す図である。 GFPフレーム構造を示す図である。 64B/65B符号化の仕組みを示す図である。 64B/65B符号化されたスーパーブロックのGFPフレームへの収容形態を示す図である。 64B/65B符号化されたクライアントデータを512ビットのメモリバス幅でOTNのペイロードに書き込む様子を示す図である。
〔1.第1の実施形態〕
〔1−1.システム構成〕
図1は、本発明の第1の実施形態に係る伝送装置の送信部100の構成を示す図である。送信部100は、フロー入力部1、OPU(Optical channel Payload Unit)マッピング部2(決定部,書込部)、OTU(Optical Channel Transport Unit)符号化部3、送信部4を備えている。以下、クライアント信号として、イーサネットやファイバ・チャネルなどのクライアント信号をGFPフレームに収容する例を示す。 フロー入力部1は、入力されたクライアント信号に対するポリシングまたはシェーピングを行う。OPUマッピング部2は、ポリシングまたはシェーピングされたクライアント信号を符号化して、図2のように、OPUペイロードにマッピングする。図2は、64B/65B符号化されたクライアントデータのOPUペイロードへの収容状態を示した図である。図3は、OTUフレームの構成を示す図である。OTU符号化部3は、図3のように、OPUペイロードに、OPUオーバヘッド、ODU(Optical Channel Data Unit)オーバヘッド、OTUオーバヘッド、FA(Frame Alignment)オーバヘッドを付加し、FEC(Forward Error Correction)符号化を行って誤り訂正用パリティを付加する。送信部4は、OTUフレームを適切な変調方式で送信する。例えば、OTU4フレームを転送する場合、送信部4は、10Gbpsにて変調された波長10波で送信したり、DP−QPSK(二重偏波四位相偏移変調)で100Gbpsにて変調された波長1波で送信したりする。
図4は、OPUマッピング部2の構成を示す図である。OPUマッピング部2は、64B/65B符号化回路5(符号化部)、主データ領域用メモリ6、フラグ領域用メモリ7、セレクタ8(分割部)、OPUペイロード書込回路9(書込部)を備えている。フロー入力部1からのクライアント信号は512ビットのデータと64ビットの制御信号とからなるものとする。
64B/65B符号化回路5は、上記のクライアント信号を512ビットの主データと8ビットのフラグとに符号化し、512ビットの主データを主データ領域用メモリ6に書き込む一方、8ビットのフラグをフラグ領域用メモリ7に書き込む。64B/65B符号化は、GFPで従来使われていた方式であるため、従来技術が流用できる。セレクタ8は、クロック数をカウント対象とするカウンタnを0からインクリメントする。1クロック毎にカウンタnがインクリメントされ、1メモリバス幅(ここでは512ビット)がOPUペイロードに書き込まれる。セレクタ8は、0≦n≦233ならば主データ領域用メモリ6から主データを512ビット読み出してOPUペイロード書込回路9に出力する。セレクタ8は、234≦n≦237ならばフラグ領域用メモリ7からフラグを512ビット(n=237ならばパディングビットを含む)読み出してOPUペイロード書込回路9に出力する。カウンタnは、237の次は0にリセットされる。OPUペイロード書込回路9は、セレクタ8から入力されたデータを、図2のように、逐次OPUペイロードに書き込む。
図5は、上記伝送装置の受信部200の構成を示す図である。受信部200は、受信部10、OTU復号部11、OPUデマッピング部12、フロー出力部13を備えている。
受信部10は、OTUフレームを受信する。OTU復号部11は、受信したOTUフレームに誤り訂正を実施し、訂正後のOTUフレームからFAオーバヘッド、OTUオーバヘッド、ODUオーバヘッド、OPUオーバヘッドを削除する。OPUデマッピング部12は、OPUペイロードからデータを読み出して元のクライアントデータを復元する。フロー出力部13は復元されたクライアントデータを出力する。
図6は、OPUデマッピング部12の構成を示す図である。OPUデマッピング部12は、OPUペイロード読出回路14、セレクタ15、主データ領域用メモリ16、フラグ領域用メモリ17、64B/65B復号回路18を備えている。
OPUペイロード読出回路14は、OPUペイロードから逐次512ビットでデータを読み出す。セレクタ15は、クロック数をカウント対象とするカウンタnを0からインクリメントする。セレクタ15は、0≦n≦233ならばOPUペイロード読出回路14から出力されたデータを主データ領域用メモリ16に書き込む。セレクタ15は、234≦n≦237ならばOPUペイロード読出回路14から出力されたデータをフラグ領域用メモリ17に書き込む。カウンタnは、237の次は0にリセットされる。64B/65B復号回路18は、フラグ領域用メモリ17にデータが書き込まれると復号を開始し、512ビットの主データと8ビットのフラグとから元の512ビットのデータと64ビットの制御信号とを復元し、フロー出力部13(図5参照)に出力する。
このように、本実施形態の伝送装置は、転送フレームを用いてクライアント信号を伝送する伝送装置である。この伝送装置は、クライアント信号を符号化する64B/65B符号化回路5と、転送フレームにおけるペイロード領域のサイズと一致し、符号化されたクライアント信号の書き込み単位の整数倍となるようにパディングを含めたクライアント信号長を決定するOPUマッピング部2と、ペイロード領域の各々の先頭位置に書き込み単位の先頭を割り当てて、符号化された前記クライアント信号を書き込むOPUペイロード書込回路9とを備えている。
