JP5498171B2 - High speed rotary vacuum pump - Google Patents

High speed rotary vacuum pump Download PDF

Info

Publication number
JP5498171B2
JP5498171B2 JP2009550267A JP2009550267A JP5498171B2 JP 5498171 B2 JP5498171 B2 JP 5498171B2 JP 2009550267 A JP2009550267 A JP 2009550267A JP 2009550267 A JP2009550267 A JP 2009550267A JP 5498171 B2 JP5498171 B2 JP 5498171B2
Authority
JP
Japan
Prior art keywords
vacuum pump
speed
rotary vacuum
rotor
resonance frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009550267A
Other languages
Japanese (ja)
Other versions
JP2010519453A (en
Inventor
エングランダー,ハインリッヒ
ハリグ,クリスチャン
Original Assignee
オーリコン レイボルド バキューム ゲーエムベーハー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オーリコン レイボルド バキューム ゲーエムベーハー filed Critical オーリコン レイボルド バキューム ゲーエムベーハー
Publication of JP2010519453A publication Critical patent/JP2010519453A/en
Application granted granted Critical
Publication of JP5498171B2 publication Critical patent/JP5498171B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/058Bearings magnetic; electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/06Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/668Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps damping or preventing mechanical vibrations

Abstract

A rapidly rotating vacuum pump includes: a magnet-mounted rotor driven by an electric drive motor with a predetermined constant nominal rotational frequency (fnom). The rotor and a rotor bearing are embodied in such a way that the bending-critical counter-rotational resonance frequency (fcrit) is between 3% and a maximum of 30% above the nominal rotational frequency (fnom), thereby preventing an overspeed.

Description

高速回転式真空ポンプ、言い換えれば非容積型の特に磁気的に支持されたターボ分子ポンプでは、超過速度の範囲内にある回転速度が、遠心力により、真空ポンプの故障の原因になるだけでなく、人に対して相当な危険をもたらすこともあるので、超過速度を確実に防止することが必要となる。   In high-speed rotary vacuum pumps, in other words non-volume type, especially magnetically supported turbomolecular pumps, rotational speeds in the range of overspeed not only cause centrifugal pump failure due to centrifugal force. Since it can pose considerable danger to people, it is necessary to reliably prevent overspeed.

実際には、高速回転式真空ポンプの超過速度は、ロータ及び該ロータのための電気駆動モータの回転速度を監視し、電子手段によって回転速度の限界を決定すべく作動する複雑な電子組立体を用いることにより防止される。この方法で、高速回転式真空ポンプのための安全な能動型超過速度防止の実現は、高い技術的経費及び多くのハードウェア及びソフトウェアにより可能であるが、結果として生じる高い技術的経費は相当なコストの原因となる。   In practice, the overspeed of a high-speed rotary vacuum pump can cause a complex electronic assembly that operates to monitor the rotational speed of the rotor and the electric drive motor for the rotor and determine the rotational speed limit by electronic means. It is prevented by using. In this way, the realization of safe active overspeed prevention for high speed rotary vacuum pumps is possible with high technical costs and a lot of hardware and software, but the resulting high technical costs are considerable. Causes costs.

欧州特許出願公開第0333200号明細書European Patent Application No. 0333200

本発明は、簡易且つ確実な超過速度防止手段を備えた高速回転式真空ポンプを提供することを目的とする。   An object of the present invention is to provide a high-speed rotary vacuum pump equipped with a simple and reliable overspeed prevention means.

本発明によれば、上記の目的は請求項1の特徴によって達成される。   According to the invention, the above object is achieved by the features of claim 1.

本発明の高速回転式真空ポンプでは、ロータは、撓み臨界反回転共振周波数が公称回転数を3%乃至最大30%の間で超えているように設計されている。能動型超過速度防止手段が設けられていない、つまり、電気駆動モータのための制御手段以外に、回転速度を直接制御して制限する手段が設けられていない。   In the high speed rotary vacuum pump of the present invention, the rotor is designed such that the flexural critical anti-rotation resonance frequency exceeds the nominal speed between 3% and up to 30%. No active overspeed prevention means is provided, that is, no means for directly controlling and limiting the rotational speed other than the control means for the electric drive motor is provided.

