JP5493737B2 - Hot metal desulfurization method - Google Patents

Hot metal desulfurization method Download PDF

Info

Publication number
JP5493737B2
JP5493737B2 JP2009257287A JP2009257287A JP5493737B2 JP 5493737 B2 JP5493737 B2 JP 5493737B2 JP 2009257287 A JP2009257287 A JP 2009257287A JP 2009257287 A JP2009257287 A JP 2009257287A JP 5493737 B2 JP5493737 B2 JP 5493737B2
Authority
JP
Japan
Prior art keywords
desulfurization
cao
hot metal
concentration
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009257287A
Other languages
Japanese (ja)
Other versions
JP2011102413A (en
Inventor
玲洋 松澤
昌光 若生
勝弘 淵上
敏 鷲巣
恒 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009257287A priority Critical patent/JP5493737B2/en
Publication of JP2011102413A publication Critical patent/JP2011102413A/en
Application granted granted Critical
Publication of JP5493737B2 publication Critical patent/JP5493737B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

本発明は、溶銑の脱硫方法に関する。   The present invention relates to a hot metal desulfurization method.

溶鋼を製造する際の脱硫処理は溶銑予備処理工程で行うのが一般的である。インジェクション脱硫においては、粉体の脱硫材を搬送ガスとともに溶銑中に吹き込むことで脱硫を行っており、溶銑温度(1350〜1450℃)で分解あるいは蒸発を起こしにくいCaO系脱硫材が使用される。CaOは融点が2500℃超であるため溶銑温度においては固体である。固体CaOによる脱硫反応はCaO内のS拡散律速で進行するが、この反応は非常に遅いことが一般に知られている。   The desulfurization treatment when producing molten steel is generally performed in a hot metal pretreatment process. In injection desulfurization, desulfurization is performed by blowing a powder desulfurization material into a hot metal together with a carrier gas, and a CaO-based desulfurization material that does not easily decompose or evaporate at a hot metal temperature (1350 to 1450 ° C.) is used. CaO is a solid at the hot metal temperature because it has a melting point of over 2500 ° C. Although the desulfurization reaction with solid CaO proceeds at the rate of S diffusion in CaO, it is generally known that this reaction is very slow.

そこで、Mg、CaC2のようなSと反応しやすい物質とCaOを混合した脱硫材を使用して脱硫速度を向上させ、低硫域まで短時間で脱硫することが従来から行われているが、脱硫材コストが高くなるのに加えて、Mgの気化あるいはCaC2の熱分解による温度低下が起こるので、復硫が生じる場合がある。 Therefore, it has been conventionally performed to improve the desulfurization rate using a desulfurization material in which CaO is mixed with a substance that easily reacts with S, such as Mg and CaC 2 , and to desulfurize in a short time to a low sulfur region. In addition to an increase in the cost of the desulfurization material, a temperature decrease due to vaporization of Mg or thermal decomposition of CaC 2 may occur, so that resulfurization may occur.

これに替わる方法としては、金属Alを使用することが挙げられる。例えば、特許文献1では、溶銑のAl濃度を調整した後に粒度0.4mm以下のCaOを溶銑中に吹き込む脱硫方法が開示されている。   An alternative method is to use metallic Al. For example, Patent Document 1 discloses a desulfurization method in which CaO having a particle size of 0.4 mm or less is blown into hot metal after adjusting the Al concentration of the hot metal.

また別の方法としては、脱硫材粒径を細かくすることが挙げられる。これは、単位質量あたりの表面積を増大させて溶銑に接触する面積を多くし、脱硫速度を向上させる方法である。例えば、特許文献2では、CaO粉体の粒径を45μmが80質量%以上とし、吹き込み速度を40〜60kg/minとする溶融金属の脱硫方法が開示されている。特許文献3では、粒径30μm以上60μm未満の粉体構成率が50%以上である溶銑の脱硫材が開示されている。   Another method includes reducing the particle size of the desulfurized material. This is a method of increasing the surface area per unit mass to increase the area in contact with the hot metal and improving the desulfurization rate. For example, Patent Document 2 discloses a molten metal desulfurization method in which the CaO powder has a particle size of 45 μm of 80% by mass or more and a blowing rate of 40 to 60 kg / min. Patent Document 3 discloses a hot metal desulfurization material having a powder composition ratio of 50% or more with a particle size of 30 μm or more and less than 60 μm.

特開昭54−37020号公報JP 54-37020 A 特開平4−131313号公報JP-A-4-131313 特開2006−241502号公報JP 2006-241502 A

脱硫速度はS濃度に比例するので、脱硫反応はS濃度が低下するほど起こりにくくなる。よって低硫域まで脱硫するには、脱硫材をより長時間吹き込む必要がある。低硫域の一般的な定義はないが、本発明においては、0.003質量%以下のS濃度域を低硫域と定義する。下限には0質量%を含む。   Since the desulfurization rate is proportional to the S concentration, the desulfurization reaction is less likely to occur as the S concentration decreases. Therefore, it is necessary to blow the desulfurization material for a longer time in order to desulfurize to the low sulfur region. Although there is no general definition of a low sulfur region, in the present invention, an S concentration region of 0.003% by mass or less is defined as a low sulfur region. The lower limit includes 0% by mass.

