JP5493604B2 - DC electric railway power storage device - Google Patents

DC electric railway power storage device Download PDF

Info

Publication number
JP5493604B2
JP5493604B2 JP2009203317A JP2009203317A JP5493604B2 JP 5493604 B2 JP5493604 B2 JP 5493604B2 JP 2009203317 A JP2009203317 A JP 2009203317A JP 2009203317 A JP2009203317 A JP 2009203317A JP 5493604 B2 JP5493604 B2 JP 5493604B2
Authority
JP
Japan
Prior art keywords
voltage
power storage
charging
storage device
storage means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009203317A
Other languages
Japanese (ja)
Other versions
JP2011051507A (en
Inventor
正宣 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2009203317A priority Critical patent/JP5493604B2/en
Publication of JP2011051507A publication Critical patent/JP2011051507A/en
Application granted granted Critical
Publication of JP5493604B2 publication Critical patent/JP5493604B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、直流電気鉄道に用いられる電力貯蔵装置の充電電流絞りに関するものである。   The present invention relates to a charging current restrictor for a power storage device used in a DC electric railway.

直流電気鉄道においては、電気車の力行、回生時に、き電電圧の電圧降下、電圧上昇の発生を抑えるために、電力貯蔵装置が設けられている。この電力貯蔵装置は、電気二重層キャパシタ(以下、EDLCと称す)が使用され、このEDLCは、電気車からの回生電力を双方向チョッパを介して充電されるようになっている。   In a DC electric railway, an electric power storage device is provided in order to suppress occurrence of voltage drop and voltage rise during power running and regeneration of an electric vehicle. This power storage device uses an electric double layer capacitor (hereinafter referred to as EDLC), and this EDLC is charged with regenerative power from an electric vehicle via a bidirectional chopper.

このような電力貯蔵装置として、例えば特許文献1のものが知られている。特許文献1には、EDLCにて、電気車の回生電力を吸収する電力貯蔵装置が記載されている。特許文献1の電力貯蔵装置の特徴は、EDLCの電圧上昇に伴いき電電圧を上昇させる機能を持たせていることであり、その結果電気車の回生電流絞り(以下、回生絞りと称す)を促す点にある。   As such an electric power storage apparatus, the thing of patent document 1 is known, for example. Patent Document 1 describes a power storage device that absorbs regenerative power of an electric vehicle by EDLC. A feature of the power storage device of Patent Document 1 is that it has a function of increasing the electric voltage in response to an increase in the voltage of the EDLC, and as a result, a regenerative current restriction (hereinafter referred to as a regenerative restriction) of an electric vehicle. The point is to encourage.

特開2007−106186号公報。Japanese Patent Application Laid-Open No. 2007-106186.

一般的に、回生ブレーキは定トルク制御でき電電圧が回生絞り電圧を越えた時点でノッチ(段)を切替え、不足分のブレーキ力は空力ブレーキなどの併用のブレーキが使用される。つまり、電圧上昇に伴い絞りが進むとは限らない。したがって、双方向チョッパの一次側電圧のみを上げるだけでは、実際には特許文献1の図2に示されるような電圧に比例した回生絞りが行われず、き電電圧を上げても回生電流が流れ続ける。そのため以下の問題が生じることになる。1つは、EDLCが満充電で突然の充電停止となり、一気にパンタ点電圧(本発明では電気車のき電電圧)が上昇することで、回生失効電圧を超えてしまい電気車が回生失効になる、または、急激に機械ブレーキに切り換る為、乗り心地が悪くなる場合がある、という問題である。もう1つは、回生電流の絞りが少なく電気車が回生失効になると、比較的大きな回生電流が失効によりなくなるため、充電停止後にEDLCの端子電圧の低下が大きくなり、EDLCのエネルギー充電量が少なくなるという問題である。   In general, the regenerative brake can be controlled at a constant torque, and the notch (stage) is switched when the electric voltage exceeds the regenerative throttle voltage, and a brake of the combined use such as an aerodynamic brake is used for the insufficient brake force. That is, the diaphragm does not always advance as the voltage increases. Therefore, when only the primary side voltage of the bidirectional chopper is increased, the regenerative restriction proportional to the voltage as shown in FIG. 2 of Patent Document 1 is not actually performed, and the regenerative current flows even if the feeding voltage is increased. to continue. Therefore, the following problems occur. One is that the EDLC is fully charged and suddenly stops charging, and the punt point voltage (in the present invention, the feeding voltage of the electric car) rises at a stretch, which exceeds the regenerative invalidation voltage and the electric car becomes regenerative and invalidated. Or, since it suddenly switches to mechanical braking, the ride comfort may deteriorate. The other is that when the regenerative current is reduced and the electric vehicle is regeneratively expired, a relatively large regenerative current is lost due to the revocation, so the terminal voltage of the EDLC decreases greatly after the charge is stopped, and the energy charge of the EDLC is small. It is a problem.

本発明は、前記課題に基づいてなされたものであり、回生失効しにくい直流電気鉄道の電力貯蔵装置を提供することにある。   This invention is made | formed based on the said subject, and it is providing the electric power storage apparatus of the direct current electric railway which is hard to carry out regeneration invalidation.