また、OPUペイロード書込回路9は、符号化されたクライアント信号を所定ビットのメモリバス幅でペイロード領域に書き込むメモリバスを備えており、OPUマッピング部2は、書き込み時の符号化されたクライアント信号の信号長をメモリバス幅の整数倍とする。
書き込み時の符号化されたクライアント信号の信号長をメモリバス幅の整数倍とすれば、ペイロード毎のフレームの書き込み位置を揃えて、書き込みや読み出しの処理を簡易化することができる。
また、セレクタ15は、符号化されたクライアント信号を、その読み出し順に従って、フラグ領域のデータを格納するフラグ領域用メモリ17と主データ領域のデータを格納する主データ領域用メモリ16とに振り分けて書き込む。
〔1−2.データ書き込みの特徴〕
本発明の伝送装置(伝送方法)におけるデータ書き込みの特徴について説明する。OTNのペイロードに書き込みを行うフレームの長さを、OTNのペイロードの長さと一致させて、OTNのペイロードの先頭と書き込みを行うフレームの先頭とを一致させれば、ヘッダを省略することができる。また、フラグ領域とフラグ領域以外の主データ領域とを連続処理せず、フラグ領域以外の主データ領域をメモリバス幅の整数倍と一致する単位にて並べた後に、フラグ領域を纏めて配置することにより、書き込みや読み出しの処理を簡易化することができる。
以下、図面を用いて、OTNのOPUペイロードに64B/65B符号化されたクライアント信号を書き込む場合について説明する。OTNのOPUペイロードは、4行×3808バイトである。
図7は、64B/65B符号化されたクライアントデータを512ビットのメモリバス幅でOTNのペイロードに書き込む例を示す図である。図7に示されるように、最初は、64B/65B符号化された1番目のスーパーブロック中、フラグ以外の512ビット(以下、「主データ」と称する)をOPUペイロードに書き込む。次に、2番目のスーパーブロックの主データをOPUペイロードに書き込む。以下、同様にして234番目のスーパーブロックまでの主データをOPUペイロードに書き込む。次に、1番目〜64番目のスーパーブロックのフラグを512ビット纏めてOPUペイロードに書き込む。次に、65番目〜128番目のスーパーブロックのフラグを512ビット纏めてOPUペイロードに書き込む。次に、129番目〜192番目のスーパーブロックのフラグを512ビット纏めてOPUペイロードに書き込む。次に、193番目〜234番目のスーパーブロックのフラグと残り176ビットのパディングを512ビット纏めてOPUペイロードに書き込む。
図8は、遅延に対応するように、64B/65B符号化されたクライアントデータを512ビットのメモリバス幅でOTNのペイロードに書き込む例を示す図である。図8に示されるように、最初は、64B/65B符号化された1番目のスーパーブロック中、フラグ以外の512ビット(主データ)をOPUペイロードに書き込む。次に、2番目のスーパーブロックの主データをOPUペイロードに書き込む。以下、同様にして64番目のスーパーブロックまでの主データをOPUペイロードに順次書き込む。次に、1番目〜64番目のスーパーブロックのフラグを512ビット纏めてOPUペイロードに書き込む。次に、65番目のスーパーブロックから128番目のスーパーブロックまでの主データをOPUペイロードに順次書き込む。次に、65番目〜128番目のスーパーブロックのフラグを512ビット纏めてOPUペイロードに書き込む。次に、129番目のスーパーブロックから192番目のスーパーブロックまでの主データをOPUペイロードに順次書き込む。次に、129番目〜192番目のスーパーブロックのフラグを512ビット纏めてOPUペイロードに書き込む。次に、193番目のスーパーブロックから234番目のスーパーブロックまでの主データをOPUペイロードに順次書き込む。次に、193番目〜234番目のスーパーブロックのフラグと残り176ビットのパディングとを512ビット纏めてOPUペイロードに書き込む。
〔2.第2の実施形態〕
図9は、本発明の第2の実施形態に係る伝送装置の送信部110の構成を示す図である。本実施形態では、一つの送信装置から複数の受信装置にデータを伝送する。送信部110は、フロー分配部19、可変OPUマッピング部20−A〜20−B、可変OTU符号化部21−A〜21−B、可変レート送信部22−A〜22−Bを備えている。
フロー分配部19は、入力されたクライアント信号を行き先毎のフローに分配し、それぞれポリシングまたはシェーピングを行う。例えば、クライアント信号がイーサネットの場合、イーサフレームに付加されているVLAN IDを読み込み、VLAN IDに対応する行き先に、イーサフレームを振り分ける。なお、図9ではフロー数2の例を示すが、フロー数は2に限定されない。
可変OPUマッピング部20−A〜20−Bは、分配されたクライアント信号を符号化して、図10のように、可変OPUペイロードにマッピングする。図10は、64B/65B符号化されたクライアントデータの可変OPUペイロードへの収容状態を示した図である。可変OPUペイロードは、例えば、ポリシングまたはシェーピングを行ったフローの帯域に合わせて構築した複数のOPUペイロードからなる。そのため、ペイロード容量が可変となる。この構成において、ペイロード領域は、複数のOPUペイロードからなる可変OPUペイロードである。
