JP5494414B2 - Crystal growth equipment - Google Patents

Crystal growth equipment Download PDF

Info

Publication number
JP5494414B2
JP5494414B2 JP2010239906A JP2010239906A JP5494414B2 JP 5494414 B2 JP5494414 B2 JP 5494414B2 JP 2010239906 A JP2010239906 A JP 2010239906A JP 2010239906 A JP2010239906 A JP 2010239906A JP 5494414 B2 JP5494414 B2 JP 5494414B2
Authority
JP
Japan
Prior art keywords
melt
cylindrical member
reaction vessel
crystal
crystal growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010239906A
Other languages
Japanese (ja)
Other versions
JP2012091957A (en
Inventor
泰彦 福地
彰 伊藤
勇介 森
康夫 北岡
完 今出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Osaka University NUC
Original Assignee
IHI Corp
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp, Osaka University NUC filed Critical IHI Corp
Priority to JP2010239906A priority Critical patent/JP5494414B2/en
Publication of JP2012091957A publication Critical patent/JP2012091957A/en
Application granted granted Critical
Publication of JP5494414B2 publication Critical patent/JP5494414B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、結晶成長装置に関するものである。   The present invention relates to a crystal growth apparatus.

次世代半導体材料として期待されている窒化ガリウム(GaN)の製法の一つとしては、数MPaの高圧窒素雰囲気中、800℃〜900℃のNa/Ga融液に種基板(種結晶)を浸漬させ、その種基板上にGaN結晶を成長させる結晶成長方法(所謂、フラックス法)が知られている。
下記特許文献1には、フラックス法において、余分な核発生を抑え、大型で高品質のGaN結晶を得るべく、融液を攪拌する攪拌装置を備える結晶成長装置が開示されている。
One method for producing gallium nitride (GaN), which is expected as a next-generation semiconductor material, is to immerse a seed substrate (seed crystal) in a Na / Ga melt at 800 ° C. to 900 ° C. in a high-pressure nitrogen atmosphere of several MPa. Then, a crystal growth method (so-called flux method) is known in which a GaN crystal is grown on the seed substrate.
Patent Document 1 below discloses a crystal growth apparatus including an agitator for agitating a melt in order to suppress excessive nucleation and obtain a large and high-quality GaN crystal in a flux method.

特開2005−247615号公報JP-A-2005-247615

ところで、より大型の種基板に厚く結晶を成長させようとすると、原料である融液が多く必要となる。そうすると、融液の液深さを従来よりも深くする必要がある。また、棒状の種結晶を太らせるような結晶成長を促したい場合には、棒状の種結晶を反応容器内に縦置きにする必要があり、同様に融液の液深さを深くする必要がある。
しかしながら、融液の液深さを深くすると、融液の液面から溶け込む原料ガスが液底まで行き届き難くなるという問題がある。上記従来技術の攪拌方法では、反応容器内において融液の下降流と上昇流とが混在してしまうため、液面付近の融液が液底へ行き届き難かった。
By the way, in order to grow a crystal thickly on a larger seed substrate, a large amount of melt as a raw material is required. If it does so, it is necessary to make the liquid depth of a melt deeper than before. In order to promote crystal growth that thickens the rod-shaped seed crystal, it is necessary to place the rod-shaped seed crystal vertically in the reaction vessel. Similarly, it is necessary to increase the depth of the melt. is there.
However, when the depth of the melt is increased, there is a problem that the raw material gas that dissolves from the melt surface becomes difficult to reach the liquid bottom. In the above-described conventional stirring method, since the downward flow and the upward flow of the melt are mixed in the reaction vessel, it is difficult for the melt near the liquid surface to reach the liquid bottom.

本発明は、上記問題点に鑑みてなされたものであり、原料ガスが溶け込む液面付近の融液を速やかに液底まで行き届かせ、大型で高品質の結晶を得る結晶成長装置の提供を目的とする。   The present invention has been made in view of the above problems, and provides a crystal growth apparatus that can quickly reach the bottom of the melt in which the raw material gas dissolves to the bottom of the liquid and obtain large, high-quality crystals. Objective.

上記の課題を解決するために、本発明は、加熱加圧雰囲気下で原料ガスと融液とを反応させて該融液に浸漬された種結晶を成長させる反応容器を有する結晶成長装置であって、上記反応容器の内側に間隙をあけて配置され、上記融液中において鉛直方向に延在すると共に、上端開口部が上記融液の液面に対して離間し、且つ、下端開口部が上記反応容器の底面に対して離間する筒部材と、上記反応容器に対し相対的に回転して、上記融液の鉛直方向の流れを形成する回転翼と、を有するという構成を採用する。
この構成を採用することによって、本発明では、反応容器の内側に間隙をあけて筒部材を配置すると、この筒部材は鉛直方向に延在しているから、反応容器内において鉛直方向に延びる2つの融液の流路を筒部材の内側と外側で形成することができる。また、筒部材の上端開口部は、融液の液面に対して離間し、一方の下端開口部は、反応容器の底面に対して離間するので、筒部材の上端下端において融液の内側と外側との間の流通が可能となる。この反応容器に、相対回転する回転翼を設け、融液に鉛直方向の流れを与えると、液面から液底に向かう融液の下降流と、液底から液面に向かう融液の上昇流とが、混在することなく筒部材の内側と外側との間で循環する。このため、液面で融液に溶け込んだ原料ガス成分が、速やかに融液の液底に行き届き易くなる。
In order to solve the above-mentioned problems, the present invention is a crystal growth apparatus having a reaction vessel for growing a seed crystal immersed in the melt by reacting a raw material gas and the melt in a heated and pressurized atmosphere. Are disposed in the reaction vessel with a gap therebetween, and extend in the vertical direction in the melt, the upper end opening is separated from the liquid surface of the melt, and the lower end opening is A configuration is adopted in which a cylindrical member that is spaced apart from the bottom surface of the reaction vessel and a rotary blade that rotates relative to the reaction vessel to form a vertical flow of the melt are employed.
By adopting this configuration, in the present invention, when a cylindrical member is disposed with a gap inside the reaction vessel, the cylindrical member extends in the vertical direction, and thus extends in the vertical direction within the reaction vessel. Two melt flow paths can be formed on the inside and outside of the tubular member. Further, the upper end opening of the cylindrical member is separated from the liquid surface of the melt, and the one lower end opening is separated from the bottom surface of the reaction vessel. Distribution between the outside becomes possible. When the reaction vessel is provided with a rotating blade that rotates relative to each other and a vertical flow is given to the melt, the downward flow of the melt from the liquid surface to the liquid surface and the upward flow of the melt from the liquid surface to the liquid surface Circulate between the inside and the outside of the cylindrical member without mixing. For this reason, the raw material gas component dissolved in the melt at the liquid level is likely to reach the bottom of the melt quickly.