本発明は、前記課題の解決を図るために、き電線と前記き電線の帰線となるレールとの間に設けられ、双方向チョッパ部を有して電気車からの回生電力を充電制御する直流/直流変換手段、前記直流/直流変換手段が充電制御した電力を充電する電力貯蔵手段、前記直流/直流変換手段から前記電力貯蔵手段に流れる電流を検出する電流検出手段、前記電力貯蔵手段の電圧を検出する電圧検出手段、およびき電電圧を検出するき電電圧検出手段を備えた直流電気鉄道の電力貯蔵装置であって、前記直流/直流変換手段を充電制御する制御手段は、前記電気車が回生絞りを開始するき電電圧以上に大きく設定した電圧に、前記電圧検出手段が検出する前記電力貯蔵手段の電圧と前記電力貯蔵手段が充電絞りを開始する電圧との差を加算して得られる電圧であって、当該加算によって前記電力貯蔵手段が過電圧にならないように決定した電圧、又は前記電力貯蔵手段が充電を開始する電圧のうち、どちらか大きい電圧をき電基準電圧に決定し、前記き電電圧検出手段により検出されたき電電圧と前記決定されたき電基準電圧との偏差に基づいて生成した電流指令値と、電力貯蔵手段の内部抵抗値を考慮して{Iedlc+(Vedlc_max−Vedlc)/Redlc}/Iedlc_max(Iedlcは前記電流検出手段の検出電流、Vedlcは前記電圧検出手段の検出電圧、Redlcは電力貯蔵手段の内部抵抗、Vedlc_maxはVedlcの最大値、Iedlc_maxはIedlcの最大値)を計算して生成した電流指令値のうち、小さい方の電流指令値を充電電流指令値とし、前記充電電流指令値と前記電流検出手段により検出された電力貯蔵手段の充電電流検出値の偏差に基づいて前記双方向チョッパ部のデューティ比を決定し、該決定されたデューティ比に見合ったPWM信号によって前記双方向チョッパ部を制御することを特徴とする。 In order to solve the above-described problem, the present invention is provided between a feeder line and a rail serving as a return line of the feeder line, and has a bidirectional chopper portion to control charging of regenerative power from an electric vehicle. DC / DC conversion means, power storage means for charging power controlled by the DC / DC conversion means, current detection means for detecting current flowing from the DC / DC conversion means to the power storage means, and a voltage detection means, and a DC electric railway power storage device having a gas collector voltage detection means for detecting gas collector voltage for detecting voltage, control means for charging controlling the DC / DC converting means, the electrical The difference between the voltage of the power storage means detected by the voltage detection means and the voltage at which the power storage means starts charging throttling is added to the voltage set larger than the feeding voltage at which the car starts regenerative throttling. Obtained A voltage determined so that the power storage means does not become an overvoltage by the addition, or a voltage at which the power storage means starts charging, whichever is greater is determined as a feeding reference voltage, {Iedlc + (Vedlc_max−Vedlc) in consideration of the current command value generated based on the deviation between the feeding voltage detected by the feeding voltage detection means and the determined feeding reference voltage and the internal resistance value of the power storage means. ) / Redlc} / Iedlc_max (Iedlc is the detection current of the current detection means, Vedlc is the detection voltage of the voltage detection means, Redlc is the internal resistance of the power storage means, Vedlc_max is the maximum value of Vedlc, and Iedlc_max is the maximum value of Iedlc) Of the current command values generated by calculating The duty ratio of the bidirectional chopper unit is determined based on a deviation between the charging current command value and the charging current detection value of the power storage means detected by the current detection means, and the determined duty ratio is set as a command value. The bidirectional chopper unit is controlled by a matched PWM signal .

また、前記電力貯蔵手段は、EDLCであることを特徴とする。   The power storage means is an EDLC.

上記構成によれば、制御手段に入力されるき電基準電圧を式(2)により算出している。これにより、電気車の回生絞りは電気車と電力貯蔵装置との距離に関係なく電力貯蔵装置の充電絞りよりも先に、最も遅い場合でも同時に動作することで回生失効に至りにくくなる。   According to the above configuration, the feeding reference voltage input to the control means is calculated by the equation (2). As a result, the regenerative throttle of the electric vehicle is less likely to reach regenerative invalidity by operating simultaneously even at the slowest speed before the charging throttle of the power storage device regardless of the distance between the electric vehicle and the power storage device.

請求項1および2の発明によれば、制御手段に入力されるき電基準電圧を式(2)により算出している。これにより、電気車の回生絞りは電気車と電力貯蔵装置との距離に関係なく電力貯蔵装置の充電絞りよりも先に、最も遅い場合でも同時に動作することで回生失効に至りにくくなる。
According to the first and second aspects of the present invention, the feeding reference voltage input to the control means is calculated by the equation (2). As a result, the regenerative throttle of the electric vehicle is less likely to reach regenerative invalidity by operating simultaneously even at the slowest speed before the charging throttle of the power storage device regardless of the distance between the electric vehicle and the power storage device.

直流電気鉄道に電力貯蔵装置を用いた場合の概略図。Schematic at the time of using an electric power storage apparatus for DC electric railway. 電力貯蔵装置の構成図。The block diagram of an electric power storage apparatus. 本発明で使用される充電電流絞りを採用した制御部のブロック構成図。The block block diagram of the control part which employ | adopted the charging current aperture used by this invention. 電気車回生絞りより先に電力貯蔵装置充電絞りが動作する場合の説明図。Explanatory drawing in case an electric power storage apparatus charge aperture operates before an electric vehicle regeneration aperture. 電気車回生絞りと電力貯蔵装置充電絞りとが同時に動作する場合の説明図。Explanatory drawing in case an electric vehicle regeneration aperture and a power storage device charging aperture operate simultaneously. 電気車回生絞りが電力貯蔵装置充電絞りより先に動作する場合の説明図。Explanatory drawing in case an electric vehicle regenerative aperture operates before a power storage device charging aperture. 式(2)を説明するための説明図。Explanatory drawing for demonstrating Formula (2).