可変OTU符号化部21−A〜21−Bは、可変OPUペイロードを構成する複数のOPUペイロードそれぞれに対し、図11のように、OPUオーバヘッド、ODUオーバヘッド、OTUオーバヘッド、FAオーバヘッドを付加し、FEC符号化を行って誤り訂正用パリティを付加することで、複数のOTUフレームからなる可変OTUフレームを構築する。図11は、可変OTUフレームの構成を示す図である。可変レート送信部22−A〜22−Bは、可変OTUフレームの電気信号を、ビットレートを変更可能な光変調器で光信号に変換して送信する。
このように、本実施形態の伝送装置は、クライアント信号をその行き先に応じた複数のフローに分配するフロー分配部19を備え、可変OPUマッピング部20−A〜20−Bが分配されたクライアント信号を符号化する構成である。
図12は、可変OPUマッピング部20−A(20−B)の構成を示す図である。可変OPUマッピング部20−A(20−B)は、64B/65B符号化回路5−1〜5−N、主データ領域用メモリ6−1〜6−N、フラグ領域用メモリ7−1〜7−N、セレクタ8−1〜8−N、可変OPUペイロード書込回路9−1〜9−Nを備えている。フロー分配部19(図9参照)からのクライアント信号は、512Nビットのデータと64Nビットの制御信号とからなるものとする。
64B/65B符号化回路5−1〜5−Nは、クライアント信号を512Nビットの主データと8Nビットのフラグに符号化し、512Nビットの主データを主データ領域用メモリ6−1〜6−Nに書き込む一方、8Nビットのフラグをフラグ領域用メモリ7−1〜7−Nに書き込む。
セレクタ8−1〜8−Nは、クロック数をカウント対象とするカウンタnを0からインクリメントする。1クロック毎にカウンタnがインクリメントされ、1メモリバス幅(ここでは512ビット)がOPUペイロードに書き込まれる。セレクタ8−1〜8−Nは、0≦n≦233ならば主データ領域用メモリ6−1〜6−Nから主データを512Nビット読み出して可変OPUペイロード書込回路9−1〜9−Nに出力する。セレクタ8−1〜8−Nは、234≦n≦237ならばフラグ領域用メモリ7−1〜7−Nからフラグを512Nビット(n=237ならばパディングビットを含む)読み出して可変OPUペイロード書込回路9−1〜9−Nに出力する。カウンタnは、237の次は0にリセットされる。可変OPUペイロード書込回路9−1〜9−Nは、セレクタ8−1〜8−Nから入力されたデータを図10のように逐次、可変OPUペイロードに書き込む。
図13は、上記伝送装置の受信部210の構成を示す図である。受信部210は、可変レート受信部23−A〜23−B、可変OTU復号部24−A〜24−B、可変OPUデマッピング部25−A〜25−B、フロー統合部26を備えている。
可変レート受信部23−A〜23−Bは、可変OTUフレームを受信する。可変OTU復号部24−A〜24−Bは、受信した可変OTUフレームに誤り訂正を行い、訂正後の可変OTUフレームからFAオーバヘッド、OTUオーバヘッド、ODUオーバヘッド、OPUオーバヘッドを削除する。可変OPUデマッピング部25−A〜25−Bは、可変OPUペイロードからデータを読み出して元のクライアントデータを復元する。フロー統合部26は、復元されたクライアントデータを統合して出力する。
このように、本実施形態の伝送装置は、複数のフローに分配され、符号化されたクライアント信号を復号し、復元されたクライアント信号を一つに統合して出力する構成を備えている。
図14は、可変OPUデマッピング部25−A(25−B)の構成を示す図である。可変OPUデマッピング部25−A(25−B)は、可変OPUペイロード読出回路14−1〜14−N、セレクタ15−1〜15−N、主データ領域用メモリ16−1〜16−N、フラグ領域用メモリ17−1〜17−N、64B/65B復号回路18−1〜18−Nを備えている。
可変OPUペイロード読出回路14−1〜14−Nは、可変OPUペイロードから逐次512Nビットでデータを読み出す。セレクタ15−1〜15−Nは、クロック数をカウント対象とするカウンタnを0からインクリメントする。セレクタ15−1〜15−Nは、0≦n≦233ならば可変OPUペイロード読出回路14−1〜14−Nからのデータを主データ領域用メモリ16−1〜16−Nに書き込む。セレクタ15−1〜15−Nは、234≦n≦237ならば可変OPUペイロード読出回路14−1〜14−Nからのデータをフラグ領域用メモリ17−1〜17−Nに書き込む。カウンタnは、237の次は0にリセットされる。64B/65B復号回路18−1〜18−Nは、フラグ領域用メモリ17−1〜17−Nにデータが512ビット書き込まれると復号を開始する。64B/65B復号回路18−1〜18−Nは、512Nビットの主データと8Nビットのフラグから元の512Nビットのデータと64Nビットの制御信号とからなるクライアント信号を復元し、フロー統合部26に出力する。フロー統合部26は、複数の対向装置から受信したクライアント信号を統合し、出力する。
〔3.第3の実施形態〕
本発明の第3の実施形態に係る伝送装置の送信部の構成は、OPUマッピング部2がOPUマッピング部2’に置き代わる点を除いて、図1に示した送信部100と同一である。本実施形態では、書き込むフラグがメモリバス幅と同じビット数になると、OPUペイロードに書き込む構成となる。本実施形態は、第1の実施形態と比較して早く65Bスーパーブロックを対向装置に転送することができる。一方、主データの書き込み中に、フラグ書き込みへ切り替える処理が必要となる。
フロー入力部1、OTU符号化部3、送信部4の動作については、図1の説明と同様である。