また、本発明においては、上記回転翼は、上記筒部材の内側に配置されているという構成を採用する。
この構成を採用することによって、本発明では、回転翼を筒部材の内側に配置することで、回転翼を筒部材の外側に配置する場合と比べて、効率よく液面と液底との間の融液の循環流れを形成することができる。
Moreover, in this invention, the structure that the said rotary blade is arrange | positioned inside the said cylindrical member is employ | adopted.
By adopting this configuration, in the present invention, the rotor blade is disposed inside the cylindrical member, so that the rotor blade is disposed between the liquid surface and the liquid bottom more efficiently than when the rotor blade is disposed outside the cylindrical member. A circulating flow of the melt can be formed.

また、本発明においては、上記筒部材の内側には、上記回転翼によって形成された上記鉛直方向の流れに含まれる旋回成分の少なくとも一部を打ち消す整流板が設けられているという構成を採用する。
この構成を採用することによって、本発明では、筒部材の内側において均一な鉛直方向の融液の流れを形成することができる。
In the present invention, a configuration is adopted in which a rectifying plate that cancels at least a part of the swirling component included in the vertical flow formed by the rotary blades is provided inside the cylindrical member. .
By adopting this configuration, the present invention can form a uniform melt flow in the vertical direction inside the cylindrical member.

また、本発明においては、上記整流板は、上記回転翼と上記種結晶との間に配置されているという構成を採用する。
この構成を採用することによって、本発明では、筒部材の内側において均一な鉛直方向の融液の流れを種結晶に供給することができる。
In the present invention, the current plate is arranged between the rotor blade and the seed crystal.
By adopting this configuration, in the present invention, a uniform vertical melt flow can be supplied to the seed crystal inside the cylindrical member.

本発明によれば、加熱加圧雰囲気下で原料ガスと融液とを反応させて該融液に浸漬された種結晶を成長させる反応容器を有する結晶成長装置であって、上記反応容器の内側に間隙をあけて配置され、上記融液中において鉛直方向に延在すると共に、上端開口部が上記融液の液面に対して離間し、且つ、下端開口部が上記反応容器の底面に対して離間する筒部材と、上記反応容器に対し相対的に回転して、上記融液の鉛直方向の流れを形成する回転翼と、を有するという構成を採用することによって、反応容器の内側に間隙をあけて筒部材を配置すると、この筒部材は鉛直方向に延在しているから、反応容器内において鉛直方向に延びる2つの融液の流路を筒部材の内側と外側で形成することができる。また、筒部材の上端開口部は、融液の液面に対して離間し、一方の下端開口部は、反応容器の底面に対して離間するので、筒部材の上端下端において融液の内側と外側との間の流通が可能となる。この反応容器に、相対回転する回転翼を設け、融液に鉛直方向の流れを与えると、液面から液底に向かう融液の下降流と、液底から液面に向かう融液の上昇流とが、混在することなく筒部材の内側と外側との間で循環する。このため、液面で融液に溶け込んだ原料ガス成分が、速やかに融液の液底に行き届き易くなる。
したがって、本発明では、原料ガスが溶け込む液面付近の融液を速やかに液底まで行き届かせて、大型で高品質の結晶を得ることができる。
According to the present invention, there is provided a crystal growth apparatus having a reaction vessel for growing a seed crystal immersed in the melt by reacting a raw material gas with a melt under a heating and pressurizing atmosphere. With a gap in between, and extending in the vertical direction in the melt, the upper end opening is separated from the liquid level of the melt, and the lower end opening is separated from the bottom of the reaction vessel. By adopting a configuration that includes a cylindrical member that is spaced apart from each other and a rotary blade that rotates relative to the reaction vessel to form a vertical flow of the melt, a gap is formed inside the reaction vessel. When the cylindrical member is arranged with the gap opened, the cylindrical member extends in the vertical direction, so that two melt flow paths extending in the vertical direction in the reaction vessel can be formed inside and outside the cylindrical member. it can. Further, the upper end opening of the cylindrical member is separated from the liquid surface of the melt, and the one lower end opening is separated from the bottom surface of the reaction vessel. Distribution between the outside becomes possible. When the reaction vessel is provided with a rotating blade that rotates relative to each other and a vertical flow is given to the melt, the downward flow of the melt from the liquid surface to the liquid surface and the upward flow of the melt from the liquid surface to the liquid surface Circulate between the inside and the outside of the cylindrical member without mixing. For this reason, the raw material gas component dissolved in the melt at the liquid level is likely to reach the bottom of the melt quickly.
Therefore, in the present invention, a large-sized and high-quality crystal can be obtained by quickly reaching the bottom of the melt near the liquid surface where the raw material gas dissolves.