撓み臨界反回転共振周波数が、公称回転数を3%乃至最大30%の間で超えているように設定する処理は、様々な方法で行われ得る。特に、真空ポンプのロータの質量、形状及び支持は、撓み臨界反回転共振周波数が公称回転数を最大30%超えているように変更され適合されることが可能であり、それによって内在的に超過速度を防ぐ。上記のレベルの回転数への上昇が電力の大量蓄積でのみ可能であるように、撓み臨界反回転共振周波数での共振振動は相当な電力を消費する。電気駆動モータの駆動電力が、撓み臨界反回転共振周波数の範囲内における回転数での共振振動によって完全に消費され得るように、電気駆動モータの駆動電力が設定される必要がある。従って、ハードウェアによって内在的な超過速度防止手段が生成されるので、故障が事実上除外される。能動型超過速度防止のための経費が削除され得るので、超過速度防止のためのコストがかなり削減され得る。   The process of setting the deflection critical anti-rotation resonance frequency to exceed the nominal rotation speed between 3% and maximum 30% can be performed in various ways. In particular, the mass, shape and support of the vacuum pump rotor can be modified and adapted so that the deflection critical anti-rotation resonance frequency exceeds the nominal rotational speed by up to 30%, thereby exceeding it inherently Prevent speed. Resonant vibration at the flexural critical anti-rotation resonance frequency consumes considerable power so that the above level of rotation can only be achieved with a large accumulation of power. The drive power of the electric drive motor needs to be set so that the drive power of the electric drive motor can be completely consumed by the resonance vibration at the rotational speed within the range of the deflection critical anti-rotation resonance frequency. Therefore, faults are effectively ruled out because an inherent overspeed prevention means is generated by the hardware. Since the cost for active overspeed prevention can be eliminated, the cost for overspeed prevention can be significantly reduced.

比較的低く、通常速く比較的僅かな電力蓄積で通される剛体臨界共振周波数とは対照的に、撓み臨界周波数は比較的高い周波数レベルにある。このために、撓み臨界反回転共振周波数は、内在的な超過速度防止のために利用されるのに特に適している。   In contrast to the rigid critical resonance frequency, which is relatively low, usually passed fast and with relatively little power storage, the deflection critical frequency is at a relatively high frequency level. For this reason, the deflection critical anti-rotation resonance frequency is particularly suitable for being utilized for inherent overspeed protection.

真空ポンプのロータは磁気軸受に支持されている。磁気軸受は、ここでは少なくとも1つのラジアル方向の自由度を備えた磁気軸受として理解されるべきである。しかしながら実際には、磁気軸受が設けられている場合、高速回転式真空ポンプのロータは、5つの自由度全てに対して磁気的に支持される。作動中に、磁気軸受自体が、平衡制御によりロータのラジアル方向の振動を生成する。それによって、特に撓み臨界共振周波数での振動も励振される。撓み臨界共振周波数を通すために適切な磁気支持の制御アルゴリズムが提供されない限り、ポンプがこれらの振動を通すことは不可能である。このような適切な制御アルゴリズムはここでは提供されていない。代わりに、磁気支持の制御アルゴリズムは、利用可能な駆動エネルギーに基づいて、ポンプが撓み臨界共振周波数を通すことができないように構成されている。   The rotor of the vacuum pump is supported by a magnetic bearing. A magnetic bearing is to be understood here as a magnetic bearing with at least one radial degree of freedom. In practice, however, when a magnetic bearing is provided, the rotor of the high speed rotary vacuum pump is magnetically supported for all five degrees of freedom. During operation, the magnetic bearing itself generates radial vibrations of the rotor with balance control. This also excites vibrations, particularly at the flexural critical resonance frequency. Unless an appropriate magnetic support control algorithm is provided to pass the flexural critical resonance frequency, it is impossible for the pump to pass these vibrations. Such an appropriate control algorithm is not provided here. Instead, the magnetic support control algorithm is configured so that, based on the available drive energy, the pump is deflected and cannot pass the critical resonance frequency.

撓み臨界反回転共振周波数は、公称回転数を5%乃至25%の間で超えていることが好ましく、公称回転数を20%超えた範囲内にあることが更に好ましい。公称回転数を約20%超えていることにより、ロータを停止から公称回転数まで上昇させる処理中にロータが回転数を超えてオーバーシュートすることが防止され、十分な安全性が提供される。従って、上昇中に前記オーバーシュートにより、撓み臨界反回転共振周波数の発生を不適切に引き起こすことが回避され得る。他方では、撓み臨界反回転共振周波数は、公称回転数を可能な限り僅差で超えているべきであり、このようにして、安定性を不必要な程度まで要求するロータの設計要件が除去される。   The deflection critical anti-rotation resonance frequency is preferably greater than 5% to 25% of the nominal rotational speed, and more preferably within a range exceeding 20% of the nominal rotational speed. Being about 20% above the nominal speed prevents the rotor from overshooting during the process of raising the rotor from stop to nominal speed, providing sufficient safety. Accordingly, it is possible to avoid improperly causing the generation of the bending critical anti-rotation resonance frequency due to the overshoot during the climb. On the other hand, the flexural critical anti-rotation resonance frequency should be as close as possible to the nominal speed, thus eliminating the rotor design requirements that require unnecessarily high stability. .