以下、本発明の実施の形態における直流電気鉄道の電力貯蔵装置を図面等に基づいて詳細に説明する。   Hereinafter, a power storage device for a DC electric railway according to an embodiment of the present invention will be described in detail with reference to the drawings.

図1は、電力貯蔵装置を直流電気鉄道に用いた場合の概略図である。図1には、き電線1、き電線1から電力が供給されレール2を走行する電気車3、およびき電線1とレール2との間に介挿された電力貯蔵装置10が図示されている。   FIG. 1 is a schematic diagram when the power storage device is used in a DC electric railway. FIG. 1 illustrates a feeder 1, an electric vehicle 3 that is supplied with electric power from the feeder 1 and travels on a rail 2, and a power storage device 10 that is interposed between the feeder 1 and the rail 2. .

近年、電気車3には回生ブレーキを備えている車両が多く、回生ブレーキの動作時に電気車3が位置するき電線のき電電圧(以下、電気車き電電圧という。)を監視し、この電圧が規定値以上のときには電圧に応じて回生電流を100%から0%に絞り込むことにより、き電電圧の過剰な上昇を防止する装置(図示省略)が備えられている。   In recent years, there are many vehicles equipped with a regenerative brake in the electric vehicle 3, and a feeding voltage (hereinafter referred to as an electric vehicle feeding voltage) of a feeder line where the electric vehicle 3 is located is monitored during operation of the regenerative brake. A device (not shown) is provided that prevents an excessive increase in feeding voltage by narrowing the regenerative current from 100% to 0% according to the voltage when the voltage is equal to or higher than a specified value.

双方向チョッパ部11は、き電線1とレール2との間に直列接続された半導体スイッチング素子12a,12b(例えばIGBT等)、および一端が半導体スイッチング素子12a,12bの共通接続点に接続された平滑化リアクトル13を備えている。平滑化リアクトル13の他端は、EDLC14の一端に接続され、EDLC14の他端はレール2に接続されている。   The bidirectional chopper unit 11 has semiconductor switching elements 12a and 12b (for example, IGBT) connected in series between the feeder 1 and the rail 2, and one end connected to a common connection point of the semiconductor switching elements 12a and 12b. A smoothing reactor 13 is provided. The other end of the smoothing reactor 13 is connected to one end of the EDLC 14, and the other end of the EDLC 14 is connected to the rail 2.

なお、双方向チョッパ部11が、直流/直流変換手段に相当し、EDLC14が電力貯蔵手段に相当する。   The bidirectional chopper unit 11 corresponds to DC / DC conversion means, and the EDLC 14 corresponds to power storage means.

ここで、図1のVtrainは電気車き電電圧とし、Vdcは電力貯蔵装置10が位置するき電線のき電電圧とし、VedlcはEDLC14の電圧とし、Iregは電力貯蔵装置10が充電する、き電線1を流れる電気車3からの回生電流とし、Rは等価的に表したき電線1のき電抵抗とし、Dteは電気車3と電力貯蔵装置10との距離とする。   Here, Vtrain in FIG. 1 is an electric vehicle feeding voltage, Vdc is a feeding voltage of a feeder line in which the power storage device 10 is located, Vedlc is a voltage of the EDLC 14, and Ireg is a charge charged by the power storage device 10. The regenerative current from the electric car 3 flowing through the electric wire 1 is assumed, R is the feeding resistance of the feeder 1 equivalently expressed, and Dte is the distance between the electric car 3 and the power storage device 10.

図2を用いて電力貯蔵装置10について述べる。   The power storage device 10 will be described with reference to FIG.

電力貯蔵装置10は、双方向チョッパ部11、EDLC14以外に、き電電流検出器15、フィルタ用リアクトル16、フィルタ用コンデンサ17、き電電圧検出器18、EDLC電圧検出器19、EDLC電流検出器20を備えている。なお、き電電圧検出器18がき電電圧検出手段に相当し、EDLC電圧検出器19が電圧検出手段に相当し、EDLC電流検出器20が電流検出手段に相当する。   In addition to the bidirectional chopper unit 11 and the EDLC 14, the power storage device 10 includes a feeding current detector 15, a filtering reactor 16, a filtering capacitor 17, a feeding voltage detector 18, an EDLC voltage detector 19, and an EDLC current detector. 20 is provided. The feeding voltage detector 18 corresponds to feeding voltage detection means, the EDLC voltage detector 19 corresponds to voltage detection means, and the EDLC current detector 20 corresponds to current detection means.

き電線1とレール2との間にフィルタ用リアクトル16およびフィルタ用コンデンサ17が直列に接続されている。また、き電電流検出器15はフィルタ用リアクトル16のき電線1との接続線に設けられ、き電電圧検出器18は、一端がき電線1とフィルタ用リアクトル16との共通接続点に接続され、他端がレール2に接続されている。   Between the feeder 1 and the rail 2, a filter reactor 16 and a filter capacitor 17 are connected in series. The feeder current detector 15 is provided on the connection line of the filter reactor 16 to the feeder line 1, and the feeder voltage detector 18 is connected to a common connection point between the feeder line 1 and the filter reactor 16. The other end is connected to the rail 2.

EDLC電圧検出器19は、一端が平滑化リアクトル13とEDLC14との共通接続点に接続され、他端がレール2に接続されている。また、EDLC電流検出器20は、平滑化リアクトル13とEDLC14との共通接続点に設けられている。   The EDLC voltage detector 19 has one end connected to a common connection point between the smoothing reactor 13 and the EDLC 14 and the other end connected to the rail 2. The EDLC current detector 20 is provided at a common connection point between the smoothing reactor 13 and the EDLC 14.