本発明の第1実施形態における窒化ガリウム製造装置を示す構成図である。It is a block diagram which shows the gallium nitride manufacturing apparatus in 1st Embodiment of this invention. 本発明の別実施形態における窒化ガリウム製造装置を示す構成図である。It is a block diagram which shows the gallium nitride manufacturing apparatus in another embodiment of this invention. 本発明の第2実施形態における窒化ガリウム製造装置を示す構成図である。It is a block diagram which shows the gallium nitride manufacturing apparatus in 2nd Embodiment of this invention. 本発明の第2実施形態における反応容器の平断面図である。It is a plane sectional view of the reaction container in a 2nd embodiment of the present invention.

以下、本発明の実施形態について図面を参照して説明する。なお、以下の説明では、本実施形態の結晶成長装置として、窒化ガリウム製造装置を例示して説明する。   Embodiments of the present invention will be described below with reference to the drawings. In the following description, a gallium nitride manufacturing apparatus will be described as an example of the crystal growth apparatus of this embodiment.

(第1実施形態)
図1は、本発明の第1実施形態における窒化ガリウム製造装置1を示す構成図である。
窒化ガリウム製造装置1は、フラックス法により種基板(種結晶)2上にGaN結晶を成長させ製造するものであり、種基板2及び混合融液3を保持する反応容器(坩堝)10と、反応容器10の外側を囲う断熱容器20と、断熱容器20の外側を囲う圧力容器30と、混合融液3を攪拌する攪拌装置40と、を有する。
なお、反応容器10、断熱容器20、圧力容器30の側部は、同心の円筒形状に形状設定されており、この円筒形状の軸心が鉛直方向となるように姿勢設定されている。
(First embodiment)
FIG. 1 is a configuration diagram showing a gallium nitride manufacturing apparatus 1 according to the first embodiment of the present invention.
The gallium nitride manufacturing apparatus 1 grows and manufactures a GaN crystal on a seed substrate (seed crystal) 2 by a flux method, and a reaction vessel (crucible) 10 holding the seed substrate 2 and the mixed melt 3, a reaction The heat insulating container 20 that surrounds the outside of the container 10, the pressure container 30 that surrounds the outside of the heat insulating container 20, and the stirring device 40 that stirs the mixed melt 3.
The side portions of the reaction vessel 10, the heat insulating vessel 20, and the pressure vessel 30 are set in a concentric cylindrical shape, and the posture is set so that the cylindrical axis is in the vertical direction.

反応容器10は、内部にNa/Gaからなる混合融液3を保有する。本実施形態の反応容器10は、その底部に種基板2を載置し、内部の混合融液3に浸漬させる構成となっている。なお、反応容器10には、外部からGaN結晶の原料となる窒素ガス(N)を導入する不図示の窒素ガス供給ポートが接続されており、反応容器10内に窒素ガスが充填されるようになっている。 The reaction vessel 10 has a mixed melt 3 made of Na / Ga inside. The reaction vessel 10 of the present embodiment is configured such that the seed substrate 2 is placed on the bottom and immersed in the mixed melt 3 inside. The reaction vessel 10 is connected to a nitrogen gas supply port (not shown) for introducing nitrogen gas (N 2 ) as a raw material for the GaN crystal from the outside, so that the reaction vessel 10 is filled with nitrogen gas. It has become.

反応容器10には、筒部材11が設けられている。筒部材11は、耐熱性を有する金属材あるいはセラミックス材から形成されている。筒部材11は、反応容器10よりも小径の円筒形状を有し、その軸心が、反応容器10の軸心と一致するように、脚部11aを介し反応容器10に対して固定されている。脚部11aは、筒部材11の下端開口部13の縁に沿ってその周方向に所定間隔をあけて複数設けられている。   The reaction vessel 10 is provided with a cylindrical member 11. The cylindrical member 11 is formed from a heat-resistant metal material or ceramic material. The cylindrical member 11 has a cylindrical shape having a smaller diameter than the reaction vessel 10 and is fixed to the reaction vessel 10 via the legs 11 a so that the axial center thereof coincides with the axial center of the reaction vessel 10. . A plurality of leg portions 11 a are provided along the edge of the lower end opening 13 of the cylindrical member 11 at a predetermined interval in the circumferential direction.

筒部材11は、反応容器10の内側に間隙をあけて配置され、混合融液3中において鉛直方向に延在している。筒部材11は、その内側に形成される混合融液3の鉛直方向の流路と、その外側(反応容器10と筒部材11との間の環状空間)に形成される混合融液3の鉛直方向の流路とを、混合融液3中で仕切る構成となっている。
筒部材11の上端開口部12は、混合融液3の液面4に対して離間して配置されており、液面4付近において混合融液3が筒部材11の内側と外側との間で流通できる構成となっている。また、筒部材11の下端開口部13は、反応容器10の底面10aに対して離間して配置されており、底面10a付近において混合融液3が筒部材11の内側と外側との間で流通できる構成となっている。
The cylindrical member 11 is disposed with a gap inside the reaction vessel 10 and extends in the vertical direction in the mixed melt 3. The cylindrical member 11 has a vertical flow path of the mixed melt 3 formed on the inner side thereof and a vertical direction of the mixed melt 3 formed on the outer side (annular space between the reaction vessel 10 and the cylindrical member 11). The directional flow path is partitioned in the mixed melt 3.
The upper end opening 12 of the cylindrical member 11 is disposed so as to be separated from the liquid surface 4 of the mixed melt 3, and the mixed melt 3 is between the inner side and the outer side of the cylindrical member 11 in the vicinity of the liquid surface 4. It can be distributed. Further, the lower end opening 13 of the cylindrical member 11 is disposed away from the bottom surface 10a of the reaction vessel 10, and the mixed melt 3 flows between the inside and the outside of the cylindrical member 11 in the vicinity of the bottom surface 10a. It can be configured.