高速回転式真空ポンプは、非容積型の真空ポンプ、例えばターボ分子真空ポンプであることが好ましい。ターボ分子真空ポンプでは、回転速度が、通常10,000乃至100,000r/min の範囲内にある。このような高範囲における回転速度及び回転数では、ロータを支持するために特に磁気軸受を用いることが望ましい。   The high-speed rotary vacuum pump is preferably a non-volumetric vacuum pump, such as a turbomolecular vacuum pump. For turbomolecular vacuum pumps, the rotational speed is usually in the range of 10,000 to 100,000 r / min. In such a high range of rotation speed and speed, it is particularly desirable to use a magnetic bearing to support the rotor.

本発明を、図面を参照して以下に更に詳細に説明する。   The invention is explained in more detail below with reference to the drawings.

高速回転式真空ポンプのいわゆるキャンベル図を示す。A so-called Campbell diagram of a high-speed rotary vacuum pump is shown.

図1に示されたキャンベル図では、ロータの共振周波数fresがロータの回転数frotに対して図示されている。 In the Campbell diagram shown in FIG. 1, the resonance frequency f res of the rotor is shown with respect to the rotation speed f rot of the rotor.

本実施形態での高速回転式真空ポンプは、ターボ分子真空ポンプであり、この真空ポンプのロータが、磁気軸受により5軸形配置で完全に支持されている。ロータは電気駆動モータによって駆動されて、予め設定された一定の公称回転数fnomで作動される。 The high-speed rotary vacuum pump in this embodiment is a turbo molecular vacuum pump, and the rotor of this vacuum pump is completely supported by a magnetic bearing in a five-axis configuration. The rotor is driven by an electric drive motor and is operated at a preset constant nominal speed f nom .

図1には、まず、回転速度のより低い範囲に、剛体臨界共振周波数の曲線12,14 が夫々2本ずつ示されている。これらの共振周波数は、ロータの回転数frotに伴い比較的僅かな程度しか変化しない。更に、回転速度のより高い範囲に、撓み臨界反回転共振周波数を表わす曲線16、及び撓み臨界共回転共振周波数を表わす曲線18が示されている。更に、いわゆる位置ベクトル20が破線で示されている。位置ベクトル20が撓み臨界反回転共振周波数の曲線20と交差する点では、本発明の真空ポンプのための撓み臨界反回転共振周波数fcrit が読み出され得る。 In FIG. 1, first, two rigid body critical resonance frequency curves 12 and 14 are respectively shown in a lower rotational speed range. These resonance frequencies change only to a relatively small extent with the rotational speed f rot of the rotor. Furthermore, a curve 16 representing the deflection critical anti-rotation resonance frequency and a curve 18 representing the deflection critical co-rotation resonance frequency are shown in the higher rotation speed range. Furthermore, a so-called position vector 20 is indicated by a broken line. At the point where the position vector 20 intersects the deflection critical anti-rotation resonance frequency curve 20, the deflection critical anti-rotation resonance frequency f crit for the vacuum pump of the present invention can be read.

本例では、真空ポンプのロータのための撓み臨界反回転共振周波数fcrit は、略970Hz である。真空ポンプ、該真空ポンプのための電気駆動モータ、電気駆動モータの制御部及びロータの公称回転数fnomは、略800Hz である。従って、撓み臨界反回転共振周波数fcrit は、真空ポンプの公称回転数fnomを略21%超えている。 In this example, the deflection critical anti-rotation resonance frequency f crit for the vacuum pump rotor is approximately 970 Hz. The nominal speed f nom of the vacuum pump, the electric drive motor for the vacuum pump, the controller of the electric drive motor and the rotor is approximately 800 Hz. Therefore, the deflection critical anti-rotation resonance frequency f crit exceeds the nominal rotation speed f nom of the vacuum pump by approximately 21%.

電気駆動モータの駆動電力は、ロータの回転数が撓み臨界反回転共振周波数fcrit に偶然達した場合、駆動電力が反回転共振周波数によって完全に消費されるように制限されている。 The drive power of the electric drive motor is limited so that the drive power is completely consumed by the anti-rotation resonance frequency when the rotational speed of the rotor is bent and accidentally reaches the critical anti-rotation resonance frequency fcrit .