図3は、双方向チョッパ部11の半導体スイッチング素子12a,12bを制御する、後述するフィルタ56による充電電流絞りを(以下、充電絞りと称す。)採用した回生電力の充電制御を行う制御部50の制御ブロック構成図である。なお、制御部50が制御手段に相当する。   FIG. 3 shows a control unit 50 that controls charging of regenerative power using a charging current restrictor (hereinafter referred to as a charging restrictor) using a filter 56 that controls the semiconductor switching elements 12 a and 12 b of the bidirectional chopper unit 11. It is a control block block diagram of. The control unit 50 corresponds to a control unit.

図3において、前記き電電圧検出器18で検出された電力貯蔵装置10のき電電圧検出値(以下、電力貯蔵き電電圧と称す。)Vdcとき電基準電圧値(電力貯蔵装置10のき電電圧指令値)Vdcrefとの偏差を偏差部51で求め、その偏差部51の偏差出力を規格化演算部52に入力して、この規格演算部52で入力された値を定格値で除算して規格演算出力値(例えば、定格電圧2000Vで、入力電圧1000Vの場合、規格演算出力値として0.5となる。)を得る。この出力値は、PIアンプ53に入力されて、出力に電流指令値を得る。この電流指令値は、リミッタ54に入力されて「0〜1」に制限処理される。   In FIG. 3, the feed voltage detection value of the power storage device 10 detected by the feed voltage detector 18 (hereinafter referred to as the power storage feed voltage) Vdc and the power reference voltage value (the feed of the power storage device 10). The deviation from the electric voltage command value) Vdcref is obtained by the deviation unit 51, the deviation output of the deviation unit 51 is input to the standardization calculation unit 52, and the value input by the standard calculation unit 52 is divided by the rated value. The standard calculation output value (for example, when the rated voltage is 2000V and the input voltage is 1000V, the standard calculation output value is 0.5) is obtained. This output value is input to the PI amplifier 53 to obtain a current command value as an output. This current command value is input to the limiter 54 and limited to “0 to 1”.

このリミッタ54により制限処理された電流指令値とEDLC14の内部抵抗値を考慮して電流指令値を絞るフィルタ56により絞られた新たな電流指令値とを比較器55により比較して、小さい方の電流指令値を充電電流指令値として出力する。この充電電流指令値は、(Iedlc+(Vedlc_max−Vedlc)/Redlc)/Iedlc_maxにより算出される。なお、IedlcはEDLC14に流れる電流であり、RedlcはEDLC14の内部抵抗であり、Vedlc_maxはVedlcの最大値であり、Iedlc_maxはIedlcの最大値である。   The current command value limited by the limiter 54 is compared with the new current command value narrowed down by the filter 56 that narrows down the current command value in consideration of the internal resistance value of the EDLC 14, and the smaller one is compared. The current command value is output as the charging current command value. This charging current command value is calculated by (Iedlc + (Vedlc_max−Vedlc) / Redlc) / Iedlc_max. Note that Iedlc is a current flowing through the EDLC 14, Redlc is an internal resistance of the EDLC 14, Vedlc_max is a maximum value of Vedlc, and Iedlc_max is a maximum value of Iedlc.

比較器55から出力された充電電流指令値とEDLC14の充電電流検出値(EDLC電流検出器20で検出)との偏差を偏差部57で求め、その偏差出力が、PIアンプ58に供給され、PIアンプ58により双方向チョッパ部11のデューティを決めるPI制御出力を送出する。   A deviation between the charge current command value output from the comparator 55 and the charge current detection value of the EDLC 14 (detected by the EDLC current detector 20) is obtained by the deviation unit 57, and the deviation output is supplied to the PI amplifier 58, where PI The amplifier 58 sends out a PI control output that determines the duty of the bidirectional chopper unit 11.

PIアンプ58から送出されたPI制御出力は、リミッタ59で「0〜1」に制限処理されて双方向チョッパ部11のデューティ比を制御するDUTYアンプ60に入力される。このDUTYアンプ60から出力されるデューティ比に見合ったPWM信号をCMP生成部61で生成する。   The PI control output sent from the PI amplifier 58 is limited to “0 to 1” by the limiter 59 and input to the DUTY amplifier 60 that controls the duty ratio of the bidirectional chopper unit 11. The CMP generator 61 generates a PWM signal corresponding to the duty ratio output from the DUTY amplifier 60.

AND回路部62には、回生電力が発生したときに図示しないシステムなどから送出される充電許可条件信号とゲート許可条件信号(充放電許可モード)が供給され、これら充電許可条件信号とゲート許可条件信号が満たされたとき、そのAND回路部62からの出力信号が、AND回路部63の第1入力端子に供給される。また、CMP生成部61で生成されたPWM信号がAND回路部63の第2入力端子に供給される。これら両入力端子に信号が供給された時に、AND回路部63の出力からは、双方向チョッパ部11にゲート信号が与えられて、双方向チョッパ部11の半導体スイッチング素子12a,12bが制御される。   The AND circuit unit 62 is supplied with a charge permission condition signal and a gate permission condition signal (charge / discharge permission mode) sent from a system (not shown) when regenerative power is generated, and these charge permission condition signal and gate permission condition are supplied. When the signal is satisfied, the output signal from the AND circuit unit 62 is supplied to the first input terminal of the AND circuit unit 63. Further, the PWM signal generated by the CMP generation unit 61 is supplied to the second input terminal of the AND circuit unit 63. When signals are supplied to both of these input terminals, the gate signal is given to the bidirectional chopper unit 11 from the output of the AND circuit unit 63, and the semiconductor switching elements 12a and 12b of the bidirectional chopper unit 11 are controlled. .

次に動作について説明する。   Next, the operation will be described.