断熱容器20の断熱材には、例えばグラスウール等の繊維系断熱材が用いられる。断熱容器20の内側には、反応容器10の側方及び下方を囲んで加熱するヒーター21が設けられる。
圧力容器30は、圧力状態が変化した場合であってもその圧力に耐えられるように略円筒形状に形状設定された真空容器からなる。また、圧力容器30には、内部の空気を真空排気する不図示の真空排気ポートが接続されている。
As the heat insulating material of the heat insulating container 20, for example, a fiber heat insulating material such as glass wool is used. Inside the heat insulating container 20, a heater 21 is provided that surrounds and heats the side and bottom of the reaction container 10.
The pressure vessel 30 is composed of a vacuum vessel whose shape is set in a substantially cylindrical shape so that it can withstand the pressure even when the pressure state changes. The pressure vessel 30 is connected to a vacuum exhaust port (not shown) that evacuates the internal air.

攪拌装置40は、磁気結合式の攪拌機であり、駆動軸41と、軸ケース42と、回転駆動装置43と、を有する。駆動軸41の一端側には、永久磁石(磁性体)44を外周面周方向おいて所定間隔をあけて複数備える内筒45が装着されている。軸ケース42は、駆動軸41の一端側を収容する収容空間S1を有する。収容空間S1には、内筒45の周面と接して、駆動軸41を軸周りに回転自在に支持する軸受46が設けられている。この軸ケース42は、非磁性体のステンレス鋼材から形成され、圧力容器30に気密に密着固定されている。なお、駆動軸41もステンレス鋼材から形成されている。   The stirrer 40 is a magnetically coupled stirrer, and includes a drive shaft 41, a shaft case 42, and a rotation drive device 43. An inner cylinder 45 having a plurality of permanent magnets (magnetic bodies) 44 at a predetermined interval in the circumferential direction of the outer peripheral surface is mounted on one end side of the drive shaft 41. The shaft case 42 has a housing space S1 that houses one end side of the drive shaft 41. The housing space S1 is provided with a bearing 46 that contacts the peripheral surface of the inner cylinder 45 and supports the drive shaft 41 so as to be rotatable about the axis. The shaft case 42 is formed of a non-magnetic stainless steel material and is airtightly fixed to the pressure vessel 30. The drive shaft 41 is also formed from a stainless steel material.

回転駆動装置43は、軸ケース42の外側に、永久磁石47を内周面周方向において所定間隔をあけて複数備える外筒48を備える。外筒48は、軸ケース42の外側に取り付けられた軸受49により軸周りに回転自在に支持されている。また、回転駆動装置43は、外筒48を軸周りに回転させるモーター50を備える。モーター50の回転軸と外筒48とはベルト51で接続されている。上記構成によれば、モーター50の駆動により外筒48が軸周りに回転すると、外筒48に固定された永久磁石47と内筒45に固定された永久磁石44とが軸ケース42を介して磁気的に作用し、駆動軸41が軸周りに回転する。   The rotation drive device 43 includes an outer cylinder 48 that includes a plurality of permanent magnets 47 at predetermined intervals in the circumferential direction of the inner circumferential surface outside the shaft case 42. The outer cylinder 48 is supported by a bearing 49 attached to the outside of the shaft case 42 so as to be rotatable around the shaft. Further, the rotation drive device 43 includes a motor 50 that rotates the outer cylinder 48 around the axis. The rotating shaft of the motor 50 and the outer cylinder 48 are connected by a belt 51. According to the above configuration, when the outer cylinder 48 rotates around the axis by driving the motor 50, the permanent magnet 47 fixed to the outer cylinder 48 and the permanent magnet 44 fixed to the inner cylinder 45 are interposed via the shaft case 42. Acting magnetically, the drive shaft 41 rotates around the axis.

軸ケース42から下方に延びる駆動軸41の他端側は、圧力容器30、断熱容器20及び反応容器10を挿通され、混合融液3中に至る構成となっている。駆動軸41は、その他端側先端部に攪拌翼(回転翼)52を備えており、混合融液3中で攪拌翼52が軸周りに回転することで、混合融液3の鉛直方向の流れ(本実施形態では下降流)を形成する構成となっている。本実施形態の攪拌翼52は、筒部材11の内側において回転可能な、スクリュープロペラ形状を有している。
本実施形態の駆動軸41は、第1駆動軸41Aと第2駆動軸41Bとが軸継手60により係合して構成されている。なお、第1駆動軸41Aは、軸ケース42によって回転自在に支持され、第2駆動軸41Bは、反応容器10に設けられた不図示の軸受により回転自在に支持されている。
The other end side of the drive shaft 41 extending downward from the shaft case 42 is inserted into the pressure vessel 30, the heat insulation vessel 20, and the reaction vessel 10 and reaches the mixed melt 3. The drive shaft 41 includes a stirring blade (rotary blade) 52 at the tip end on the other end side, and the stirring blade 52 rotates around the axis in the mixed melt 3 so that the mixed melt 3 flows in the vertical direction. (In this embodiment, a downward flow) is formed. The stirring blade 52 of the present embodiment has a screw propeller shape that can rotate inside the cylindrical member 11.
The drive shaft 41 of the present embodiment is configured by engaging a first drive shaft 41A and a second drive shaft 41B with a shaft coupling 60. The first drive shaft 41A is rotatably supported by the shaft case 42, and the second drive shaft 41B is rotatably supported by a bearing (not shown) provided in the reaction vessel 10.