OPUマッピング部2’はポリシングまたはシェーピングされたクライアント信号を符号化して、図15のようにOPUペイロードにマッピングする。図15は、64B/65B符号化されたクライアントデータのOPUペイロードへの収容状態を示した図である。
OPUマッピング部2’の構成は図4と同一である。フロー入力部1からのクライアント信号は、512ビットのデータと64ビットの制御信号からなるものとする。
64B/65B符号化回路5は、クライアント信号を512ビットの主データと8ビットのフラグに符号化し、512ビットの主データを主データ領域用メモリ6に書き込み、8ビットのフラグをフラグ領域用メモリ7に書き込む。セレクタ8は、クロック数をカウント対象とするカウンタnを0からインクリメントする。1クロック毎にカウンタnがインクリメントされ、1メモリバス幅(ここでは512ビット)がOPUペイロードに書き込まれる。セレクタ8は、0≦n≦63、65≦n≦128、130≦n≦193、195≦n≦236ならば主データ領域用メモリ6から主データを512ビット読み出してOPUペイロード書込回路9に出力する。このように書き込むことで、主データとフラグとの両方が受信される間隔が短くなり、遅延を少なくできる。セレクタ8は、n=64、129、194、237ならばフラグ領域用メモリ7からフラグを512ビット(n=237ならばパディングビットを含む)読み出してOPUペイロード書込回路9に出力する。カウンタnは、237の次は0にリセットされる。OPUペイロード書込回路9は、セレクタ8から入力されたデータを、図2のように、逐次OPUペイロードに書き込む。
本実施形態に係る伝送装置の受信部の構成は、OPUデマッピング部12がOPUデマッピング部12’に置き代わる点を除いて、図5に示した受信部200と同一である。
受信部10、OTU復号部11、フロー出力部13の動作については、図5の説明と同様である。OPUデマッピング部12’はOPUペイロードからデータを読み出して元のクライアントデータを復元する。
OPUデマッピング部12の構成は、図6と同一である。OPUペイロード読出回路14は、OPUペイロードから逐次512ビットでデータを読み出す。セレクタ15は、クロック数をカウント対象とするカウンタnを0からインクリメントする。セレクタ15は、0≦n≦63、65≦n≦128、130≦n≦193、195≦n≦236ならばOPUペイロード読出回路14からのデータを主データ領域用メモリ16に書き込む。セレクタ15は、n=64、129、194、237ならばフラグ領域用メモリ17に書き込む。カウンタnは、237の次は0にリセットされる。
64B/65B復号回路18は、フラグ領域用メモリ17にデータが書き込まれると復号を開始し、512ビットの主データと8ビットのフラグから元の512ビットのデータと64ビットの制御信号を復元し、フロー出力部13に出力する。
〔4.第4の実施形態〕
本発明の第4の実施形態に係る伝送装置の送信部の構成は、可変OPUマッピング部20−A〜20−Bが可変OPUマッピング部20’−A〜20’−Bに置き代わる点を除いて、図9に示した送信部110と同一である。本実施形態では、書き込むフラグがメモリバス幅と同じビット数になると、OPUペイロードに書き込む構成となる。本実施形態では、第2の実施形態と比較して早く65Bスーパーブロックを対向装置に転送することができる。一方、主データの書き込み中に、フラグ書き込みへ切り替える処理が必要となる。
フロー分配部19、可変OTU符号化部21−A〜21−B、可変レート送信部22−A〜22−Bの動作については、図9の説明と同様である。可変OPUマッピング部20’−A〜20’−Bは、分配されたクライアント信号を符号化して、図16のように可変OPUペイロードにマッピングする。図16は、64B/65B符号化されたクライアントデータの可変OPUペイロードへの収容状態を示した図である。
可変OPUマッピング部20’−Aまたは20’−Bの構成は図12と同一である。フロー分配部19からのクライアント信号は512Nビットのデータと64Nビットの制御信号からなるものとする。
64B/65B符号化回路5−1〜5−Nは、クライアント信号を512Nビットの主データと8Nビットのフラグに符号化し、512Nビットの主データを主データ領域用メモリ6−1〜6−Nに書き込み、8Nビットのフラグをフラグ領域用メモリ7−1〜7−Nに書き込む。セレクタ8−1〜8−Nは、クロック数をカウント対象とするカウンタnを0からインクリメントする。1クロック毎にカウンタnがインクリメントされ、1メモリバス幅(ここでは512ビット)がOPUペイロードに書き込まれる。セレクタ8−1〜8−Nは、0≦n≦63、65≦n≦128、130≦n≦193、195≦n≦236ならば主データ領域用メモリ6−1〜6−Nから主データを512Nビット読み出して可変OPUペイロード書込回路9−1〜9−Nに出力する。セレクタ8−1〜8−Nは、n=64、129、194、237ならばフラグ領域用メモリ7−1〜7−Nからフラグを512Nビット(n=237ならばパディングビットを含む)読み出して可変OPUペイロード書込回路9−1〜9−Nに出力する。カウンタnは、237の次は0にリセットされる。可変OPUペイロード書込回路9−1〜9−Nは、セレクタ8−1〜8−Nから入力されたデータを図10のように逐次、可変OPUペイロードに書き込む。
本実施形態に係る伝送装置の受信部の構成は、可変OPUデマッピング部25−A〜25−Bが可変OPUデマッピング部25’−A〜25’−Bに置き代わる点を除いて、図13に示した受信部210と同一である。