図4は、電気車3の回生絞りよりも先に電力貯蔵装置10の充電絞りが動作する場合の各電圧の時間変化である。縦軸の各電圧の項目は上から順に、電気車3の回生絞り開始電圧Voffset、前述した電気車き電電圧Vtrainおよび電力貯蔵き電電圧Vdc、EDLC14の充電上限電圧(Vedlc充電絞り開始電圧)、EDLC電圧Vedlcおよび電力貯蔵装置10が充電する回生電流Iregである。   FIG. 4 shows the time variation of each voltage when the charging throttle of the power storage device 10 operates before the regenerative throttle of the electric vehicle 3. The items of each voltage on the vertical axis are, in order from the top, the regenerative throttle start voltage Voffset of the electric vehicle 3, the electric vehicle feed voltage Vtrain and the power storage feed voltage Vdc, and the charge upper limit voltage of the EDLC 14 (Vedlc charge throttle start voltage). , EDLC voltage Vedlc and regenerative current Ireg charged by power storage device 10.

各電圧の時間変化は以下のようになる。   The time change of each voltage is as follows.

回生電流Iregが流れ、EDLC電圧Vedlcが上昇しEDLC14の電圧が電力貯蔵装置10の充電絞り開始EDLC電圧であるVedlc充電絞り開始電圧に達すると電力貯蔵装置10の充電絞りが動作する。   When the regenerative current Ireg flows, the EDLC voltage Vedlc rises, and the voltage of the EDLC 14 reaches the Vedlc charge throttle start voltage which is the charge throttle start EDLC voltage of the power storage device 10, the charge throttle of the power storage device 10 operates.

この場合、電力貯蔵装置10が充電する回生電力<電気車3の回生電力となるため、き電線1の電圧が上昇する。その結果、き電線1の電圧上昇により電気車3の回生絞りが動作し始める。この際、き電線1の電圧上昇が急峻であると電圧上昇を抑えられないこともあり、回生失効に至ってしまう。   In this case, since the regenerative power charged by the power storage device 10 is less than the regenerative power of the electric vehicle 3, the voltage of the feeder line 1 is increased. As a result, the regenerative throttle of the electric vehicle 3 starts to operate due to the voltage rise of the feeder line 1. At this time, if the voltage rise of the feeder 1 is steep, the voltage rise may not be suppressed, leading to regenerative invalidation.

ここで、図4の中に記載されている数式Vtrain−Vdc=Ireg×Rrailについて説明する。   Here, the formula Vtrain−Vdc = Ireg × Rrail described in FIG. 4 will be described.

図1より、回生時の電気車き電電圧Vtrainは、次式で表すことができる。
Vtrain=Vdc+Ireg×Rline×Dte ・・・(1)
Rrail=Rline×Dteとし変形すると、
Vtrain−Vdc=Ireg×Rrailとなり、図4に記載される数式となる。
From FIG. 1, the electric vehicle voltage Vtrain during regeneration can be expressed by the following equation.
Vtrain = Vdc + Ireg × Rline × Dte (1)
When Rrail = Rline × Dte,
Vtrain−Vdc = Ireg × Rrail, which is the mathematical formula shown in FIG.

図5は、電気車3の回生絞りと電力貯蔵装置10の充電絞りが同時に動作する場合の各電圧の時間変化である。電圧の項目は図4と同じである。そのため、図4と共通部分については説明を省略する。   FIG. 5 shows the time variation of each voltage when the regenerative throttle of the electric vehicle 3 and the charging throttle of the power storage device 10 operate simultaneously. The item of voltage is the same as FIG. Therefore, the description of the parts common to FIG. 4 is omitted.

電力貯蔵装置10が充電する回生電力=電気車3の回生電力となるため、それぞれの絞りが動作した後は、き電線1の電圧はほぼ一定に抑えられる。   Since the regenerative power charged by the power storage device 10 is equal to the regenerative power of the electric vehicle 3, the voltage of the feeder line 1 can be suppressed to be substantially constant after the operation of each throttle.

図6は、電気車3の回生絞りが動作した後に電力貯蔵装置10の充電絞りが動作する場合の各電圧の時間変化である。電圧の項目は図4と同じである。そのため、図4と共通部分については説明を省略する。   FIG. 6 is a time change of each voltage when the charging throttle of the power storage device 10 operates after the regenerative throttle of the electric vehicle 3 operates. The item of voltage is the same as FIG. Therefore, the description of the parts common to FIG. 4 is omitted.

この場合、電力貯蔵装置10が充電する回生電力≧電気車3の回生電力となるため、き電線1の電圧は上昇しない。その後電力貯蔵装置10の充電絞りが動作を開始すると、一時的に電力貯蔵装置10が充電する回生電力≦電気車3の回生電力となるが、既に電気車3側の回生絞りが動作中のため、き電線1の電圧は上昇し難い。   In this case, since the regenerative power charged by the power storage device 10 is greater than or equal to the regenerative power of the electric vehicle 3, the voltage of the feeder 1 does not increase. Thereafter, when the charging throttle of the power storage device 10 starts to operate, the regenerative power to be temporarily charged by the power storage device 10 ≦ the regenerative power of the electric vehicle 3, but since the regenerative throttle on the electric vehicle 3 side is already operating. The voltage of the feeder 1 is difficult to increase.