真空ポンプは、更なる能動型超過速度防止手段を備えておらず、つまり、真空ポンプは、モータ制御の回転速度制御ループ以外に、第2の回転速度制御ループを備えていない。   The vacuum pump is not provided with further active overspeed prevention means, that is, the vacuum pump is not provided with a second rotational speed control loop in addition to the motor-controlled rotational speed control loop.

撓み臨界反回転共振周波数を表わす曲線16は、真空ポンプの磁気軸受の制御パラメータの対応する設定によって影響され得ない。しかしながら、利用可能な駆動エネルギーでの操作によりポンプが撓み臨界共振周波数を通す可能性を除外するために、撓み臨界共振周波数が十分強く励起されるように、磁気軸受の制御パラメータは設定される。このために、磁気軸受のための制御パラメータは比較的流動的である必要がある。   The curve 16 representing the deflection critical anti-rotation resonance frequency cannot be affected by the corresponding setting of the control parameters of the vacuum pump magnetic bearing. However, the control parameters of the magnetic bearing are set so that the deflection critical resonance frequency is excited sufficiently strongly in order to exclude the possibility of the pump bending and passing the critical resonance frequency by operation with available drive energy. For this, the control parameters for the magnetic bearing need to be relatively fluid.

Claims (4)

電気駆動モータによって駆動され、予め設定された一定の公称回転数を有するロータを備えた高速回転式真空ポンプにおいて、
前記ロータは磁気軸受に支持されており
記ロータの回転方向とは反対方向の振れ回り運動の共振周波数が、前記公称回転数を3%乃至最大30%の間で超えており、
能動型超過速度防止手段が設けられておらず、
前記電気駆動モータの駆動電力が、前記共振周波数の範囲内における回転数での共振振動によって消費され得るように設定されていることを特徴とする高速回転式真空ポンプ。
In a high-speed rotary vacuum pump with a rotor driven by an electric drive motor and having a preset constant nominal rotational speed,
The rotor is supported by a magnetic bearing ;
The rotational direction before Symbol rotor resonant frequency of the whirling motion in the opposite direction, and beyond the nominal rotational speed of 3% to between up to 30 percent,
There is no active overspeed prevention means,
A high-speed rotary vacuum pump characterized in that the drive power of the electric drive motor is set so that it can be consumed by resonance vibration at a rotation speed within the range of the resonance frequency.
非容積型真空ポンプとして設計されていることを特徴とする請求項1に記載の高速回転式真空ポンプ。   The high-speed rotary vacuum pump according to claim 1, which is designed as a non-volumetric vacuum pump. ターボ分子ポンプであることを特徴とする請求項2に記載の高速回転式真空ポンプ。   The high-speed rotary vacuum pump according to claim 2, wherein the high-speed rotary vacuum pump is a turbo molecular pump. 前記共振周波数は、前記公称回転数を5%乃至25%の間で超えていることを特徴とする請求項1乃至3のいずれかに記載の高速回転式真空ポンプ。   The high-speed rotary vacuum pump according to any one of claims 1 to 3, wherein the resonance frequency exceeds the nominal rotational speed by between 5% and 25%.
JP2009550267A 2007-02-24 2008-02-15 High speed rotary vacuum pump Active JP5498171B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102007009080A DE102007009080A1 (en) 2007-02-24 2007-02-24 Fast-rotating vacuum pump
DE102007009080.5 2007-02-24
PCT/EP2008/051874 WO2008101876A1 (en) 2007-02-24 2008-02-15 Rapidly rotating vacuum pump

Publications (2)

Publication Number Publication Date
JP2010519453A JP2010519453A (en) 2010-06-03
JP5498171B2 true JP5498171B2 (en) 2014-05-21

Family

ID=39322764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009550267A Active JP5498171B2 (en) 2007-02-24 2008-02-15 High speed rotary vacuum pump

Country Status (8)

Country Link
US (1) US20100322798A1 (en)
EP (1) EP2118492B1 (en)
JP (1) JP5498171B2 (en)
KR (1) KR20090113341A (en)
CN (1) CN101617125B (en)
AT (1) ATE488700T1 (en)
DE (2) DE102007009080A1 (en)
WO (1) WO2008101876A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2970053B1 (en) * 2011-01-05 2013-01-25 Turbomeca DEVICE AND METHOD FOR MECHANICAL PROTECTION
FR2974400B1 (en) 2011-04-22 2013-05-10 Turbomeca MECHANICAL PROTECTION DEVICE
DE102020134924A1 (en) 2020-12-23 2022-06-23 Huga Kg Door leaf with flush handle fitting