可変レート受信部23−A〜23−B、可変OTU復号部24−A〜24−B、フロー統合部26の動作については、図13の説明と同様である。可変OPUデマッピング部25’−A〜25’−Bは、可変OPUペイロードからデータを読み出して元のクライアントデータを復元する。
可変OPUデマッピング部25’−A〜25’−Bの構成は、図14と同一である。
可変OPUペイロード読出回路14−1〜14−Nは、可変OPUペイロードから逐次512Nビットでデータを読み出す。セレクタ15−1〜15−Nは、クロック数をカウント対象とするカウンタnを0からインクリメントする。セレクタ15−1〜15−Nは、0≦n≦63、65≦n≦128、130≦n≦193、195≦n≦236ならば可変OPUペイロード読出回路14−1〜14−Nからのデータを主データ領域用メモリ16−1〜16−Nに書き込む。セレクタ15−1〜15−Nは、n=64、129、194、237ならばフラグ領域用メモリ17−1〜17−Nに書き込む。なお、カウンタnは、237の次は0にリセットされる。64B/65B復号回路18−1〜18−Nは、フラグ領域用メモリ17−1〜17−Nにデータが書き込まれると復号を開始する。64B/65B復号回路18−1〜18−Nは、512Nビットの主データと8Nビットのフラグから元の512Nビットのデータと64Nビットの制御信号とを復元し、フロー統合部26に出力する。
〔5.第5の実施形態〕
本発明の第5の実施形態に係る伝送装置の送信部の構成は、OPUマッピング部2がOPUマッピング部2’’に置き代わる点を除いて、図1に示した送信部100と同一である。本実施形態は、入力フローの符号化方式として64B/66Bを選択した場合となる。
フロー入力部1、OTU符号化部3、送信部4の動作については、図1の説明と同様である。
OPUマッピング部2’’はポリシングまたはシェーピングされたクライアント信号を符号化して、図17のようにOPUペイロードにマッピングする。図17は、64B/66B符号化されたクライアントデータのOPUペイロードへの収容状態を示した図である。
図18は、OPUマッピング部2’’の構成を示す図である。フロー入力部1からのクライアント信号は、512ビットのデータと64ビットの制御信号からなるものとする。
64B/66B符号化回路30は、クライアント信号を512ビットの主データと16ビットのフラグとに符号化する。64B/66B符号化回路30は、512ビットの主データを主データ領域用メモリ6に書き込み、16ビットのフラグをフラグ領域用メモリ7に書き込む。64B/66B符号化は、10Gbps以上のイーサネット(例えば、10GbE,40GbE,100GbE)で利用される方式であるため、10Gbps以上のイーサネット技術の流用が可能である。符号化の方法として、512B/514B符号化や1024B/1027B符号化等を用いてもよい。セレクタ8は、クロック数をカウント対象とするカウンタnを0からインクリメントする。1クロック毎にカウンタnがインクリメントされ、1メモリバス幅(ここでは512ビット)がOPUペイロードに書き込まれる。セレクタ8は、0≦n≦229ならば主データ領域用メモリ6から主データを512ビット読み出してOPUペイロード書込回路9に出力する。セレクタ8は、230≦n≦237ならばフラグ領域用メモリ7からフラグを512ビット(n=237ならばパディングビットを含む)読み出してOPUペイロード書込回路9に出力する。カウンタnは、237の次は0にリセットされる。OPUペイロード書込回路9は、セレクタ8から入力されたデータを、図16のように、逐次OPUペイロードに書き込む。
本実施形態に係る伝送装置の受信部の構成は、OPUデマッピング部12がOPUデマッピング部12’’に置き代わる点を除いて、図5に示した受信部200と同一である。
受信部10、OTU復号部11、フロー出力部13の動作については、図5の説明と同様である。OPUデマッピング部12’’は、OPUペイロードからデータを読み出して元のクライアントデータを復元する。
図19は、OPUデマッピング部12’’の構成を示す図である。
OPUペイロード読出回路14は、OPUペイロードから逐次512ビットでデータを読み出す。セレクタ15は、クロック数をカウント対象とするカウンタnを0からインクリメントする。セレクタ15は、0≦n≦229ならばOPUペイロード読出回路14からのデータを主データ領域用メモリ16に書き込む。セレクタ15は、230≦n≦237ならばフラグ領域用メモリ17に書き込む。カウンタnは、237の次は0にリセットされる。64B/66B復号回路31は、フラグ領域用メモリ17にデータが書き込まれると復号を開始する。64B/66B復号回路31は、512ビットの主データと16ビットのフラグとから元の512ビットのデータと64ビットの制御信号とを復元し、フロー出力部13に出力する。
〔6.第6の実施形態〕
本発明の第6の実施形態に係る伝送装置の送信部の構成は、可変OPUマッピング部20−A〜20−Bが可変OPUマッピング部20’’−A〜20’’−Bに置き代わる点を除いて、図9に示した送信部110と同一である。本実施形態は、入力フローの符号化方式として64B/66Bを選択した場合となる。
フロー分配部19、可変OTU符号化部21−A〜21−B、可変レート送信部22−A〜22−Bの動作については、図9の説明と同様である。可変OPUマッピング部20’’−A〜20’’−Bは、分配されたクライアント信号を符号化して、図20のように可変OPUペイロードにマッピングする。図20は、64B/66B符号化されたクライアントデータの可変OPUペイロードへの収容状態を示した図である。