したがって、図5,6より電気車3の回生絞りが電力貯蔵装置10の充電絞りよりも先に動作するように、最も遅い場合でも同時に動作するように電力貯蔵装置10を設定することが必要である。そのためには、EDLC14の電圧Vedlcが電力貯蔵装置10の充電絞り開始EDLC電圧であるVedlc充電絞り開始電圧に到達する前に、電気車3のき電電圧が回生絞りの動作開始電圧Voffsetを超える必要がある。そのため、本発明は、制御部50に入力されるき電基準電圧Vdcrefを以下のように設定している。   Therefore, it is necessary to set the power storage device 10 so that the regenerative throttle of the electric vehicle 3 operates before the charging throttle of the power storage device 10 so as to operate simultaneously even in the slowest case as shown in FIGS. is there. For this purpose, the feeding voltage of the electric vehicle 3 needs to exceed the operation start voltage Voffset of the regenerative throttle before the voltage Vedlc of the EDLC 14 reaches the Vedlc charge throttle start voltage that is the charge throttle start EDLC voltage of the power storage device 10. There is. Therefore, in the present invention, the feeding reference voltage Vdcref input to the control unit 50 is set as follows.

式(1)よりDte=0のときはRline×0=0、すなわちVtrain=Vdcとなる。Dteが0以外のときは電気車3の回生時は常にVtrain>Vdcとなる。   From equation (1), when Dte = 0, Rline × 0 = 0, that is, Vtrain = Vdc. When Dte is other than 0, Vtrain> Vdc is always satisfied when the electric vehicle 3 is regenerated.

ここで、式(2)で算出されるVdc’をき電基準電圧Vdcrefに採用する。
Vdc’=max(a1×(Vedlc−Vedlc充電絞り開始)+Vdc2,Vdcs) ・・・(2)
すると、Dte=0で電気車3の回生絞りと電力貯蔵装置10の充電絞りが同時に動作するように電力貯蔵装置10は動作する。回生時は常にVtrain>Vdcとなり、電気車3の回生絞りが先に動作することになる。
Here, Vdc ′ calculated by Equation (2) is adopted as the feeding reference voltage Vdcref.
Vdc ′ = max (a1 × (Vedlc−Vedlc charge throttle start ) + Vdc2, Vdcs) (2)
Then, when Dte = 0, the power storage device 10 operates so that the regeneration throttle of the electric vehicle 3 and the charging throttle of the power storage device 10 operate simultaneously. At the time of regeneration, Vtrain> Vdc is always established, and the regeneration throttle of the electric vehicle 3 operates first.

なお、a1はEDLC14の内部抵抗とEDLC電流検出器20が検出するEDLC14の充電電流との乗算で求められる電圧から、当該電圧の加算によりEDLC14が過電圧にならないように決定される変数である。VedlcはEDLC電圧検出器19が検出するEDLC14の電圧であり、Vedlc充電絞り開始はEDLC14の充電上限電圧である電力貯蔵装置10の充電絞りが開始されるEDLC14の電圧である。Voffsetは電気車3が回生絞りを開始するき電電圧である。ただし、電気車3により回生絞りの開始き電電圧が異なるので、電気車3のうちで最も高い回生絞りの開始き電電圧の値とする。Vdc2はVoffset以上のき電電圧である。Vdcsは電力貯蔵装置10が充電を開始するき電電圧である。max(x,y)はxとyのうちどちらか大きい電圧を出力する。 Note that a1 is a variable determined from the voltage obtained by multiplying the internal resistance of the EDLC 14 and the charging current of the EDLC 14 detected by the EDLC current detector 20 so that the EDLC 14 does not become an overvoltage by adding the voltage. Vedlc is the voltage of the EDLC 14 detected by the EDLC voltage detector 19, and Vedlc charge throttle start is the voltage of the EDLC 14 at which the charge throttle of the power storage device 10 is started, which is the charge upper limit voltage of the EDLC 14. Voffset is a feeding voltage at which the electric vehicle 3 starts regenerative throttling. However, since the starting power supply voltage of the regenerative throttle differs depending on the electric vehicle 3, the highest starting power voltage of the regenerative throttle among the electric vehicles 3 is used. Vdc2 is a feeding voltage equal to or higher than Voffset. Vdcs is a feeding voltage at which the power storage device 10 starts charging. max (x, y) outputs a larger voltage of x and y.

式(2)より、a1×(Vedlc−Vedlc充電絞り開始)+Vdc2またはVdcsのうちどちらか大きい方の値がき電基準電圧Vdcrefとして偏差部51に入力される。 From equation (2), the larger value of a1 × (Vedlc−Vedlc charge restriction start ) + Vdc2 or Vdcs, whichever is greater, is input to the deviation unit 51 as the feeding reference voltage Vdcref.

図7を用いて、式(2)を更に説明する。図7は、式(2)を説明するための図面であり、縦軸にき電基準電圧(Vdc’)をとり、横軸にEDLCの電圧をとっている。縦軸の項目は上から順に、電気車3の回生失効電圧または電気車3のき電過電圧、電気車3の回生絞り開始電圧Voffset、電力貯蔵装置10の充電開始電圧Vdcsである。また、横軸は右から順にEDLC14の過電圧、電力貯蔵装置10の充電絞り開始EDLC電圧であるVedlc充電絞り開始電圧(EDLC14の充電上限電圧)である。   Expression (2) will be further described with reference to FIG. FIG. 7 is a diagram for explaining the expression (2), where the vertical axis represents the feeding reference voltage (Vdc ′) and the horizontal axis represents the EDLC voltage. Items on the vertical axis are, in order from the top, the regeneration invalidation voltage of the electric vehicle 3 or the overvoltage of the electric vehicle 3, the regenerative throttle start voltage Voffset of the electric vehicle 3, and the charging start voltage Vdcs of the power storage device 10. The horizontal axis represents the overvoltage of the EDLC 14 and the Vedlc charge throttle start voltage (charge upper limit voltage of the EDLC 14) which is the charge throttle start EDLC voltage of the power storage device 10 in order from the right.