特許文献1は、後述するように脱硫反応によりCaOから放出されたOとAlおよび溶銑中のSiが反応して一部のCaO粒子が液相となり、そこにSが浸透することで反応速度を向上させる方法であるが、低硫域では液相が生成しにくくなるので、効果が小さくなりやすい。   In Patent Document 1, as described later, O released from CaO by a desulfurization reaction, Al, and Si in the hot metal react to form a part of CaO particles in a liquid phase, and S permeates there to increase the reaction rate. Although it is a method to improve, since it becomes difficult to produce | generate a liquid phase in a low sulfur area, an effect tends to become small.

特許文献2および3は、S濃度が高い領域では単位質量あたりの表面積増大による脱硫速度向上効果は得られやすいが、低硫域では脱硫材粒子とSが反応する機会そのものが少ないため、効果は得られにくくなる。   In Patent Documents 2 and 3, the effect of improving the desulfurization rate by increasing the surface area per unit mass is easily obtained in the region where the S concentration is high, but in the low sulfur region, there are few opportunities for the desulfurization material particles and S to react with each other. It becomes difficult to obtain.

近年では、脱硫速度向上のために脱硫材粉体の吹き込み速度(単位時間あたり脱硫剤吹き込み供給量)を速くすることも行われる。これは、より多くの脱硫材粒子を連続的に溶銑中に供給することで、単位時間あたりに脱硫材粒子と溶銑が接触する面積を増大させることを指向した方法である。しかし、吹き込み速度を高くすると脱硫CaO効率が低下するという問題がある。これは、溶銑内に侵入せずSと反応しないまま浮上してしまう脱硫材粉体が多くなるためとされている。   In recent years, in order to improve the desulfurization rate, the blowing rate of the desulfurizing material powder (desulfurizing agent blowing supply amount per unit time) is also increased. This is a method aimed at increasing the area of contact between the desulfurized material particles and the hot metal per unit time by continuously supplying more desulfurized material particles into the hot metal. However, there is a problem that desulfurization CaO efficiency decreases when the blowing speed is increased. This is because the amount of desulfurized material powder that does not enter the hot metal and floats without reacting with S increases.

ここで、脱硫CaO効率とは、脱硫材に含まれるCaO質量に対する、Sと反応したCaO質量の割合であり、式(1)で定義する。
脱硫CaO効率(%)=(S0−S)×(56/32)/(W×XCaO)×100000 (1)
0:処理前S濃度(質量%)
S:処理後S濃度(質量%)
W:脱硫材原単位(kg/t)
CaO:脱硫材のCaO濃度(質量%)
Here, desulfurization CaO efficiency is the ratio of the mass of CaO reacted with S to the mass of CaO contained in the desulfurization material, and is defined by the formula (1).
Desulfurization CaO efficiency (%) = (S 0 −S) × (56/32) / (W × X CaO ) × 100000 (1)
S 0 : S concentration before treatment (mass%)
S: S concentration after treatment (mass%)
W: Desulfurization material basic unit (kg / t)
X CaO : CaO concentration of desulfurized material (% by mass)

脱硫CaO効率が低下すると、目標とするS濃度まで脱硫するのにより多量の脱硫材を使用する必要があるので、これは精錬コストおよびスラグ排出量の増加を招く。   If the desulfurization CaO efficiency is reduced, it is necessary to use a larger amount of desulfurization material to desulfurize to the target S concentration, which leads to an increase in refining costs and slag emissions.

このような問題に鑑み、本発明は、CaO系脱硫材の高速吹き込み処理において脱硫CaO効率が低下しない溶銑の脱硫方法を提供することを目的とする。   In view of such a problem, an object of the present invention is to provide a hot metal desulfurization method in which the desulfurization CaO efficiency does not decrease in the high-speed blowing treatment of the CaO-based desulfurization material.

本発明は上記課題を解決するためになされたものであり、その手段は、以下の通りである。
(1)溶銑へ金属Alを上方より添加して溶銑中Al濃度を0.005質量%以上0.02質量%以下とし、CaO濃度が90質量%以上であり、粒径5μm以上30μm未満の粉体構成率が50%以上である脱硫材を、インジェクション方式で該溶銑中に吹き込むことを特徴とする、溶銑の脱硫方法。
(2)溶銑への脱硫材の吹き込み速度が100〜300kg/minであることを特徴とする、(1)に記載の溶銑の脱硫方法。
The present invention has been made to solve the above-mentioned problems, and the means thereof is as follows.
(1) Metal Al is added to the hot metal from above to make the Al concentration in the hot metal 0.005 mass% or more and 0.02 mass% or less, the CaO concentration is 90 mass% or more, and the particle size is 5 μm or more and less than 30 μm. A desulfurization method for hot metal, which comprises blowing a desulfurization material having a body composition ratio of 50% or more into the hot metal by an injection method.
(2) The hot metal desulfurization method according to (1), wherein the blowing speed of the desulfurization material into the hot metal is 100 to 300 kg / min.