図21は、可変OPUマッピング部20’’−A(20’’−B)の構成を示す図である。フロー分配部19からのクライアント信号は512Nビットのデータと64Nビットの制御信号とからなるものとする。
64B/66B符号化回路30−1〜30−Nは、クライアント信号を512Nビットの主データと16Nビットのフラグに符号化し、512Nビットの主データを主データ領域用メモリ6−1〜6−Nに書き込む一方、16Nビットのフラグをフラグ領域用メモリ7−1〜7−Nに書き込む。セレクタ8−1〜8−Nは、クロック数をカウント対象とするカウンタnを0からインクリメントする。1クロック毎にカウンタnがインクリメントされ、1メモリバス幅(ここでは512ビット)がOPUペイロードに書き込まれる。セレクタ8−1〜8−Nは、0≦n≦229ならば主データ領域用メモリ6−1〜6−Nから主データを512Nビット読み出して可変OPUペイロード書込回路9−1〜9−Nに出力する。セレクタ8−1〜8−Nは、230≦n≦237ならばフラグ領域用メモリ7−1〜7−Nからフラグを512Nビット(n=237ならばパディングビットを含む)読み出して可変OPUペイロード書込回路9−1〜9−Nに出力する。カウンタnは、237の次は0にリセットされる。可変OPUペイロード書込回路9−1〜9−Nは、セレクタ8−1〜8−Nから入力されたデータを、図10のように、逐次可変OPUペイロードに書き込む。
本実施形態に係る伝送装置の受信部の構成は、可変OPUデマッピング部25−A〜25−Bが可変OPUデマッピング部25’’−A〜25’’−Bに置き代わる点を除いて、図13に示した受信部210と同一である。
可変レート受信部23−A〜23−B、可変OTU復号部24−A〜24−B、フロー統合部26の動作については、図13の説明と同様である。可変OPUデマッピング部25’’−A〜25’’−Bは、可変OPUペイロードからデータを読み出して元のクライアントデータを復元する。
図22は、可変OPUデマッピング部25’’−A(25’’−B)の構成を示す図である。
可変OPUペイロード読出回路14−1〜14−Nは、可変OPUペイロードから逐次512Nビットでデータを読み出す。セレクタ15−1〜15−Nは、クロック数をカウント対象とするカウンタnを0からインクリメントする。セレクタ15−1〜15−Nは、0≦n≦229ならば可変OPUペイロード読出回路14−1〜14−Nからのデータを主データ領域用メモリ16−1〜16−Nに書き込む。セレクタ15−1〜15−Nは、230≦n≦237ならばフラグ領域用メモリ17−1〜17−Nに書き込む。カウンタnは、237の次は0にリセットされる。64B/66B復号回路31−1〜31−Nは、フラグ領域用メモリ17−1〜17−Nにデータが書き込まれると復号を開始する。64B/66B復号回路31−1〜31−Nは、512Nビットの主データと16Nビットのフラグとから元の512Nビットのデータと64Nビットの制御信号とを復元し、フロー統合部26に出力する。
以上の伝送装置によれば、ペイロードにおけるフレームの書き込み位置を揃えて、書き込みや読み出しの処理を簡易化することができる。また、フラグ領域とフラグ領域以外の主データ領域とを連続処理せず、フラグ領域以外の主データ領域をメモリバス幅の整数倍と一致する単位にて並べた後に、フラグ領域を纏めて配置する。
また、以上の伝送装置においては、符号化されたクライアント信号をフラグ領域とフラグ領域を除いた主データ領域とに分割するセレクタを備え、書き込み回路は、フラグ領域と主データ領域とを連続処理せず、主データ領域をメモリバス幅の整数倍並べて書き込んだ後に、フラグ領域を纏めて書き込む。
これにより、書き込みや読み出しの処理を簡易化することが可能となる。
以上の伝送装置においては、パディングを含めたクライアント信号として、イーサネットやファイバ・チャネルなどのクライアント信号をGFPフレームに収容した例を示した。しかし、収容の形態は、これに限られず、他のペイロードへのマッピング方式によりフレーム構造を持たせるフレームを用いてもよいし、フレームを用いずに、クライアント信号のビット列を固定bit数のブロックに分割し、OPUに収容するGMP(Generic Mapping Procedure)のようなマッピングを用いてもよい。
また、上記の説明では、転送フレームの一例としてOTNフレームを示したが、転送フレームの種類はOTNフレームに限定されず、他のフレーム、例えばSDH(Synchronous Digital Hierarchy) のフレーム等を用いてもよい。
以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計も含まれる。なお、当然ながら、上述した実施の形態および複数の変形例は、その内容が相反しない範囲で組み合わせることができる。また、上述した実施の形態および変形例では、各部の構造などを具体的に説明したが、その構造などは本願発明を満足する範囲で各種に変更することができる。
1…フロー入力部, 2…OPUマッピング部(決定部,書込部), 3…OTU符号化部, 4…送信部, 5…64B/65B符号化回路(符号化部), 6…主データ領域用メモリ, 7…フラグ領域用メモリ, 8…セレクタ(決定部), 9…OPUペイロード書込回路(書込部), 10…受信部, 11…OTU復号部, 12…OPUデマッピング部, 13…フロー出力部