図中の2本の斜めの線は、一方がVdc2>Voffsetの場合で、他方がVdc2=Voffsetの場合である。この斜めの線の傾きがa1となる。Vdc2=Voffsetとして、Voffsetと電力貯蔵装置10の充電絞り開始電圧との交点を通るように設定すると、Dte=0で同時に電気車3の回生絞りと電力貯蔵装置10の充電絞りとが動作する。Vdc2>Voffsetの場合は、必ず電気車3の回生絞りが先に動作する。また、Vdc2は前記斜めの線と充電絞り開始電圧を示す直線との交点となる。   The two diagonal lines in the figure are when one of Vdc2> Voffset and the other when Vdc2 = Voffset. The inclination of this oblique line is a1. When Vdc2 = Voffset is set so as to pass through the intersection of Voffset and the charging throttle start voltage of the power storage device 10, the regeneration throttle of the electric vehicle 3 and the charging throttle of the power storage device 10 operate simultaneously at Dte = 0. When Vdc2> Voffset, the regenerative aperture of the electric vehicle 3 always operates first. Vdc2 is an intersection of the oblique line and a straight line indicating the charging throttle start voltage.

このように、制御部50に入力されるき電基準電圧Vdcrefを式(2)により算出している。これにより、電気車3の回生絞りは電気車3と電力貯蔵装置10との距離に関係なく電力貯蔵装置10の充電絞りよりも先に、最も遅い場合でも同時に動作する。その結果、電気車3の回生絞りが動作した直後は、電力貯蔵装置10が充電する回生電力≧電気車3からの回生電力となる。その後、電力貯蔵装置10の充電絞りが動作しても、図5,6で説明したようになるため回生失効に至りにくくなる。   Thus, the feeding reference voltage Vdcref input to the control unit 50 is calculated by the equation (2). As a result, the regenerative throttle of the electric vehicle 3 operates at the same time, at the latest, before the charging throttle of the power storage device 10 regardless of the distance between the electric vehicle 3 and the power storage device 10. As a result, immediately after the regenerative throttle of the electric vehicle 3 operates, the regenerative power charged by the power storage device 10 is greater than or equal to the regenerative power from the electric vehicle 3. After that, even if the charging throttle of the power storage device 10 operates, it becomes difficult to reach regenerative expiration because it becomes as described with reference to FIGS.

以上、本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲で多彩な変形および修正が可能であることは、当業者にとって明白なことであり、このような変形および修正が特許請求の範囲に属することは当然のことである。   Although the present invention has been described in detail only for the specific examples described above, it is obvious to those skilled in the art that various changes and modifications are possible within the scope of the technical idea of the present invention. Such variations and modifications are naturally within the scope of the claims.

例えば、電力貯蔵手段は蓄電池であってもよい。   For example, the power storage means may be a storage battery.

1…き電線
2…レール
3…電気車
10…電力貯蔵装置
11…双方向チョッパ部
12a,12b…半導体スイッチング素子
13…平滑化リアクトル
14…EDLC(電気二重層キャパシタ)
15…き電電流検出器
16…フィルタ用リアクトル
17…フィルタ用コンデンサ
18…き電電圧検出器
19…EDLC電圧検出器
20…EDLC電流検出器
50…制御部
51,57…偏差部
52…規格演算部
53,58…PIアンプ
54,59…リミッタ
55…比較器
56…フィルタ
60…DUTYアンプ
61…CMP生成部
62,63…AND回路
DESCRIPTION OF SYMBOLS 1 ... Feed wire 2 ... Rail 3 ... Electric vehicle 10 ... Electric power storage device 11 ... Bidirectional chopper part 12a, 12b ... Semiconductor switching element 13 ... Smoothing reactor 14 ... EDLC (electric double layer capacitor)
DESCRIPTION OF SYMBOLS 15 ... Feed current detector 16 ... Filter reactor 17 ... Filter capacitor 18 ... Feed voltage detector 19 ... EDLC voltage detector 20 ... EDLC current detector 50 ... Control part 51, 57 ... Deviation part 52 ... Standard calculation Units 53, 58 ... PI amplifiers 54, 59 ... Limiter 55 ... Comparator 56 ... Filter 60 ... DUTY amplifier 61 ... CMP generators 62, 63 ... AND circuit

Claims (2)