本発明によれば、溶銑にAlを添加し、特定範囲の粒径をある一定比率以上有するCaO系脱硫材を高速でインジェクションすることで、高い脱硫CaO効率を維持したまま短時間で低硫域まで脱硫することができる。これにより脱硫処理時間の短縮、精練コストの削減、スラグ排出量の削減といった効果を享受することができる。   According to the present invention, by adding Al to hot metal and injecting a CaO-based desulfurization material having a specific range of particle sizes of a certain ratio or more at a high speed, a low sulfur content is maintained in a short time while maintaining high desulfurization CaO efficiency. Can be desulfurized. As a result, it is possible to enjoy the effects of shortening the desulfurization time, reducing the scouring cost, and reducing the amount of slag discharged.

脱硫材粒子の粒径と、脱硫CaO効率の関係を示す図The figure which shows the particle size of desulfurization material particle and the relationship between desulfurization CaO efficiency 5μm以上50μm未満の粉体構成率と、脱硫CaO効率の関係を示す図The figure which shows the relationship between the powder composition rate of 5 micrometers or more and less than 50 micrometers, and desulfurization CaO efficiency 5μm以上30μm未満の粉体構成率と、脱硫CaO効率の関係を示す図The figure which shows the relationship between the powder composition rate of 5 micrometers or more and less than 30 micrometers, and desulfurization CaO efficiency

以下に、本発明の実施の形態について詳細に説明する。まず、金属Alが脱硫速度を向上させる機構について説明する。CaOによる脱硫反応は式(2)で表される。
CaO+S=CaS+O (2)
Hereinafter, embodiments of the present invention will be described in detail. First, the mechanism by which metal Al improves the desulfurization rate will be described. The desulfurization reaction with CaO is represented by the formula (2).
CaO + S = CaS + O (2)

すなわち、CaOはSと反応してCaSになる際にOを放出する。金属Alを添加しない場合は、CaOの脱硫反応で放出されたOと溶銑中のSiが反応してCaO粒子表層にCaO−SiO2相が生成する。この相は溶銑温度において固体なので、SはCaO内部に浸透できず、脱硫反応が停滞する。一方、溶銑に金属Alを添加した場合は、このOとAl、溶銑中のSiが反応してCaO粒子表層にCaO−Al23−SiO2相が生成する。この相は溶銑温度において液相を含むので、SはCaO内部に浸透でき、脱硫反応が継続する。金属Alを添加する際の溶銑温度は1350℃以上が好ましく、1400℃以上であればより好ましい。 That is, CaO releases O when it reacts with S to become CaS. When metal Al is not added, O released in the desulfurization reaction of CaO reacts with Si in the hot metal to form a CaO—SiO 2 phase on the surface layer of CaO particles. Since this phase is solid at the hot metal temperature, S cannot penetrate into CaO, and the desulfurization reaction stagnates. On the other hand, when metal Al is added to the hot metal, this O, Al, and Si in the hot metal react to produce a CaO—Al 2 O 3 —SiO 2 phase on the CaO particle surface layer. Since this phase contains the liquid phase at the hot metal temperature, S can penetrate into the CaO and the desulfurization reaction continues. The hot metal temperature when adding metal Al is preferably 1350 ° C. or higher, and more preferably 1400 ° C. or higher.

溶銑のSi濃度は0.2質量%以上0.8質量%以下であることが好ましい。0.2質量%未満では脱硫反応で放出されたOと溶銑Siの反応量が極めて少なくなり、CaO粒子表層にはCaO−Al23−SiO2相よりも融点の高いCaO−Al23相が生成するため、SがCaO内部に浸透しにくくなる。また、0.8質量%超では脱硫反応で放出されたOと溶銑Siの反応が主になってCaO−SiO2相がCaO粒子表層に生成するため、SがCaO内部に浸透しにくくなる。 It is preferable that the Si concentration of the hot metal is 0.2% by mass or more and 0.8% by mass or less. Extremely small amount of reaction released O and hot metal Si desulfurization reaction is less than 0.2 wt%, having a melting point higher than the CaO particle surface layer CaO-Al 2 O 3 -SiO 2-phase CaO-Al 2 O Since three phases are generated, it becomes difficult for S to penetrate into CaO. On the other hand, if it exceeds 0.8% by mass, the reaction between O released by the desulfurization reaction and molten iron Si mainly forms a CaO—SiO 2 phase in the surface layer of CaO particles, so that S hardly penetrates into CaO.

Alは、溶銑中Al濃度が0.005質量%以上0.02質量%以下となるように添加する。Al濃度が0.005質量%未満では、脱硫反応で放出されたOと溶銑Siの反応が主になってCaO−SiO2相がCaO粒子表層に生成するため、SがCaO内部に浸透しにくくなる。 Al is added so that the Al concentration in the hot metal is 0.005 mass% or more and 0.02 mass% or less. When the Al concentration is less than 0.005% by mass, the reaction between O released by the desulfurization reaction and hot metal Si mainly forms a CaO-SiO 2 phase in the surface layer of CaO particles, so that S hardly penetrates into CaO. Become.