Claims (8)

  1. 転送フレームを用いてクライアント信号を伝送する伝送装置であって、
    前記クライアント信号を符号化する符号化部と、
    前記転送フレームにおけるペイロード領域のサイズと一致し、符号化された前記クライアント信号の書き込み単位の整数倍となるようにパディングを含めたクライアント信号長を決定する決定部と、
    前記ペイロード領域の各々の先頭位置に前記書き込み単位の先頭を割り当てて、符号化された前記クライアント信号を書き込む書込部とを備える伝送装置。
  2. 前記書込部は、
    符号化された前記クライアント信号を所定ビットのメモリバス幅で前記ペイロード領域に書き込むメモリバスを備え、
    前記決定部は、
    書き込み時の符号化された前記クライアント信号の信号長を前記メモリバス幅の整数倍とする請求項1に記載の伝送装置。
  3. 符号化された前記クライアント信号をフラグ領域と当該フラグ領域を除いた主データ領域とに分割する分割部を更に備え、
    前記書込部は、前記フラグ領域と前記主データ領域とを連続処理せず、主データ領域を前記メモリバス幅の整数倍並べて書き込んだ後に、前記フラグ領域を纏めて書き込む請求項2に記載の伝送装置。
  4. 前記分割部は、
    符号化された前記クライアント信号を、その読み出し順に従って、前記フラグ領域のデータを格納するフラグ領域用メモリと前記主データ領域のデータを格納する主データ領域用メモリとに振り分けて書き込むセレクタを備える請求項3に記載の伝送装置。
  5. 前記クライアント信号を、その行き先に応じた複数のフローに分配するフロー分配部を更に備え、
    前記符号化部は、分配された前記クライアント信号を符号化する請求項1から4のいずれか1項に記載の伝送装置。
  6. 複数のフローに分配され、符号化された前記クライアント信号を復号し、復元された前記クライアント信号を一つに統合して出力する請求項5に記載の伝送装置。
  7. 前記ペイロード領域は、複数のOPUペイロードからなる可変OPUペイロードである請求項1から6のいずれか1項に記載の伝送装置。
  8. 転送フレームを用いてクライアント信号を伝送する伝送方法であって、
    前記クライアント信号を符号化する段階と、
    前記転送フレームにおけるペイロード領域のサイズと一致し、符号化された前記クライアント信号の書き込み単位の整数倍となるようにパディングを含めたクライアント信号長を決定する段階と、
    前記ペイロード領域の各々の先頭位置に前記書き込み単位の先頭を割り当てて、符号化された前記クライアント信号を書き込む段階とを有する伝送方法。
JP2013123813A 2013-06-12 2013-06-12 伝送装置及び伝送方法 Active JP5499206B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013123813A JP5499206B1 (ja) 2013-06-12 2013-06-12 伝送装置及び伝送方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013123813A JP5499206B1 (ja) 2013-06-12 2013-06-12 伝送装置及び伝送方法