断熱容器20及び圧力容器30には、駆動軸41が挿通する挿通孔(以下、断熱容器20の挿通孔を第1孔部22、圧力容器30の挿通孔を第2孔部31と称する)が形成されている。第1孔部22と第2孔部31との間には、軸方向に伸縮自在で、且つ、軸方向と直交する方向に偏心自在なベローズ管(伸縮管)53が設けられている。ベローズ管53は、断熱容器20と圧力容器30との間において駆動軸41を囲うと共に、その一端側で第1孔部22を気密に囲うように取り付けられ、その他端側で第2孔部31を気密に囲うように取り付けられている。なお、第2孔部31は軸ケース42の収容空間S1と気密に連通しており、第1孔部22より外側には、ベローズ管53、第2孔部31及び収容空間S1が連通した気密空間が形成される構成となっている。この構成によれば、断熱容器20からの高温ガスの流出を抑制することができる。   The heat insulation container 20 and the pressure container 30 have an insertion hole through which the drive shaft 41 is inserted (hereinafter, the insertion hole of the heat insulation container 20 is referred to as a first hole portion 22 and the insertion hole of the pressure vessel 30 is referred to as a second hole portion 31). Is formed. Between the 1st hole 22 and the 2nd hole 31, the bellows pipe | tube (expandable pipe) 53 which can be expanded-contracted to an axial direction and is eccentric to the direction orthogonal to an axial direction is provided. The bellows pipe 53 surrounds the drive shaft 41 between the heat insulating container 20 and the pressure container 30 and is attached so as to airtightly surround the first hole 22 at one end thereof, and the second hole 31 at the other end. It is attached so that it is airtightly enclosed. The second hole 31 communicates with the accommodation space S1 of the shaft case 42 in an airtight manner, and the bellows pipe 53, the second hole 31 and the accommodation space S1 communicate with the outer side of the first hole 22. A space is formed. According to this structure, the outflow of the high temperature gas from the heat insulation container 20 can be suppressed.

続いて、上記構成の窒化ガリウム製造装置1の動作及び作用について説明する。なお、本実施形態の窒化ガリウム製造装置1は、不図示の制御部を備えている。そして、特に断りが無い限り、当該制御部が、主体者として以下の動作を制御する。
先ず、圧力容器30内部の空気を真空排気ポートから真空排気する。真空状態となった後、窒素ガス供給ポートから窒素ガスを供給して反応容器10内を充填させると共に、内部圧力を数MPaまで加圧する。また、ヒーター21を駆動させて、内部温度を800℃〜900℃まで加熱する。そして、この高温高圧状態を所定時間維持し、反応容器10の混合融液3中で、Ga(ガリウム)とN(窒素)とを反応させて、種基板2上にGaN結晶を成長させる。
Next, the operation and action of the gallium nitride manufacturing apparatus 1 having the above configuration will be described. Note that the gallium nitride manufacturing apparatus 1 of the present embodiment includes a control unit (not shown). And unless there is particular notice, the said control part controls the following operation | movement as a subject.
First, the air inside the pressure vessel 30 is evacuated from the evacuation port. After the vacuum state is reached, nitrogen gas is supplied from the nitrogen gas supply port to fill the reaction vessel 10 and the internal pressure is increased to several MPa. Further, the heater 21 is driven to heat the internal temperature to 800 ° C to 900 ° C. Then, this high temperature and high pressure state is maintained for a predetermined time, and Ga (gallium) and N (nitrogen) are reacted in the mixed melt 3 of the reaction vessel 10 to grow a GaN crystal on the seed substrate 2.

この結晶成長過程において余分な核発生を抑え、大型で高品質のGaN結晶を得るべく、攪拌装置40で混合融液3を攪拌させる。具体的には、モーター50の駆動により外筒48を軸周りに回転させて、磁気的作用により攪拌翼52を有する駆動軸41を軸周りに回転させる。駆動軸41が軸周りに回転すると、反応容器10に対して攪拌翼52が相対回転し、筒部材11の内側において、混合融液3の下降流が形成される。混合融液3の下降流は、筒部材11の内側を流れ、下端開口部13から底面10aに向かって流出する。   In this crystal growth process, the mixed melt 3 is agitated by the agitator 40 in order to suppress generation of extra nuclei and obtain a large and high quality GaN crystal. Specifically, the outer cylinder 48 is rotated around the axis by driving the motor 50, and the drive shaft 41 having the stirring blades 52 is rotated around the axis by magnetic action. When the drive shaft 41 rotates around the axis, the stirring blade 52 rotates relative to the reaction vessel 10, and a downward flow of the mixed melt 3 is formed inside the cylindrical member 11. The downward flow of the mixed melt 3 flows inside the cylindrical member 11 and flows out from the lower end opening 13 toward the bottom surface 10a.

下端開口部13から流出し、底面10a付近に到達した混合融液3は、下端開口部13と底面10aとの隙間から、筒部材11の内側から外側へと流れ出し、筒部材11の外側で上昇流となって液面4付近へ到達する。液面4付近に到達した混合融液3は、液面4付近で窒素成分を取り込んだ後、上端開口部12から筒部材11の内側に流入する。そして、窒素成分を取り込んで窒素濃度が高くなった混合融液3は、筒部材11の内側において、攪拌翼52により再び下降流となり、下端開口部13から底面10aに向かって流出する。   The mixed melt 3 that flows out from the lower end opening 13 and reaches the vicinity of the bottom surface 10 a flows out from the inside of the cylindrical member 11 to the outside through the gap between the lower end opening 13 and the bottom surface 10 a and rises outside the cylindrical member 11. It reaches the vicinity of the liquid level 4 as a flow. The mixed melt 3 that has reached the vicinity of the liquid surface 4 takes in a nitrogen component in the vicinity of the liquid surface 4, and then flows into the cylinder member 11 from the upper end opening 12. Then, the mixed melt 3 in which the nitrogen component has been taken up and the nitrogen concentration has increased becomes a downward flow again by the stirring blade 52 inside the cylindrical member 11 and flows out from the lower end opening 13 toward the bottom surface 10a.

このように、液面4から底面10aに向かう混合融液3の下降流と、底面10aから液面4に向かう混合融液3の上昇流とが、混在することなく、筒部材11の内側と外側との間で循環するため、液面4付近で混合融液3に溶け込んだ窒素成分が、速やかに反応容器10の底面10a付近まで行き届く。このため、種基板2上に大型で高品質のGaN結晶を高速で育成することができる。   In this way, the downward flow of the mixed melt 3 from the liquid surface 4 toward the bottom surface 10a and the upward flow of the mixed melt 3 from the bottom surface 10a toward the liquid surface 4 are not mixed, and the inside of the cylindrical member 11 Since it circulates between the outside and the outside, the nitrogen component dissolved in the mixed melt 3 near the liquid surface 4 quickly reaches the vicinity of the bottom surface 10 a of the reaction vessel 10. Therefore, a large and high quality GaN crystal can be grown on the seed substrate 2 at high speed.