一方、Al濃度が0.02質量%超ではAl添加の効果はほぼ飽和するので、これより金属Al添加量を増やすと温度ロスおよびコストが増加するデメリットの方が大きくなる。   On the other hand, when the Al concentration exceeds 0.02% by mass, the effect of Al addition is almost saturated. Therefore, when the amount of metal Al addition is increased, the disadvantage of increased temperature loss and cost becomes greater.

脱硫反応でCaOより放出されるOは、溶銑Sが高いほど多くなる。よって金属Alは脱硫材吹き込み前あるいは脱硫材吹き込み開始後の数分間の、S濃度が高い時期に添加するのが好ましい。また、後述するように、溶銑へ吹き込まれた脱硫材粒子は、溶銑表面に浮上した後に溶銑と接触して脱硫する。よって溶銑より比重の軽い金属Alを、溶銑表面の上方より添加すれば、溶解した金属Alは脱硫の主反応サイトである溶銑表面にある程度濃化するので、前記した脱硫促進効果を得られやすくなる。   The amount of O released from CaO in the desulfurization reaction increases as the hot metal S increases. Therefore, it is preferable to add metal Al at a time when the S concentration is high for several minutes before blowing the desulfurizing material or after starting blowing the desulfurizing material. Further, as will be described later, the desulfurized material particles blown into the hot metal float on the hot metal surface and then desulfurize in contact with the hot metal. Therefore, if a metal Al having a lighter specific gravity than the hot metal is added from above the hot metal surface, the dissolved metal Al will be concentrated to some extent on the hot metal surface, which is the main reaction site for desulfurization. .

次に、本発明で使用する脱硫材について説明する。脱硫材の組成はCaO濃度が90質量%以上である。CaO系脱硫材にはその原料である石灰石(CaCO3)に含まれるSiO2、Al23、FeO、Fe23などが不純物として存在している。これら不純物が合計で10質量%超含有されるようになるとCaOと化合物を生成しやすくなり、Sと反応するCaOが減ってしまうので、脱硫CaO効率が低下しやすくなる。 Next, the desulfurization material used in the present invention will be described. The composition of the desulfurization material has a CaO concentration of 90% by mass or more. In the CaO-based desulfurization material, SiO 2 , Al 2 O 3 , FeO, Fe 2 O 3 and the like contained in the raw material limestone (CaCO 3 ) exist as impurities. When these impurities are contained in a total of more than 10% by mass, CaO and a compound are likely to be generated, and CaO reacting with S is reduced, so that the desulfurization CaO efficiency is easily lowered.

CaO濃度については、例えばX線回折法とICP発光分光分析法を組み合わせることによって測定できる。まず、X線回折法により、Ca含有化合物についてCaO、CaC2、CaCO3などの相対比率を算出する。次にICP発光分光分析法でトータルCa濃度を求め、上記X線回折法で測定した比率を用いて按分することにより、試料中のCaO濃度を求めることができる。 The CaO concentration can be measured, for example, by combining an X-ray diffraction method and an ICP emission spectroscopic analysis method. First, relative ratios of CaO, CaC 2 , CaCO 3 and the like are calculated for the Ca-containing compound by X-ray diffraction. Next, the CaO concentration in the sample can be obtained by obtaining the total Ca concentration by ICP emission spectroscopic analysis and apportioning it using the ratio measured by the X-ray diffraction method.

次に本発明を完成するに至った実験について説明する。   Next, the experiment that led to the completion of the present invention will be described.

混銑車において、溶銑500tへ脱硫材粉体(CaO濃度:95質量%)2tを、吹き込み速度100〜300kg/minでインジェクションする脱硫実験を行い、インジェクション前、インジェクション中、インジェクション後にそれぞれ溶銑をサンプリングした。インジェクション中およびインジェクション後のサンプル断面を走査型電子顕微鏡で調査したが、いずれもCaO粒子は発見されなかった。さらに、サンプルのCa濃度を化学分析したが、インジェクション前からインジェクション後にかけてほとんど変動していなかった。   In a kneading vehicle, a desulfurization experiment was performed by injecting 2t of desulfurized material powder (CaO concentration: 95% by mass) into hot metal 500t at a blowing speed of 100 to 300 kg / min, and the hot metal was sampled before, during, and after the injection. . The cross section of the sample during and after the injection was examined with a scanning electron microscope, but no CaO particles were found. Furthermore, although the Ca concentration of the sample was chemically analyzed, it hardly changed from before injection to after injection.