Publications (2)

Publication Number Publication Date
JP5499206B1 true JP5499206B1 (ja) 2014-05-21
JP2014241541A JP2014241541A (ja) 2014-12-25

Family

ID=50941719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013123813A Active JP5499206B1 (ja) 2013-06-12 2013-06-12 伝送装置及び伝送方法

Country Status (1)

Country Link
JP (1) JP5499206B1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6305322B2 (ja) 2014-11-28 2018-04-04 株式会社シマノ コンポーネントおよび通信システム
US20160261375A1 (en) * 2015-03-04 2016-09-08 Qualcomm Incorporated Packet format and coding method for serial data transmission

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007533179A (ja) * 2004-04-09 2007-11-15 ユーティー シ ダ カン トン スン ヨウ シアン ゴン シ 無線周波数伸張基地局に基づく信号伝送方法およびシステム

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007533179A (ja) * 2004-04-09 2007-11-15 ユーティー シ ダ カン トン スン ヨウ シアン ゴン シ 無線周波数伸張基地局に基づく信号伝送方法およびシステム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014008788; Recommendation ITU-T G.7041/Y.1303(04/2011) , 201104, p.1-71 *

Also Published As

Publication number Publication date
JP2014241541A (ja) 2014-12-25

Similar Documents

Publication Publication Date Title
ES2562604T3 (es) Método para comunicar datos en sistemas de comunicación
CN101888283B (zh) Fec帧构成装置及方法
US11489607B2 (en) Methods and apparatus for configuring a flex ethernet node
JP5903154B2 (ja) 光トランスポートシステム
US11777608B2 (en) Data transmission method and apparatus
US10122462B2 (en) Transport apparatus and transport method
ES2625528T3 (es) Dispositivo de envío de datos, dispositivo de recepción de datos y método de sincronización de tramas
EP2790343B1 (en) Frame generation method, optical transmission device and optical transmission system
US8359525B2 (en) Method and apparatus for transmitting data in optical transport network
US7278081B1 (en) Optical transport network frame structure with in-band data channel and forward error correction
WO2019090696A1 (zh) 光传输单元信号的传输方法和装置
US9319180B2 (en) Partitioning forward error correction decoding iterations to accommodate multiple data streams
JP5499206B1 (ja) 伝送装置及び伝送方法
JP2000101448A (ja) 誤り訂正方法及び装置
KR102309444B1 (ko) 데이터 캡슐화, 전송 방법, 장치 및 컴퓨터 저장 매체
WO2015133288A1 (ja) Fecフレーム処理装置およびfecフレーム処理方法
EP3667964B1 (en) Data processing method and related apparatus
EP1278321A1 (en) Different type payload transport interface for line applications at high frequency
EP3579424B1 (en) Error correction device and error correction method
US8189623B2 (en) Digital framer architecture with a framing marker
US20120327786A1 (en) Method for mapping generic client signals into a generic framing procedure (gfp) path
WO2024045869A1 (zh) 一种数据传输方法和数据传输装置
JP7249230B2 (ja) 送信装置及び受信装置
JP6461299B1 (ja) フレーム送信装置およびフレーム受信装置
JP2024030469A (ja) 送信装置及び受信装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140310

R150 Certificate of patent or registration of utility model

Ref document number: 5499206

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150