したがって、上述した本実施形態によれば、加熱加圧雰囲気下で窒素ガスとNa/Ga混合融液3とを反応させて該混合融液3に浸漬された種基板2上にGaN結晶を成長させる反応容器10を有する窒化ガリウム製造装置1であって、反応容器10の内側に間隙をあけて配置され、混合融液3中において鉛直方向に延在すると共に、上端開口部12が混合融液3の液面4に対して離間し、且つ、下端開口部13が反応容器10の底面10aに対して離間する筒部材11と、反応容器10に対し相対的に回転して、混合融液3の鉛直方向の流れを形成する攪拌翼52と、を有するという構成を採用することによって、反応容器10の内側に間隙をあけて筒部材11を配置すると、この筒部材11は鉛直方向に延在しているから、反応容器10内において鉛直方向に延びる2つの混合融液3の流路を筒部材11の内側と外側で形成することができる。また、筒部材11の上端開口部12は、混合融液3の液面4に対して離間し、一方の下端開口部13は、反応容器10の底面10aに対して離間するので、筒部材11の上端下端において混合融液3の内側と外側との間の流通が可能となる。この反応容器10に、相対回転する攪拌翼52を設け、混合融液3に鉛直方向の流れを与えると、液面4から液底に向かう混合融液3の下降流と、液底から液面4に向かう混合融液3の上昇流とが、混在することなく筒部材11の内側と外側との間で循環する。このため、液面4で混合融液3に溶け込んだ窒素ガス成分が、速やかに混合融液3の液底に行き届き易くなる。
したがって、本実施形態では、窒素ガスが溶け込む液面4付近の融液を速やかに液底まで行き届かせて、大型で高品質の結晶を得ることができる。
Therefore, according to this embodiment described above, a GaN crystal is grown on the seed substrate 2 immersed in the mixed melt 3 by reacting the nitrogen gas and the Na / Ga mixed melt 3 in a heated and pressurized atmosphere. A gallium nitride production apparatus 1 having a reaction vessel 10 to be disposed, which is disposed inside the reaction vessel 10 with a gap, extends in the vertical direction in the mixed melt 3, and has an upper end opening 12 in the mixed melt. 3 is separated from the liquid surface 4 and the lower end opening portion 13 is separated from the bottom surface 10a of the reaction vessel 10 and the reaction vessel 10 is rotated relatively to the mixed melt 3 When the cylindrical member 11 is arranged with a gap inside the reaction vessel 10 by adopting a configuration having a stirring blade 52 that forms a vertical flow of the cylindrical member 11, the cylindrical member 11 extends in the vertical direction. The reaction vessel 10 The flow path of the two melt mixture 3 extending in the vertical direction can be formed inside and outside of the cylindrical member 11 at. Further, the upper end opening 12 of the cylindrical member 11 is separated from the liquid surface 4 of the mixed melt 3, and the one lower end opening 13 is separated from the bottom surface 10 a of the reaction vessel 10. Distribution between the inner side and the outer side of the mixed melt 3 is enabled at the lower end of the upper end. When a relatively rotating stirring blade 52 is provided in the reaction vessel 10 and a vertical flow is applied to the mixed melt 3, a downward flow of the mixed melt 3 from the liquid level 4 toward the liquid bottom, and a liquid level from the liquid bottom to the liquid level. The upward flow of the mixed melt 3 toward 4 circulates between the inside and the outside of the cylindrical member 11 without being mixed. For this reason, the nitrogen gas component dissolved in the mixed melt 3 at the liquid level 4 easily reaches the liquid bottom of the mixed melt 3 quickly.
Therefore, in the present embodiment, a large and high-quality crystal can be obtained by quickly reaching the bottom of the melt near the liquid surface 4 where the nitrogen gas dissolves.

なお、上述の実施形態では、攪拌翼52を筒部材11の内側に配置した構成について説明したが、図2に示すように、攪拌翼52を筒部材11の外側(反応容器10と筒部材11との間の環状空間)に配置してもよい。この場合は、筒部材11の外側における混合融液3の鉛直方向の流れ(図2においては上昇流)を均一に偏りなく形成するために、攪拌翼52を反応容器10と筒部材11との間の環状空間に、間隔をあけて複数配置することが好ましい。但し、攪拌翼52の設置数が多くなり、また、各々を同期回転制御する必要があるので、本実施形態のように、攪拌翼52を筒部材11の内側に配置した構成の方が、コスト的にも制御的にも効率よく液面4と液底との間の混合融液3の循環流れを形成することができる。   In the above-described embodiment, the configuration in which the stirring blade 52 is disposed inside the cylindrical member 11 has been described. However, as illustrated in FIG. 2, the stirring blade 52 is disposed outside the cylindrical member 11 (the reaction vessel 10 and the cylindrical member 11). It may be arranged in an annular space between the two. In this case, in order to form the vertical flow (in FIG. 2, the upward flow) of the mixed melt 3 outside the cylindrical member 11 evenly, the stirring blade 52 is formed between the reaction vessel 10 and the cylindrical member 11. It is preferable to arrange a plurality of the annular spaces with a space therebetween. However, since the number of the agitating blades 52 is increased and each of them needs to be controlled to rotate synchronously, the configuration in which the agitating blades 52 are arranged inside the cylindrical member 11 as in the present embodiment is more costly. Therefore, the circulating flow of the mixed melt 3 between the liquid surface 4 and the liquid bottom can be efficiently formed both in terms of control and control.