これらの結果から、吹き込んだ脱硫材粉体はガス気泡内に留まったまま溶銑表面に浮上していると推定された。即ち、インジェクション方式における脱硫機構は、従来いわれているような吹き込んだ脱硫材粒子が吹き込みガスから溶鉄内に侵入し溶銑に接触した状態で浮上しながらSと反応するのではなく、吹き込まれた脱硫材粒子は気泡内にそのほとんどが滞留し、溶銑表面に浮上した後に溶銑と接触して脱硫反応が進むという機構である。   From these results, it was estimated that the blown desulfurized powder powder floated on the hot metal surface while remaining in the gas bubbles. In other words, the desulfurization mechanism in the injection method is such that the blown desulfurization material particles enter the molten iron from the blown gas and float with the molten iron in contact with the molten iron, but do not react with S, but blown desulfurization. The material particles have a mechanism that most of the particles stay in the bubbles and float on the surface of the hot metal, and then contact with the hot metal to proceed with the desulfurization reaction.

従来は脱硫材粉体が細かすぎると溶銑中に吹き込まれたガスが溶銑表面に浮上するまでの間に、ガス気泡から脱硫材粒子が脱出できないままで終わる確率が増大し、脱硫効率が低下すると考えられていたが、発明者らが新たに見出した脱硫機構であれば、従来言われているよりも細かい脱硫材でも脱硫効率が低下しない可能性がある。   Conventionally, if the powder of desulfurized material is too fine, the probability that the desulfurized particles will not escape from the gas bubbles increases until the gas blown into the hot metal surface rises to the hot metal surface, and the desulfurization efficiency decreases. However, if the desulfurization mechanism was newly found by the inventors, there is a possibility that the desulfurization efficiency will not be reduced even with a finer desulfurization material than conventionally known.

そこで次に発明者らは、CaO含有率が95質量%の脱硫材粉末を、目開き5μm、10μm、20μm、30μm、40μm、50μm、60μm、70μm、80μm、90μm、100μmのメッシュクロスを用いて選別した。そして鍋方式のインジェクション設備において、溶銑へ金属Alを上方より添加して溶銑中にAlを0.01質量%含有させ、目標粒径別に選別を行った脱硫材を、吹き込み速度100〜300kg/minで吹き込む試験を行った。   Therefore, the inventors next used a desulfurized material powder having a CaO content of 95% by mass using mesh cloth having openings of 5 μm, 10 μm, 20 μm, 30 μm, 40 μm, 50 μm, 60 μm, 70 μm, 80 μm, 90 μm, and 100 μm. Selected. And in the pan-type injection equipment, the desulfurized material which added metal Al to hot metal from the upper side and contained 0.01 mass% of Al in the hot metal and selected according to the target particle size was blown at a rate of 100 to 300 kg / min. The test which blows in was done.

図1にその結果を示す。脱硫材粒径が5μm以上50μm未満の範囲ではいずれもS濃度=0.001質量%まで、前記(1)式で定義する脱硫CaO効率で10%以上まで脱硫でき、脱硫CaO効率は良好であった。脱硫試験後に採取したスラグの断面を走査型電子顕微鏡で調査したところ、粒径の半分以上あるいは内部まで全てCaO−Al23−SiO2相となった脱硫材粒子が多数検出された。CaO−Al23−SiO2相はSを含有しており、この相の厚みは概ね5μm以上50μm未満であり、特に5μm以上30μm未満のものが多かった。CaO−Al23−SiO2相の厚みは、溶銑S濃度が高い段階で生成した場合は厚くなり、低硫域で生成した場合は薄くなると考えられる。すなわち、脱硫材粒径が5μm以上50μm未満の範囲で良好な脱硫CaO効率が得られた理由は、溶銑S濃度の低下に伴って変化するCaO−Al23−SiO2相の厚みとほぼ同じであるために、低硫域においても内部まで脱硫に有効利用されたからであると考えられる。 The result is shown in FIG. In the range where the particle size of the desulfurization material is 5 μm or more and less than 50 μm, the desulfurization CaO efficiency defined by the above formula (1) can be desulfurized to an S concentration = 0.001 mass%, and the desulfurization CaO efficiency is good. It was. When a cross-section of the slag collected after the desulfurization test was examined with a scanning electron microscope, a large number of desulfurization material particles that became CaO—Al 2 O 3 —SiO 2 phase more than half of the particle size or even inside were detected. The CaO—Al 2 O 3 —SiO 2 phase contains S, and the thickness of this phase is generally not less than 5 μm and less than 50 μm, and in particular, there are many that are not less than 5 μm and less than 30 μm. The thickness of the CaO—Al 2 O 3 —SiO 2 phase is considered to be thick when it is formed at a stage where the hot metal S concentration is high, and thin when it is formed in a low sulfur region. That is, the reason why a good desulfurized CaO efficiency was obtained when the particle size of the desulfurized material was 5 μm or more and less than 50 μm was almost the same as the thickness of the CaO—Al 2 O 3 —SiO 2 phase that changed as the hot metal S concentration decreased. Because it is the same, it is considered that it was effectively utilized for desulfurization even in the low sulfur region.

脱硫材粒径が大きいと単位質量あたりの表面積が小さくなるのに加え、低硫域では表層のみにしかCaO−Al23−SiO2相が生成しないので、50μm超の粒子について脱硫CaO効率の低下が起こったものと考えられる。 When the particle size of the desulfurized material is large, the surface area per unit mass is reduced, and in the low sulfur region, the CaO—Al 2 O 3 —SiO 2 phase is formed only on the surface layer. It is probable that the decline occurred.

一方、脱硫材粒径が小さくなり過ぎると溶銑上に浮上した後も溶銑と接触しない割合が増え、それらは脱硫に寄与しないため、5μm未満でも脱硫CaO効率の低下が起こったものと考えられる。この結果から、本発明における脱硫材粒径は5μm以上50μm未満、より好ましくは5μm以上30μm未満と規定した。脱硫材粒径分布の測定については、目開き50μmと5μmのメッシュクロスを用いて選定し、50μmの篩下かつ5μmの篩上の比率(質量%)をもって粒径5μm以上50μm未満の粉体構成率とすることができる。   On the other hand, if the particle size of the desulfurized material becomes too small, the proportion not coming into contact with the hot metal even after floating on the hot metal increases, and they do not contribute to desulfurization. From this result, the particle size of the desulfurized material in the present invention is defined as 5 μm or more and less than 50 μm, more preferably 5 μm or more and less than 30 μm. For the measurement of the particle size distribution of the desulfurized material, it is selected using a mesh cloth having openings of 50 μm and 5 μm. Rate.

次に、粒径5μm以上50μm未満の構成比率を種々変えて、それぞれについて脱硫効率の評価を行った。脱硫処理条件は上記の実験を同様とした。その結果を図2に示す。図2から明らかなように、粒径5μm以上50μm未満の粉体構成比率が50%以上であれば脱硫効率が良好な値を示すことが明らかとなった。同様に粒径5μm以上30μm未満の構成比率を種々変えて、脱硫効率の評価を行った結果を図3に示す。粒径5μm以上30μm未満の粉体構成比率が50%以上であれば脱硫効率がさらに良好となることが明らかとなった。   Next, the desulfurization efficiency was evaluated for each of the various composition ratios of particle sizes of 5 μm or more and less than 50 μm. The desulfurization treatment conditions were the same as in the above experiment. The result is shown in FIG. As is clear from FIG. 2, it has been clarified that the desulfurization efficiency shows a good value when the powder composition ratio having a particle size of 5 μm or more and less than 50 μm is 50% or more. Similarly, FIG. 3 shows the result of evaluating the desulfurization efficiency by changing the composition ratio of particle diameters of 5 μm or more and less than 30 μm in various ways. It has been clarified that the desulfurization efficiency is further improved when the composition ratio of the powder having a particle size of 5 μm or more and less than 30 μm is 50% or more.

脱硫材の吹き込み速度を高くすると溶銑と脱硫材粒子の接触時間が短くなるので、CaO内部までSが浸透しにくくなるが、粒径5μm以上50μm未満の粉体構成比率が50%以上とすれば、吹き込み速度が高くなっても溶銑との接触時間内にSはCaO内部の浸透でき、高い脱硫CaO効率を得ることができる。   When the blowing speed of the desulfurization material is increased, the contact time between the hot metal and the desulfurization material particles is shortened, so that it is difficult for S to penetrate into the CaO. However, if the powder composition ratio with a particle size of 5 μm or more and less than 50 μm is 50% or more. Even if the blowing speed increases, S can penetrate into the CaO within the contact time with the hot metal, and high desulfurized CaO efficiency can be obtained.

なお、吹き込み速度の上限を300kg/minとするのは、過度に高くすると溶銑の揺動が激しくなり、浮上した脱硫材および溶銑が処理容器の外に飛散しやすくなるためである。また、吹き込み速度の下限を100kg/minとするのは、脱硫材は粒径が細かいほどランス内部あるいはランス孔周辺に付着・堆積しやすく、過度に低い速度で吹き込むと、吹き込みが安定しなくなったりランス孔が閉塞したりしやすくなるためである。   Note that the upper limit of the blowing speed is set to 300 kg / min because if the temperature is excessively high, the hot metal swings vigorously, and the desulfurized material and hot metal that have floated are likely to be scattered outside the processing vessel. The lower limit of the blowing speed is set to 100 kg / min because the finer the desulfurized material, the easier it is to adhere and deposit inside the lance or around the lance hole, and if blown at an excessively low speed, the blowing may become unstable. This is because the lance hole is easily blocked.

以上に説明した本発明の脱硫方法により、脱硫CaO効率の向上を図ることができる。なお、搬送ガスは不活性ガス(N2、Ar)を使用すれば良い。 By the desulfurization method of the present invention described above, the efficiency of desulfurization CaO can be improved. Note that an inert gas (N 2 , Ar) may be used as the carrier gas.

以下に表1を基にして本発明の実施例を具体的に説明する。   Examples of the present invention will be specifically described below based on Table 1.