き電線と前記き電線の帰線となるレールとの間に設けられ、双方向チョッパ部を有して電気車からの回生電力を充電制御する直流/直流変換手段、前記直流/直流変換手段が充電制御した電力を充電する電力貯蔵手段、前記直流/直流変換手段から前記電力貯蔵手段に流れる電流を検出する電流検出手段、前記電力貯蔵手段の電圧を検出する電圧検出手段、およびき電電圧を検出するき電電圧検出手段を備えた直流電気鉄道の電力貯蔵装置であって、
前記直流/直流変換手段を充電制御する制御手段は、
前記電気車が回生絞りを開始するき電電圧以上に大きく設定した電圧に、前記電圧検出手段が検出する前記電力貯蔵手段の電圧と前記電力貯蔵手段が充電絞りを開始する電圧との差を加算して得られる電圧であって、当該加算によって前記電力貯蔵手段が過電圧にならないように決定した電圧、又は前記電力貯蔵手段が充電を開始する電圧のうち、どちらか大きい電圧をき電基準電圧に決定し、
前記き電電圧検出手段により検出されたき電電圧と前記決定されたき電基準電圧との偏差に基づいて生成した電流指令値と、電力貯蔵手段の内部抵抗値を考慮して{Iedlc+(Vedlc_max−Vedlc)/Redlc}/Iedlc_max(Iedlcは前記電流検出手段の検出電流、Vedlcは前記電圧検出手段の検出電圧、Redlcは電力貯蔵手段の内部抵抗、Vedlc_maxはVedlcの最大値、Iedlc_maxはIedlcの最大値)を計算して生成した電流指令値のうち、小さい方の電流指令値を充電電流指令値とし、
前記充電電流指令値と前記電流検出手段により検出された電力貯蔵手段の充電電流検出値の偏差に基づいて前記双方向チョッパ部のデューティ比を決定し、該決定されたデューティ比に見合ったPWM信号によって前記双方向チョッパ部を制御する
ことを特徴とする直流電気鉄道の電力貯蔵装置。
DC / DC conversion means provided between a feeder line and a rail serving as a return line of the feeder line, and having a bidirectional chopper portion to control charging of regenerative power from an electric vehicle, the DC / DC conversion means, A power storage means for charging the charge-controlled power, a current detection means for detecting a current flowing from the DC / DC conversion means to the power storage means, a voltage detection means for detecting the voltage of the power storage means, and a feeding voltage A power storage device for a DC electric railway equipped with a feeding voltage detecting means for detecting,
The control means for controlling the charging of the DC / DC converting means is:
The difference between the voltage of the power storage means detected by the voltage detection means and the voltage at which the power storage means starts charging throttling is added to the voltage set larger than the feeding voltage at which the electric vehicle starts regenerative throttling. The voltage obtained by the addition is determined so that the power storage means does not become an overvoltage, or the voltage at which the power storage means starts charging, whichever is greater is used as the power supply reference voltage. Decide
Considering the current command value generated based on the deviation between the feed voltage detected by the feed voltage detection means and the determined feed reference voltage and the internal resistance value of the power storage means, {Iedlc + (Vedlc_max−Vedlc ) / Redlc} / Iedlc_max (Iedlc is the detection current of the current detection means, Vedlc is the detection voltage of the voltage detection means, Redlc is the internal resistance of the power storage means, Vedlc_max is the maximum value of Vedlc, and Iedlc_max is the maximum value of Iedlc) The smaller current command value among the current command values generated by calculating the charging current command value,
A duty ratio of the bidirectional chopper unit is determined based on a deviation between the charging current command value and a charging current detection value of the power storage means detected by the current detection means, and a PWM signal corresponding to the determined duty ratio The bidirectional chopper unit is controlled by the DC electric railway power storage device.
前記電力貯蔵手段は、EDLCであることを特徴とする請求項1に記載の直流電気鉄道の電力貯蔵装置。   2. The DC electric railway power storage device according to claim 1, wherein the power storage means is an EDLC.
JP2009203317A 2009-09-03 2009-09-03 DC electric railway power storage device Active JP5493604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009203317A JP5493604B2 (en) 2009-09-03 2009-09-03 DC electric railway power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009203317A JP5493604B2 (en) 2009-09-03 2009-09-03 DC electric railway power storage device

Publications (2)

Publication Number Publication Date
JP2011051507A JP2011051507A (en) 2011-03-17
JP5493604B2 true JP5493604B2 (en) 2014-05-14

Family

ID=43940968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009203317A Active JP5493604B2 (en) 2009-09-03 2009-09-03 DC electric railway power storage device

Country Status (1)

Country Link
JP (1) JP5493604B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5724665B2 (en) * 2011-06-21 2015-05-27 株式会社明電舎 DC electric railway power storage device
KR101191244B1 (en) * 2012-01-05 2012-10-18 주식회사 우진산전 Power storage apparatus of city railway with a both direction dc/dc converter

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003220859A (en) * 2002-01-30 2003-08-05 Hitachi Ltd Power accumulation unit for dc electrical equipment and railway electrical system
JP3927901B2 (en) * 2002-11-21 2007-06-13 株式会社指月電機製作所 Voltage compensation device
JP4848729B2 (en) * 2005-10-12 2011-12-28 株式会社明電舎 DC electric railway power storage device
JP4572840B2 (en) * 2006-02-10 2010-11-04 株式会社明電舎 DC power storage device

Also Published As

Publication number Publication date
JP2011051507A (en) 2011-03-17

Similar Documents

Publication Publication Date Title
JP6107836B2 (en) Battery monitoring device
JP4958846B2 (en) Vehicle control device for intermittent power reception
JP3964857B2 (en) Regenerative power absorption control method for electric railways
WO2013125010A1 (en) Electric automobile
JP2009072003A (en) Electric railroad system
JP2011010406A (en) Power conversion device for vehicle, and vehicle mounted with the same
JP2009072003A5 (en)
JP2010045889A (en) Electric power system and fuel cell vehicle
JP2009273198A (en) Power flow control method and control device of battery-driven vehicle
CN105656308A (en) Power supply system
US9680404B2 (en) Abnormality detection apparatus and abnormality detection method
WO2016063481A1 (en) Power storage device
JP7039513B2 (en) Power system
JP5119229B2 (en) Vehicle control device
JP5604984B2 (en) Feeding voltage control method for electric railway system
JP4809271B2 (en) Electric vehicle power storage device and power storage device system
JP5493604B2 (en) DC electric railway power storage device
JP5724665B2 (en) DC electric railway power storage device
JP2008295123A (en) Power unit for mobile
US10122317B2 (en) Electric compressor for vehicle
JP6786268B2 (en) Power storage system
JP5353068B2 (en) Regenerative power absorber
JP5385728B2 (en) Control method and control apparatus
JP2011066972A (en) Motor drive system
JP6851502B2 (en) Power conversion system for railway vehicles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130924

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140217

R150 Certificate of patent or registration of utility model

Ref document number: 5493604

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150