(第2実施形態)
次に、本発明の第2実施形態について説明する。以下の説明において、上述の実施形態と同一又は同等の構成部分については同一の符号を付し、その説明を簡略若しくは省略する。
図3は、本発明の第2実施形態における窒化ガリウム製造装置1を示す構成図である。
図に示すように、第2実施形態では、筒部材11の内側に、攪拌翼52によって形成された混合融液3の鉛直方向の流れに含まれる旋回成分の少なくとも一部を打ち消す整流板14が設けられている点で、上記実施形態と異なる。
(Second Embodiment)
Next, a second embodiment of the present invention will be described. In the following description, the same or equivalent components as those of the above-described embodiment are denoted by the same reference numerals, and the description thereof is simplified or omitted.
FIG. 3 is a configuration diagram showing a gallium nitride manufacturing apparatus 1 according to the second embodiment of the present invention.
As shown in the figure, in the second embodiment, the rectifying plate 14 that cancels at least a part of the swirling component included in the vertical flow of the mixed melt 3 formed by the stirring blade 52 is provided inside the cylindrical member 11. It differs from the above embodiment in that it is provided.

図4は、本発明の第2実施形態における反応容器10の平断面図である。
先ず、図4(a)に示す、整流板14aの構成について説明する。
整流板14aは、筒部材11の軸心から間隔をあけて放射状に延びる複数の板部材15を有する。板部材15は、鉛直方向に所定長さ延在している。この構成によれば、攪拌翼52によって形成された混合融液3の鉛直方向の流れに含まれる旋回成分が、整流板14aを通過する際に、各板部材15の板面に衝突して打ち消されるため、筒部材11の内側において均一な鉛直方向の混合融液3の流れを形成することができる。
FIG. 4 is a cross-sectional plan view of the reaction vessel 10 in the second embodiment of the present invention.
First, the structure of the baffle plate 14a shown to Fig.4 (a) is demonstrated.
The rectifying plate 14 a has a plurality of plate members 15 that extend radially from the axis of the cylindrical member 11 at intervals. The plate member 15 extends a predetermined length in the vertical direction. According to this configuration, the swirl component included in the vertical flow of the mixed melt 3 formed by the stirring blades 52 collides with the plate surface of each plate member 15 and cancels out when passing through the rectifying plate 14a. Therefore, a uniform flow of the mixed melt 3 in the vertical direction can be formed inside the cylindrical member 11.

次に、図4(b)に示す、整流板14bの構成について説明する。
整流板14bは、筒部材11の軸心から間隔をあけて放射状に延びる複数の板部材15と、隣り合う板部材15の間に充填配置された複数の筒部材(第2の筒部材)16とを有する。筒部材16は、鉛直方向に所定長さ延在している。この構成によれば、攪拌翼52によって形成された混合融液3の鉛直方向の流れに含まれる旋回成分が、整流板14bを通過する際に、筒部材16の各内面に衝突して打ち消されるため、筒部材11の内側において均一な鉛直方向の融液の流れを形成することができる。また、整流板14bでは、混合融液3の鉛直方向の流れを、複数の筒部材16で細分化することができるため、筒部材11の内側においてより均一な鉛直方向の混合融液3の流れを形成することができる。なお、筒部材16を円筒形状でなく、六角筒形状にしてハニカム構造としても同様の作用が得られる。
Next, the structure of the baffle plate 14b shown in FIG.4 (b) is demonstrated.
The rectifying plate 14 b includes a plurality of plate members 15 that extend radially from the axis of the cylinder member 11 and a plurality of cylinder members (second cylinder members) 16 that are filled between adjacent plate members 15. And have. The cylindrical member 16 extends a predetermined length in the vertical direction. According to this configuration, the swirl component included in the vertical flow of the mixed melt 3 formed by the stirring blade 52 collides with each inner surface of the cylindrical member 16 and is canceled when passing through the rectifying plate 14b. Therefore, a uniform vertical melt flow can be formed inside the cylindrical member 11. Moreover, since the flow of the mixed melt 3 in the vertical direction can be subdivided by the plurality of cylindrical members 16 in the rectifying plate 14b, the flow of the mixed melt 3 in the vertical direction is more uniform inside the cylindrical member 11. Can be formed. It should be noted that the same effect can be obtained even if the tubular member 16 is formed in a hexagonal tubular shape instead of a cylindrical shape to form a honeycomb structure.

整流板14は、筒部材11の内側に支持されている。整流板14は、攪拌翼52と種基板2との間に配置されている。したがって、上述の第2実施形態によれば、液面4付近で窒素成分を取り込んで窒素濃度が高くなった混合融液3が、筒部材11の内側において均一な鉛直方向の流れとなって、種基板2に順次供給されるので、種基板2上に大型で高品質のGaN結晶を高速で育成することができる。   The rectifying plate 14 is supported inside the cylindrical member 11. The rectifying plate 14 is disposed between the stirring blade 52 and the seed substrate 2. Therefore, according to the second embodiment described above, the mixed melt 3 in which the nitrogen concentration is increased by taking in the nitrogen component in the vicinity of the liquid surface 4 becomes a uniform vertical flow inside the cylindrical member 11, Since the seed substrate 2 is sequentially supplied, a large and high-quality GaN crystal can be grown on the seed substrate 2 at a high speed.

以上、図面を参照しながら本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。上述した実施形態において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。   As mentioned above, although preferred embodiment of this invention was described referring drawings, this invention is not limited to the said embodiment. Various shapes, combinations, and the like of the constituent members shown in the above-described embodiments are examples, and various modifications can be made based on design requirements and the like without departing from the gist of the present invention.

例えば、上記実施形態では、種結晶を基板状にした形態について説明したが、種結晶を棒状にして反応容器10内に縦置きする形態であってもよい。   For example, in the above-described embodiment, the form in which the seed crystal is formed in a substrate shape has been described.