溶銑400tを混銑車から溶銑鍋に装入し、温度が1355〜1410℃、Si濃度が0.4〜0.6%の溶銑へ塊状あるいは線状の金属Alを上方から添加して溶銑中Al濃度を0.003〜0.012質量%とし、ランスを溶銑に浸漬し、N2を搬送ガスとして脱硫材粉体を吹き込んだ。その結果を表1に示す。本発明範囲から外れる数値にアンダーラインを付している。 400t of hot metal is charged into the hot metal ladle from the kneading car and molten or linear metal Al is added from above to the hot metal having a temperature of 1355 to 1410 ° C and an Si concentration of 0.4 to 0.6%. The concentration was 0.003 to 0.012% by mass, the lance was immersed in the hot metal, and desulfurized powder was blown in using N 2 as a carrier gas. The results are shown in Table 1. Numerical values that fall outside the scope of the present invention are underlined.

Figure 0005493737
Figure 0005493737

実施例1〜4、6、7は発明例である。実施例1〜では、いずれも脱硫材吹き込み速度:190〜290kg/minの高速吹き込み条件下において、本発明の条件を満足たす脱硫材を使用したので、脱硫CaO効率を10%超としながら10分未満でS=0.001%まで脱硫することができた。
Examples 1 to 4, 6, and 7 are invention examples. In Examples 1 to 4 , since the desulfurizing material satisfying the conditions of the present invention was used under the high-speed blowing condition of 190 to 290 kg / min, the desulfurizing CaO efficiency exceeded 10%. In less than 10 minutes, it was possible to desulfurize to S = 0.001%.

実施例6では、脱硫材吹き込み速度が95kg/minと低く、吹き込み速度:100〜300kg/minの時と比較して、吹き込みが安定しにくかった。また、所要時間が15.2分に増加した。   In Example 6, the desulfurization material blowing rate was as low as 95 kg / min, and the blowing rate was less stable as compared with the blowing rate of 100 to 300 kg / min. Also, the required time increased to 15.2 minutes.

また実施例7では、脱硫材吹き込み速度が305kg/minと高く、吹き込み中の溶銑の揺動が激しく、吹き込んで浮上した脱硫材の一部が溶銑鍋の外に飛散した。   Further, in Example 7, the desulfurization material blowing speed was as high as 305 kg / min, and the hot metal rocking during the blowing was intense, and a part of the desulfurized material blown and floated scattered outside the hot metal pan.

一方、実施例8では脱硫材のCaO濃度が85%と低かったため、S=0.003%までしか脱硫できず、脱硫CaO効率が8.8%に低下した。   On the other hand, in Example 8, since the CaO concentration of the desulfurization material was as low as 85%, desulfurization was possible only up to S = 0.003%, and the desulfurization CaO efficiency was reduced to 8.8%.

実施例9では脱硫材の5μm以上50μm未満の粉体構成率が40%と低かったため、S=0.002%までしか脱硫できず、脱硫CaO効率が7.8%に低下した。   In Example 9, since the powder composition ratio of the desulfurization material of 5 μm or more and less than 50 μm was as low as 40%, desulfurization was possible only up to S = 0.002%, and the desulfurization CaO efficiency was reduced to 7.8%.

実施例10では脱硫材の5μm以上50μm未満の粉体構成率が41%と低かったため、脱硫CaO効率は6.9%に低下し、実施例1〜5と同等のS濃度域まで脱硫するのに12分超の時間を必要とした。   In Example 10, since the powder composition ratio of the desulfurization material of 5 μm or more and less than 50 μm was as low as 41%, the desulfurization CaO efficiency was reduced to 6.9%, and desulfurization was performed up to the S concentration range equivalent to Examples 1-5. Took more than 12 minutes.

実施例11では脱硫材のCaO濃度が85%と低いため、脱硫CaO効率が8.8%に低下した。また、脱硫材吹き込み速度が95kg/minと低く、吹き込み速度:100〜300kg/minの時と比較して、吹き込みが安定しにくかった。また、所要時間が17.7分に増加した。   In Example 11, since the CaO concentration of the desulfurization material was as low as 85%, the desulfurization CaO efficiency was lowered to 8.8%. Moreover, compared with the time of desulfurization material blowing speed | velocity being as low as 95 kg / min and blowing speed: 100-300 kg / min, blowing was hard to be stable. The required time increased to 17.7 minutes.

実施例12では脱硫材のCaO濃度が85%と低いため、脱硫CaO効率が8.0%に低下した。また、脱硫材吹き込み速度が305kg/minと高く、吹き込み中の溶銑の揺動が激しく、吹き込んで浮上した脱硫材の一部が溶銑鍋の外に飛散した。   In Example 12, since the CaO concentration of the desulfurized material was as low as 85%, the desulfurized CaO efficiency was reduced to 8.0%. Moreover, the desulfurization material blowing speed was as high as 305 kg / min, and the hot metal rocking during blowing was intense, and a part of the desulfurized material blown and floated was scattered outside the hot metal pan.

実施例13では溶銑のAl濃度が0.003%と低いため、S=0.009%までしか脱硫できず、脱硫CaO効率が6.0%に低下した。   In Example 13, since the Al concentration of the hot metal was as low as 0.003%, desulfurization was possible only up to S = 0.000%, and the desulfurization CaO efficiency was reduced to 6.0%.

Claims (2)

溶銑へ金属Alを上方より添加して溶銑中Al濃度を0.005質量%以上0.02質量%以下とし、CaO濃度が90質量%以上であり、粒径5μm以上30μm未満の粉体構成率が50%以上である脱硫材を、インジェクション方式で該溶銑中に吹き込むことを特徴とする、溶銑の脱硫方法。 Metal Al is added to the hot metal from above to make the Al concentration in the hot metal 0.005 mass% or more and 0.02 mass% or less, the CaO concentration is 90 mass% or more, and the particle composition ratio is 5 μm or more and less than 30 μm. A desulfurization method for hot metal, characterized by blowing a desulfurization material having a content of 50% or more into the hot metal by an injection method. 溶銑への脱硫材の吹き込み速度が100〜300kg/minであることを特徴とする、請求項1に記載の溶銑の脱硫方法。   The hot metal desulfurization method according to claim 1, wherein the desulfurization material is blown into the hot metal at a rate of 100 to 300 kg / min.
JP2009257287A 2009-11-10 2009-11-10 Hot metal desulfurization method Active JP5493737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009257287A JP5493737B2 (en) 2009-11-10 2009-11-10 Hot metal desulfurization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009257287A JP5493737B2 (en) 2009-11-10 2009-11-10 Hot metal desulfurization method

Publications (2)

Publication Number Publication Date
JP2011102413A JP2011102413A (en) 2011-05-26
JP5493737B2 true JP5493737B2 (en) 2014-05-14

Family

ID=44192863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009257287A Active JP5493737B2 (en) 2009-11-10 2009-11-10 Hot metal desulfurization method

Country Status (1)

Country Link
JP (1) JP5493737B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7512913B2 (en) 2020-08-18 2024-07-09 トヨタ自動車株式会社 Internal Combustion Engine Systems

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016084499A (en) * 2014-10-24 2016-05-19 大阪鋼灰株式会社 Powdery lime for refining

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5437020A (en) * 1977-08-29 1979-03-19 Nippon Steel Corp Desulfurizing of molten crude iron
JPS55110711A (en) * 1979-02-16 1980-08-26 Nippon Steel Corp Desulfurization of molten pig iron
JP2006241502A (en) * 2005-03-02 2006-09-14 Nippon Steel Corp Desulfurizing agent for molten iron and method for desulfurizing molten iron
JP4445564B2 (en) * 2008-09-05 2010-04-07 新日本製鐵株式会社 Hot metal desulfurization method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7512913B2 (en) 2020-08-18 2024-07-09 トヨタ自動車株式会社 Internal Combustion Engine Systems

Also Published As

Publication number Publication date
JP2011102413A (en) 2011-05-26

Similar Documents

Publication Publication Date Title
JP5262075B2 (en) Method for producing steel for pipes with excellent sour resistance
JP6524801B2 (en) High purity steel and its refining method
JP5151448B2 (en) Method of melting ultra-low sulfur ultra-low oxygen ultra-low nitrogen steel
JP5541310B2 (en) Manufacturing method of highly clean steel
KR20220008897A (en) Ca Addition Method to Molten Steel
JP5493737B2 (en) Hot metal desulfurization method
JP6311400B2 (en) Carbon steel slab and method for producing carbon steel slab
JP7265136B2 (en) Melting method of ultra-low nitrogen steel
JP5463728B2 (en) Hot metal desulfurization material and desulfurization method
JP6555068B2 (en) Flux for refining molten steel and method for refining molten steel
ES2328895T3 (en) STEEL DEOXIDATION PROCESS IN COLADA SPOON.
WO2010026775A1 (en) Process for desulfurization of molten pig iron
JP6915522B2 (en) Slag forming suppression method and converter refining method
JP5267513B2 (en) High-speed desulfurization denitrification method for molten steel
RU2456349C1 (en) Procedure for out-of-furnace treatment of iron-carbon melt
RU2396359C2 (en) Powder wire for out-of-furnace treatment of melts on iron base (versions)
KR100336855B1 (en) Flux wire for use in the manufacture of high purity aluminum deoxidized steel
RU2228371C1 (en) Method of treatment of steel in ladle
JP3097506B2 (en) Method for Ca treatment of molten steel
JPH08283826A (en) Production of high purity ultralow sulfur hic resistant steel
RU2386704C2 (en) Method of steel processing in ladle
KR100900650B1 (en) Calcium Cored Wire for Controlling Calcium Content in Molten Steel and Method for Controlling Calcium Content in Molten Steel Using the Wire
SU990829A1 (en) Pulverulent reagent for refining steel
JP3697987B2 (en) Desulfurization agent for molten steel desulfurization
JP5545148B2 (en) Molten steel refining method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140217

R151 Written notification of patent or utility model registration

Ref document number: 5493737

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350