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6163980A (en) * 1984-09-05 1986-04-02 Hitachi Ltd Magnetic disk device
JPH0772556B2 (en) * 1988-03-18 1995-08-02 株式会社荏原製作所 Turbo molecular pump
US5824004A (en) * 1990-06-18 1998-10-20 The Procter & Gamble Company Stretchable absorbent articles
AU4637493A (en) * 1992-08-10 1994-03-03 Dow Deutschland Inc. Process and device for monitoring vibrational excitation of an axial compressor
JPH08114187A (en) * 1994-10-19 1996-05-07 Hitachi Ltd Hermetic compressor
JPH09105412A (en) * 1995-10-11 1997-04-22 Seiko Seiki Co Ltd Magnetic bearing device
US5833374A (en) * 1997-05-19 1998-11-10 Varian Associates, Inc. Rotatable assembly for supporting of the rotor of a vacuum pump
JP2000073986A (en) * 1998-08-28 2000-03-07 Jeol Ltd Vibration restraining unit for turbo-molecular pump
EP1024294A3 (en) * 1999-01-29 2002-03-13 Ibiden Co., Ltd. Motor and turbo-molecular pump
JP2001241393A (en) * 1999-12-21 2001-09-07 Seiko Seiki Co Ltd Vacuum pump
DE10016912C1 (en) * 2000-04-05 2001-12-13 Aerodyn Eng Gmbh Operation of offshore wind turbines dependent on the natural frequency of the tower
JP2002174238A (en) * 2000-12-07 2002-06-21 Seiko Instruments Inc Magnetic bearing control device and vacuum pump using the same
JP2004116354A (en) * 2002-09-25 2004-04-15 Mitsubishi Heavy Ind Ltd Turbo molecular pump
DE502004003752D1 (en) * 2004-01-29 2007-06-21 Pfeiffer Vacuum Gmbh Gas friction pump
WO2006007549A2 (en) * 2004-07-01 2006-01-19 Elliott Company Four-bearing rotor system
DE102004048866A1 (en) * 2004-10-07 2006-04-13 Leybold Vacuum Gmbh Fast-rotating vacuum pump

Also Published As

Publication number Publication date
WO2008101876A1 (en) 2008-08-28
CN101617125A (en) 2009-12-30
DE502008001821D1 (en) 2010-12-30
JP2010519453A (en) 2010-06-03
ATE488700T1 (en) 2010-12-15
DE102007009080A1 (en) 2008-08-28
KR20090113341A (en) 2009-10-29
CN101617125B (en) 2011-06-08
EP2118492B1 (en) 2010-11-17
EP2118492A1 (en) 2009-11-18
US20100322798A1 (en) 2010-12-23

Similar Documents

Publication Publication Date Title
US20020047402A1 (en) Magnetic bearing control device
JP5498171B2 (en) High speed rotary vacuum pump
JP5639061B2 (en) Turbomolecular pump with flexible mounting
JP5119152B2 (en) Vacuum turbo molecular pump
KR101289159B1 (en) Apparatus for protecting magnetic bearing and apparatus for motor having the same
JP4558367B2 (en) Vacuum pump and control method thereof
US11114957B2 (en) Vacuum pump and motor controller
JP4893353B2 (en) Centrifugal compressor device, fuel cell compressor, and control method for fuel cell compressor
JP2016213991A (en) Motor drive control device, electronic apparatus and method for controlling motor drive control device
JP2021090256A (en) Electric motor system and turbo compressor having the same
US11384770B2 (en) Vacuum pump, and control device of vacuum pump
CN110566488B (en) Method and device for reducing air output reduction of fan
CN102788038B (en) Method for suppressing nonlinear force of magnetic suspension molecular pump
CN102817861B (en) Variable-stiffness control method for magnetically levitated molecular pump
JP5705478B2 (en) Vacuum pump operating method and molecular vacuum pump
CN108302213B (en) Vacuum valve, vacuum pump, and vacuum exhaust system
JP2016061283A (en) Power supply device and vacuum pump device
WO2023032767A1 (en) Magnetic bearing device and vacuum pump
JP2009275578A (en) Magnetic bearing type turbo-molecular pump and vacuum system
JP6099387B2 (en) Discharge valve unit and pump system
JP5509970B2 (en) Vacuum pump
KR20240052743A (en) Magnetic bearing device and vacuum pump
JP2023035884A (en) Magnetic bearing device and vacuum pump
KR101362199B1 (en) Air blower for fuel cell vehicle
JP2005325977A (en) Magnetic bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140307

R150 Certificate of patent or registration of utility model

Ref document number: 5498171

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250