1…窒化ガリウム製造装置(結晶成長装置)、2…種基板(種結晶)、3…混合融液(融液)、4…液面、10…反応容器、10a…底面、11…筒部材、12…上端開口部、13…下端開口部、14…整流板、52…攪拌翼(回転翼)   DESCRIPTION OF SYMBOLS 1 ... Gallium nitride manufacturing apparatus (crystal growth apparatus), 2 ... Seed substrate (seed crystal), 3 ... Mixed melt (melt), 4 ... Liquid surface, 10 ... Reaction container, 10a ... Bottom surface, 11 ... Cylindrical member, 12 ... upper end opening, 13 ... lower end opening, 14 ... current plate, 52 ... stirring blade (rotary blade)

Claims (4)

加熱加圧雰囲気下で原料ガスと融液とを反応させて該融液に浸漬された種結晶を成長させる反応容器を有する結晶成長装置であって、
前記反応容器の内側に間隙をあけて配置され、前記融液中において鉛直方向に延在すると共に、上端開口部が前記融液の液面に対して離間し、且つ、下端開口部が前記反応容器の底面に対して離間する筒部材と、
前記反応容器に対し相対的に回転して、前記融液の鉛直方向の流れを形成する回転翼と、を有することを特徴とする結晶成長装置。
A crystal growth apparatus having a reaction vessel for growing a seed crystal immersed in the melt by reacting a raw material gas and the melt under a heating and pressurizing atmosphere,
The reaction vessel is disposed inside the reaction vessel with a gap, extends in the vertical direction in the melt, the upper end opening is separated from the liquid surface of the melt, and the lower end opening is the reaction. A cylindrical member spaced from the bottom surface of the container;
A crystal growth apparatus comprising: a rotating blade that rotates relative to the reaction vessel to form a vertical flow of the melt.
前記回転翼は、前記筒部材の内側に配置されていることを特徴とする請求項1に記載の結晶成長装置。   The crystal growth apparatus according to claim 1, wherein the rotary blade is disposed inside the cylindrical member. 前記筒部材の内側には、前記回転翼によって形成された前記鉛直方向の流れに含まれる旋回成分の少なくとも一部を打ち消す整流板が設けられていることを特徴とする請求項2に記載の結晶成長装置。   3. The crystal according to claim 2, wherein a rectifying plate that cancels at least a part of a swirling component included in the vertical flow formed by the rotor blades is provided inside the cylindrical member. Growth equipment. 前記整流板は、前記回転翼と前記種結晶との間に配置されていることを特徴とする請求項3に記載の結晶成長装置。   The crystal growth apparatus according to claim 3, wherein the rectifying plate is disposed between the rotary blade and the seed crystal.
JP2010239906A 2010-10-26 2010-10-26 Crystal growth equipment Expired - Fee Related JP5494414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010239906A JP5494414B2 (en) 2010-10-26 2010-10-26 Crystal growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010239906A JP5494414B2 (en) 2010-10-26 2010-10-26 Crystal growth equipment

Publications (2)

Publication Number Publication Date
JP2012091957A JP2012091957A (en) 2012-05-17
JP5494414B2 true JP5494414B2 (en) 2014-05-14

Family

ID=46385781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010239906A Expired - Fee Related JP5494414B2 (en) 2010-10-26 2010-10-26 Crystal growth equipment

Country Status (1)

Country Link
JP (1) JP5494414B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014038172A1 (en) * 2012-09-04 2014-03-13 新日鐵住金株式会社 APPARATUS AND METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL
JP6136735B2 (en) * 2013-08-08 2017-05-31 株式会社リコー Method and apparatus for producing group 13 nitride crystal

Also Published As

Publication number Publication date
JP2012091957A (en) 2012-05-17

Similar Documents

Publication Publication Date Title
CN102492993B (en) Process for producing a nitride single crystal and apparatus therefor
KR102022693B1 (en) Manufacturing apparatus of silicon carbide single crystal
JP5439353B2 (en) SiC single crystal manufacturing apparatus and crucible used therefor
JP5494414B2 (en) Crystal growth equipment
JP5569882B2 (en) Crystal growth equipment
TW201241245A (en) APPARATUS FOR PRODUCING SiC SINGLE CRYSTAL AND METHOD FOR PRODUCING SiC SINGLE CRYSTAL
CN104662213B (en) The manufacture device and manufacture method of SiC single crystal
JP5452291B2 (en) Crystal growth equipment
JP5423472B2 (en) Crystal growth equipment
JP5423471B2 (en) Crystal growth equipment
CN104046962B (en) A kind of axially strength drives planetary rotation device
KR20170068554A (en) SiC SINGLE CRYSTAL MANUFACTURING APPARATUS USING SOLUTION GROWTH METHOD, AND CRUCIBLE TO BE USED IN SiC SINGLE CRYSTAL MANUFACTURING APPARATUS USING SOLUTION GROWTH METHOD
JP5447014B2 (en) Crystal growth equipment
JP5719507B2 (en) Single crystal semiconductor manufacturing method and manufacturing apparatus
JP5742390B2 (en) Method for growing gallium nitride crystal
JP5867105B2 (en) Crucible handling jig
US9708727B2 (en) Stirring apparatus of ingot casting furnace
JP2012236755A (en) Apparatus for growing single crystal silicon ingot having reusable dual crucible for silicon melting
JP5693077B2 (en) Crystal growing crucible, stirring member used therefor, and crystal manufacturing method
JP2013170085A (en) Method and apparatus for growing crystal
WO2018116637A1 (en) Method for producing silicon single crystal
JP6621421B2 (en) Method and apparatus for producing group 13 element nitride crystal
JP5561185B2 (en) Crystal growth equipment
CN105648533A (en) Device for growing gallium nitride crystals in liquid-phase manner
JP2009023879A (en) Method and apparatus for producing silicon carbide single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140217

R150 Certificate of patent or registration of utility model

Ref document number: 5494414

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees